ETF2700/ETF5970 Mathematics for Business

Lecture 7
Monash Business School, Monash University, Australia

Outline

Last week:
■ Functions of multiple variables
■ Partial differentiation

- Slope of an iso curve

This week:
■ Unconstrained optimisation: Two variables
■ Lagrange method for constrained maximisation

Derivative: Functions of one variable

$$
f^{\prime}(x)=\lim _{\Delta \rightarrow 0} \frac{f(x+\Delta)-f(x)}{\Delta}
$$

- Rewrite the expression without Δ in the denominator
- Plug in $\Delta=0$

Partial Derivative: Functions of two variables

$$
\begin{aligned}
f_{x}(x, y) & =\lim _{\Delta \rightarrow 0} \frac{f(x+\Delta, y)-f(x, y)}{\Delta} \\
f_{y}(x, y) & =\lim _{\Delta \rightarrow 0} \frac{f(x, y+\Delta)-f(x, y)}{\Delta}
\end{aligned}
$$

- Treat y as constant: $f(x, y)=g(x), f_{x}(x, y)=g^{\prime}(x)$.
- Treat x as constant: $f(x, y)=h(y), f_{y}(x, y)=h^{\prime}(y)$.

Partial Derivative: Functions of three Variables

$$
\begin{aligned}
f_{x}^{\prime}(x, y, \lambda) & =\lim _{\Delta \rightarrow 0} \frac{f(x+\Delta, y, \lambda)-f(x, y, \lambda)}{\Delta} \\
f_{y}^{\prime}(x, y, \lambda) & =\lim _{\Delta \rightarrow 0} \frac{f(x, y+\Delta, \lambda)-f(x, y, \lambda)}{\Delta} \\
f_{\lambda}^{\prime}(x, y, \lambda) & =\lim _{\Delta \rightarrow 0} \frac{f(x, y, \lambda+\Delta)-f(x, y, \lambda)}{\Delta}
\end{aligned}
$$

Partial derivative w.r.t. x

- Treat y and λ as constants:

$$
f(x, y, \lambda)=g(x), \quad f_{x}(x, y, \lambda)=g^{\prime}(x)
$$

- Similar for $f_{y}(x, y, \lambda)$ and $f_{\lambda}(x, y, \lambda)$

Stationary point: Functions of one variable
First-order condition: Point x is a stationary point of $f(x)$,
$x \in(a, b)$, if $f^{\prime}(x)=0$

- The optimal point of f, if exists, is the stationary point.
- Convex/concave function f :
stationarity $=$ minimum $/$ maximum
- Quadratic function $f(x)=a x^{2}+b x+c(a \neq 0)$

$$
f^{\prime}(x)=2 a x+b=0 \quad \Rightarrow \quad x=-\frac{b}{2 a}
$$

Stationary point: Functions of two variables

First-order condition: (x, y) is a stationary point of $f(x, y)$, for $(x, y) \in D$, if

$$
f_{x}(x, y)=0, \quad f_{y}(x, y)=0
$$

- Let D be an open set, and end points are excluded
- Assume that the optimal value of f exists Optimality \Rightarrow Stationarity

Example

The function f is defined for $x, y \in(-\infty, \infty)$ by

$$
f(x, y)=-2 x^{2}-2 x y-2 y^{2}+36 x+42 y-158
$$

Use the power rule and sum/subtraction rule

$$
\begin{aligned}
& f_{x}(x, y)=-4 x-2 y-0+36+0-0=-4 x-2 y+36 \\
& f_{y}(x, y)=-0-2 x-4 y+0+42-0=-2 x-4 y+42
\end{aligned}
$$

Solve the system

$$
\begin{aligned}
& f_{x}(x, y)=0 \\
& f_{y}(x, y)=0
\end{aligned} \quad \Leftrightarrow \quad \begin{aligned}
& 4 x+2 y=36 \\
& 2 x+4 y=42
\end{aligned}
$$

Example

The function $f(x, y)$ is defined for $x, y \in(-\infty, \infty)$ by

$$
f(x, y)=-2 x^{2}-2 x y-2 y^{2}+36 x+42 y-158
$$

Solve the system by Cramer's Rule

$$
\begin{aligned}
& f_{x}(x, y)=0 \\
& f_{y}(x, y)=0
\end{aligned} \quad \Leftrightarrow \quad \begin{aligned}
& 4 x+2 y=36 \\
& 2 x+4 y=42
\end{aligned}
$$

we have $x=5$ and $y=8$.
The stationary point of $f(x, y)$ is $(5,8)$.
If $f(x, y)$ has a maximum value, then $(5,8)$ is the maximum point.

An economic example: Production

Consider a Cobb-Douglas production function

$$
f(L, K)=K^{1 / 2} L^{1 / 4}, \quad L, K>0
$$

■ L is the labor input

- K is the capital input
- $f(L, K)$ is the total production

Net Profit

- Price per unit of output is 12 thousand dollars
- Cost (or rental) per unit of capital is 1.2 thousand dollars
- Wage rate (cost per unit of labor) is 0.6 thousand dollars

Net profit function of L and K is

$$
\begin{aligned}
\pi(L, K) & =12 \cdot f(L, K)-0.6 L-1.2 K \\
& =12 K^{1 / 2} L^{1 / 4}-0.6 L-1.2 K
\end{aligned}
$$

Net profit function of L and K

$$
\pi(L, K)=12 K^{1 / 2} L^{1 / 4}-0.6 L-1.2 K
$$

The partial derivatives are

$$
\begin{aligned}
& \pi_{L}(L, K)=12 K^{\frac{1}{2}} \cdot \frac{1}{4} L^{\frac{1}{4}-1}-0.6-0=3 K^{\frac{1}{2}} L^{-\frac{3}{4}}-0.6 \\
& \pi_{K}(L, K)=12 \cdot \frac{1}{2} K^{\frac{1}{2}-1} L^{\frac{1}{4}}-0-1.2=6 K^{-\frac{1}{2}} L^{\frac{1}{4}}-1.2
\end{aligned}
$$

Solve the system

$$
\begin{aligned}
& \pi_{L}(L, K)=0 \\
& \pi_{K}(L, K)=0
\end{aligned} \quad \Leftrightarrow \quad 3 K^{\frac{1}{2}} L^{-\frac{3}{4}}=0.6
$$

Solve the linear equations: 1 st Equation \div 2nd Equation

$$
\frac{3 K^{\frac{1}{2}} L^{-\frac{3}{4}}}{6 K^{-\frac{1}{2}} L^{\frac{1}{4}}}=\frac{0.6}{1.2} \Leftrightarrow \frac{K}{2 L}=\frac{1}{2} \Leftrightarrow K=L
$$

Substitute $K=L$ back into the first partial derivative equ:

$$
3 L^{1 / 2} L^{-3 / 4}=0.6 \Leftrightarrow 3 L^{-1 / 4}=0.6
$$

Therefore, $L=(0.6 / 3)^{-4}=5^{4}=625$ and then $K=L=625$.

- assume the maximum point exists
- the maximum point is the stationary point

■ we have only one stationary point $(L, K)=(625,625)$
Maximum point
Therefore, the maximum point is $(L, K)=(625,625)$, and the maximum net profit is $\pi(625,625)=375$ thousand dollars.

Budget constraint

At the maximum point $(L, K)=(625,625)$, the total cost equals to

$$
0.6 L+1.2 K=0.6 \times 625+1.2 \times 625=1125
$$

What if the budget is not enough to cover the cost?

Linear constraint

We assume $0.6 L+1.2 K \leq b$, where b is the budget (in $\$ \mathrm{~K}$).
Let us say, we only have a budget of $b=900$ thousand dollars.
Optimisation with a budget constraint
Maximise $\pi(L, K)=12 K^{1 / 2} L^{1 / 4}-0.6 L-1.2 K$
subject to $0.6 L+1.2 K \leq 900$, for $L, K>0$.

- It is NOT a linear programming problem.
- Let us assume there is an optimal solution.

Stationarity \neq Optimality

Note that we can rewrite our problem as: maximise the net profit function

$$
\pi(L, K)=12 K^{1 / 2} L^{1 / 4}-0.6 L-1.2 K, \quad \text { for }(L, K) \in D
$$

where $D=\{(L, K): 0.6 L+1.2 K \leq 900, L, K>0\}$

- Stationary point $(L, K)=(625,625)$ is outside the domain
- The optimal point is not stationary: D is not an open set

The domain D is not an open set
Any point on the straight line satisfies the constraint.

$$
D=\{(L, K): 0.6 L+1.2 K \leq 900, L, K>0\}
$$

An easier formulation

- Assume that the optimal solution exists
- At the maximum point (L, K), the entire budget will be exhausted. Why?
- The physical constraint $L, K>0$ can be ignored.

Maximise $\pi(L, K)=12 K^{1 / 2} L^{1 / 4}-0.6 L-1.2 K$
subject to $0.6 L+1.2 K=900$, for $L, K>0$.
Why is the maximum point on the line of entire budget
IF there is an optimal point $\left(L^{*}, K^{*}\right)$ that is below the entire budget: $0.6 L^{*}+1.2 K^{*}<900$. Let's define the interior of the feasible region:

$$
D^{\circ}=\{(L, K): 0.6 L+1.2 K<900, L, K>0\},
$$

which is an open set. It is obvious that

$$
\pi\left(L^{*}, K^{*}\right)=\max _{(L, K) \in D^{\circ}} \pi(L, K)
$$

There comes a contradiction due to the former "IF"
■ As D° is an open set, the optimal point $\left(L^{*}, K^{*}\right)$ must be a stationary point.
■ However, the only stationary point is $(L, K)=(625,625)$, which is outside the domain D.
■ Thus, the optimal point $\left(L^{*}, K^{*}\right)$ has to be on the boundary.

Add a variable: Lagrange multiplier λ

■ Initially, we want to maximise

$$
\pi(L, K)=12 K^{1 / 2} L^{1 / 4}-0.6 L-1.2 K
$$

subject to $0.6 L+1.2 K=900$, for $L, K>0$.
■ The Lagrange multiplier method introduces a new variable λ and defines a new function:

$$
f(L, K, \lambda)=\pi(L, K)+\lambda(900-0.6 L-1.2 K)
$$

which is called the Lagrangian.
■ Maximisation of $\pi(L, K)$ subject to a budget constraint becomes a maximisation of $f(L, K, \lambda)$ on an extended domain: $L, K>0$ and $\lambda \in(-\infty, \infty)$.

Lagrange method

Maximise

$$
\begin{aligned}
f(L, K, \lambda)= & 12 K^{1 / 2} L^{1 / 4}-0.6 L-1.2 K \\
& +\lambda(900-0.6 L-1.2 K), \quad(L, K, \lambda) \in D^{\prime}
\end{aligned}
$$

where $D^{\prime}=\{(L, K, \lambda): L, K>0, \lambda \in(-\infty, \infty)\}$.

- D^{\prime} is open: Optimal point is the stationary point
- Derive stationary point via the 1st-order conditions:

$$
f_{L}(L, K, \lambda)=0, \quad f_{K}(L, K, \lambda)=0, \quad f_{\lambda}(L, K, \lambda)=0
$$

Solve first-order conditions

$$
\begin{aligned}
& f(L, K, \lambda)=\pi(L, K)+\lambda(900-0.6 L-1.2 K) \\
& f_{L}(L, K, \lambda)=\pi_{L}(L, K)-0.6 \lambda=3 K^{\frac{1}{2}} L^{-\frac{3}{4}}-0.6-0.6 \lambda \\
& f_{K}(L, K, \lambda)=\pi_{K}(L, K)-1.2 \lambda=6 K^{-\frac{1}{2}} L^{\frac{1}{4}}-1.2-1.2 \lambda \\
& f_{\lambda}(L, K, \lambda)=900-0.6 L-1.2 K
\end{aligned}
$$

Solutions to first-order conditions
$\left\{\begin{array}{l}f_{L}(L, K, \lambda)=0 \\ f_{K}(L, K, \lambda)=0 \\ f_{\lambda}(L, K, \lambda)=0\end{array} \Leftrightarrow\left\{\begin{array}{c}3 K^{\frac{1}{2}} L^{-\frac{3}{4}}=0.6(1+\lambda) \\ 6 K^{-\frac{1}{2}} L^{\frac{1}{4}}=1.2(1+\lambda) \\ 0.6 L+1.2 K=900\end{array}\right.\right.$

- First equation \div Second equation

$$
\frac{3 K^{\frac{1}{2}} L^{-\frac{3}{4}}}{6 K^{-\frac{1}{2}} L^{\frac{1}{4}}}=\frac{0.6(1+\lambda)}{1.2(1+\lambda)} \Leftrightarrow \frac{K}{2 L}=\frac{1}{2} \Leftrightarrow K=L
$$

- Substitute $K=L$ into the third equation

$$
0.6 L+1.2 L=900, \quad L=\frac{900}{1.8}=500
$$

- Therefore, $K=L=500$

Optimal solution with budget $b=900$
The maximum point is $(L, K)=(500,500)$ and the maximum net profit is $\pi(500,500)=12 \cdot(500)^{3 / 4}-900 \approx 368.85 \$ \mathrm{~K}$.

With any other budget $b \in(0,1125)$

It can be shown that the maximum point is $(L, K)=\left(\frac{5}{9} b, \frac{5}{9} b\right)$ and the maximum net profit is

$$
\pi_{*}(b)=\pi\left(\frac{5}{9} b, \frac{5}{9} b\right)=12 \cdot\left(\frac{5}{9} b\right)^{3 / 4}-b
$$

Increase budget

- For one unit increase of the budget, the increase of net profit will be approximated by the derivative of $\pi_{*}(b)$:

$$
\pi_{*}^{\prime}(b)=12 \cdot \frac{3}{4}\left(\frac{5}{9} b\right)^{3 / 4-1} \cdot \frac{5}{9}-1=5 \cdot\left(\frac{5}{9} b\right)^{-1 / 4}-1
$$

- So $\pi_{*}^{\prime}(900)=5 \cdot(500)^{-1 / 4}-1 \approx 0.0574$
- If the budget increases from 900 by 1 unit, the max net profit will approximately increase by 0.0574 units.

Lagrange multiplier as the derivative of net profit

■ Recall our first-order conditions (with $b=900$):

$$
\left\{\begin{array} { l }
{ f _ { L } (L , K , \lambda) = 0 } \\
{ f _ { K } (L , K , \lambda) = 0 } \\
{ f _ { \lambda } (L , K , \lambda) = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
3 K^{\frac{1}{2}} L^{-\frac{3}{4}}=0.6(1+\lambda) \\
6 K^{-\frac{1}{2}} L^{\frac{1}{4}}=1.2(1+\lambda) \\
0.6 L+1.2 K=900
\end{array}\right.\right.
$$

■ We have solved that $K=L=500$.
■ Substitute $K=L=500$ into the 1st or 2nd equation and get

$$
\lambda=5 \cdot(500)^{-1 / 4}-1=\pi_{*}^{\prime}(900) \approx 0.0574
$$

■ If the budget increases from 900 by 1 unit, the max net profit will increase approximately by $\lambda \approx 0.0574$ units.

Lagrange method: General

Optimise $\pi(x, y),(x, y) \in D$, subject to $p x+w y=b$.
■ D is an open set, for example, $x, y>0$.
■ p, w, b are all known values.
■ assume the optimal solution exists.
It is equivalent to optimising the Lagrangian function

$$
f(x, y, \lambda)=\pi(x, y)+\lambda(b-p x-w y)
$$

defined for $(x, y) \in D$ and $\lambda \in(-\infty, \infty)$
■ Find the optimal point(s) among stationary points:

$$
\left\{\begin{array} { l }
{ f _ { L } (L , K , \lambda) = 0 } \\
{ f _ { K } (L , K , \lambda) = 0 } \\
{ f _ { \lambda } (L , K , \lambda) = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
\pi_{x}(x, y)=p \lambda \\
\pi_{y}(x, y)=w \lambda \\
p x+w y=b
\end{array}\right.\right.
$$

There are two possible cases: $\lambda=0$ and $\lambda \neq 0$

Case 1: $\lambda=0$
■ Check whether the first order conditions

$$
\begin{gathered}
\pi_{x}(x, y)=0 \\
\pi_{y}(x, y)=0 \\
p x+w y=b
\end{gathered}
$$

have a solution.

- This is to check whether the stationary point of $\pi(x, y)$ satisfies the budget constraint.

Case 2: $\lambda \neq 0$
■ First Equation \div Second Equation (on page 21)

$$
\frac{\pi_{x}(x, y)}{\pi_{y}(x, y)}=\frac{p}{w}, \quad \Rightarrow \quad y=g(x)
$$

■ Substitute $y=g(x)$ into the budget constraint:

$$
p x+w g(x)=b, \quad \Rightarrow x=x^{*}
$$

■ Solution: $x=x^{*}, y^{*}=g\left(x^{*}\right)$, and the optimal value $\pi\left(x^{*}, y^{*}\right)$.

First order conditions: Normal cases

Once we obtain $x=x^{*}$ and $y^{*}=g\left(x^{*}\right)$, we substitute them back to the 1st or 2nd equation to solve

$$
\lambda^{*}=\frac{1}{p} \pi_{x}\left(x^{*}, y^{*}\right) \text { or } \lambda^{*}=\frac{1}{w} \pi_{y}\left(x^{*}, y^{*}\right)
$$

Interpret the Lagrange multiplier

If the budget b is a variable, and solving the first order conditions gives the optimal point with

$$
x=x^{*}(b), \quad y=y^{*}(b), \quad \lambda=\lambda^{*}(b)
$$

and optimal value $\pi_{*}(b)=\pi\left(x^{*}(b), y^{*}(b)\right)$, then

$$
\lambda^{*}(b)=\pi_{*}^{\prime}(b)
$$

Interpretation: If the budget increases from b by one unit, the optimal value will change approximately by $\lambda^{*}(b)$ units.

Summary

For optimisation of a function of multiple variables
■ In this unit, we always assume the optimal solution exists.
Optimise $f(x, y)$ over an open set D

- Find the optimal point(s) among stationary point(s).

Optimise $\pi(x, y)$ subject to a budget constraint $p x+w y=b$

- Optimise the Lagrangian function $f(x, y, \lambda)$
- Find the optimal point(s) among stationary point(s)
- Interpret the Lagrange multiplier λ

Further examples using Lagrangian method

Example 1
Suppose $z=x y$, which we want to maximise subject to $x+y \leq 100$.
Solution: This constrained maximisation problem is to be solved using the Lagrangian given by

$$
f(x, y, \lambda)=x y+\lambda(100-x-y) .
$$

Compute the 1st-order partial derivatives and let them be 0 :

$$
\begin{aligned}
& f_{x}(x, y, \lambda)=y-\lambda=0 \\
& f_{y}(x, y, \lambda)=x-\lambda=0 \\
& f_{\lambda}(x, y, \lambda)=100-x-y=0
\end{aligned}
$$

The first two equations show that $x=y$, which is then substituted into the 3rd equation, and then we obtain that $x=50$ and $y=50$.

Example 2

Maximise $u=4 x^{2}+3 x y+6 y^{2}$, subject to $x+y=56$. Solution: This constrained maximisation problem can be solved using the Lagrangian given by

$$
u(x, y, \lambda)=4 x^{2}+3 x y+6 y^{2}+\lambda(56-x-y)
$$

Take the 1st-order partial derivatives and set them to 0 :

$$
\begin{aligned}
& u_{x}(x, y, \lambda)=8 x+3 y-\lambda=0 \\
& u_{y}(x, y, \lambda)=3 x+12 y-\lambda=0 \\
& u_{\lambda}(x, y, \lambda)=56-x-y=0
\end{aligned}
$$

The first two equations lead to: $8 x+3 y=3 x+12 y$, by which we obtain $x=1.8 y$. Substituting it to the 3rd equation, we obtain that $2.8 y=56$, and thus, $y=20$ and then $x=36$. Substituting the values of x and y into the 1st or 2 nd equation, we obtain that $\lambda=348$.

Example 3: Cost minimisation

A firm produces two goods, in the quantity of x and y, respectively. Due to a government regulation, the firm's production must satisfy the constraint $x+y=42$. The firm's cost function is $c(x, y)=8 x^{2}-x y+12 y^{2}$, which we want to minimise subject to the above constraint.
Solution: The Lagrangian of the constrained minimisation is

$$
L(x, y, \lambda)=8 x^{2}-x y+12 y^{2}+\lambda(42-x-y)
$$

Take the 1st-order partial derivatives and set them to 0 :

$$
\begin{aligned}
& L_{x}(x, y, \lambda)=16 x-y-\lambda=0 \\
& L_{y}(x, y, \lambda)=-x+24 y-\lambda=0 \\
& L_{\lambda}(x, y, \lambda)=42-x-y=0
\end{aligned}
$$

The first two equations lead to: $16 x-y=-x+24 y$, by which we obtain $17 x=25 y$. Substituting it to the 3rd equation, we obtain that $x=25$ and $y=17$, and then $\lambda=383$.

Example 4: Utility Maximisation

Consider a consumer with the utility function $u(x, y)=x y$, who faces a budget constraint of $b=p_{x} x+p_{y} y$, where b, p_{x} and p_{y} are the known budget and prices. The choice problem is to maximise $u(x, y)=x y$, subject to $p_{x} x+p_{y} y=b$.
Solution: The Lagrangian of the constrained maximisation is

$$
L(x, y, \lambda)=x y+\lambda\left(b-p_{x} x-p_{y} y\right) .
$$

Take the 1st-order partial derivatives and set them to 0 :

$$
\begin{aligned}
& L_{x}(x, y, \lambda)=y-\lambda p_{x}=0 \\
& L_{y}(x, y, \lambda)=x-\lambda p_{y}=0 \\
& L_{\lambda}(x, y, \lambda)=b-p_{x} x-p_{y} y=0
\end{aligned}
$$

Eliminating λ from the first 2 equations, we have $y / p_{x}=x / p_{y}$, by which we obtain $x p_{x}=y p_{y}$. Substituting it to the 3rd equation, we obtain that $x=b /\left(2 p_{x}\right)$ and $y=b /\left(2 p_{y}\right)$, and then $\lambda=b /\left(2 p_{x} p_{y}\right)$.

Example 5: Minimisation of cost

Consider the same consumer with the utility function $u(x, y)=x y$, who has cost function $c(x, y)=p_{x} x+p_{y} y$, where p_{x} and p_{y} are known prices values. The choice problem is to minimise $c(x, y)=p_{x} x+p_{y} y$, subject to $u(x, y)=u_{0}$.
Solution: The Lagrangian of the constrained minimisation is

$$
U(x, y, \lambda)=p_{x} x+p_{y} y+\lambda\left(u_{0}-x y\right) .
$$

Take the 1st-order partial derivatives and set them to 0 :

$$
\begin{aligned}
& U_{x}(x, y, \lambda)=p_{x}-\lambda y=0 \\
& U_{y}(x, y, \lambda)=p_{y}-\lambda x=0 \\
& U_{\lambda}(x, y, \lambda)=u_{0}-x y=0
\end{aligned}
$$

Eliminating λ from the first 2 equations, we have $p_{x} / y=p_{y} / x$, by which we obtain $x p_{x}=y p_{y}$. Substituting it to the 3rd equation, we obtain that $x=\left(p_{y} u_{0} / p_{x}\right)^{1 / 2}$ and $y=\left(p_{x} u_{0} / p_{y}\right)^{1 / 2}$, and then $\lambda=\left(p_{x} p_{y} / u_{0}\right)^{1 / 2}$.

