Bayesian Semiparametric GARCH Models

Xibin (Bill) Zhang and Maxwell L. King

Department of Econometrics and Business Statistics
Faculty of Business and Economics

MONASH University

xibin.zhang@monash.edu

Quantitative Methods in Finance, 14–17 December 2011
Outline

1. Introduction
2. Bayesian Estimation
3. S&P 500
4. Localised Bandwidths
5. Other Indices
6. Conclusion
Motivation

- The GARCH model of Bollerslev (1986) has been useful in modelling volatilities of asset returns.

- Let \(\mathbf{y} = (y_1, \cdots, y_n)' \) denote a vector of \(n \) observations of an asset return. A GARCH(1,1) model is often specified as

\[
\begin{align*}
 y_t &= \sigma_t \varepsilon_t, \\
 \sigma_t^2 &= \omega + \alpha y_{t-1}^2 + \beta \sigma_{t-1}^2,
\end{align*}
\]

where \(\varepsilon_t \), for \(t = 1, 2, \cdots, n \), are independent.

- The assumption of conditional normality of \(\varepsilon_t \) has contributed to early successes of GARCH models.

- For example, the QMLEs of parameters are consistent when the first two moments of \(y_t \) are correctly specified.
• However, enough evidence has shown that it is possible to reject the assumption of conditional normality.

• This has motivated the investigation of other specifications of the conditional distribution of errors in GARCH models, such as the Student t and other heavy-tailed distributions.

• Any assumption on the analytical form of the error density is only an approximation to the unknown true error density.

• Moreover, it is very important to investigate the distribution of response, which is implied by the error density.

• Some investigations have been focused on parameter estimation for (G)ARCH models without assumptions on the analytical form of the error density.
A Semiparametric Approach

- Engle and González-Rivera (1991) proposed a semiparametric GARCH model without assumptions on the analytical form of error density.

- The error density was estimated nonparametrically based on residuals, which were obtained by applying either the QMLE (assuming conditional normality) or OLS.

- The parameters of the semiparametric GARCH model were estimated by maximising the log-likelihood constructed through the estimated error density.

- Their Monte Carlo study showed that this semiparametric approach could improve the efficiency of parameter estimates up to 50% against QMLEs obtained under conditional normality.
Limitations and Our Aims

- Their likelihood is affected by initial parameter estimates.

- Their semiparametric estimation uses the data twice because residuals have to be pre-fitted to construct likelihood.

- Their derived semiparametric estimates of parameters would not be used again to improve the error density estimator.

- We propose to approximate the true error density by a mixture of n normal densities, which have a common variance and individual means at the errors. This mixture density has the form of kernel density estimator of the errors.

- We treat the re-parameterised bandwidth as an additional parameter and investigate the likelihood and posterior under this mixture density of errors.
A location-mixture of n Gaussian densities

- We assume that the unknown density of ε_t denoted as $f(\varepsilon_t)$, is approximated by a location-mixture density:

$$f(\varepsilon_t; h) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} \phi\left(\frac{\varepsilon_t - \varepsilon_i}{h}\right),$$

for $t = 1, 2, \ldots, n$, where $\phi(\cdot)$ is the Gaussian PDF, and the component Gaussian densities have a common variance h^2 and different means at ε_i, for $i = 1, 2, \ldots, n$.

- From the view of kernel smoothing, this mixture error density is a kernel density estimator of errors with h the bandwidth. Therefore, we call $f(\varepsilon; h)$ the mixture (or kernel-form) error density, where h is called either the standard deviation or bandwidth, which determines the performance of $f(\varepsilon_t; h)$.
Our contribution

• We propose to approximate the unknown error density by the kernel-form error density, based on which we are able to construct the likelihood.

• We choose prior densities for the two types of parameters and obtain the posterior of all parameters. Bayesian sampling is then used to sample these parameters.

• We use this semiparametric GARCH model to compute value-at-risk (VaR).
Investigations related our work

- The validity of this mixture density as a density of the regression errors was investigated by Yuan and de Gooijer (2007) in a class of nonlinear regression models.

- Our work is related to adaptive estimation discussed by Linton (1993) and Drost and Klaassen (1997) for (G)ARCH models. A conclusion from their work is the parameters are approximately adaptively estimable.

- In all these studies, bandwidth was chosen based on pre-fitted residuals, which were used as proxies of errors.

- Bayesian semiparametric estimation was discussed by Koop (1992) for ARCH models, where the quasi likelihood was set up through a sequence of complicated polynomials.
Kernel-form conditional density of errors

- Consider the GARCH(1,1) model

\[y_t = \sigma_t \varepsilon_t, \]
\[\sigma_t^2 = \omega + \alpha y_{t-1}^2 + \beta \sigma_{t-1}^2, \tag{3} \]

where \(\omega > 0, \alpha \geq 0, \beta \geq 0 \) and \(\alpha + \beta < 1 \).

- Strictly speaking, conditional on information available at \(t - 1 \) denoted as \(I_{t-1} \), the density of \(\varepsilon_t \) denoted as \(f(\varepsilon_t) \), is unknown.

- When \(f(\varepsilon) \) is assumed to be known, the likelihood is

\[l_0(y|\omega, \alpha, \beta) = \prod_{t=1}^{n} \frac{1}{\sigma_t} f \left(\frac{y_t}{\sigma_t} \right). \]

- \(f(\varepsilon) \) could be the Gaussian, Student \(t \), and a mixture of several Gaussian densities.
A location-mixture density of n Gaussian densities

- We propose a location-mixture density as the error density:

$$f(\varepsilon; h) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} \phi \left(\frac{\varepsilon - \varepsilon_i}{h} \right),$$

where the component Gaussian densities have a common variance h^2 and individual means at individual errors.

- In some investigations on asymptotic properties of parameter estimators, bandwidth depends on sample size n and approaches zero as $n \to \infty$.

- We re-parameterise h as $\tau n^{-1/5}$, where $n^{-1/5}$ is the optimal convergence rate under AMISE. Hereafter, bandwidth is denoted as $h_n = \tau n^{-1/5}$.

Benefit of the mixture error density

- $f(\varepsilon; h_n)$ has the form of kernel density estimator of errors.
- In terms of kernel density estimation based on directly observed data, Silverman (1978) proved that a kernel density estimator approaches the underlying true density as $n \to \infty$.
- Therefore, it is reasonable to expect that $f(\varepsilon; h_n)$ approaches $f(\varepsilon)$ as the sample size n increases.
- $f(\varepsilon_t; h_n)$ differs from the kernel density estimator of residuals calculated through pre-estimated parameters. This mixture density is defined conditional on model parameters:

$$f(\varepsilon_t; h_n) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h_n} \phi \left(\frac{\varepsilon_t - y_i / \sigma_i}{h_n} \right),$$

(4)

where $\sigma_i^2 = \omega + \alpha y_{i-1}^2 + \beta \sigma_{i-1}^2$, for $i = 1, 2, \ldots, n$.

Benefit of the mixture error density (2)

- To construct likelihood, we use the leave-one-out:

$$f(\varepsilon_t|\varepsilon(t); h_n) = \frac{1}{n-1} \sum_{i=1}^{n} \frac{1}{h_n} \phi \left(\frac{\varepsilon_t - \varepsilon_i}{h_n} \right).$$ \hspace{1cm} (5)

- The density of y_t is estimated by

$$f_Y(y_t|y(t); \theta) = \frac{1}{(n-1)\sigma_t} \sum_{i=1}^{n} \frac{1}{h_n} \phi \left(\frac{y_t/\sigma_t - y_i/\sigma_i}{h_n} \right).$$ \hspace{1cm} (6)

- In the density function of y_t given by (6), h_n and σ_t always appear in the form of the product of the two:

$$h_n^2\sigma_t^2 = h_n^2\omega + h_n^2\alpha y_{t-1}^2 + \beta h_n^2\sigma_{t-1}^2.$$ \hspace{1cm} (7)
Likelihood

- h_n^2 and ω, as well as h_n^2 and α, cannot be separately identified. If ω (or α) is assumed to be a known constant, all the other parameters can be separately identified.

- In adaptive estimation for ARCH models, ω was restricted to be zero by Linton (1993) and one by Drost and Klaassen (1997).

- In light of the fact that the unconditional variance of y_t is $\omega/(1 - \alpha - \beta)$, we assume that $\omega = (1 - \alpha - \beta)s_y^2$.

- When the return series is pre-standardised, the value of ω would be assumed to be $(1 - \alpha - \beta)$, which is the same as what Engle and Gonzlez-Rivera (1991) assumed for ω in their GARCH model.
Likelihood and Choices of Priors

- The parameter vector is $\theta = (\sigma_0^2, \alpha, \beta, \tau^2)'$, and the restrictions are: $0 \leq \alpha < 1$, $0 < \beta < 1$ and $0 < \alpha + \beta < 1$.

- The likelihood of $y = (y_1, y_2, \ldots, n)'$, for given θ, is

$$\ell(y|\theta) = \prod_{t=1}^{n} \left\{ \frac{1}{(n-1)\sigma_t} \sum_{i=1}^{n} \frac{1}{h_n} \phi \left(\frac{y_t/\sigma_t - y_i/\sigma_i}{h_n} \right) \right\}. \quad (8)$$

- Conditional on model parameters, this likelihood function is the one used by the likelihood cross-validation in choosing bandwidth for the kernel density estimator of standardised y_i.

- The prior of α is the uniform density on $(0, 1)$, and the prior of β is the uniform density on $(0, 1 - \alpha)$.
Prior Choices and Posterior

- As $(\tau n^{-1/5})^2$ is the variance of component Gaussian densities in the mixture, we assume $(\tau n^{-1/5})^2$ follows an inverse Gamma distribution denoted as IG(a_τ, b_τ). Therefore, the prior of τ^2 is

$$p(\tau^2) = \frac{b_\tau^{a_\tau}}{\Gamma(a_\tau)} \left(\frac{1}{\tau^2 n^{-2/5}} \right)^{a_\tau+1} \exp \left\{ -\frac{b_\tau}{\tau^2 n^{-2/5}} \right\} n^{-2/5}.$$

- The prior of σ_0^2 is assumed to be either the log normal density with mean zero and variance one or the density of IG(1,0.05).

- The joint prior of θ denoted as $p(\theta)$, is the product of the marginal priors of α, β, τ^2 and σ_0^2.

- The posterior of θ for given y is proportional to the product of the joint prior of θ and the likelihood of y for given θ:

$$\pi(\theta|y) \propto p(\theta) \times \ell(y|\theta).$$
Data, models and results

• We used the random-walk Metropolis algorithm to sample parameters of the GARCH(1,1) model of daily returns of the S&P 500 index.

• The sample period is from 03/01/2007 to 30/06/2011, and the sample size is $n = 1131$.

• We estimated the parameters in the semiparametric GARCH(1,1) model and t-GARCH(1,1) model. Results are presented in Tables 1 and 2.

• The prior of the degrees-of-freedom parameter ν is $N(10, 5^2)$ truncated at 3, and the prior of ω is $U(0, 1)$.
Table 1: Results from the semiparametric GARCH(1,1) model.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Mean</th>
<th>95% Bayesian credible interval</th>
<th>Batch-mean SD</th>
<th>Standard deviation</th>
<th>SIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_0^2</td>
<td>0.496103</td>
<td>(0.0875, 1.5504)</td>
<td>0.011461</td>
<td>0.390368</td>
<td>8.62</td>
</tr>
<tr>
<td>ω</td>
<td>0.082482</td>
<td>(0.0593, 0.1103)</td>
<td>0.000789</td>
<td>0.013433</td>
<td>34.51</td>
</tr>
<tr>
<td>α</td>
<td>0.892831</td>
<td>(0.8557, 0.9241)</td>
<td>0.001118</td>
<td>0.018271</td>
<td>37.45</td>
</tr>
<tr>
<td>β</td>
<td>0.793211</td>
<td>(0.5247, 1.0873)</td>
<td>0.006063</td>
<td>0.142889</td>
<td>18.00</td>
</tr>
<tr>
<td>log marginal likelihood</td>
<td>-1839.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Results from the t-GARCH(1,1) model.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Mean</th>
<th>95% Bayesian credible interval</th>
<th>Batch-mean SD</th>
<th>Standard deviation</th>
<th>SIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_0^2</td>
<td>0.335206</td>
<td>(0.0789, 0.8520)</td>
<td>0.005601</td>
<td>0.217653</td>
<td>6.62</td>
</tr>
<tr>
<td>ω</td>
<td>0.015697</td>
<td>(0.0040, 0.0240)</td>
<td>0.000472</td>
<td>0.006869</td>
<td>47.23</td>
</tr>
<tr>
<td>α</td>
<td>0.073472</td>
<td>(0.0466, 0.1003)</td>
<td>0.000611</td>
<td>0.013699</td>
<td>19.92</td>
</tr>
<tr>
<td>β</td>
<td>0.890709</td>
<td>(0.8492, 0.9210)</td>
<td>0.001030</td>
<td>0.018130</td>
<td>32.29</td>
</tr>
<tr>
<td>ν</td>
<td>6.807922</td>
<td>(3.8381, 7.6489)</td>
<td>0.063646</td>
<td>1.332099</td>
<td>22.83</td>
</tr>
<tr>
<td>log marginal likelihood</td>
<td>-1855.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Convergence performance of our sampler

- The burn-in period contains 1000 draws, and the following 10,000 draws were recorded.

- We computed the batch-mean standard deviation and simulation inefficiency factor (SIF) to monitor the convergence.

- The SIF is approximately interpreted as the number of draws needed to derive independent draws.

- For example, a SIF value of 20 means that approximately, we should retain 1 draw for every 20 draws to obtain independent draws in this sampling procedure.

- All simulated chains under the mixture error density have achieved very reasonable convergence.

- The marginal likelihood derived under the mixture error density is obviously larger than that derived under the t errors.
Bayes factor for model comparison

- Bayes factor is a ratio of the marginal likelihoods derived under a model of interest and its competing model.

- Let θ denote the parameter vector under model A. The marginal likelihood under model A is (Chib, 1995)

$$m_A(y) = \frac{\ell_A(y|\theta)p_A(\theta)}{\pi_A(\theta|y)}.$$

$\ell_A(y|\theta)$ and $p_A(\theta)$ are likelihood and prior under model A.

- The Bayes factor of model A against model B is

$$BF = \frac{m_A(y)}{m_B(y)}.$$

- $3 < BF \leq 20$: A is favored against B with positive evidence.
- $20 < BF \leq 150$: A is favored against B with strong evidence.
- $BF > 150$: A is favored against B with very strong evidence.
Density forecast of the one-step out-of-sample S&P 500 return

Figure 1: The estimated densities and CDFs of the one-step out-of-sample return: (1) Conditional density of y_{n+1}; and (2) conditional CDF of y_{n+1}.
Conditional VaR

- The VaRs under the semiparametric and t GARCH models are 2.0324 and 1.6643 for a 100 investment on S&P 500.
- Therefore, in comparison to the semiparametric GARCH model, the t-GARCH tends to underestimate VaR.
Motivation for localised bandwidths

• When the true error density has sufficient long tails, the leave-one-out kernel density estimator with its bandwidth selected under the Kullback-Leibler criterion, is likely to overestimate the tails density.

• One may argue that this phenomenon is likely to be caused by the use of a global bandwidth. A remedy to this problem in that situation is to use variable bandwidths or localized bandwidths.

• Small bandwidths should be assigned to the observations in the high-density region and larger bandwidths should be assigned to those in the low-density region.
Localised bandwidths

- We assume the underlying true error density is unimodal. Large absolute errors should be assigned relatively large bandwidths, while small absolute errors should be assigned relatively small bandwidths.

- We propose the following error density estimator:

\[
f_a(\varepsilon_t; \tau, \tau_\varepsilon) = \frac{1}{n-1} \sum_{i=1 \atop i \neq t}^{n} \frac{1}{\tau n^{-1/5} (1 + \tau_\varepsilon |\varepsilon_i|)} \phi \left(\frac{\varepsilon_t - \varepsilon_i}{\tau n^{-1/5} (1 + \tau_\varepsilon |\varepsilon_i|)} \right),
\]

where \(\tau n^{-1/5} (1 + \tau_\varepsilon |\varepsilon_i|) \) is the bandwidth assigned to \(\varepsilon_i \), and the vector of parameters is now \(\theta_a = (\sigma_0^2, \alpha, \beta, \tau, \tau_\varepsilon)' \).
Bayesian estimate

- The prior of τ_ε is the uniform density on $(0, 1)$.
- The parameter estimates are $\alpha = 0.093154$, $\beta = 0.893324$, $\tau = 0.763784$, $\tau_\varepsilon = 0.635660$, and $\sigma_0^2 = 0.427865$.
- The sampler has converged very well.
- The log marginal likelihood under localised bandwidths (global bandwidth) is -1835.67 (-1839.72).
- The Bayes factor of the use of localised bandwidths against the use of global bandwidth is $\exp(4.05)$, and the former is favored against the latter with strong evidence.
- The use of localised bandwidths has increased the competitiveness of the semiparametric GARCH model.
Density forecast of the one-step out-of-sample return

Figure 1: The estimated densities of the one-step out-of-sample return through localised bandwidths: (1) S&P 500 return; and (2) FTSE return.
Application to other index returns

<table>
<thead>
<tr>
<th>Nasdaq</th>
<th>NYSE</th>
<th>DJIA</th>
<th>FTSE</th>
<th>DAX</th>
<th>AORD</th>
<th>Nikkei</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_0^2)</td>
<td>0.737396</td>
<td>0.675171</td>
<td>0.452820</td>
<td>0.672453</td>
<td>0.757102</td>
<td>1.021040</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.098014</td>
<td>0.086032</td>
<td>0.094623</td>
<td>0.108520</td>
<td>0.144759</td>
<td>0.137622</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.887498</td>
<td>0.892873</td>
<td>0.883619</td>
<td>0.880093</td>
<td>0.854487</td>
<td>0.851735</td>
</tr>
<tr>
<td>(\tau)</td>
<td>0.977918</td>
<td>1.017463</td>
<td>1.241229</td>
<td>1.360150</td>
<td>1.082082</td>
<td>1.228259</td>
</tr>
<tr>
<td>VaR</td>
<td>2.3327</td>
<td>2.1847</td>
<td>1.8587</td>
<td>2.0247</td>
<td>2.2087</td>
<td>1.9937</td>
</tr>
<tr>
<td>LML</td>
<td>-1959.64</td>
<td>-1924.85</td>
<td>-1748.03</td>
<td>-1880.29</td>
<td>-1955.95</td>
<td>-1791.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nasdaq</th>
<th>NYSE</th>
<th>DJIA</th>
<th>FTSE</th>
<th>DAX</th>
<th>AORD</th>
<th>Nikkei</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_0^2)</td>
<td>0.672198</td>
<td>0.471396</td>
<td>0.312151</td>
<td>0.576110</td>
<td>0.638668</td>
<td>0.946476</td>
</tr>
<tr>
<td>(\omega)</td>
<td>0.024144</td>
<td>0.021031</td>
<td>0.011339</td>
<td>0.030545</td>
<td>0.028463</td>
<td>0.031719</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.071868</td>
<td>0.073784</td>
<td>0.074238</td>
<td>0.084517</td>
<td>0.067160</td>
<td>0.097714</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.892783</td>
<td>0.891033</td>
<td>0.891644</td>
<td>0.875496</td>
<td>0.895703</td>
<td>0.860881</td>
</tr>
<tr>
<td>VaR</td>
<td>2.0407</td>
<td>1.8027</td>
<td>1.5467</td>
<td>1.8387</td>
<td>1.9207</td>
<td>1.7917</td>
</tr>
</tbody>
</table>
Application to other index returns

Table 4: Results from semiparametric GARCH (localised bandwidth).

<table>
<thead>
<tr>
<th></th>
<th>S&P 500</th>
<th>Nasdaq</th>
<th>NYSE</th>
<th>DJIA</th>
<th>FTSE</th>
<th>DAX</th>
<th>AORD</th>
<th>Nikkei</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_0^2</td>
<td>0.4279</td>
<td>0.7510</td>
<td>0.6235</td>
<td>0.3831</td>
<td>0.6802</td>
<td>0.7610</td>
<td>1.0060</td>
<td>0.8383</td>
</tr>
<tr>
<td></td>
<td>(6.20)</td>
<td>(3.81)</td>
<td>(6.44)</td>
<td>(4.92)</td>
<td>(7.40)</td>
<td>(9.15)</td>
<td>(8.06)</td>
<td>(8.28)</td>
</tr>
<tr>
<td>α</td>
<td>0.0932</td>
<td>0.0958</td>
<td>0.0940</td>
<td>0.1085</td>
<td>0.0988</td>
<td>0.1190</td>
<td>0.1460</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(14.60)</td>
<td>(14.63)</td>
<td>(13.95)</td>
<td>(10.61)</td>
<td>(8.19)</td>
<td>(42.14)</td>
<td>(15.11)</td>
<td>(13.72)</td>
</tr>
<tr>
<td>β</td>
<td>0.8933</td>
<td>0.8917</td>
<td>0.8915</td>
<td>0.8795</td>
<td>0.8813</td>
<td>0.8917</td>
<td>0.8668</td>
<td>0.8366</td>
</tr>
<tr>
<td></td>
<td>(15.47)</td>
<td>(17.07)</td>
<td>(16.13)</td>
<td>(13.43)</td>
<td>(8.80)</td>
<td>(23.14)</td>
<td>(17.35)</td>
<td>(15.99)</td>
</tr>
<tr>
<td>τ</td>
<td>0.7638</td>
<td>0.8094</td>
<td>0.7470</td>
<td>0.8073</td>
<td>0.8364</td>
<td>0.8423</td>
<td>0.7797</td>
<td>0.7389</td>
</tr>
<tr>
<td></td>
<td>(12.19)</td>
<td>(13.15)</td>
<td>(13.71)</td>
<td>(12.77)</td>
<td>(22.95)</td>
<td>(27.36)</td>
<td>(23.98)</td>
<td>(20.18)</td>
</tr>
<tr>
<td>τ_{ε}</td>
<td>0.6357</td>
<td>0.4174</td>
<td>0.6540</td>
<td>0.7617</td>
<td>0.5283</td>
<td>0.6878</td>
<td>0.5305</td>
<td>0.4276</td>
</tr>
<tr>
<td></td>
<td>(28.08)</td>
<td>(14.89)</td>
<td>(18.41)</td>
<td>(24.20)</td>
<td>(23.53)</td>
<td>(29.69)</td>
<td>(25.97)</td>
<td>(21.58)</td>
</tr>
<tr>
<td>VaR</td>
<td>1.9778</td>
<td>2.3147</td>
<td>2.1587</td>
<td>1.8097</td>
<td>1.9687</td>
<td>2.1207</td>
<td>1.9227</td>
<td>2.0717</td>
</tr>
</tbody>
</table>

Table 5: A summary of marginal likelihoods.

<table>
<thead>
<tr>
<th></th>
<th>S&P 500</th>
<th>Nasdaq</th>
<th>NYSE</th>
<th>DJIA</th>
<th>FTSE</th>
<th>DAX</th>
<th>AORD</th>
<th>Nikkei</th>
</tr>
</thead>
</table>
Empirical findings

- The semiparametric GARCH with localised bandwidths is favored against the t-GARCH for S&P 500, Nasdaq, NYSE, DJIA, and Nikkei 225 indices. The t-GARCH is favored against the former for FTSE.

- The use of localised bandwidths increases the competitiveness against its competitor, the t-GARCH model. This is evidenced by an increased marginal likelihood for each index.

- The use of localized bandwidths slightly reduces the VaR compared to the use of a global bandwidth, but the relative change is between 0.77% to 3.98%.

- The t-GARCH model underestimates VaR in comparison to the semiparametric GARCH model.
Conclusion

- We approximate unknown error density by a location-mixture density of n normal densities for GARCH models.
- We derived the likelihood and posterior for all parameters, and Bayesian sampling is conducted for estimation.
- The mixture error density is used to forecast the density of the one-day out-of-sample return, which is used for estimating VaR.
- The use of localised bandwidths increases the competitiveness the semiparametric GARCH against the t-GARCH.
- The semiparametric GARCH is favored against the t-GARCH for five out of eight indices.
- The t-GARCH underestimates VaR compared to the semiparametric GARCH.