Bayesian semiparametric GARCH models with an application to VaR estimation

Xibin (Bill) Zhang and Maxwell L. King

Department of Econometrics and Business Statistics
Faculty of Business and Economics

MONASH University

xibin.zhang@monash.edu

Outline

1 Motivation
2 Introduction
3 Bayesian estimation
4 S&P 500
5 Localised bandwidths
6 Other indices
7 Conclusion
The ARCH model of Engle (1982) and the generalised ARCH (GARCH) model of Bollerslev (1986) have proven to be useful in modelling volatilities of asset returns.

Let $y = (y_1, \cdots, y_n)'$ denote a vector of n observations of an asset return. A GARCH(1,1) model is often specified as

$$y_t = \sigma_t \varepsilon_t,$$

$$\sigma_t^2 = \omega + \alpha y_{t-1}^2 + \beta \sigma_{t-1}^2,$$ \hspace{1cm} (1)

where ε_t, for $t = 1, 2, \cdots, n$, are independent. It is often assumed that $\omega > 0$, $\alpha \geq 0$, $\beta \geq 0$ and $\alpha + \beta < 1$.

The assumption of conditional normality of ε_t has contributed to early successes of GARCH models.

Under the assumption of conditional normality, the QMLE of the parameter vector is consistent when the first two moments of y_t are correctly specified.

However, enough evidence found by theoretical and empirical studies has shown that it is possible to reject the assumption of conditional normality.

This has motivated the investigation of other specifications of the conditional distribution of errors in GARCH models, such as the Student t and other heavy-tailed distributions (Hall and Yao, 2003, *Econometrica*).

Any assumption on the analytical form of the error density is only an approximation to the unknown true error density.

It is very important to investigate the distribution of response, which is implied by the error density.

Some investigations have been focused on parameter estimation for (G)ARCH models without assumptions on the type of conditional density of ε_t.

...
Engle and González-Rivera (1991) proposed a semiparametric GARCH model without parametric assumptions on the error density.

The error density was estimated nonparametrically based on the standardised residuals, which were obtained by applying either the QMLE (assuming conditional normality) or OLS to the same parametric model.

The parameters of the semiparametric GARCH model were estimated by maximising the log-likelihood constructed through the estimated error density. This estimation procedure is an one-step semiparametric estimation.

Their Monte Carlo study showed that this semiparametric approach could improve the efficiency of parameter estimates up to 50% against QMLEs obtained under conditional normality.

However, the initial parameter estimates might be inaccurate as a consequence of the assumption of conditional normality in the model used for deriving initial estimates. Therefore, the accuracy of resulting nonparametric estimator of the error density based on standardised residuals might be affected.

Moreover, this semiparametric estimation procedure is one-step. The estimated parameters will not be used again for improving the nonparametric density estimator for errors.

We propose to approximate the true error density by a mixture of n normal densities, which have a common variance and individual means at the errors. This mixture density has the form of kernel density estimator of the errors.

We treat the re-parameterised bandwidth as an additional parameter. We investigate the likelihood and posterior under the mixture errors.
A location-mixture of \(n \) Gaussian densities

- Let \(\mathbf{y} = (y_1, y_2, \ldots, y_n)' \) be a vector of \(n \) observations of an asset’s return. A GARCH(1,1) model is expressed as

\[
y_t = \sigma_t \varepsilon_t, \\
\sigma_t^2 = \omega + \alpha y_{t-1}^2 + \beta \sigma_{t-1}^2, \quad \text{for} \; t = 1, 2, \ldots, n.
\]

- We assume that the unknown density of \(\varepsilon_t \) denoted as \(f(\varepsilon_t) \), is approximated by a location-mixture density:

\[
f(\varepsilon_t; h) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} \phi \left(\frac{\varepsilon_t - \varepsilon_i}{h} \right),
\]

for \(t = 1, 2, \ldots, n \), where \(\phi(\cdot) \) is the Gaussian PDF, and the component Gaussian densities have a common variance \(h^2 \) and different means at \(\varepsilon_i \), for \(i = 1, 2, \ldots, n \).

The common standard deviation or bandwidth

- From the view of kernel smoothing, this mixture error density is a kernel density estimator of errors with \(h \) the bandwidth. We call \(f(\varepsilon; h) \) the mixture (or kernel-form) error density, where \(h \) is referred to as either the standard deviation or bandwidth.

- A kernel density estimator of either directly observed data or indirect data (such as realised errors) is determined by the choices of kernel and bandwidth.

- Once the kernel is chosen, the resulting kernel estimator is determined by bandwidth choice, which is crucially important in determining the performance of the density estimator.
Our contribution

- We treat the re-parameterised bandwidth in the kernel-form error density as an additional parameter to the semiparametric GARCH model.
- Assuming that the density of each standardised error is approximated by the mixture error density, we are able to derive an approximate likelihood.
- We could maximise the likelihood with respect to both types of parameters numerically. However, such a direct maximisation may encounter convergence problems, because the likelihood is flat when bandwidth is large.
- Instead, we assume prior densities for the two types of parameters and obtain the posterior of all parameters. Bayesian sampling is then used to sample these parameters.

Investigations related our work

- The validity of this mixture density as a density of the regression errors was investigated by Yuan and de Gooijer (2007) in a class of nonlinear regression models, but bandwidth was pre-chosen based on initial estimates of parameters.
- Our work is related to adaptive estimation. Linton (1993) investigated adaptive estimation in ARCH models and showed that the resulting QMLE is asymptotic efficient in the sense of Bickel (1982).
- Drost and Klaassen (1997) argued that adaptive estimation is not possible in GARCH models. After a reparameterisation, the parameters are approximately adaptively estimable.
- In all these studies, bandwidth was chosen based on pre-fitted residuals, which were used as proxies of errors.
To deal with the problem of possible misspecification of error density and impose inequality constraints on some parameters of the quasi likelihood, Koop (1992) presented Bayesian semiparametric ARCH models, where the quasi likelihood was set up through a sequence of complicated polynomials.

His overall finding indicated that the use of Bayesian and semiparametric approaches is feasible and necessary.

Our Bayesian framework differs from his in that our likelihood is set up through a leave-one-out version of the kernel-form error density. Therefore, either the conditional posteriors or joint posterior can be derived.

Consider the GARCH(1,1) model

\[y_t = \sigma_t \varepsilon_t, \]
\[\sigma_t^2 = \omega + \alpha y_{t-1}^2 + \beta \sigma_{t-1}^2, \] (4)

where \(\omega > 0, \alpha \geq 0, \beta \geq 0 \) and \(\alpha + \beta < 1 \).

Strictly speaking, conditional on information available at \(t - 1 \) denoted as \(I_{t-1} \), the density of \(\varepsilon_t \) denoted as \(f(\varepsilon_t) \), is unknown.

When \(f(\varepsilon) \) is assumed to be known, the likelihood is

\[\ell_0(y|\omega, \alpha, \beta) = \prod_{t=1}^{n} \frac{1}{\sigma_t} f \left(\frac{y_t}{\sigma_t} \right). \]

For example, \(f(\varepsilon) \) could be the Gaussian, Student t, the density of generalised error distribution and a mixture of several Gaussian densities.
A location-mixture density of n Gaussian densities

- We propose a location-mixture density as the error density:
 \[
 f(\varepsilon; h) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} \phi \left(\frac{\varepsilon - \varepsilon_i}{h} \right),
 \]
 where the component Gaussian densities have a common variance h^2 and individual means at individual errors.
- We treat h^2 as a parameter, which is the only parameter that determines the proposed error density.
- In some investigations about the asymptotic properties of parameter estimators, bandwidth depends on sample size n and approaches zero as n tends to infinity.
- We re-parameterise h as $\tau n^{-1/5}$, where $n^{-1/5}$ is the optimal convergence rate under AMISE. Hereafter, bandwidth is denoted as $h_n = \tau n^{-1/5}$.

Benefit of the mixture error density

- The mixture error density $f(\varepsilon; h_n)$ has the form of the kernel density estimator of errors.
- In terms of kernel density estimation based on directly observed data, Silverman (1978) proved that a kernel density estimator approaches the underlying true density as $n \to \infty$.
- Therefore, it is reasonable to expect that $f(\varepsilon; h_n)$ approaches $f(\varepsilon)$ as the sample size n increases.
- This mixture is a well-defined density: $\int_{-\infty}^{\infty} f(\varepsilon; h_n) d\varepsilon = 1$.
- When $\varepsilon \sim f(\varepsilon; h_n)$, we have $E(\varepsilon) = \bar{\varepsilon}$ and $Var(\varepsilon) = h^2 + s_\varepsilon^2$, where $\bar{\varepsilon} = 1/n \sum_{i=1}^{n} \varepsilon_i$, and $s_\varepsilon^2 = 1/n \sum_{i=1}^{n} (\varepsilon_i - \bar{\varepsilon})^2$.
- According to the law of large numbers, $\bar{\varepsilon} \to E(\varepsilon)$ and $s_\varepsilon^2 \to Var(\varepsilon)$, as sample size tends to infinity.
Remark 1: $f(\varepsilon_t; h_n)$ differs from the kernel density estimator of residuals calculated through pre-estimated parameters. This mixture density is defined conditional on model parameters:

$$f(\varepsilon_t; h_n) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h_n} \phi \left(\frac{\varepsilon_t - y_i/\sigma_i}{h_n} \right),$$

where $\sigma_i^2 = \omega + \alpha y_{i-1}^2 + \beta \sigma_{i-1}^2$, for $i = 1, 2, \ldots, n$.

From a Bayesian’s view, $f(\varepsilon_t; h_n)$ has a closed form conditional on the model parameters and smoothing parameter. Therefore, both the likelihood and posterior can be constructed.

Remark 2: To construct likelihood, we use the leave-one-out:

$$f(\varepsilon_t | \varepsilon(t); h_n) = \frac{1}{n-1} \sum_{i=1}^{n} \frac{1}{h_n} \phi \left(\frac{\varepsilon_t - \varepsilon_i}{h_n} \right).$$

Remark 3: The form of $f(\varepsilon_t | \varepsilon(t); h_n)$ doesn’t depend on t:

$$f(\varepsilon_t | \varepsilon(t); h_n) = \frac{1}{(n-1)h_n} \left\{ \sum_{i=1}^{n} \phi \left(\frac{\varepsilon_t - \varepsilon_i}{h_n} \right) - \phi(0) \right\}.$$

Remark 4: The density of y_t is estimated by

$$f_Y(y_t | y(t); \theta) = \frac{1}{(n-1)\sigma_t} \sum_{i=1}^{n} \frac{1}{h_n} \phi \left(\frac{y_t/\sigma_t - y_i/\sigma_i}{h_n} \right).$$

- In the density function of y_t given by (8), h_n and σ_t always appear in the form of the product of the two:

$$h_n^2 \sigma_t^2 = h_n^2 \omega + h_n^2 \alpha y_{t-1}^2 + \beta h_n^2 \sigma_{t-1}^2.$$
Likelihood

- \(h_n^2 \) and \(\omega \), as well as \(h_n^2 \) and \(\alpha \), cannot be separately identified. If \(\omega \) (or \(\alpha \)) is assumed to be a known constant, all the other parameters can be separately identified.

- In the situation of adaptive estimation for ARCH models, \(\omega \) was restricted to be zero by Linton (1993) and one by Drost and Klaassen (1997).

- In light of the fact that the unconditional variance of \(y_t \) is \(\omega/(1 - \alpha - \beta) \), we assume that \(\omega = (1 - \alpha - \beta)s_y^2 \).

- When the return series is pre-standardized, the value of \(\omega \) would be assumed to be \((1 - \alpha - \beta) \), which is the same as what Engle and Gonzalez-Rivera (1991) assumed for \(\omega \) in their GARCH model.

Likelihood and prior density choices

- The parameter vector is \(\theta = (\sigma_0^2, \alpha, \beta, \tau^2)' \), and the restrictions are: \(0 \leq \alpha < 1, 0 \leq \beta < 1 \) and \(0 \leq \alpha + \beta < 1 \).

- The likelihood of \(y = (y_1, y_2, \ldots, n)' \), for given \(\theta \), is

\[
\ell(y|\theta) = \prod_{t=1}^{n} \left\{ \frac{1}{(n-1)\sigma_t} \sum_{i=1}^{n} \frac{1}{h_n} \phi \left(\frac{y_t/\sigma_t - y_i/\sigma_i}{h_n} \right) \right\}. \tag{10}
\]

- Conditional on model parameters, this likelihood function is the one used by the likelihood cross-validation in choosing bandwidth for the kernel density estimator of standardized \(y_i \).

Remark 5: This likelihood is of the form of a full conditional composite likelihood in the sense that the density of \(y_t \) is defined conditional on \(y(t) \). This feature has not been noted in the current literature.
Likelihood and prior density choices

- **Remark 6**: This likelihood is related to the kernel likelihood derived by Yuan and de Gooijer (2007) and Yuan (2009) for semiparametric regression models and by Grillenzoni (2009) for dynamic time-series regression models, where their likelihood functions were set up based on pre-fitted residuals.

Prior choices

- The prior of α is the uniform density on $(0, 1)$, and the prior of β is the uniform density on $(0, 1 - \alpha)$.
- As $(\tau n^{-1/5})^2$ is the variance of component Gaussian densities in the mixture, we assume $(\tau n^{-1/5})^2$ follows an inverse Gamma distribution denoted as $\text{IG}(a_\tau, b_\tau)$. Therefore, the prior of τ^2 is
\[
p(\tau^2) = \frac{b_\tau^{a_\tau}}{\Gamma(a_\tau)} \left(\frac{1}{\tau^2 n^{-2/5}} \right)^{a_\tau+1} \exp \left\{ -\frac{b_\tau}{\tau^2 n^{-2/5}} \right\} n^{-2/5}.
\]

Prior choices and posterior

- The prior of σ_0^2 is assumed to be either the log normal density with mean zero and variance one or the density of $\text{IG}(1,0.05)$.
- The joint prior of θ denoted as $p(\theta)$, is the product of the marginal priors of α, β, τ^2 and σ_0^2.
- The posterior of θ for given y is proportional to the product of the joint prior of θ and the likelihood of y for given θ:
\[
\pi(\theta|y) \propto p(\theta) \times \ell(y|\theta).
\]
- Conditional on τ^2, the mixture error density is well defined, and the posterior of $(\alpha, \beta, \sigma_0^2)'$ can be derived.
- Similarly, conditional on $(\alpha, \beta, \sigma_0^2)'$, we can compute the errors and derive the posterior of τ^2 constructed through the assumption of mixture error density.
• We used the random-walk Metropolis algorithm to sample parameters of the GARCH(1,1) model of daily returns of the S&P 500 index.
• The sample period is from 03/01/2007 to 30/06/2011 with 1132 observations.
• The starting value of the return series is the first observation in the sample. Thus, the actual sample size is $n = 1131$
• First, we considered the semiparametric GARCH(1,1) model with the mixture error density. Results are presented in Table 1.
• Second, we estimated parameters of the t-GARCH(1,1) model through Bayesian sampling.
• The prior of the degrees-of-freedom parameter ν is $N(10,5^2)$ truncated at 3, and the prior of ω is $U(0,1)$.

Table 1: Results from the semiparametric GARCH(1,1) model.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Mean</th>
<th>95% Bayesian credible interval</th>
<th>Batch-mean SD</th>
<th>Standard deviation</th>
<th>SIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_0^2</td>
<td>0.496103 (0.0875, 1.5504)</td>
<td>0.011461</td>
<td>0.390368</td>
<td>8.62</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.082482 (0.0593, 0.1103)</td>
<td>0.000789</td>
<td>0.013433</td>
<td>34.51</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>0.892831 (0.8557, 0.9241)</td>
<td>0.001118</td>
<td>0.018271</td>
<td>37.45</td>
<td></td>
</tr>
<tr>
<td>τ</td>
<td>0.793211 (0.5247, 1.0873)</td>
<td>0.006063</td>
<td>0.142889</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td>log marginal likelihood</td>
<td>-1839.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Results from the t-GARCH(1,1) model.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Mean</th>
<th>95% Bayesian credible interval</th>
<th>Batch-mean SD</th>
<th>Standard deviation</th>
<th>SIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_0^2</td>
<td>0.335206 (0.0789, 0.8520)</td>
<td>0.005601</td>
<td>0.217653</td>
<td>6.62</td>
<td></td>
</tr>
<tr>
<td>ω</td>
<td>0.015697 (0.0040, 0.0240)</td>
<td>0.000472</td>
<td>0.006869</td>
<td>47.23</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.073472 (0.0466, 0.1003)</td>
<td>0.000611</td>
<td>0.013699</td>
<td>19.92</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>0.890709 (0.8492, 0.9210)</td>
<td>0.001030</td>
<td>0.018271</td>
<td>37.45</td>
<td></td>
</tr>
<tr>
<td>ν</td>
<td>6.807922 (3.8381, 7.6489)</td>
<td>0.063646</td>
<td>1.332099</td>
<td>22.83</td>
<td></td>
</tr>
<tr>
<td>log marginal likelihood</td>
<td>-1855.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Convergence performance of our sampler

- The burn-in period contains 1000 draws, and the following 10,000 draws were recorded.
- We computed the batch-mean standard deviation and simulation inefficiency factor (SIF) to monitor the convergence.
- The SIF is approximately interpreted as the number of draws needed to derive independent draws.
- For example, a SIF value of 20 means that approximately, we should retain 1 draw for every 20 draws to obtain independent draws in this sampling procedure.
- All simulated chains under the mixture error density have achieved very reasonable convergence.
- The marginal likelihood derived under the mixture error density is obviously larger than that derived under the t errors.

Bayes factor for model comparison

- Bayes factor is a ratio of the marginal likelihoods derived under a model of interest and its competing model.
- Let θ denote the parameter vector under model \mathcal{A}. The marginal likelihood under model \mathcal{A} is (Chib, 1995)

$$m_{\mathcal{A}}(y) = \frac{\ell_{\mathcal{A}}(y|\theta)p_{\mathcal{A}}(\theta)}{\pi_{\mathcal{A}}(\theta|y)}.$$

$\ell_{\mathcal{A}}(y|\theta)$ and $p_{\mathcal{A}}(\theta)$ are likelihood and prior under model \mathcal{A}.
- The Bayes factor of model \mathcal{A} against model \mathcal{B} is

$$BF = \frac{m_{\mathcal{A}}(y)}{m_{\mathcal{B}}(y)}.$$

- $3 < BF \leq 20$: \mathcal{A} is favored against \mathcal{B} with positive evidence.
- $20 < BF \leq 150$: \mathcal{A} is favored against \mathcal{B} with strong evidence.
- $BF > 150$: \mathcal{A} is favored against \mathcal{B} with very strong evidence.
Density forecast of the one-step out-of-sample S&P 500 return

Figure 1: The estimated densities and CDFs of the one-step out-of-sample return: (1) Conditional density of y_{n+1}; and (2) conditional CDF of y_{n+1}.

Conditional value-at-risk (VaR)

- At the confidence level $100(1 - \lambda)\%$ with $\lambda \in (0, 1)$, the VaR of an investment is defined as a threshold, such that the probability that the maximum expected loss over a specified time horizon exceeds this threshold is no more than λ.
- For a given sample $\{y_1, y_2, \ldots, y_n\}$, the conditional VaR with $100(1 - \lambda)\%$ confidence is defined as
 \[
 y_{\lambda} = \inf \{ y : P(y_{n+1} \leq y | y_0, y_1, \ldots, y_n) \geq \lambda \},
 \]
 where the value of λ is often chosen as either 5% or 1%.
- The VaRs under the semiparametric and t GARCH models are 2.0324 and 1.6643 for a 100 investment on S&P 500.
- Therefore, in comparison to the semiparametric GARCH model, the t-GARCH tends to underestimate VaR.
Motivation for localised bandwidths

- In terms of kernel density estimation of directly observed data, it is known that the leave-one-out estimator is heavily affected by extreme observations in the sample (Bowman, 1984).
- When the true error density has sufficient long tails, the leave-one-out kernel density estimator with its bandwidth selected under the Kullback-Leibler criterion, is likely to overestimate the tails density.
- One may argue that this phenomenon is likely to be caused by the use of a global bandwidth. A remedy to this problem in that situation is to use variable bandwidths or localized bandwidths.
- Small bandwidths should be assigned to the observations in the high-density region and larger bandwidths should be assigned to those in the low-density region.

Localised bandwidths

- We assume the underlying true error density is unimodal. Therefore, large absolute errors should be assigned relatively large bandwidths, while small absolute errors should be assigned relatively small bandwidths.
- We propose the following error density estimator:

\[
 f_a(\varepsilon_t; \tau, \tau_\varepsilon) = \frac{1}{n - 1} \sum_{i=1}^{n} \frac{1}{\tau n^{-1/5} (1 + \tau_\varepsilon |\varepsilon_i|)} \phi\left(\frac{\varepsilon_t - \varepsilon_i}{\tau n^{-1/5} (1 + \tau_\varepsilon |\varepsilon_i|)} \right),
\]

where \(\tau n^{-1/5} (1 + \tau_\varepsilon |\varepsilon_i|) \) is the bandwidth assigned to \(\varepsilon_i \), and the vector of parameters is now \(\theta_a = (\sigma_0^2, \alpha, \beta, \tau, \tau_\varepsilon)' \).
- The density of \(\varepsilon_t \) is approximated by a mixture of \(n - 1 \) Gaussian densities with their means being at the other errors and variances localised.
Bayesian estimate

- The prior of τ_ε is the uniform density on $(0, 1)$.
- The burn-in period contains 1000 draws, and the following 10,000 draws were recorded.
- The parameter estimates are $\alpha = 0.093154$, $\beta = 0.893324$, $\tau = 0.763784$, $\tau_\varepsilon = 0.635660$, and $\sigma_0^2 = 0.427865$.
- The sampler has converged very well.
- The log marginal likelihood under localised bandwidths (global bandwidth) is -1835.67 (-1839.72).
- The Bayes factor of the use of localised bandwidths against the use of global bandwidth is $\exp(4.05)$, and the former is favored against the latter with strong evidence.
- The use of localised bandwidths has increased the competitiveness of the semiparametric GARCH model.

Density forecast of the one-step out-of-sample return

Figure 1: The estimated densities of the one-step out-of-sample return through localised bandwidths: (1) S&P 500 return; and (2) FTSE return.
Application to other index returns

Table 3(1): Results from semiparametric GARCH (global bandwidth)

<table>
<thead>
<tr>
<th></th>
<th>Nasdaq</th>
<th>NYSE</th>
<th>DJIA</th>
<th>FTSE</th>
<th>DAX</th>
<th>AORD</th>
<th>Nikkei</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_0^2</td>
<td>0.737396</td>
<td>0.675171</td>
<td>0.452820</td>
<td>0.672453</td>
<td>0.757102</td>
<td>1.021040</td>
<td>0.841057</td>
</tr>
<tr>
<td>α</td>
<td>0.098014</td>
<td>0.086032</td>
<td>0.094623</td>
<td>0.108520</td>
<td>0.144759</td>
<td>0.137622</td>
<td>0.137127</td>
</tr>
<tr>
<td>β</td>
<td>0.887498</td>
<td>0.892873</td>
<td>0.883619</td>
<td>0.880093</td>
<td>0.854487</td>
<td>0.851735</td>
<td>0.844828</td>
</tr>
<tr>
<td>τ</td>
<td>0.977918</td>
<td>1.017463</td>
<td>1.241229</td>
<td>1.360150</td>
<td>1.082082</td>
<td>1.228259</td>
<td>1.050393</td>
</tr>
<tr>
<td>VaR</td>
<td>2.3327</td>
<td>2.1847</td>
<td>1.8587</td>
<td>2.0247</td>
<td>2.2087</td>
<td>1.9937</td>
<td>2.0937</td>
</tr>
<tr>
<td>LML</td>
<td>-1959.64</td>
<td>-1924.85</td>
<td>-1748.03</td>
<td>-1880.29</td>
<td>-1955.95</td>
<td>-1791.04</td>
<td>-2013.62</td>
</tr>
</tbody>
</table>

Table 3(2): Results from the t-GARCH(1,1) model.

<table>
<thead>
<tr>
<th></th>
<th>Nasdaq</th>
<th>NYSE</th>
<th>DJIA</th>
<th>FTSE</th>
<th>DAX</th>
<th>AORD</th>
<th>Nikkei</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_0^2</td>
<td>0.672198</td>
<td>0.471396</td>
<td>0.312151</td>
<td>0.576110</td>
<td>0.6802</td>
<td>0.7610</td>
<td>1.0060</td>
</tr>
<tr>
<td>ω</td>
<td>0.024144</td>
<td>0.021031</td>
<td>0.011339</td>
<td>0.030545</td>
<td>0.028463</td>
<td>0.031719</td>
<td>0.064810</td>
</tr>
<tr>
<td>α</td>
<td>0.071868</td>
<td>0.073784</td>
<td>0.074238</td>
<td>0.084517</td>
<td>0.067160</td>
<td>0.0988</td>
<td>0.1190</td>
</tr>
<tr>
<td>β</td>
<td>0.892783</td>
<td>0.891033</td>
<td>0.891644</td>
<td>0.875496</td>
<td>0.895703</td>
<td>0.860881</td>
<td>0.837827</td>
</tr>
<tr>
<td>VaR</td>
<td>2.0407</td>
<td>1.8027</td>
<td>1.5467</td>
<td>1.8387</td>
<td>1.9207</td>
<td>1.7917</td>
<td>1.9037</td>
</tr>
</tbody>
</table>

Application to other index returns

Table 4: Results from semiparametric GARCH (localised bandwidth).

<table>
<thead>
<tr>
<th></th>
<th>S&P 500</th>
<th>Nasdaq</th>
<th>NYSE</th>
<th>DJIA</th>
<th>FTSE</th>
<th>DAX</th>
<th>AORD</th>
<th>Nikkei</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_0^2</td>
<td>0.4279</td>
<td>0.7510</td>
<td>0.6235</td>
<td>0.3831</td>
<td>0.6802</td>
<td>0.7610</td>
<td>1.0060</td>
<td>0.8383</td>
</tr>
<tr>
<td>α</td>
<td>0.0932</td>
<td>0.0958</td>
<td>0.0940</td>
<td>0.1085</td>
<td>0.1047</td>
<td>0.0988</td>
<td>0.1190</td>
<td>0.1460</td>
</tr>
<tr>
<td>β</td>
<td>0.8933</td>
<td>0.8917</td>
<td>0.8915</td>
<td>0.8795</td>
<td>0.8813</td>
<td>0.8917</td>
<td>0.8668</td>
<td>0.8366</td>
</tr>
<tr>
<td>τ</td>
<td>0.7638</td>
<td>0.8094</td>
<td>0.7470</td>
<td>0.8073</td>
<td>0.8364</td>
<td>0.8423</td>
<td>0.7797</td>
<td>0.7389</td>
</tr>
<tr>
<td>τ_ε</td>
<td>0.6357</td>
<td>0.4174</td>
<td>0.6540</td>
<td>0.7617</td>
<td>0.5283</td>
<td>0.6878</td>
<td>0.5305</td>
<td>0.4276</td>
</tr>
<tr>
<td>VaR</td>
<td>1.9773</td>
<td>2.3147</td>
<td>2.1587</td>
<td>1.8087</td>
<td>1.9687</td>
<td>2.1217</td>
<td>1.9227</td>
<td>2.0727</td>
</tr>
</tbody>
</table>

Table 5: A summary of marginal likelihoods.

<table>
<thead>
<tr>
<th></th>
<th>S&P 500</th>
<th>Nasdaq</th>
<th>NYSE</th>
<th>DJIA</th>
<th>FTSE</th>
<th>DAX</th>
<th>AORD</th>
<th>Nikkei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>-1839.72</td>
<td>-1959.64</td>
<td>-1924.85</td>
<td>-1748.03</td>
<td>-1880.29</td>
<td>-1955.95</td>
<td>-1791.04</td>
<td>-2013.62</td>
</tr>
</tbody>
</table>
Empirical findings

- The semiparametric GARCH model with localised bandwidths is favored against the t-GARCH model for S&P 500, Nasdaq, NYSE, DJIA, DAX and Nikkei 225 indices; the latter is favored against the former for FTSE.
- The use of localised bandwidths increases the competitiveness against its competitor, the t-GARCH model. This is evidenced by increased marginal likelihood for each index.
- The use of localized bandwidths slightly reduces the VaR compared to the use of a global bandwidth, but the relative change is between 0.77% to 3.94% and is therefore, not obvious.
- The t-GARCH model underestimates VaR in comparison to the semiparametric GARCH model with either a global bandwidth or localized bandwidths.

Conclusion

- We proposed a location-mixture density of n normal densities as the error density for GARCH models. This mixture error density has the form of a kernel density estimator of the errors, and is able to reasonably approximate the unknown error density. Therefore, the resulting GARCH models are semiparametric.
- The re-parameterised bandwidth is treated as a parameter.
- We derived the likelihood and posterior for all parameters, and Bayesian sampling techniques are employed to estimate these parameters.
- The benefit of the proposed mixture error density is to forecast the density of the one-day out-of-sample return, which is then used for estimating VaR.
We also investigated the use of localised bandwidths by introducing one more parameter. The use of localised bandwidths increases the competitiveness the semiparametric GARCH model against its parametric counterpart, the \(t \)-GARCH model.

Applying the semiparametric GARCH model to eight stock-index return series, we found that the semiparametric GARCH is favored against the \(t \)-GARCH for seven indices.

The parametric GARCH model with \(t \) errors tends to underestimate the VaR in comparison to our proposed semiparametric GARCH model.