ETF2700/ETF5970 Mathematics for Business

Lecture 5
Monash Business School, Monash University, Australia

Outline

Last week:

- Non-linear functions
- Differentiation

This week:
■ Increasing/decreasing and convex/concave functions
■ Single-variable optimization
■ Linear and quadratic approximations
■ Elasticity

Last week example: A monopoly compay
Suppose that your company has a monopoly advantage on the market.

- You can determine the market price (in $\$ \mathbf{k}) P \in(0,20)$
- The market demand (in thousands) is $Q=100-5 P$ The total revenue function is

$$
f(P)=P \cdot Q(P)=100 P-5 P^{2}, \quad P \in(0,20),
$$

and its derivative is $f^{\prime}(P)=100-10 P$
How can we derive $f^{\prime}(P)$?

1) Calculate $\frac{f(P+\Delta)-f(P)}{\Delta}=100-10 P+5 \Delta$
2) Plug in $\Delta=0$ to get $f^{\prime}(P)=100-10 P$

Power functions and arithmetic rules

1) Write $f(P)=100 f_{1}(P)-5 f_{2}(P)$ with $f_{1}(P)=P \& f_{2}(P)=P^{2}$
2) $f^{\prime}(P)=100 \cdot f_{1}^{\prime}(P)-5 \cdot f_{2}^{\prime}(P)=100 \cdot 1-5 \cdot 2 P=100-10 P$

The derivative (function) is defined as the slope (function) of the tangent line at P

When P changes, the tangent line will change, and so will the slope of the tangent line.

The tangent line: A linear function

1) The tangent line for $f(P)$ at point $P=5$

$$
L(p)=m \cdot p+c
$$

where m is the slope of the tangent line, is actually $f^{\prime}(p)$ computed at $p=5$. Thus, the slope of the tagent line is

$$
m=f^{\prime}(5)=100-10 \cdot 5=50
$$

2) What is the value of c ? Note that $f(5)=375$. So the point $(5,375)$ is on the tangent line.
3) Therefore, we have $375=50 \cdot 5+c$, which leads to $c=125$. So, the tangent line at $P=5$ is

$$
L(p)=50 p+125
$$

Tangent line of a function: General

- Consider a general function $f(x)$ with derivative $f^{\prime}(x)$
- The tangent line for $f(x)$ at the point $(a, f(a))$ is

$$
L_{a}(x)=f^{\prime}(a) \cdot x+c
$$

where $c=f(a)-f^{\prime}(a) \cdot a$ due to the fact that the point ($a, f(a)$) is located on the tangent line.

- You may also write

$$
L_{a}(x)=f^{\prime}(a)(x-a)+f(a)
$$

- $f^{\prime}(a)>0$: $L_{a}(x)$ increases with x
- $f^{\prime}(a)<0$: $L_{a}(x)$ decreases with x

An increasing or decreasing function
If $f^{\prime}(x) \geq 0$ (or $f^{\prime}(x) \leq 0$) for all $x \in(a, b)$, then

$$
f(x) \text { is increasing (decreasing) in }(a, b),
$$

that is, for all $x_{1}, x_{2} \in(a, b)$

$$
x_{1}<x_{2} \quad \rightarrow \quad f\left(x_{1}\right) \leq f\left(x_{2}\right) \quad\left(\text { or } f\left(x_{1}\right) \geq f\left(x_{2}\right)\right)
$$

Increasing

Decreasing

Strictly increasing or decreasing

If $f^{\prime}(x)>0\left(\operatorname{or} f^{\prime}(x)<0\right)$ for all $x \in(a, b)$, then

$$
f(x) \text { is strictly increasing (decreasing) in }(a, b),
$$ that is, for all $x_{1}, x_{2} \in(a, b)$

$$
x_{1}<x_{2} \Leftrightarrow f\left(x_{1}\right)<f\left(x_{2}\right) \quad\left(\text { or } f\left(x_{1}\right)>f\left(x_{2}\right)\right)
$$

Strictly increasing

Strictly decreasing

Example of a monopoly company

The derivative of the total revenue function

$$
f^{\prime}(P)=100-10 P
$$

- $f^{\prime}(P)=0$ when $P=10$
- $f^{\prime}(P)>0$ when $P \in(0,10)$ therefore, $f(P)$ is strictly increasing in $(0,10)$
- $f^{\prime}(P)<0$ when $P \in(10,20)$ therefore, $f(P)$ is strictly decreasing in $(10,20)$

Maximum total revenue at $P=10$?

Input interpretation:

```
plot 100P-5 P
```


Stationary point

A stationary point x is a point, at which $f^{\prime}(x)=0$.
In our example of total revenue:

- $f^{\prime}(10)=0$, thus $P=10$ is a stationary point, and is also the maximum point.
- Sometimes we cannot find a stationary point:

$$
\text { for example, } f(x)=e^{x}, \quad f^{\prime}(x)=e^{x}>0
$$

Stationary point: Quadratic functions

- Consider a quadratic function ($a \neq 0$)

$$
f(x)=a x^{2}+b x+c, \quad x \in D
$$

- We know its derivative is $f^{\prime}(x)=2 a x+b$
- Solve $2 a x+b=0$ to get $x=-\frac{b}{2 a}$.
- If $-\frac{b}{2 a} \in D$, it is the stationary point; Otherwise there is no stationary point.

First-order condition

A function $f(x)$ on (a, b) with derivative $f^{\prime}(x)$.
■ Any maximum/minimum point $c \in(a, b)$ satisfies

$$
f^{\prime}(c)=0
$$

■ Maximum/Minimum point must be a stationary point
■ But in general, a stationary point may not be a maximum/minimum point

How to find a maximum or minimum point

If there is a maximum point in (a, b) :
■ Solve $f^{\prime}(x)=0$ to find all stationary points in (a, b).

- If only one point is found, then it is the max/min point.

■ If multiple points are found, then we need to compare the $f(\cdot)$ values and take the one(s) with largest $f(\cdot)$ value.

- A similar procedure applies to locating the minimum point.

Example
Determine the minimal value of the function

$$
f(x)=x^{3}-12 x, \quad x \in(0,5) .
$$

We may assume that the minimal point exists.

1) Determine the derivative $f^{\prime}(x)=3 x^{2}-12$
2) Solve $3 x^{2}-12=0$ by the 'abc' method to get

$$
x_{1}=2, \quad x_{2}=-2 \text { (not in the domain) }
$$

3) The minimal value is

$$
f(2)=2^{3}-12 \times 2=-16
$$

When will stationarity imply optimality?

- The stationary points in our examples so far are all maximum/minimum points.
\square This is NOT true in general. For example, $f(x)=x^{3}$, $x \in(-\infty, \infty)$ has only stationarity point $x=0$, but it is not a maximum or a minimum point.
■ However, stationarity implies optimality for concave and convex functions.

What is a concave/convex function? Example of TR Suppose now your company monopolies two identical markets and you can determine the market prices $P_{1} \in(0,20)$ and $P_{2} \in(0,20)$ in both markets.

- Market demand in the markets:

$$
Q_{1}=100-5 P_{1}, Q_{2}=100-5 P_{2}
$$

- Total Revenue in both markets:

$$
\begin{aligned}
& T R_{1}\left(P_{1}\right)=f\left(P_{1}\right), \quad T R_{2}\left(P_{2}\right)=f\left(P_{2}\right), \text { where } \\
& f(P)=100 P-5 P^{2} . \text { To maximize TR, shall we set } P_{1}=P_{2} \text { ? }
\end{aligned}
$$

Example

Compare the following pricing strategies:

$$
\begin{aligned}
& \text { 1) } P_{1}=6, P_{2}=10 \\
& \text { 2) } P_{1}=P_{2}=(6+10) / 2=8
\end{aligned}
$$

Which gives a larger total revenue from both markets?

1) $T R=f(6)+f(10)=420+500=920$
2) $T R=2 \cdot f(8)=2 \cdot 480=960>920$

The second pricing strategy gives a larger total revenue.
Averaged price is better
In fact, we can show

$$
2 \cdot f\left(\frac{P_{1}+P_{2}}{2}\right) \geq f\left(P_{1}\right)+f\left(P_{2}\right)
$$

for all $P_{1}, P_{2} \in(0,20)$.
In other words, using an averaged price in the two markets always gives higher total revenue.

Yes, we should set $P_{1}=P_{2}$.

Concave function: Middle point is better
A continuous function $f(x), x \in D$ is concave if

$$
f\left(\frac{x_{1}+x_{2}}{2}\right) \geq \frac{1}{2}\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right)
$$

for all $x_{1}, x_{2} \in D$.
■ Example: $f(P)=100 P-5 P^{2}, P \in(0,20)$ is concave
Convex function: Middle point is worse
A continuous function $f(x), x \in D$ is convex if

$$
f\left(\frac{x_{1}+x_{2}}{2}\right) \leq \frac{1}{2}\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right)
$$

for all $x_{1}, x_{2} \in D$.

- Example: $f(x)=x^{3}-12 x, x \in(0,5)$ is convex.

Stationarity, and concavity/ convexity

■ A stationary point for a concave/convex function $f(x)$ on (a, b) is a maximum/minimum point for $f(x)$ on (a, b).

- In other words, for $f(x)$ defined on (a, b)

Stationarity \& Concavity/Convexity = Maximum/Minimum

■ How can we check whether a function is concave/convex or not?

Derivative of a derivative function
Consider a function f defined on (a, b)
■ $f^{\prime \prime}(x) \leq 0$ for all $x \in(a, b): f$ is concave

- $f^{\prime \prime}(x) \geq 0$ for all $x \in(a, b): f$ is convex

Here, $f^{\prime \prime}(x)$ is the derivative of $f^{\prime}(x)$, also known as second order derivative of $f(x)$.

- $f^{\prime \prime}(x)$ is called the second derivative of f.
- $f^{\prime}(x)$ may be called the first derivative of f.

Example: Second (order) derivative
Let's consider our total revenue function

$$
f(P)=100 P-5 P^{2}, \quad P \in(0,20)
$$

1) (First) derivative:

$$
f^{\prime}(P)=100-10 P, \quad P \in(0,20)
$$

2) Second (order) derivative:

$$
f^{\prime \prime}(P)=0-10 \cdot 1=-10<0, \quad P \in(0,20)
$$

Therefore, $f(P)$ is concave.

Another example: Second derivative

Recall our another example

$$
f(x)=x^{3}-12 x, \quad x \in(0,5)
$$

1) (First) derivative:

$$
f^{\prime}(x)=3 x^{2}-12, \quad x \in(0,5)
$$

2) Second (order) derivative:

$$
f^{\prime \prime}(x)=6 x>0, \quad x \in(0,5)
$$

Hence, $f(x)$ is convex.

Second derivative: Quadratic functions

Consider a quadratic functions

$$
f(x)=a x^{2}+b x+c, \quad x \in D
$$

1) (First-order) derivative is $f^{\prime}(x)=2 a x+b$
2) Second (order) derivative is $f^{\prime \prime}(x)=2 a$
i) $a<0$: $f(x)$ is concave (the graph of parabola looks like a cap)
ii) $a>0$: $f(x)$ is convex (the graph of parabola looks like a cup or U shape)

Optimisation: Regular cases
A function $f(x)$ for $x \in(a, b)$ with derivative $f^{\prime}(x)$.
If we know there is a maximum/minimum point

1) Solve $f^{\prime}(x)=0$ to find all stationary points in (a, b)
2) Compare f values at stationary points take the one with largest/smallest value.

If we don't know if there is a maximum/minimum point, but find $f(x)$ is convex/ concave
i) Concave: a stationary point is a maximum point
ii) Convex: a stationary point is a minimum point

Optimisation: Irregular cases*
A continuous function $f(x)$ for $x \in(a, b)$ with derivative $f^{\prime}(x)$.
■ $f(x)$ is not convex or concave

- Don't know if there is a max/min point
- Still compare f values at stationary points
- May use the sign of $f^{\prime}(x)$ to determine how the function increases and decreases in different intervals to determine whether a stationary point is a max/min point, or neither.

Optimisation in a closed interval
Consider a function $f(x)$ on $[a, b]$. The optimal value of $f(x)$, if it exists, can only be achieved at

- the end-point(s) a or/and b
- or/and in the interior (a, b)

A two-step procedure
If we know there is a maximum/minimum point:

- determine the stationary points in (a, b)
- evaluate the $f(\cdot)$ values at stationary points
- compare with the end-point values $f(a)$ and $f(b)$

Example

Determine the maximum value of the function

$$
f(x)=x^{2}-x, \quad x \in[0,20]
$$

Assume there is a maximum value (that is, can be achieved)

1) Solve $f^{\prime}(x)=0$, in other words,

$$
2 x-1=0 \text { to get } x=1 / 2=0.5 \text { (insidethe domain) }
$$

2) $f(1 / 2)=(1 / 2)^{2}-1 / 2=-1 / 4$
3) $f(0)=0$ and $f(20)=20^{2}-20=380$.

Maximum value is 380 .

Example

Determine the maximal value of the function

$$
f(x)=x^{2}+x, \quad x \in[0,20]
$$

Assume there is a maximum value (that is, can be achieved)

1) Solve $f^{\prime}(x)=0$, in other words,

$$
2 x+1=0 \text { to get } x=-0.5 \text { (outside the domain) }
$$

2) No stationary point, so no optimal value in $(0,20)$
3) $f(0)=0$ and $f(20)=20^{2}+20=420$.

Maximum value is 420 .

Existence of an optimal value

Extreme value theorem
If $f(x)$ is continuous in $[a, b]$, then $f(x)$ has a minimum point x_{1} and a maximum point x_{2} both in $[a, b]$ so that

$$
f\left(x_{1}\right) \leq f(x) \leq f\left(x_{2}\right), \quad \text { for all } x \in[a, b] .
$$

What is a continuous function?

Continuous function

- $f(x)$ is continuous if 'you could draw its graph without lifting your pen from the paper'

If $f^{\prime}(x)$ is well defined on $[a, b]$, then $f(x)$ is continuous
■ Polynomial, exponential, logarithm functions are continuous (when defined properly), and so are their sums, differences, products and divisions.
■ Almost all functions considered in this unit are continuous.

Approximations with Derivatives

Linear approximation

The linear approximation to $f(x)$ at $x=a$ is

$$
f(x) \approx L_{a}(x)=f^{\prime}(a)(x-a)+f(a), \quad x \approx a
$$

Here $L_{a}(x)$ is the tangent line at the point $(a, f(a))$.

Use linear approximation

If we treat $x+\Delta \approx x$, we may approximate

$$
\begin{aligned}
f(x+\Delta) \approx L_{x}(x+\Delta) & =f^{\prime}(x)(x+\Delta-x)+f(x) \\
& =f^{\prime}(x) \Delta+f(x)
\end{aligned}
$$

Subtract $f(x)$ on both sides,

$$
f(x+\Delta)-f(x) \approx f^{\prime}(x) \Delta
$$

If we divide both side of the equation by Δ, then

$$
\frac{f(x+\Delta)-f(x)}{\Delta} \approx f^{\prime}(x)
$$

which is the definition of derivative.

Total revenue example

The total revenue of the company is

$$
f(P)=100 P-5 P^{2}
$$

Allow $\Delta=1$, then

$$
\begin{aligned}
f(P+1)-f(P) & \approx f^{\prime}(P) \\
& =100-10 P .
\end{aligned}
$$

For example, when $P=5$, we have $f^{\prime}(5)=50$

- When P increases by 1 thousand dollars from 5 thousand dollars, the total revenue will increase approximately by 50 million dollars.
- The actual increment is $f(6)-f(5)=45$

Last week's example: Percentage change

Recall our revenue $f(P)=100 P-5 P^{2}, P \in(0,20)$.
■ $P=8$: increase by 1% from 8 to 8.08

Question

What is percentage change in f approximately?
■ Change in $f(P)$:

$$
f(8.08)-f(8) \approx f^{\prime}(8) \cdot(8.08-8)=20 \cdot 0.08=1.6
$$

■ Percentage change in $f(P)$ is

$$
\frac{f(8.08)-f(8)}{f(8)} \times 100 \% \approx \frac{1.6}{480} \times 100 \% \approx 0.333 \%
$$

■ The exact percentage change is 0.327%

Quadratic approximation

The quadratic approximation to $f(x)$ at $x=a$ is

$$
f(x) \approx Q_{a}(x)=\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+f^{\prime}(a)(x-a)+f(a)
$$

for $x \approx a$.
The ' \approx ' sign can be replaced by ' $=$ ' sign if $f(x)$ is a quadratic function itself.

Use quadratic approximations

If we treat $x+\Delta \approx x$, we can approximate

$$
\begin{aligned}
f(x+\Delta) \approx & Q_{x}(x+\Delta) \\
= & \frac{1}{2} f^{\prime \prime}(x)(x+\Delta-x)^{2}+f^{\prime}(x)(x+\Delta-x) \\
& +f(x)
\end{aligned}
$$

Subtract $f(x)$ from both sides:

$$
f(x+\Delta)-f(x) \approx \frac{1}{2} f^{\prime \prime}(x) \Delta^{2}+f^{\prime}(x) \Delta
$$

Example

Let $f(x)=e^{x}, x \in(0,10)$. Approximate $f(5)-f(3)$ by
■ linear approximation
■ quadratic approximation
at $x=3$.
We know $f^{\prime}(x)=e^{x}$ and therefore $f^{\prime \prime}(x)=e^{x}$.
■ $f(3+2)-f(3) \approx f^{\prime}(3) \times 2=e^{3} \times 2 \approx 40.17$
$\square f(3+2)-f(3) \approx \frac{1}{2} f^{\prime \prime}(3) \cdot 2^{2}+f^{\prime}(3) \cdot 2=\frac{1}{2} \cdot e^{3} \cdot 4+e^{3} \cdot 2=$ $4 \cdot e^{3} \approx 80.34$
■ True increment: $f(5)-f(3)=128.33$

