ETF2700/ETF5970 Mathematics for Business

Lecture 7

Monash Business School, Monash University,
Australia
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Outline

Last week:
m Functions of multiple variables
m Partial differentiation
m Slope of an iso curve
This week:
m Unconstrained optimisation: Two variables
m Lagrange method for constrained maximisation
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Derivative: Functions of one variable

) — i TEED) ()

A—0 A

m Rewrite the expression without A in the denominator

m PluginA =0

Partial Derivative: Functions of two variables

f(x+Aay) _f(xay)

fx(x,y) = lim

A—0 A
filx,y) = iiglof(x’y + AA) - f(xy)

m Treat y as constant: f(x,y) = g(x), fx(x,y) = g'(x).
m Treat x as constant: f(x,y) = h(y), fy(x,y) = K (y).
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Partial Derivative: Functions of three Variables

flx . \) = iiinof(x +Ay, X — f(x,y,\)

f(x7y+Av)‘) _f(xv.%)‘)

Ly, A) = lim

A—0 A
/ _ f(x7y’>‘+A)_f(x7y’)‘)
fA(va/’ )‘) - ilgl() A

Partial derivative w.r.t. x
m Treat y and )\ as constants:

f(xv.)/7 )‘) - g(x)7 ﬁ6<x7y7 )‘) - g/(x)

m Similar for f,(x,y, A) and fi(x,y, A)
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Stationary point: Functions of one variable
First-order condition: Point x is a stationary point of f(x),
x € (a,b),iff'(x) =0
m The optimal point of f, if exists, is the stationary point.
m Convex/concave function f:
stationarity = minimum/maximum
m Quadratic function f(x) = ax?® + bx + ¢ (a # 0)

b

/! _ — —_
ffx)=2ax+b=0 = x= 5a

Stationary point: Functions of two variables
First-order condition: (x, y) is a stationary point of f(x, y), for
(x,y) € D, if

ﬁc(x,Y) =0, ﬁ/(x7Y) =0

m Let D be an open set, and end points are excluded
m Assume that the optimal value of f exists
Optimality = Stationarity
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Example
The function f is defined for x, y € (—o0, 00) by

flx,y) = —2x% — 2xy — 2y% + 36x + 42y — 158
Use the power rule and sum/subtraction rule

filx,y)=—4x—-2y—-0+364+0—-0=—-4x—2y+ 36
Hxy)=—-0-2x—4y+0+42—-0=—-2x—4y+42

Solve the system

Klxy)=0 4x+2y=36
H(x,y)=0 2x +4y =42
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Example
The function f(x, y) is defined for x, y € (—o0, 00) by

flx,y) = —2x% — 2xy — 2y% + 36x + 42y — 158

Solve the system by Cramer’s Rule

fx(x,y)=0 N 4x + 2y =36
H(x,y)=0 2x +4y =42

we have x =5and y = 8.
The stationary point of f(x, y) is (5, 8).

If f(x, y) has a maximum value, then (5, 8) is the maximum
point.
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An economic example: Production
Consider a Cobb-Douglas production function

f(L,K)=KY?LV* L K>0

m Lis the labor input
m K is the capital input
m f(L, K) is the total production

Net Profit
m Price per unit of output is 12 thousand dollars
m Cost (or rental) per unit of capital is 1.2 thousand dollars
m Wage rate (cost per unit of labor) is 0.6 thousand dollars
Net profit function of L and K is

m(L,K) =12 f(L,K) — 0.6L — 1.2K
—12KY2LY4* _0.6L — 1.2K
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Net profit function of L and K
7(L,K) = 12K'/2LY/* —0.6L — 1.2K
The partial derivatives are
111 1.3
mi (LK) =12K2 - Li~' —0.6 - 0=3K:L"1 - 06
11,1 _1.1
mx (L, K)=12- EKZ L1 —0—-12=6K"2L1 —1.2
Solve the system

m(LK)=0 3K2L"1 =06
k(LK) =0 6K 2Li =1.2

Solve the linear equations: 1st Equation = 2nd Equation

1 3
3K2L7 0.6 K 1
% = & =5 K=L
6K "2 Li 1.2 2L 2
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Substitute K = L back into the first partial derivative equ:
312031 =06 < 3LV =06

Therefore, L = (0.6/3)~* = 5* = 625 and then K = L = 625.
m assume the maximum point exists
m the maximum point is the stationary point
m we have only one stationary point (L, K) = (625, 625)

Maximum point
Therefore, the maximum point is (L, K) = (625, 625), and the
maximum net profit is 7(625, 625) = 375 thousand dollars.

10/29



Budget constraint

At the maximum point (L, K) = (625, 625), the total cost
equals to

0.6L+1.2K =0.6 x 625+ 1.2 x 625 = 1125

What if the budget is not enough to cover the cost?

Linear constraint
We assume 0.6L 4+ 1.2K < b, where b is the budget (in $K).

Let us say, we only have a budget of b = 900 thousand dollars.
Optimisation with a budget constraint
Maximise 7(L, K) = 12K'/2L1/* — 0.6L — 1.2K
subject to 0.6L + 1.2K < 900, for L, K > 0.
m [tis NOT a linear programming problem.
m Let us assume there is an optimal solution.
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Stationarity # Optimality
Note that we can rewrite our problem as:
maximise the net profit function

m(L,K) = 12K"/2LV* —0.6L— 12K, for(L,K)e D
where D = {(L,K) : 0.6L +1.2K <900, L, K > 0}

m Stationary point (L, K) = (625, 625) is outside the domain
m The optimal point is not stationary: D is not an open set
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The domain D is not an open set
Any point on the straight line satisfies the constraint.

D= {(L,K):0.6L+12K <900,L, K > 0}
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An easier formulation
m Assume that the optimal solution exists

m At the maximum point (L, K), the entire budget will be
exhausted. Why?

m The physical constraint L, K > 0 can be ignored.
Maximise 7 (L, K) = 12K'/2L1/* —0.6L — 1.2K
subject to 0.6L + 1.2K = 900, for L, K > 0.
Why is the maximum point on the line of entire budget

IF there is an optimal point (L*, K*) that is below the entire
budget: 0.6L* + 1.2K* < 900. Let’s define the interior of the
feasible region:

D° = {(L,K) : 0.6L + 1.2K < 900, L, K > 0},
which is an open set. It is obvious that
m(L*,K*) = max =(L,K).

(L,K)eD®
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There comes a contradiction due to the former “IF”

m As D° is an open set, the optimal point (L*, K*) must be a
stationary point.

m However, the only stationary pointis (L, K) = (625, 625),
which is outside the domain D.

m Thus, the optimal point (L*, K*) has to be on the
boundary.
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Add a variable: Lagrange multiplier A

m Initially, we want to maximise
7(L,K) = 12KY?LV/* —0.6L — 1.2K,

subject to 0.6L + 1.2K = 900, for L, K > 0.

m The Lagrange multiplier method introduces a new
variable A and defines a new function:

F(L,K, ) = m(L, K) 4+ A(900 — 0.6L — 1.2K),

which is called the Lagrangian.

m Maximisation of (L, K) subject to a budget constraint
becomes a maximisation of f(L, K, \) on an extended
domain: L, K > 0and \ € (—o0, ).
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Lagrange method
Maximise
F(L,K,\) =12K'Y2[Y/* —0.6L — 1.2K
+ (900 — 0.6L — 1.2K), (L, K,\) €D
where D' = {(L,K,)\) : L,K > 0, € (—00,0)}.

m D' is open: Optimal point is the stationary point
m Derive stationary point via the 1st-order conditions:

Ji(L,K,A\) =0, fx(L,K,\)=0, A(LK/AX)=0
Solve first-order conditions
F(LK,\) = (L, K) + A(900 — 0.6L — 1.2K)
filL,K,\) =7 (L,K) — 0.6A = 3KZL™1 — 0.6 — 0.6\

fe(LK,\) = mk(LK) — 1.2\ = 6K 2Li — 1.2 — 1.2\
AL, K, \) =900 — 0.6L — 1.2K
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Solutions to first-order conditions

fi(LK,A) =0 3K2:L"1 = 0.6(1+))
k(LKA =0 < 6K 2Li = 1.2(1 + )
ALK, N) =0 0.6L + 1.2K = 900

m First equation -+ Second equation

o=
SIEESNE

3KPL-T 061+ K 1
= —_— = — 1(? = l;
6k-S1t 120+ n 2L 2%

m Substitute K = L into the third equation

900
06L+12L =900, L= 18 — 500

m Therefore, K = L = 500
Optimal solution with budget b = 900
The maximum point is (L, K) = (500, 500) and the maximum

net profit is 7(500, 500) = 12 - (500)3/4 — 900 ~ 368.85 $K.
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With any other budget b € (0,1125)

It can be shown that the maximum point s (L, K) = (3b, 2b)
and the maximum net profit is

3/4
mo(b) =7 <gb, gb> ~12. (gb> —b

Increase budget

m For one unit increase of the budget, the increase of net
profit will be approximated by the derivative of . (b):

, 3 /5 \3/41 & 5\ /4
= - — —_ - —_ — — . — — 1
m.(b) =12 1 <9b> 3 1=5 9b

m So 7/(900) = 5 - (500)~1/* — 1 ~ 0.0574

m If the budget increases from 900 by 1 unit, the max net
profit will approximately increase by 0.0574 units.
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Lagrange multiplier as the derivative of net profit

m Recall our first-order conditions (with b = 900):

fi(LK,A) =0 3KzL 1 =0.6(1+))
k(LKA =0 < 6K 2Li = 1.2(1+ )
ALK, A) =0 0.6L+ 1.2K = 900

m We have solved that K = L = 500.
m Substitute K = L = 500 into the 1st or 2nd equation and
get
A=5-(500)"1/4 -1 =7/(900) ~ 0.0574
m If the budget increases from 900 by 1 unit, the max net
profit will increase approximately by A ~ 0.0574 units.
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Lagrange method: General

Optimise 7 (x,y), (x,y) € D, subject to px + wy = b.
m Dis an open set, for example, x, y > 0.
® p, w, b are all known values.
m assume the optimal solution exists.

It is equivalent to optimising the Lagrangian function

f(xv.y?)‘) :ﬂ-(xhy) +)‘(b_px_ LU_}/),

defined for (x,y) € Dand A € (—o0, c0)
m Find the optimal point(s) among stationary points:

fL<L7 K, )‘) =0 Wx(an/) - pA
fK(Lv K’ )‘) =0 = Wy(x,y) = W\
{]&(L,K,)\)O { px+wy="b

There are two possible cases: A = 0and \ # 0
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Casel: A =0
m Check whether the first order conditions

Tx(X,y) =0
TrJ’(xvy> = 0
px+wy=>b

have a solution.

m This is to check whether the stationary point of 7(x, y)
satisfies the budget constraint.

Case2: A #0
m First Equation <+ Second Equation (on page 21)
A=k > y=gW
m Substitute y = g(x) into the budget constraint:
px+wg(x)=b, =x=x"
m Solution: x = x*, y* = g(x*), and the optimal value
(X, y*).
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First order conditions: Normal cases
Once we obtain x = x* and y* = g(x*), we substitute them
back to the 1st or 2nd equation to solve

1 1
A* = ;ﬁx(x*,y*) or \* = Eﬂy(x

*

V)

Interpret the Lagrange multiplier

If the budget b is a variable, and solving the first order
conditions gives the optimal point with

x=x"(b), y=y'(b), A=A(b)

and optimal value 7, (b) = w(x*(b),y* (b)), then

Interpretation: If the budget increases from b by one unit, the
optimal value will change approximately by A*(b) units.
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Summary
For optimisation of a function of multiple variables

m In this unit, we always assume the optimal solution exists.
Optimise f(x, y) over an open set D

m Find the optimal point(s) among stationary point(s).
Optimise 7 (x, y) subject to a budget constraint px + wy = b

m Optimise the Lagrangian function f(x, y, A)

m Find the optimal point(s) among stationary point(s)

m Interpret the Lagrange multiplier A
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Further examples using Lagrangian method

Example 1

Suppose z = xy, which we want to maximise subject to

x +y < 100.

Solution: This constrained maximisation problem is to be
solved using the Lagrangian given by

f(x,y,A) = xy+ \(100 — x — y).
Compute the 1st-order partial derivatives and let them be 0:

f;C(xuyv)‘):y_/\:O
H(xy,A)=x-=A=0
H(x,y,A)=100—x—y=0

The first two equations show that x = y, which is then
substituted into the 3rd equation, and then we obtain that
x =50and y = 50.
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Example 2

Maximise u = 4x? + 3xy + 6y, subject to x + y = 56.
Solution: This constrained maximisation problem can be
solved using the Lagrangian given by

u(x7y7 )‘) = 4x2 + 3xy + 6y2 + )\(56 — X — y)
Take the 1st-order partial derivatives and set them to 0:

Up(X,7,A) =8x+3y—A=0
uy(x,y,A) =3x+12y — A =0
ur(x,y,\) =56 —-x—-—y=0

The first two equations lead to: 8x + 3y = 3x + 12y, by which
we obtain x = 1.8y. Substituting it to the 3rd equation, we
obtain that 2.8y = 56, and thus, y = 20 and then x = 36.
Substituting the values of x and y into the 1st or 2nd equation,
we obtain that A = 348.

26/29



Example 3: Cost minimisation

A firm produces two goods, in the quantity of x and y,
respectively. Due to a government regulation, the firm’s
production must satisfy the constraint x + y = 42. The firm’s
cost function is ¢(x, y) = 8x* — xy + 12y?, which we want to
minimise subject to the above constraint.

Solution: The Lagrangian of the constrained minimisation is
L(x,y,\) = 8x* — xy + 12y* + \(42 — x — y).
Take the 1st-order partial derivatives and set them to 0:

Li(x,y,\)=16x—y—A=0
Ly(x,y,\) = —x+24y—-X=0
Ly(x,y,\) =42 —-x—y=0
The first two equations lead to: 16x — y = —x + 24y, by which

we obtain 17x = 25y. Substituting it to the 3rd equation, we
obtain that x = 25 and y = 17, and then A ='383.
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Example 4: Utility Maximisation

Consider a consumer with the utility function u(x, y) = xy,
who faces a budget constraint of b = px + p,y, where b, py
and p, are the known budget and prices. The choice problem
is to maximise u(x,y) = xy, subject to pxx + p,y = b.

Solution: The Lagrangian of the constrained maximisation is

L(x,y,\) = xy + A(b — pxx — pyy)-

Take the 1st-order partial derivatives and set them to 0:

Lx(X,y,)\) :y_Apx =0
Ly(xd/a)\) :x_)\l?y:()
Ly(x,y,A) =b—px—pyy=0

Eliminating X from the first 2 equations, we have y/p, = x/py,
by which we obtain xpy = yp,. Substituting it to the 3rd
equation, we obtain that x = b/(2py) and y = b/(2p)), and
then A = b/(2pxpy).
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Example 5: Minimisation of cost

Consider the same consumer with the utility function

u(x,y) = xy, who has cost function c(x,y) = pxx + p,y, where
px and p, are known prices values. The choice problem is to
minimise ¢(x,y) = pxX + pyy, subject to u(x,y) = up.

Solution: The Lagrangian of the constrained minimisation is

U(x,y,\) = pxX + pyy + Mug — xy).

Take the 1st-order partial derivatives and set them to 0:

Ux(x,y,A\) =px—Ay=0
Uy(x,y,A\) =py—Ax =0
UA(X7J’7)\) = u()_xy:O

Eliminating X from the first 2 equations, we have p./y = p,/x,
by which we obtain xp, = yp,. Substituting it to the 3rd
equation, we obtain that x = (pyuo/px)'/? and

¥ = (pxto/py)'/?, and then A = (pxpy/uo)'/*.
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