ETF2700/ETF5970 Mathematics for Business

Lecture 6
Monash Business School, Monash University, Australia

Outline

Last week:
■ Increasing/decreasing and convex/concave functions
■ Single-variable optimization
■ Linear and quadratic approximations
■ Elasticity
This week:
■ Functions of multiple variables
■ Partial differentiation

- Slope of an iso curve

Relationship between variables

$\square x$ is the 'input' real-valued variable
■ y is the 'output' real-valued variable

$$
y=f(x), \quad x \in D
$$

where
■ D is a set of all possible inputs
■ $f(x)$ is the 'output' real value assigned to each real-valued input $x \in D$

Derivative of a continuous function $f(x)$
The first principle says that

$$
f^{\prime}(x)=\lim _{\Delta \rightarrow 0} \frac{f(x+\Delta)-f(x)}{\Delta}
$$

1) Rewrite $\frac{f(x+\Delta)-f(x)}{\Delta}$ without Δ in the denominator
2) Plug in $\Delta=0$ to obtain the derivative

Second-order derivative: Derivative of a derivative Example

■ Linear: $f(x)=m x+c, f^{\prime}(x)=m$
■ Quadratic: $f(x)=a x^{2}+b x+c, f^{\prime}(x)=2 a x+b$
■ Exponential: $f(x)=a^{x}, f^{\prime}(x)=a^{x} \ln (a)$
The second-order derivative of $f(x)$:

$$
\begin{aligned}
& f^{\prime \prime}(x)=\lim _{\Delta \rightarrow 0} \frac{f^{\prime}(x+\Delta)-f^{\prime}(x)}{\Delta} \\
f(x) & \xrightarrow{\text { derivative }} f^{\prime}(x) \xrightarrow{\text { derivative }} f^{\prime \prime}(x)
\end{aligned}
$$

Example
\square Linear: $f(x)=m x+c, f^{\prime \prime}(x)=0$
■ Quadratic: $f(x)=a x^{2}+b x+c, f^{\prime \prime}(x)=2 a$
■ Exponential: $f(x)=a^{x}, f^{\prime \prime}(x)=a^{x}(\ln (a))^{2}$

Function of two variables

- x is the first 'input' variable
- y is the second 'input' variable

■ z is the 'output' variable

$$
z=f(x, y), \quad(x, y) \in D
$$

where
■ D is a set of all possible input combinations

- $f(x, y)$ is the 'output' real value assigned to each real-valued input $(x, y) \in D$

Example: A market of two firms
Two firms in the market both produce cell phones.
■ Competitor's price (in hundred dollars): $P_{1} \in(0, \infty)$
■ Your company's (in hundred dollars): $P_{2} \in(5,20)$
■ Not identical: different designs, brands,...

Market demand function

■ P_{1} : competitor's price is the first 'input' variable
■ P_{2} : your company's price is the second 'input' variable
■ Q_{d} : market demand is the 'output' variable

$$
Q_{d}=f\left(P_{1}, P_{2}\right), \quad P_{1} \in(5,20) \text { and } P_{2} \in(0, \infty)
$$

where we can specify

$$
f\left(P_{1}, P_{2}\right)=82+P_{1}-3 P_{2}
$$

■ Slope with respect to P_{1} : Fixing P_{2}, f is a linear function in P_{1} with slope

$$
m=\frac{f\left(P_{1}+\Delta, P_{2}\right)-f\left(P_{1}, P_{2}\right)}{\Delta}=1
$$

■ Slope with respect to P_{2} : Fixing P_{1}, f is a linear function in P_{2} with slope

$$
m=\frac{f\left(P_{1}, P_{2}+\Delta\right)-f\left(P_{1}, P_{2}\right)}{\Delta}=-3
$$

Slopes of $f\left(P_{1}, P_{2}\right)$? Another possible slope?

$$
m=\frac{f\left(P_{1}+a \Delta, P_{2}+b \Delta\right)-f\left(P_{1}, P_{2}\right)}{\Delta}=a-3 b
$$

for some real-valued a and b.
Partial derivative with respect to x
Consider the a function $f(x, y)$, for $(x, y) \in D$. Partial derivative of $f(x, y)$ with respect to (w.r.t.) x is

$$
\frac{\partial f(x, y)}{\partial x}=\lim _{\Delta \rightarrow 0} \frac{f(x+\Delta, y)-f(x, y)}{\Delta} .
$$

We may also write $f_{x}(x, y)$ or $f_{1}(x, y)$.

1) Fix y : Let $f(x, y)=g(x)$ which is a function of x only
2) Calculate $\frac{\partial f(x, y)}{\partial x}=g^{\prime}(x)$.

Example

$$
f\left(P_{1}, P_{2}\right)=82+P_{1}-3 P_{2}
$$

Determine the partial derivative of $f\left(P_{1}, P_{2}\right)$ w.r.t. P_{1}

1) Treat P_{2} as a constant rather than a variable

$$
f\left(P_{1}, P_{2}\right)=g\left(P_{1}\right)=m P_{1}+c
$$

with $m=1$ and $c=82-3 P_{2}$
2) Derivative of $f\left(P_{1}, P_{2}\right)$ w.r.t. P_{1} is the slope $g\left(P_{1}\right)$:

$$
\frac{\partial f\left(P_{1}, P_{2}\right)}{\partial P_{1}}=g^{\prime}\left(P_{1}\right)=m=1
$$

Partial derivative with respect to y
Consider the a function $f(x, y)$, for $(x, y) \in D$. Partial derivative of $f(x, y)$ w.r.t. y is

$$
\frac{\partial f(x, y)}{\partial y}=\lim _{\Delta \rightarrow 0} \frac{f(x, y+\Delta)-f(x, y)}{\Delta}
$$

Partial derivative with respect to y

We may also write $f_{y}(x, y)$ or $f_{2}(x, y)$.

1) Fix x : Let $f(x, y)=h(y)$ which is a function of y only
2) Calculate $\frac{\partial f(x, y)}{\partial y}=h^{\prime}(y)$.

Example

$$
f\left(P_{1}, P_{2}\right)=82+P_{1}-3 P_{2}
$$

Determine the partial derivative of $f\left(P_{1}, P_{2}\right)$ w.r.t. P_{2}.

1) Treat P_{1} as a constant rather than a variable

$$
f\left(P_{1}, P_{2}\right)=h\left(P_{2}\right)=m P_{2}+c
$$

with $m=-3$ and $c=82+P_{1}$.
2) Derivative of $f\left(P_{1}, P_{2}\right)$ w.r.t. P_{2} is the slope $h\left(P_{2}\right)$:

$$
\frac{\partial f\left(P_{1}, P_{2}\right)}{\partial P_{2}}=h^{\prime}\left(P_{2}\right)=m=-3
$$

Other possible slopes?

We can show that

$$
\begin{gathered}
\lim _{\Delta \rightarrow 0} \frac{f(x+a \Delta, y+b \Delta)-f(x, y)}{\Delta} \\
\quad=\frac{\partial f(x, y)}{\partial x} \cdot a+\frac{\partial f(x, y)}{\partial y} \cdot b
\end{gathered}
$$

Partial derivatives are enough to describe the class of slopes Approximation with partial derivative

$$
f_{x}(x, y)=\lim _{\Delta \rightarrow 0} \frac{f(x+\Delta, y)-f(x, y)}{\Delta}
$$

For $\Delta \approx 0$

$$
f_{x}(x, y) \approx \frac{f(x+\Delta, y)-f(x, y)}{\Delta}
$$

Substitute $\Delta=1$ (assuming Δ is approximately 0) and obtain

$$
f_{x}(x, y) \approx f(x+1, y)-f(x, y)
$$

Interpret partial derivatives $(\Delta=1)$

$$
f_{x}(x, y) \approx f(x+1, y)-f(x, y)
$$

■ Holding y constant, one unit increase in x from the point (x, y) implies approximately a change in f by $f_{x}(x, y)$ unit.
■ A similar argument applies to $f_{y}(x, y)$.

Example

Interpret the partial derivative of

$$
g(x, y)=x^{2}+y
$$

w.r.t. x at $(3,5)$ from the view of approximation.

1) Treat y as a constant, so

$$
g_{x}(x, y)=2 x+0=2 x \Rightarrow g_{x}(3,5)=6
$$

2) Holding y constant, one unit increase in x from the point $(3,5)$ implies approximately 6 unit changes in $g(x, y)$.
True increment: $g(4,5)-g(3,5)=7$

Differential: Simultaneous changes

Let x and y be changed by $d x \approx 0$ and $d y \approx 0$.

$$
f(x+d x, y+d y)-f(x, y) \approx f_{x}^{\prime}(x, y) \cdot d x+f_{y}^{\prime}(x, y) \cdot d y
$$

If we use $d f(x, y)$ to denote the change in f :

$$
d f(x, y)=f(x+d x, y+d y)-f(x, y)
$$

we have

$$
d f(x, y)=f_{x}^{\prime}(x, y) \cdot d x+f_{y}^{\prime}(x, y) \cdot d y
$$

It is called the differential of f in (x, y) for the change $(d x, d y)$, or sometimes just the differential of $f(x, y)$.

Example

$$
g(x, y)=x+y^{2}, \quad x, y \in(-\infty, \infty)
$$

1. Treat y as a constant rather than a variable:

$$
g_{x}^{\prime}(x, y)=1+0=1
$$

2. Treat x as a constant rather than a variable:

$$
g_{y}^{\prime}(x, y)=0+2 y=2 y
$$

The differential of $g(x, y)$ is

$$
d g(x, y)=1 \cdot d x+2 y \cdot d y
$$

Partial Elasticity

For a single variable function $f(x)$, its elasticity at point x is

$$
\mathrm{El}_{x} f(x)=\frac{f^{\prime}(x) x}{f(x)}
$$

Interpret elasticity

Increasing x by 1% from point x implies approximately $\mathrm{El}_{x} f(x)$ \% changes in $f(x)$.
Partial Elasticity
Partial elasticity of $f(x, y)$ w.r.t. x and y at point (x, y) are, respectively,

$$
\mathrm{El}_{x} f(x, y)=\frac{f_{x}(x, y) x}{f(x, y)}, \quad \mathrm{El}_{y} f(x, y)=\frac{f_{y}(x, y) y}{f(x, y)}
$$

Interpret partial elasticity with respect to x
Holding y constant, increasing x by 1% from point (x, y) implies approximately $\mathrm{El}_{x} f(x, y) \%$ changes in $f(x, y)$.

Partial price elasticity of demand

Determine the partial elasticity of

$$
f\left(P_{1}, P_{2}\right)=82+P_{1}-3 P_{2}
$$

with respect to P_{1} at point $(3,5)$
\square We know the partial derivative is $f_{1}\left(P_{1}, P_{2}\right)=1$, so

$$
f_{1}(3,5)=1
$$

- By definition

$$
\mathrm{El}_{P_{1}} f(3,5)=\frac{f_{x}(3,5) \cdot 3}{f(3,5)}=\frac{1 \cdot 3}{70}=\frac{3}{70}
$$

Iso curve (level curve)
Consider a function $f(x, y)$, for $(x, y) \in D$. An iso curve, or level curve, of $f(x, y)$ consists of the points satisfying the equation

$$
f(x, y)=c \quad \text { or } \quad f(x, y)-c=0
$$

for some known value of c, such that $(x, y) \in D$.

Iso curves: Illustration

Implicit Function

■ Consider a particular iso curve $f(x, y)=c$.

1) x is an 'input' variable (in the domain)
2) y is the only y in the domain that satisfies $f(x, y)=c$

■ We may then define a function g such that $y=g(x)$.
$■$ For a fixed value of x, we can find a value of y, such that $f(x, y)=c$. In this sense, y is a function of x.

- The function g is called the implicit function for y defined by the iso curve $f(x, y)=c$.

Example: Market demand function

$$
f\left(P_{1}, P_{2}\right)=82+P_{1}-3 P_{2}, \quad P_{1} \in(0, \infty), P_{2} \in(5,20)
$$

Consider the point $\left(P_{1}, P_{2}\right)=(3,5)$, where $f(3,5)=70$. The iso curve passing through $(3,5)$ is $f\left(P_{1}, P_{2}\right)=70$
$\Rightarrow 82+P_{1}-3 P_{2}=70 \Rightarrow P_{2}=\frac{1}{3} P_{1}+4$
The corresponding implicit function $g\left(P_{1}\right)=\frac{1}{3} P_{1}+4$.

Slope of an Iso curve

Consider an iso curve with implicit function $g(x)$ such that

$$
f(x, g(x))=c
$$

The slope of the above iso curve at some point $(a, g(a)) \in D$ (on this iso curve) is $g^{\prime}(a)$.
Example of demand:
■ The slope of the iso curve $f\left(P_{1}, g\left(P_{1}\right)\right)=70$ is $g^{\prime}\left(P_{1}\right)=1 / 3$, which is the slope of the implicit function.

- Negative slope, which is $-g^{\prime}(a)$, is called the marginal rate of substitution of y for x at the point $(a, g(a))$.
- The variable y needs to be changed from $g(a)$ by approximately $g^{\prime}(a)$ units for each unit increase in x from a to maintain the same $f(x, y)=f(a, g(a))$.

Slope of an Iso curve: Illustration

Market demand: $f\left(P_{1}, P_{2}\right)=82+P_{1}-3 P_{2}$

- The implicit function for the iso curve passing through the point $(3,5)$ is

$$
P_{2}=g\left(P_{1}\right)=\frac{1}{3} P_{1}+4 \quad \text { with } \quad g^{\prime}\left(P_{1}\right)=\frac{1}{3}
$$

which gives $g^{\prime}(3)=\frac{1}{3}$.

- Our price $\left(P_{2}\right)$ need to increase from 5 hundred dollars by approximately $1 / 3$ hundred dollars for each hundred dollars increase in the competitor's price from 3 hundred dollars, in order to maintain the same market demand $f(3,5)=70$ millions.

Market Equilibrium

Suppose your company's supply of the cell phone is given by

$$
Q_{s}=-10+P_{2}^{2}
$$

and the current prices are $P_{1}=16$ and $P_{2}=9$.
\square Show that $\left(P_{1}, P_{2}\right)=(16,9)$ is a (possible) market equilibrium, that is, $Q_{d}=Q_{s}$:

$$
\begin{aligned}
& Q_{d}=82+P_{1}-3 P_{2}=82+16-3 \cdot 9=71 \\
& Q_{s}=-10+9^{2}=-10+81=71
\end{aligned}
$$

■ The current market is in equilibrium, i.e. $Q_{d}=Q_{s}$, and the current prices are $\left(P_{1}, P_{2}\right)=(16,9)$.
Question: If the competitor's price P_{1} increases by 1 hundred dollars, by how much should our price P_{2} increase to maintain market equilibrium?

Slope in market equilibrium

In market equilibrium we have $Q_{d}=Q_{s}$, that is

$$
82+P_{1}-3 P_{2}=-10+P_{2}^{2}
$$

In other words, $\left(P_{1}, P_{2}\right)$ is on the iso curve of the function

$$
f\left(P_{1}, P_{2}\right)=-P_{2}^{2}-3 P_{2}+P_{1}+92
$$

associated with the equation $f\left(P_{1}, P_{2}\right)=0$.

Find out the implicit function?
For each given P_{1}, we need to solve the equation

$$
-P_{2}^{2}-3 P_{2}+P_{1}+92=0
$$

Solve by the abc method

$$
\begin{gathered}
\Delta=(-3)^{2}-4 \cdot(-1) \cdot\left(P_{1}+92\right)=377+4 P_{1}>0 \\
x_{1}=\frac{3-\sqrt{377+4 P_{1}}}{-2}, \quad x_{2}=\frac{3+\sqrt{377+4 P_{1}}}{-2}<0
\end{gathered}
$$

Therefore, $P_{2}=g\left(P_{1}\right)=\left(\sqrt{377+4 P_{1}}-3\right) / 2$.
In equilibrium, we have

$$
P_{2}=g\left(P_{1}\right)=\frac{\sqrt{377+4 P_{1}}-3}{2}
$$

which implies taht

$$
g^{\prime}\left(P_{1}\right)=\frac{1}{\sqrt{377+4 P_{1}}}
$$

The derivative of the iso curve at $\left(P_{1}, P_{2}\right)=(16,9)$ is

$$
g^{\prime}(16)=\frac{1}{\sqrt{377+4 \cdot 16}}=\frac{1}{21}
$$

Our price P_{2} need to increase approximately $\frac{1}{21} \times 100 \approx \$ 4.76$ to maintain market equilibrium.
True increment in our price is: $(g(17)-g(16)) \times 100 \approx \$ 4.75$
Approximation with slopes
Is there an easier way to determine $g^{\prime}(16)$?
Recall that

$$
\begin{aligned}
& \lim _{\Delta \rightarrow 0} \frac{f(x+a \Delta, y+b \Delta)-f(x, y)}{\Delta} \\
& \quad=f_{x}(x, y) \cdot a+f_{y}(x, y) \cdot b
\end{aligned}
$$

If let $\Delta=1$ (assuming Δ is approx 0), then

$$
f(x+a, y+b)-f(x, y) \approx f_{x}(x, y) \cdot a+f_{y}(x, y) \cdot b
$$

An easier way to determine the slope
■ Suppose $\left(P_{1}, P_{2}\right)=(16,9)$ is changed to another equilibrium point $(16+1,9+\Delta)$. Then

$$
\begin{aligned}
& f(16+1,9+\Delta)-f(16,9) \\
\approx & f_{1}(16,9) \cdot 1+f_{2}(16,9) \cdot \Delta
\end{aligned}
$$

■ The terms on left-hand-side are ended with 0 due to equilibrium:

$$
0 \approx f_{1}(16,9) \cdot 1+f_{2}(16,9) \cdot \Delta
$$

■ Rearrange to obtain $\Delta \approx-\frac{f_{1}(16,9)}{f_{2}(16,9)}$. We also know $\Delta \approx g^{\prime}(16)$.

- Could $g^{\prime}(16)=-\frac{f_{1}(16,9)}{f_{2}(16,9)}$? Yes
\square On the iso curve $f(x, y)=c$, where the implicit function is $y=g(x)$, the derivative of $g(\cdot)$ can be derived by the negative ratio of partial derivatives of $f(x, y)$.

Implicit differentiation

Note that $f\left(P_{1}, P_{2}\right)=-P_{2}^{2}-3 P_{2}+P_{1}+92$ gives

$$
f_{1}\left(P_{1}, P_{2}\right)=1 \text { and } f_{2}\left(P_{1}, P_{2}\right)=-2 P_{2}-3
$$

We have

$$
g^{\prime}(16)=-\frac{f_{1}(16,9)}{f_{2}(16,9)}=-\frac{1}{-2 \cdot 9-3}=\frac{1}{21} .
$$

This approach is called implicit differentiation

Implicit differentiation: General

Consider a particular iso curve of function $f(x, y)$ with implicit function $g(x)$ such that

$$
f(x, g(x))=c
$$

The slope of the above iso curve at point (x, y) is

$$
g^{\prime}(x)=-\frac{f_{x}(x, y)}{f_{y}(x, y)}
$$

Summary

Function of two variables:

- Partial derivative, and partial elasticity
- Approximations
- Iso curve and its slopes
- Implicit Differentiation

Function of three variables

- x is the first 'input' variable
- y is the second 'input' variable
- λ is the third 'input' variable
- z is the 'output' variable

$$
z=f(x, y, \lambda), \quad(x, y, \lambda) \in D
$$

where

- D is a set of all possible input combinations
- $f(x, y, \lambda)$ is the output value assigned to each input vector

Partial derivative

The partial derivative of $f(x, y, \lambda)$ with respect to x is

$$
\frac{\partial f(x, y, \lambda)}{\partial x}=\lim _{\Delta \rightarrow 0} \frac{f(x+\Delta, y, \lambda)-f(x, y, \lambda)}{\Delta}
$$

We may also write $f_{x}(x, y, \lambda)$ or $f_{1}(x, y, \lambda)$.

1) Fix y and λ : $f(x, y, \lambda)=g(x)$ only a function of x
2) Calculate $\frac{\partial f(x, y, \lambda)}{\partial x}=g^{\prime}(x)$.

Similarly we can define $f_{y}(x, y, \lambda)$ and $f_{\lambda}(x, y, \lambda)$

Example

Determine the partial derivative

$$
f(x, y, \lambda)=2 x+y+\lambda\left(x^{2}+y^{2}-1\right)
$$

with respect to x.

1) Treat y and λ as constants, then

$$
\begin{aligned}
& \qquad f(x, y, \lambda)=g(x)=a x^{2}+b x+c \\
& \text { with } a=\lambda, b=2 \text { and } c=y+\lambda\left(y^{2}-1\right) \\
& \text { 2) } f_{x}(x, y, \lambda)=g^{\prime}(x)=2 a x+b=2 \lambda x+2
\end{aligned}
$$

Example

Determine the partial derivative

$$
f(x, y, \lambda)=2 x+y+\lambda\left(x^{2}+y^{2}-1\right)
$$

with respect to λ.

1) Treat x and y as constants, then

$$
f(x, y, \lambda)=g(\lambda)=m \lambda+c
$$

with $m=x^{2}+y^{2}-1$ and $c=2 x+y$
2) $f_{\lambda}(x, y, \lambda)=g^{\prime}(\lambda)=m=x^{2}+y^{2}-1$

