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Outline

Last week:

Functions of multiple variables

Partial differentiation

Slope of an iso curve

This week:

Unconstrained optimisation: Two variables

Lagrange method for constrained maximisation
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Derivative: Functions of one variable

f ′(x) = lim
∆→0

f (x +∆)− f (x)
∆

Rewrite the expression without ∆ in the denominator

Plug in ∆ = 0

Partial Derivative: Functions of two variables

fx(x, y) = lim
∆→0

f (x +∆, y)− f (x, y)
∆

fy(x, y) = lim
∆→0

f (x, y +∆)− f (x, y)
∆

Treat y as constant: f (x, y) = g(x), fx(x, y) = g ′(x).

Treat x as constant: f (x, y) = h(y), fy(x, y) = h′(y).
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Partial Derivative: Functions of three Variables

f ′
x(x, y, λ) = lim

∆→0

f (x +∆, y, λ)− f (x, y, λ)
∆

f ′
y (x, y, λ) = lim

∆→0

f (x, y +∆, λ)− f (x, y, λ)
∆

f ′
λ(x, y, λ) = lim

∆→0

f (x, y, λ+∆)− f (x, y, λ)
∆

Partial derivative w.r.t. x
Treat y and λ as constants:

f (x, y, λ) = g(x), fx(x, y, λ) = g ′(x)

Similar for fy(x, y, λ) and fλ(x, y, λ)
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Stationary point: Functions of one variable
First-order condition: Point x is a stationary point of f (x),
x ∈ (a,b), if f ′(x) = 0

The optimal point of f , if exists, is the stationary point.
Convex/concave function f :

stationarity = minimum/maximum
Quadratic function f (x) = ax2 + bx + c (a ̸= 0)

f ′(x) = 2ax + b = 0 ⇒ x = − b
2a

Stationary point: Functions of two variables
First-order condition: (x, y) is a stationary point of f (x, y), for
(x, y) ∈ D, if

fx(x, y) = 0, fy(x, y) = 0

Let D be an open set, and end points are excluded
Assume that the optimal value of f exists

Optimality ⇒ Stationarity
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Example
The function f is defined for x, y ∈ (−∞,∞) by

f (x, y) = −2x2 − 2xy − 2y2 + 36x + 42y − 158

Use the power rule and sum/subtraction rule

fx(x, y) = −4x − 2y − 0 + 36 + 0 − 0 = −4x − 2y + 36

fy(x, y) = −0 − 2x − 4y + 0 + 42 − 0 = −2x − 4y + 42

Solve the system

fx(x, y) = 0
fy(x, y) = 0

⇔ 4x + 2y = 36
2x + 4y = 42
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Example
The function f (x, y) is defined for x, y ∈ (−∞,∞) by

f (x, y) = −2x2 − 2xy − 2y2 + 36x + 42y − 158

Solve the system by Cramer’s Rule

fx(x, y) = 0
fy(x, y) = 0

⇔ 4x + 2y = 36
2x + 4y = 42

we have x = 5 and y = 8.

The stationary point of f (x, y) is (5, 8).

If f (x, y) has a maximum value, then (5, 8) is the maximum
point.
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An economic example: Production
Consider a Cobb-Douglas production function

f (L,K ) = K 1/2L1/4, L,K > 0

L is the labor input

K is the capital input

f (L,K ) is the total production

Net Profit
Price per unit of output is 12 thousand dollars

Cost (or rental) per unit of capital is 1.2 thousand dollars

Wage rate (cost per unit of labor) is 0.6 thousand dollars

Net profit function of L and K is

π(L,K ) =12 · f (L,K )− 0.6L − 1.2K

=12K 1/2L1/4 − 0.6L − 1.2K
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Net profit function of L and K

π(L,K ) = 12K 1/2L1/4 − 0.6L − 1.2K

The partial derivatives are

πL(L,K ) = 12K
1
2 · 1

4
L

1
4−1 − 0.6 − 0 = 3K

1
2 L− 3

4 − 0.6

πK (L,K ) = 12 · 1
2

K
1
2−1L

1
4 − 0 − 1.2 = 6K − 1

2 L
1
4 − 1.2

Solve the system

πL(L,K ) = 0
πK (L,K ) = 0

⇔ 3K
1
2 L− 3

4 = 0.6

6K − 1
2 L

1
4 = 1.2

Solve the linear equations: 1st Equation ÷ 2nd Equation

3K
1
2 L− 3

4

6K − 1
2 L

1
4

=
0.6
1.2

⇔ K
2L

=
1
2

⇔ K = L
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Substitute K = L back into the first partial derivative equ:

3L1/2L−3/4 = 0.6 ⇔ 3L−1/4 = 0.6

Therefore, L = (0.6/3)−4 = 54 = 625 and then K = L = 625.

assume the maximum point exists

the maximum point is the stationary point

we have only one stationary point (L,K ) = (625, 625)

Maximum point
Therefore, the maximum point is (L,K ) = (625, 625), and the
maximum net profit is π(625, 625) = 375 thousand dollars.
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Budget constraint
At the maximum point (L,K ) = (625, 625), the total cost
equals to

0.6L + 1.2K = 0.6 × 625 + 1.2 × 625 = 1125

What if the budget is not enough to cover the cost?

Linear constraint
We assume 0.6L + 1.2K ≤ b, where b is the budget (in $K).

Let us say, we only have a budget of b = 900 thousand dollars.

Optimisation with a budget constraint
Maximise π(L,K ) = 12K 1/2L1/4 − 0.6L − 1.2K
subject to 0.6L + 1.2K ≤ 900, for L,K > 0.

It is NOT a linear programming problem.

Let us assume there is an optimal solution.
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Stationarity ̸= Optimality
Note that we can rewrite our problem as:
maximise the net profit function

π(L,K ) = 12K 1/2L1/4 − 0.6L − 1.2K , for (L,K ) ∈ D

where D = {(L,K ) : 0.6L + 1.2K ≤ 900,L,K > 0}

Stationary point (L,K ) = (625, 625) is outside the domain

The optimal point is not stationary: D is not an open set
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The domain D is not an open set
Any point on the straight line satisfies the constraint.

D = {(L,K ) : 0.6L + 1.2K ≤ 900,L,K > 0}
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An easier formulation
Assume that the optimal solution exists

At the maximum point (L,K ), the entire budget will be
exhausted. Why?

The physical constraint L,K > 0 can be ignored.

Maximise π(L,K ) = 12K 1/2L1/4 − 0.6L − 1.2K
subject to 0.6L + 1.2K = 900, for L,K > 0.

Why is the maximum point on the line of entire budget
IF there is an optimal point (L∗,K ∗) that is below the entire
budget: 0.6L∗ + 1.2K ∗ < 900. Let’s define the interior of the
feasible region:

D◦ = {(L,K ) : 0.6L + 1.2K < 900,L,K > 0},

which is an open set. It is obvious that

π(L∗,K ∗) = max
(L,K )∈D◦

π(L,K ).
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There comes a contradiction due to the former “IF”
As D◦ is an open set, the optimal point (L∗,K ∗) must be a
stationary point.

However, the only stationary point is (L,K ) = (625, 625),
which is outside the domain D.

Thus, the optimal point (L∗,K ∗) has to be on the
boundary.
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Add a variable: Lagrange multiplier λ

Initially, we want to maximise

π(L,K ) = 12K 1/2L1/4 − 0.6L − 1.2K ,

subject to 0.6L + 1.2K = 900, for L,K > 0.

The Lagrange multiplier method introduces a new
variable λ and defines a new function:

f (L,K , λ) = π(L,K ) + λ(900 − 0.6L − 1.2K ),

which is called the Lagrangian.

Maximisation of π(L,K ) subject to a budget constraint
becomes a maximisation of f (L,K , λ) on an extended
domain: L,K > 0 and λ ∈ (−∞,∞).
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Lagrange method
Maximise

f (L,K , λ) =12K 1/2L1/4 − 0.6L − 1.2K

+ λ(900 − 0.6L − 1.2K ), (L,K , λ) ∈ D′

where D′ = {(L,K , λ) : L,K > 0, λ ∈ (−∞,∞)}.

D′ is open: Optimal point is the stationary point
Derive stationary point via the 1st-order conditions:

fL(L,K , λ) = 0, fK (L,K , λ) = 0, fλ(L,K , λ) = 0

Solve first-order conditions

f (L,K , λ) = π(L,K ) + λ(900 − 0.6L − 1.2K )

fL(L,K , λ) = πL(L,K )− 0.6λ = 3K
1
2 L− 3

4 − 0.6 − 0.6λ

fK (L,K , λ) = πK (L,K )− 1.2λ = 6K − 1
2 L

1
4 − 1.2 − 1.2λ

fλ(L,K , λ) = 900 − 0.6L − 1.2K
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Solutions to first-order conditions
fL(L,K , λ) = 0
fK (L,K , λ) = 0
fλ(L,K , λ) = 0

⇔


3K

1
2 L− 3

4 = 0.6(1 + λ)

6K − 1
2 L

1
4 = 1.2(1 + λ)

0.6L + 1.2K = 900

First equation ÷ Second equation

3K
1
2 L− 3

4

6K − 1
2 L

1
4

=
0.6(1 + λ)

1.2(1 + λ)
⇔ K

2L
=

1
2

⇔ K = L

Substitute K = L into the third equation

0.6L + 1.2L = 900, L =
900
1.8

= 500

Therefore, K = L = 500

Optimal solution with budget b = 900
The maximum point is (L,K ) = (500, 500) and the maximum
net profit is π(500, 500) = 12 · (500)3/4 − 900 ≈ 368.85 $K.

18 / 29



With any other budget b ∈ (0, 1125)
It can be shown that the maximum point is (L,K ) =

(5
9 b, 5

9 b
)

and the maximum net profit is

π∗(b) = π

(
5
9

b,
5
9

b
)

= 12 ·
(

5
9

b
)3/4

− b

Increase budget

For one unit increase of the budget, the increase of net
profit will be approximated by the derivative of π∗(b):

π′
∗(b) = 12 · 3

4

(
5
9

b
)3/4−1

· 5
9
− 1 = 5 ·

(
5
9

b
)−1/4

− 1

So π′
∗(900) = 5 · (500)−1/4 − 1 ≈ 0.0574

If the budget increases from 900 by 1 unit, the max net
profit will approximately increase by 0.0574 units.
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Lagrange multiplier as the derivative of net profit

Recall our first-order conditions (with b = 900):
fL(L,K , λ) = 0
fK (L,K , λ) = 0
fλ(L,K , λ) = 0

⇔


3K

1
2 L− 3

4 = 0.6(1 + λ)

6K − 1
2 L

1
4 = 1.2(1 + λ)

0.6L + 1.2K = 900

We have solved that K = L = 500.

Substitute K = L = 500 into the 1st or 2nd equation and
get

λ = 5 · (500)−1/4 − 1 = π′
∗(900) ≈ 0.0574

If the budget increases from 900 by 1 unit, the max net
profit will increase approximately by λ ≈ 0.0574 units.
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Lagrange method: General
Optimise π(x, y), (x, y) ∈ D, subject to px + wy = b.

D is an open set, for example, x, y > 0.

p,w,b are all known values.

assume the optimal solution exists.

It is equivalent to optimising the Lagrangian function

f (x, y, λ) = π(x, y) + λ(b − px − wy),

defined for (x, y) ∈ D and λ ∈ (−∞,∞)

Find the optimal point(s) among stationary points:
fL(L,K , λ) = 0
fK (L,K , λ) = 0
fλ(L,K , λ) = 0

⇔


πx(x, y) = pλ
πy(x, y) = wλ
px + wy = b

There are two possible cases: λ = 0 and λ ̸= 0
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Case 1: λ = 0
Check whether the first order conditions

πx(x, y) = 0
πy(x, y) = 0
px + wy = b

have a solution.

This is to check whether the stationary point of π(x, y)
satisfies the budget constraint.

Case 2: λ ̸= 0

First Equation ÷ Second Equation (on page 21)
πx(x,y)
πy(x,y) =

p
w , ⇒ y = g(x)

Substitute y = g(x) into the budget constraint:

px + wg(x) = b, ⇒ x = x∗

Solution: x = x∗, y∗ = g(x∗), and the optimal value
π(x∗, y∗).
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First order conditions: Normal cases
Once we obtain x = x∗ and y∗ = g(x∗), we substitute them
back to the 1st or 2nd equation to solve

λ∗ =
1
p
πx(x∗, y∗) or λ∗ =

1
w
πy(x∗, y∗)

Interpret the Lagrange multiplier
If the budget b is a variable, and solving the first order
conditions gives the optimal point with

x = x∗(b), y = y∗(b), λ = λ∗(b)

and optimal value π∗(b) = π(x∗(b), y∗(b)), then

λ∗(b) = π′
∗(b)

Interpretation: If the budget increases from b by one unit, the
optimal value will change approximately by λ∗(b) units.
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Summary
For optimisation of a function of multiple variables

In this unit, we always assume the optimal solution exists.

Optimise f (x, y) over an open set D

Find the optimal point(s) among stationary point(s).

Optimise π(x, y) subject to a budget constraint px + wy = b

Optimise the Lagrangian function f (x, y, λ)

Find the optimal point(s) among stationary point(s)

Interpret the Lagrange multiplier λ
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Further examples using Lagrangian method

Example 1
Suppose z = xy, which we want to maximise subject to
x + y ≤ 100.
Solution: This constrained maximisation problem is to be
solved using the Lagrangian given by

f (x, y, λ) = xy + λ(100 − x − y).

Compute the 1st-order partial derivatives and let them be 0:

fx(x, y, λ) = y − λ = 0

fy(x, y, λ) = x − λ = 0

fλ(x, y, λ) = 100 − x − y = 0

The first two equations show that x = y, which is then
substituted into the 3rd equation, and then we obtain that
x = 50 and y = 50.
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Example 2
Maximise u = 4x2 + 3xy + 6y2, subject to x + y = 56.
Solution: This constrained maximisation problem can be
solved using the Lagrangian given by

u(x, y, λ) = 4x2 + 3xy + 6y2 + λ(56 − x − y).

Take the 1st-order partial derivatives and set them to 0:

ux(x, y, λ) = 8x + 3y − λ = 0

uy(x, y, λ) = 3x + 12y − λ = 0

uλ(x, y, λ) = 56 − x − y = 0

The first two equations lead to: 8x + 3y = 3x + 12y, by which
we obtain x = 1.8y. Substituting it to the 3rd equation, we
obtain that 2.8y = 56, and thus, y = 20 and then x = 36.
Substituting the values of x and y into the 1st or 2nd equation,
we obtain that λ = 348.
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Example 3: Cost minimisation
A firm produces two goods, in the quantity of x and y,
respectively. Due to a government regulation, the firm’s
production must satisfy the constraint x + y = 42. The firm’s
cost function is c(x, y) = 8x2 − xy + 12y2, which we want to
minimise subject to the above constraint.

Solution: The Lagrangian of the constrained minimisation is

L(x, y, λ) = 8x2 − xy + 12y2 + λ(42 − x − y).

Take the 1st-order partial derivatives and set them to 0:

Lx(x, y, λ) = 16x − y − λ = 0

Ly(x, y, λ) = −x + 24y − λ = 0

Lλ(x, y, λ) = 42 − x − y = 0

The first two equations lead to: 16x − y = −x + 24y, by which
we obtain 17x = 25y. Substituting it to the 3rd equation, we
obtain that x = 25 and y = 17, and then λ = 383.
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Example 4: Utility Maximisation
Consider a consumer with the utility function u(x, y) = xy,
who faces a budget constraint of b = pxx + py y, where b, px

and py are the known budget and prices. The choice problem
is to maximise u(x, y) = xy, subject to pxx + py y = b.

Solution: The Lagrangian of the constrained maximisation is

L(x, y, λ) = xy + λ(b − pxx − py y).

Take the 1st-order partial derivatives and set them to 0:

Lx(x, y, λ) = y − λpx = 0

Ly(x, y, λ) = x − λpy = 0

Lλ(x, y, λ) = b − pxx − py y = 0

Eliminating λ from the first 2 equations, we have y/px = x/py ,
by which we obtain xpx = ypy . Substituting it to the 3rd
equation, we obtain that x = b/(2px) and y = b/(2py), and
then λ = b/(2pxpy). 28 / 29



Example 5: Minimisation of cost
Consider the same consumer with the utility function
u(x, y) = xy, who has cost function c(x, y) = pxx + py y, where
px and py are known prices values. The choice problem is to
minimise c(x, y) = pxx + py y, subject to u(x, y) = u0.

Solution: The Lagrangian of the constrained minimisation is

U (x, y, λ) = pxx + py y + λ(u0 − xy).

Take the 1st-order partial derivatives and set them to 0:

Ux(x, y, λ) = px − λy = 0

Uy(x, y, λ) = py − λx = 0

Uλ(x, y, λ) = u0 − xy = 0

Eliminating λ from the first 2 equations, we have px/y = py/x,
by which we obtain xpx = ypy . Substituting it to the 3rd
equation, we obtain that x = (py u0/px)

1/2 and
y = (pxu0/py)

1/2, and then λ = (pxpy/u0)
1/2.
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