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Outline

Last week:

Matrix

Matrix operation, and inverse matrix

Eigenvalues and eigenvectors

Linear programming

This week:

Non-linear functions

Differentiation
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Relation between variables
x: input real-value variable

y: output real-value variable

Relationship between y and x is expressed as

y = f (x), x ∈ D

where D is a set of all possible input values, and f (x) is the
real-value output assigned to each real-value input x ∈ D

Linear function
For some known real values m and c

f (x) = mx + c, x ∈ D

where
m = f (x + 1)− f (x) is called slope (such as ‘variable cost’)
c = f (0) is called intercept (such as ‘fixed cost’)

Is there other type of functions? Yes
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An example: Monopoly company

Suppose you own the only company in the market, and
you can determine the market price P ∈ (0, 20)

The market demand (your company’s sales) is given by

Q = 100 − 5P

What is your total revenue given the market price P?

Revenue Function
Market price P: an input variable

Total revenue TR: an output variable

The total revenue as a function of price is

TR = f (P), P ∈ (0, 20)

which we assume to be a quadratic (non-linear) function:

f (P) = PQ = P(100 − 5P) = 100P − 5P2
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A quadratic function in general

A quadratic function in x is of the form

f (x) = ax2 + bx + c, for x ∈ D, with a ̸= 0

In our example: A quadratic function in P is given by

f (P) = 100P − 5P2, P ∈ (0, 20)

with a = −5, b = 100 and c = 0 (to use the abc formula)

“Partition” of functions
This quadratic function can be written as weighted sum
of basic functions

f (P) = 100 · f1(P) + (−5) · f2(P), P ∈ (0, 20)

where f1(P) = P and f2(P) = P2, which are called the
power functions
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Power functions as “building” blocks
A power function at a known order k is of the form

fk(x) = xk , x ∈ D.

Example: f2(x) = x2, f1(x) = x1, f0(x) = 1 (even if x = 0)
and f−1(x) = x−1.

“Partition” of the quadratic functions

f (x) = ax2 + bx + c = a · f2(x) + b · f1(x) + c · f0(x)

Weighted sum of power functions

A polynomial function of the order k is of the form:

f (x) = akxk + ak−1xk−1 + . . .+ a0,

which is a weighted sum of power functions.

It becomes a linear function (for k = 1), or a quadratic
function (for k = 2) or a cubic function (for k = 3) 6 / 34



Example
f (P) = 100P − 5P2 is a polynomial (k=2):

a2 = −5, a1 = 100, a0 = 0.

Slope as a relative change of f (x)
The slope of linear f (x) = mx + c is the change of f (x) for a
unit change in x. In general, we have

m =
f (x +∆)− f (x)

∆
, ∆ ̸= 0
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Can we calculate slope of a quadratic function?

In the linear equation f (x) = mx + c, slope is defined as
f (x + 1)− f (x), or in general, slope of the linear equation
is defined as

m =
f (x +∆)− f (x)

∆

for any value of ∆.

For quadratic functions such as f (P) = 100P − 5P2, with
P ∈ (0, 20), we can also calculate

m =
f (P +∆)− f (P)

∆

However, for different magnitude of ∆ and/or at different
values of P, the values of m are different.

P = 10 and ∆ = 1: m = −5

P = 10 and ∆ = 3: m = −15

P = 5 and ∆ = 1: m = 45 P = 5 and ∆ = −1: m = 55
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Slope of quadratic functions

Shall we define different slopes at different values of P?

Shall we define different slopes at different values of ∆?

Slopes at different points: Derivative function
For any P ∈ (0, 20) and ∆ ≈ 0, we have

m =
f (P +∆)− f (P)

∆

=

{
100(P +∆)− 5(P +∆)2

}
−
(

100P − 5P2
)

∆

=
100∆− 10P∆− 5∆2

∆
=100 − 10P − 5∆ ≈ 100 − 10P

The derivative of f (P) at point P is f ′(P) = 100 − 10P.

The derivative is a lower order polynomial in P
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Derivative is the slope of the tangent line of f (P)
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Derivative: First principle
The derivative of function f at point x is

f ′(x) = lim
∆→0

f (x +∆)− f (x)
∆

It is obvious that f ′(x) is a function in x.

How to compute f ′(x)

1) Rewrite f (x+∆)−f (x)
∆ and remove ∆ in denominator;

2) Plug in ∆ = 0 to obtain the derivative function.

Derivative of f (x) = mx + c according to the 1st principle

1) Rewrite

f (x +∆)− f (x)
∆

=
(mx + m∆+ c)− (mx + c)

∆
=

m∆

∆
= m

2) Plug in ∆ = 0 to get the derivative

f ′(x) = m
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Derivative of the power function f2(x) = x2

1) For any x, we rewrite

f2(x +∆)− f2(x)
∆

=
(x +∆)2 − x2

∆
=

2∆x +∆2

∆
= 2x +∆

2) Plug in ∆ = 0 to get the derivative: f ′(x) = 2x

Derivative of the power function fk(x)) = xk

f ′
k(x) =

{
k · xk−1 k ̸= 0

0 k = 0

Examples:

derivative of f3(x) = x3 is f ′
3(x) = 3x2

derivative of f4(x) = x4 is f ′
4(x) = 4x3
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Sum of “building blocks” of derivatives
Addition Rule
If f (x) = g(x)+h(x), then f ′(x) = g ′(x)+h′(x).

Example: f (x) = x + x2, for x ∈ (−∞,∞)

We can write f (x) = f1(x)+f2(x), where f1(x) = x and
f2(x) = x2. Therefore, we have

f ′(x) = f ′
1(x)+f ′

2(x) = 1+2x

Subtraction Rule
If f (x) = g(x)−h(x), then f ′(x) = g ′(x)−h′(x).

Example: f (x) = x−x2, for x ∈ (−∞,∞)

We can write f (x) = f1(x)−f2(x), where f1(x) = x and
f2(x) = x2. Therefore,

f ′(x) = f ′
1(x)−f ′

2(x) = 1−2x
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Multiplication by a constant
If f (x) = c·g(x) for some c, then f ′(x) = c·g ′(x).

Example: f (x) = 2x2, x ∈ (−∞,∞)

We can write f (x) = 2·g(x), where g(x) = x2. Therefore

f ′(x) = 2·g ′(x) = 2·(2x) = 4x

Our example: total revenue function

f (P) = 100P − 5P2, for P ∈ (0, 20),

and its derivative f ′(P) = 100 − 10P for P ∈ (0, 20).
We could write f (P) = 100·f1(P)− 5·f2(P) with

f1(P) = P, f2(P) = P2.

Therefore,

f ′(P) =100·f ′
1(P)− 5·f ′

2(P)

=100·1 − 5·2P = 100 − 10P
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Derivative of Quadratic Functions

The derivative of a quadratic function

f (x) = ax2 + bx + c, x ∈ D

is
f ′(x) = 2ax + b, x ∈ D.

Show this in either way:

1) by definition

2) by the power functions and operation rules
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Example: A simple saving problem
Suppose you have $1000 savings at a bank that incurs interest
at 2% annual rate at the end of every year.

Savings after 1 year: $1000 × (1 + 2%) = $1020
Savings after 2 years:
$1020 × (1 + 2%) = $1000 × (1 + 2%)2 = $1040.40
Savings after 3 years:
$1040.4 × (1 + 2%) = $1000 × (1 + 2%)3 ≈ $1061.21
Savings after x years: $1000 × (1 + 2%)x

Exponential Functions

Number of Years x is the ‘input’ variable

Savings S (in thousand dollars) is the ‘output’ variable

Amount of savings S (in thousand dollars) is a function of x:

S = f (x), x ∈ {1, 2, . . .}

with f (x) = (1 + 2%)x , or f (x) = 1.02x , which is an
exponential function.
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Exponential function
An exponential function is of the form

f (x) = ax, x ∈ D

with some known a > 0.

In the above example: an exponential function in x

f (x) = 1.02x, x ∈ {1, 2, . . .}

with a = 1.02.

Quarterly compounded interest
Suppose the savings of $1000 still receives 2% interest
annually, but by the end of each quarter you will receive
2%× 1

4 of the past quarter’s interest.
Your savings after

1 quarter: $1000 × (1 + 2%
4 )1 = $1005

2 quarters: $1000 × (1 + 2%
4 )2 ≈ $1010.02
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Your savings after

1 year (4 quarters): $1000 × (1 + 2%
4 )4 ≈ $1020.15

x years (4x quarters): $1000 × (1 + 2%
4 )4x

Monthly compounded interest
Suppose the savings of $1000 still receives 2% interest
annually, but by the end of each month you will receive
2%× 1

12 of the past month’s interest.
Your savings after

after 1 month: $1000 × (1 + 2%
12 )

1 ≈ $1001.67

after 2 months: $1000 × (1 + 2%
12 )

2 ≈ $1003.34

after 1 year: $1000 × (1 + 2%
12 )

12 ≈ $1020.18

x years (4x quarters): $1000 × (1 + 2%
12 )

12x
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Suppose the savings of $1000 still receives 2% interest
annually, but the cycle of interest payment m times a year. By
the end of each cycle, you will receive 2% · 1

m interest of the
last cycle.
You savings after

1 cycle: $1000 × (1 + 2%
m )1

2 cycles: $1000 × (1 + 2%
m )2

after 1 year (m cycles): $1000 × (1 + 2%
m )m

after x years (mx cycles): $1000 × (1 + 2%
m )mx

What is your savings after x years if m is very large?

It can be shown that

lim
m→∞

(
1 +

1
m

)m

= e, known as Euler’s constant.

As m → ∞, the effective interest rate over x year is

r =

(
1 +

2%
m

)mx

=

((
1 +

0.02
m

)(m/0.02)
)0.02x

−→ e0.02x

19 / 34



Savings after x years

Euler’s constant e ≈ 2.7182818

Savings after x years is S = $1000 × e0.02x

Savings after 1 year is $1000 × e0.02 ≈ 1020.20

Natural exponential function
f (x) = ex , for x ∈ D.

The solution of ex = a is denoted as

ln(a), the natural logarithm of a.

which is interpreted as loge(a), with some textbooks writing it
as log(a).

Natural logarithm function
f (x) = ln(x), or sometimes f (x) = log(x), for x ∈ D.
Note that here D cannot contain negative values.
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Derivatives of natural exponential and log functions
The 1st principle of taking the derivative of f (x) shows that

f ′(x) = lim
∆→0

f (x +∆)− f (x)
∆

We are able to find out the derivatives of natural exponential
and log functions:

The derivative of f (x) = ex is f ′(x) = ex

The derivative of f (x) = ln(x) is f ′(x) = 1
x

Example
Suppose you have a fixed deposit $1000 savings at bank with
annual interest rate 2%. How many years will you deposit it so
as to accumulate savings of more than $1060?
The solution is to solve 1.02p = 1.06. According to properties
of the exponential function, we have
p = log1.02(1.06) = ln(1.06)/ ln(1.02) ≈ 2.94
Thus, you need to wait at least three years.
Note that ap = x is equivalent to: p = loga(x). 21 / 34



Operation Rules

Taking the quadratic functions as examples, we learned the
derivative rules:

Addition rule

Subtraction rule

Product rule with a constant

These rules are actually applicable to all functions including
exponential and logarithm functions.

Example
If f (x) = ex + ln(x), then f ′(x) = ex + 1/x
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Multiplication by a function

Product Rule
If f (x) = c(x)·g(x), then

f ′(x) = c′(x)·g(x) + c(x)·g ′(x)

Example: Let f (x) = xex for x ∈ (−∞,∞).

c(x) = x, and g(x) = ex .

Hence,

f ′(x) = 1 · ex + x · ex = (1 + x)ex.
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Product rule: One more example
Define f1(x) = x, f2(x) = x2, f3(x) = x3, for x ∈ (−∞,∞).

Use the facts that f ′
1(x) = 1, f ′

2(x) = 2x and the product rule to
show that

f ′
3(x) = 3x2.

Solution: Re-express f3(x) as f3(x) = x · x2 = f1(x) · f2(x).
According to the product rule, we have

f ′
3(x) =f ′

1(x) · f2(x) + f1(x) · f ′
2(x)

=1 · x2 + x · 2x = x2 + 2x2 = 3x2
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Dividing by a function

Quotient Rule
If f (x) = g(x)

h(x) , then

f ′(x) =
g ′(x)h(x)− g(x)h′(x)

(h(x))2

Example: let f (x) = ln(x)
x for x > 0.

g(x) = ln(x), and h(x) = x.

Hence,

f ′(x) =
1
x · x − ln x · 1

(x)2 =
1 − ln(x)

x2
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Function of Functions

Example
Consider h(x) = x2, g(z) = ez , what is g(h(x))?

For example, take x = 2.

1. Plug in x = 2 to obtain h(2) = 22 = 4.

2. Plug in z = h(2) to get

g(h(2)) = g(4) = e4

g(h(x)) = g(x2) = ex2
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Chain Rule

If f (x) = g(h(x)), then

f ′(x) = g ′(h(x)) · h′(x)

Example: f (x) = ex2
, that is g(z) = ez and h(x) = x2

1. Determine g ′(z) = ez , so plug in z = h(x) to get

g ′(h(x)) = eh(x) = ex2

2. Determine h′(x) = 2x, so

f ′(x) = ex2 · (2x) = 2xex2
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Derivative of exponential functions

Define g(x) = ex .

Use the fact that g ′(x) = ex and the chain rule to determine
the derivative of f (x) = ax .

Write f (x) = ax =
(

eln(a)
)x

= eln(a)·x = g(h(x)) with

h(x) = ln(a) · x,

to get

f ′(x) = g ′(h(x)) · h′(x) =g ′(ln(a) · x) · ln(a)
=eln(a)·x ln(a) = ax ln(a).
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Derivative in Business
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Use derivative for approximations
As f ′(x) is defined as

lim
∆→0

[f (x +∆)− f (x)]/∆

We can approximate the change in f (x) by

f (x + 1)− f (x) ≈ f ′(x)

The change in f (x) is approximately f ′(x) if x increases by
∆ = 1.

Example of Monopoly: f (P) = 100P − 5P2, for P ∈ (0, 20)
Recall that f ′(P) = 100 − 10P, therefore, f ′(8) = 20.

f (9)− f (8) ≈ 20

However, we know that f (9)− f (8) = 15 precisely.

30 / 34



Percentage change
Recall that in our revenue f (P) = 100P − 5P2, for P ∈ (0, 20).

Price P = 8 increases by 1%: from 8 to 8.08

What is the percentage change in f (P) approximately?

Change in f (P):

f (8.08)− f (8) ≈ f ′(8) · (8.08 − 8) = 20 · 0.08 = 1.6

Percentage change in f (P) is

f (8.08)− f (8)
f (8)

× 100% ≈ 1.6
480

× 100% ≈ 0.333%

Exact percentage change is 0.327%.
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Elasticity
If x is changed by 1%, the percentage change in f (x) is

f (x + 1% · x)− f (x)
f (x)

× 100%

≈ f ′(x) · (1% · x)
f (x)

× 100% =
f ′(x)x
f (x)

%

The elasticity of f (x) at point x is

Elxf (x) =
f ′(x)x
f (x)

Elasticity: Revenue Function
Recall our revenue f (P) = 100P − 5P2, P ∈ (0, 20).

ElP f (P) =
f ′(P)P

f (P)
=

(100 − 10P)P
100P − 5P2 =

100P − 10P2

100P − 5P2
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Elasticity: Revenue Function

P = 8: ElP f (P) = 1
3 ≈ 0.33

P = 10: ElP f (P) = 0

P = 14: ElP f (P) = −1.33

Elasticity of a power function
Let f (x) = x2, x ∈ (−∞,∞). We have

1) f ′(x) = 2x

2) Elxf (x) = f ′(x)x
f (x) = 2x·x

x2 = 2

The elasticity is a constant, which does not depend on x.

Elasticity of the natural exp function
Let f (x) = ex , x ∈ (−∞,∞). We have

1) f ′(x) = ex

2) Elxf (x) = f ′(x)x
f (x) = ex ·x

ex = x
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Summary

Non-linear functions: quadratic, polynomial,
exponential, natural logarithm

Derivative definition and operation rules
Sum, subtraction, multiplication, and quotient

Derivative of many basic functions:
power, quadratic, exponential and natural logarithm

Function of functions: chain rule

Elasticity
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