ETF2700/ETF5970 Mathematics for Business

Lecture 5

Monash Business School, Monash University, Australia

Outline

Last week:

- Non-linear functions
- Differentiation

This week:

- Increasing/decreasing and convex/concave functions
- Single-variable optimization
- Linear and quadratic approximations

Elasticity

Last week example: A monopoly compay

Suppose that your company has a monopoly advantage on the market.

- You can determine the market price (in k) $P \in (0, 20)$
- The market demand (in thousands) is Q = 100 5PThe total revenue function is

$$f(P) = P \cdot Q(P) = 100P - 5P^2, \quad P \in (0, 20),$$

and its derivative is f'(P) = 100 - 10P

How can we derive f'(P)?

- 1) Calculate $\frac{f(P+\Delta)-f(P)}{\Delta} = 100 10P + 5\Delta$
- 2) Plug in $\Delta = 0$ to get f'(P) = 100 10P

Power functions and arithmetic rules

- 1) Write $f(P) = 100f_1(P) 5f_2(P)$ with $f_1(P) = P \& f_2(P) = P^2$
- 2) $f'(P) = 100 \cdot f'_1(P) 5 \cdot f'_2(P) = 100 \cdot 1 5 \cdot 2P_{P} = 100 \cdot 2P_{P} = 100 \cdot 1 5 \cdot 2P_{P} = 100 \cdot 2$

The derivative (function) is defined as the slope (function) of the tangent line at *P*

When *P* changes, the tangent line will change, and so will the slope of the tangent line.

The tangent line: A linear function

1) The tangent line for f(P) at point P = 5

$$L(p)=m\cdot p+c,$$

where *m* is the slope of the tangent line, is actually f'(p) computed at p = 5. Thus, the slope of the tagent line is

$$m = f'(5) = 100 - 10 \cdot 5 = 50.$$

- 2) What is the value of *c*? Note that f(5) = 375. So the point (5, 375) is on the tangent line.
- 3) Therefore, we have $375 = 50 \cdot 5 + c$, which leads to c = 125. So, the tangent line at P = 5 is

$$L(p) = 50p + 125.$$

イロト イポト イモト イモト 一日

Tangent line of a function: General

- Consider a general function f(x) with derivative f'(x)
- The tangent line for f(x) at the point (a, f(a)) is

$$L_a(x) = f'(a) \cdot x + c$$

where $c = f(a) - f'(a) \cdot a$ due to the fact that the point (a, f(a)) is located on the tangent line.

You may also write

$$L_a(x) = f'(a)(x-a) + f(a)$$

An increasing or decreasing function If $f'(x) \ge 0$ (or $f'(x) \le 0$) for all $x \in (a, b)$, then

f(x) is increasing (decreasing) in (a, b),

that is, for all $x_1, x_2 \in (a, b)$

 $x_1 < x_2 \quad \rightarrow \quad f(x_1) \leq f(x_2) \quad (\operatorname{or} f(x_1) \geq f(x_2))$

Strictly increasing or decreasing If f'(x) > 0 (or f'(x) < 0) for all $x \in (a, b)$, then

f(x) is **strictly** increasing (decreasing) in (a, b),

that is, for all $x_1, x_2 \in (a, b)$

 $x_1 < x_2 \quad \Leftrightarrow \quad f(x_1) < f(x_2) \quad (\operatorname{or} f(x_1) > f(x_2))$

Example of a monopoly company The derivative of the total revenue function

$$f'(P) = 100 - 10P$$

$$\begin{array}{l} f'(P)=0 \text{ when } P=10 \\ f'(P)>0 \text{ when } P\in (0,10) \\ & \text{ therefore, } f(P) \text{ is strictly increasing in } (0,10) \\ f'(P)<0 \text{ when } P\in (10,20) \\ & \text{ therefore, } f(P) \text{ is strictly decreasing in } (10,20) \end{array}$$

(ロ) (部) (E) (E) (E)

Maximum total revenue at P = 10?

Stationary point

A stationary point *x* is a point, at which f'(x) = 0.

In our example of total revenue:

- f'(10) = 0, thus P = 10 is a stationary point, and is also the maximum point.
- Sometimes we cannot find a stationary point:

for example, $f(x) = e^x$, $f'(x) = e^x > 0$

Stationary point: Quadratic functions

• Consider a quadratic function ($a \neq 0$)

$$f(x) = ax^2 + bx + c, \quad x \in D$$

- We know its derivative is f'(x) = 2ax + b
- Solve 2ax + b = 0 to get $x = -\frac{b}{2a}$.
- If $-\frac{b}{2a} \in D$, it is the stationary point; Otherwise there is no stationary point.

First-order condition

A function f(x) on (a, b) with derivative f'(x).

- Any maximum/minimum point $c \in (a, b)$ satisfies f'(c) = 0
- Maximum/Minimum point must be a stationary point
- But in general, a stationary point may not be a maximum/minimum point

How to find a maximum or minimum point

If there is a maximum point in (a, b):

- Solve f'(x) = 0 to find all stationary points in (a, b).
- If only one point is found, then it is the max/min point.
- If multiple points are found, then we need to compare the $f(\cdot)$ values and take the one(s) with largest $f(\cdot)$ value.
- A similar procedure applies to locating the minimum point.

Example

Determine the minimal value of the function

$$f(x) = x^3 - 12x, \quad x \in (0,5).$$

We may assume that the minimal point exists.

- 1) Determine the derivative $f'(x) = 3x^2 12$
- 2) Solve $3x^2 12 = 0$ by the 'abc' method to get

 $x_1 = 2$, $x_2 = -2$ (not in the domain)

3) The minimal value is

$$f(2) = 2^3 - 12 \times 2 = -16$$

When will stationarity imply optimality?

- The stationary points in our examples so far are all maximum/minimum points.
- This is NOT true in general. For example, $f(x) = x^3$, $x \in (-\infty, \infty)$ has only stationarity point x = 0, but it is not a maximum or a minimum point.
- However, stationarity implies optimality for concave and convex functions.

What is a concave/convex function? Example of TR

Suppose now your company monopolies two identical markets and you can determine the market prices $P_1 \in (0, 20)$ and $P_2 \in (0, 20)$ in both markets.

Market demand in the markets:

 $Q_1 = 100 - 5P_1, Q_2 = 100 - 5P_2$

Total Revenue in both markets: $TR_1(P_1) = f(P_1), \quad TR_2(P_2) = f(P_2), \text{ where}$ $f(P) = 100P - 5P^2.$ To maximize TR, shall we set $P_1 = P_2$?

Example

Compare the following pricing strategies:

1)
$$P_1 = 6, P_2 = 10$$

2)
$$P_1 = P_2 = (6+10)/2 = 8$$

Which gives a larger total revenue from both markets?

1)
$$TR = f(6) + f(10) = 420 + 500 = 920$$

2)
$$TR = 2 \cdot f(8) = 2 \cdot 480 = 960 > 920$$

The second pricing strategy gives a larger total revenue.

Averaged price is better

In fact, we can show

$$2 \cdot f\left(\frac{P_1 + P_2}{2}\right) \ge f(P_1) + f(P_2),$$

for all $P_1, P_2 \in (0, 20)$.

In other words, using an averaged price in the two markets always gives higher total revenue.

Yes, we should set $P_1 = P_2$.

Concave function: Middle point is better A continuous function f(x), $x \in D$ is concave if

$$f\left(\frac{x_1+x_2}{2}\right) \ge \frac{1}{2}\left(f(x_1)+f(x_2)\right)$$

for **all** $x_1, x_2 \in D$.

■ Example: $f(P) = 100P - 5P^2, P \in (0, 20)$ is concave

Convex function: Middle point is worse A continuous function f(x), $x \in D$ is convex if

$$f\left(\frac{x_1+x_2}{2}\right) \le \frac{1}{2}(f(x_1)+f(x_2))$$

for **all** $x_1, x_2 \in D$.

• Example: $f(x) = x^3 - 12x, x \in (0, 5)$ is convex.

イロト イポト イモト イモト 一日

Stationarity, and concavity/convexity

- A stationary point for a concave/convex function *f*(*x*) on (*a*, *b*) is a maximum/minimum point for *f*(*x*) on (*a*, *b*).
- In other words, for f(x) defined on (a, b)

Stationarity & Concavity/Convexity = Maximum/Minimum

How can we check whether a function is concave/convex or not?

Derivative of a derivative function

Consider a function f defined on (a, b)

• $f''(x) \le 0$ for all $x \in (a, b)$: f is concave

• $f''(x) \ge 0$ for all $x \in (a, b)$: f is convex

Here, f''(x) is the derivative of f'(x), also known as second order derivative of f(x).

- f''(x) is called the second derivative of f.
- f'(x) may be called the first derivative of $f_{x,y}$.

Example: Second (order) derivative Let's consider our total revenue function

$$f(P) = 100P - 5P^2, P \in (0, 20)$$

1) (First) derivative:

$$f'(P) = 100 - 10P, \quad P \in (0, 20)$$

2) Second (order) derivative:

$$f''(P) = 0 - 10 \cdot 1 = -10 < 0, \quad P \in (0, 20)$$

Therefore, f(P) is concave.

(ロ) (部) (注) (注) (注)

Another example: Second derivative Recall our another example

$$f(x) = x^3 - 12x, \quad x \in (0,5)$$

1) (First) derivative:

$$f'(x) = 3x^2 - 12, \quad x \in (0,5)$$

2) Second (order) derivative:

$$f''(x) = 6x > 0, \quad x \in (0,5)$$

Hence, f(x) is convex.

Second derivative: Quadratic functions Consider a quadratic functions

$$f(x) = ax^2 + bx + c, \quad x \in D$$

- 1) (First-order) derivative is f'(x) = 2ax + b
- 2) Second (order) derivative is f''(x) = 2a

- i) *a* < 0: *f*(*x*) is concave (the graph of parabola looks like a cap)
- ii) a > 0: f(x) is convex (the graph of parabola looks like a cup or U shape)

Optimisation: Regular cases

A function f(x) for $x \in (a, b)$ with derivative f'(x).

If we know there is a maximum/minimum point

- 1) Solve f'(x) = 0 to find all stationary points in (a, b)
- 2) Compare *f* values at stationary points take the one with largest/smallest value.

If we don't know if there is a maximum/minimum point, but find f(x) is convex/concave

- i) Concave: a stationary point is a maximum point
- ii) Convex: a stationary point is a minimum point

Optimisation: Irregular cases*

A continuous function f(x) for $x \in (a, b)$ with derivative f'(x).

- f(x) is not convex or concave
- Don't know if there is a max/min point
- Still compare f values at stationary points
- May use the sign of f'(x) to determine how the function increases and decreases in different intervals to determine whether a stationary point is a max/min point, or neither.

Optimisation in a closed interval

Consider a function f(x) on [a, b]. The optimal value of f(x), if it exists, can only be achieved at

- the end-point(s) a or/and b
- or/and in the interior (a, b)

A two-step procedure

If we know there is a maximum/minimum point:

- determine the stationary points in (a, b)
- evaluate the $f(\cdot)$ values at stationary points
- compare with the end-point values f(a) and f(b)

Example

Determine the maximum value of the function

$$f(x) = x^2 - x, \quad x \in [0, 20]$$

Assume there is a maximum value (that is, can be achieved)

Maximum value is 380.

Example

Determine the maximal value of the function

$$f(x) = x^2 + x, \quad x \in [0, 20]$$

Assume there is a maximum value (that is, can be achieved)

Maximum value is 420.

Existence of an optimal value

Extreme value theorem

If f(x) is continuous in [a, b], then f(x) has a minimum point x_1 and a maximum point x_2 both in [a, b] so that

$$f(x_1) \leq f(x) \leq f(x_2)$$
, for all $x \in [a, b]$.

What is a **continuous** function?

Continuous function

■ *f*(*x*) is continuous if 'you could draw its graph without lifting your pen from the paper'

If f'(x) is well defined on [a, b], then f(x) is continuous

- Polynomial, exponential, logarithm functions are continuous (when defined properly), and so are their sums, differences, products and divisions.
- Almost all functions considered in this unit are continuous.

Approximations with Derivatives

Linear approximation

The *linear approximation* to f(x) at x = a is

$$f(x) \approx L_a(x) = f'(a)(x-a) + f(a), \quad x \approx a.$$

Here $L_a(x)$ is the tangent line at the point (a, f(a)).

Image: A math a math

Use linear approximation

If we treat $x + \Delta \approx x$, we may approximate

$$\begin{split} f(x+\Delta) &\approx L_x(x+\Delta) = f'(x)(x+\Delta-x) + f(x) \\ &= f'(x)\Delta + f(x), \end{split}$$

Subtract f(x) on both sides,

$$f(x+\Delta) - f(x) \approx f'(x)\Delta$$

If we divide both side of the equation by Δ , then

$$\frac{f(x+\Delta)-f(x)}{\Delta}\approx f'(x),$$

which is the definition of derivative.

イロト イポト イモト イモト 三日

Total revenue example

The total revenue of the company is

$$f(P) = 100P - 5P^2$$

Allow $\Delta = 1$, then

$$f(P+1) - f(P) \approx f'(P)$$

= 100 - 10P.

For example, when P = 5, we have f'(5) = 50

- When P increases by 1 thousand dollars from 5 thousand dollars, the total revenue will increase approximately by 50 million dollars.
- The actual increment is f(6) f(5) = 45

Last week's example: Percentage change

Recall our revenue $f(P) = 100P - 5P^2$, $P \in (0, 20)$.

• P = 8: increase by 1% from 8 to 8.08

Question

What is percentage change in f approximately?

• Change in f(P):

 $f(8.08) - f(8) \approx f'(8) \cdot (8.08 - 8) = 20 \cdot 0.08 = 1.6$

Percentage change in f(P) is

$$rac{f(8.08)-f(8)}{f(8)} imes 100\% pprox rac{1.6}{480} imes 100\% pprox 0.333\%$$

■ The exact percentage change is 0.327%

Quadratic approximation

The *quadratic approximation* to f(x) at x = a is

$$f(x) \approx Q_a(x) = \frac{1}{2}f''(a)(x-a)^2 + f'(a)(x-a) + f(a)$$

for $x \approx a$.

The ' \approx ' sign can be replaced by '=' sign if f(x) is a quadratic function itself.

Use quadratic approximations

If we treat $x + \Delta \approx x$, we can approximate

$$\begin{split} f(x+\Delta) \approx &Q_x(x+\Delta) \\ = &\frac{1}{2}f''(x)(x+\Delta-x)^2 + f'(x)(x+\Delta-x) \\ &+ f(x), \end{split}$$

Subtract f(x) from both sides:

$$f(x + \Delta) - f(x) \approx \frac{1}{2}f''(x)\Delta^2 + f'(x)\Delta$$

Example

Let $f(x) = e^x, x \in (0, 10)$. Approximate f(5) - f(3) by

linear approximation

quadratic approximation

at *x* = 3.

We know $f'(x) = e^x$ and therefore $f''(x) = e^x$.

- $f(3+2) f(3) \approx f'(3) \times 2 = e^3 \times 2 \approx 40.17$
- $f(3+2) f(3) \approx \frac{1}{2} f''(3) \cdot 2^2 + f'(3) \cdot 2 = \frac{1}{2} \cdot e^3 \cdot 4 + e^3 \cdot 2 = 4 \cdot e^3 \approx 80.34$
- True increment: f(5) f(3) = 128.33