ETF2700/ETF5970 Mathematics for Business

Lecture 4
Monash Business School, Monash University, Australia

Outline

Last week:
■ Matrix

- Matrix operation, and inverse matrix
- Eigenvalues and eigenvectors

■ Linear programming
This week:
■ Non-linear functions

- Differentiation

Relation between variables

- x : input real-value variable
- y : output real-value variable
- Relationship between y and x is expressed as

$$
y=f(x), \quad x \in D
$$

where D is a set of all possible input values, and $f(x)$ is the real-value output assigned to each real-value input $x \in D$

Linear function

For some known real values m and c

$$
f(x)=m x+c, \quad x \in D
$$

where

- $m=f(x+1)-f(x)$ is called slope (such as 'variable cost')
- $c=f(0)$ is called intercept (such as 'fixed cost')

Is there other type of functions? Yes

An example: Monopoly company

- Suppose you own the only company in the market, and you can determine the market price $P \in(0,20)$
- The market demand (your company's sales) is given by

$$
Q=100-5 P
$$

- What is your total revenue given the market price P ?

Revenue Function

■ Market price P : an input variable
■ Total revenue $T R$: an output variable

- The total revenue as a function of price is

$$
T R=f(P), \quad P \in(0,20)
$$

which we assume to be a quadratic (non-linear) function:

$$
f(P)=P Q=P(100-5 P)=100 P \Rightarrow 5 P^{2}
$$

A quadratic function in general

- A quadratic function in x is of the form

$$
f(x)=a x^{2}+b x+c, \text { for } x \in D, \text { with } a \neq 0
$$

■ In our example: A quadratic function in P is given by

$$
f(P)=100 P-5 P^{2}, \quad P \in(0,20)
$$

with $a=-5, b=100$ and $c=0$ (to use the abc formula)
"Partition" of functions

- This quadratic function can be written as weighted sum of basic functions

$$
f(P)=100 \cdot f_{1}(P)+(-5) \cdot f_{2}(P), \quad P \in(0,20)
$$

where $f_{1}(P)=P$ and $f_{2}(P)=P^{2}$, which are called the power functions

Power functions as "building" blocks
A power function at a known order k is of the form

$$
f_{k}(x)=x^{k}, \quad x \in D .
$$

Example: $f_{2}(x)=x^{2}, f_{1}(x)=x^{1}, f_{0}(x)=1($ even if $x=0)$ and $f_{-1}(x)=x^{-1}$.
"Partition" of the quadratic functions

$$
f(x)=a x^{2}+b x+c=a \cdot f_{2}(x)+b \cdot f_{1}(x)+c \cdot f_{0}(x)
$$

Weighted sum of power functions

- A polynomial function of the order k is of the form:

$$
f(x)=a_{k} x^{k}+a_{k-1} x^{k-1}+\ldots+a_{0},
$$

which is a weighted sum of power functions.

- It becomes a linear function (for $k=1$), or a quadratic function (for $k=2$) or a cubic function (for $k=3$)

Example

$f(P)=100 P-5 P^{2}$ is a polynomial $(k=2)$:

$$
a_{2}=-5, \quad a_{1}=100, \quad a_{0}=0
$$

Slope as a relative change of $f(x)$
The slope of linear $f(x)=m x+c$ is the change of $f(x)$ for a unit change in x. In general, we have

$$
m=\frac{f(x+\Delta)-f(x)}{\Delta}, \quad \Delta \neq 0
$$

Can we calculate slope of a quadratic function?

\square In the linear equation $f(x)=m x+c$, slope is defined as $f(x+1)-f(x)$, or in general, slope of the linear equation is defined as

$$
m=\frac{f(x+\Delta)-f(x)}{\Delta}
$$

for any value of Δ.
■ For quadratic functions such as $f(P)=100 P-5 P^{2}$, with $P \in(0,20)$, we can also calculate

$$
m=\frac{f(P+\Delta)-f(P)}{\Delta}
$$

■ However, for different magnitude of Δ and/or at different values of P, the values of m are different.

- $P=10$ and $\Delta=1: m=-5$

■ $P=10$ and $\Delta=3: m=-15$
$\square P=5$ and $\Delta=1: m=45 \quad P=5$ and $\Delta=-1: m=55$

Slope of quadratic functions

- Shall we define different slopes at different values of P ?
- Shall we define different slopes at different values of Δ ?

Slopes at different points: Derivative function

For any $P \in(0,20)$ and $\Delta \approx 0$, we have

$$
\begin{aligned}
m & =\frac{f(P+\Delta)-f(P)}{\Delta} \\
& =\frac{\left\{100(P+\Delta)-5(P+\Delta)^{2}\right\}-\left(100 P-5 P^{2}\right)}{\Delta} \\
& =\frac{100 \Delta-10 P \Delta-5 \Delta^{2}}{\Delta} \\
& =100-10 P-5 \Delta \approx 100-10 P
\end{aligned}
$$

■ The derivative of $f(P)$ at point P is $f^{\prime}(P)=100-10 P$.
■ The derivative is a lower order polynomial in P

Derivative is the slope of the tangent line of $f(P)$

Derivative: First principle
The derivative of function f at point x is

$$
f^{\prime}(x)=\lim _{\Delta \rightarrow 0} \frac{f(x+\Delta)-f(x)}{\Delta}
$$

It is obvious that $f^{\prime}(x)$ is a function in x.
How to compute $f^{\prime}(x)$

1) Rewrite $\frac{f(x+\Delta)-f(x)}{\Delta}$ and remove Δ in denominator;
2) Plug in $\Delta=0$ to obtain the derivative function.

Derivative of $f(x)=m x+c$ according to the 1st principle

1) Rewrite

$$
\frac{f(x+\Delta)-f(x)}{\Delta}=\frac{(m x+m \Delta+c)-(m x+c)}{\Delta}=\frac{m \Delta}{\Delta}=m
$$

2) Plug in $\Delta=0$ to get the derivative

$$
f^{\prime}(x)=m
$$

Derivative of the power function $f_{2}(x)=x^{2}$

1) For any x, we rewrite

$$
\frac{f_{2}(x+\Delta)-f_{2}(x)}{\Delta}=\frac{(x+\Delta)^{2}-x^{2}}{\Delta}=\frac{2 \Delta x+\Delta^{2}}{\Delta}=2 x+\Delta
$$

2) Plug in $\Delta=0$ to get the derivative: $f^{\prime}(x)=2 x$

Derivative of the power function $\left.f_{k}(x)\right)=x^{k}$

$$
f_{k}^{\prime}(x)=\left\{\begin{array}{cc}
k \cdot x^{k-1} & k \neq 0 \\
0 & k=0
\end{array}\right.
$$

Examples:
■ derivative of $f_{3}(x)=x^{3}$ is $f_{3}^{\prime}(x)=3 x^{2}$
\square derivative of $f_{4}(x)=x^{4}$ is $f_{4}^{\prime}(x)=4 x^{3}$

Sum of "building blocks" of derivatives

Addition Rule
If $f(x)=g(x)+h(x)$, then $f^{\prime}(x)=g^{\prime}(x)+h^{\prime}(x)$.
Example: $f(x)=x+x^{2}$, for $x \in(-\infty, \infty)$
We can write $f(x)=f_{1}(x)+f_{2}(x)$, where $f_{1}(x)=x$ and $f_{2}(x)=x^{2}$. Therefore, we have

$$
f^{\prime}(x)=f_{1}^{\prime}(x)+f_{2}^{\prime}(x)=1+2 x
$$

Subtraction Rule
If $f(x)=g(x)-h(x)$, then $f^{\prime}(x)=g^{\prime}(x)-h^{\prime}(x)$.
Example: $f(x)=x-x^{2}$, for $x \in(-\infty, \infty)$
We can write $f(x)=f_{1}(x)-f_{2}(x)$, where $f_{1}(x)=x$ and $f_{2}(x)=x^{2}$. Therefore,

$$
f^{\prime}(x)=f_{1}^{\prime}(x)-f_{2}^{\prime}(x)=1-2 x
$$

Multiplication by a constant
If $f(x)=c \cdot g(x)$ for some c, then $f^{\prime}(x)=c \cdot g^{\prime}(x)$.
Example: $f(x)=2 x^{2}, x \in(-\infty, \infty)$
We can write $f(x)=2 \cdot g(x)$, where $g(x)=x^{2}$. Therefore

$$
f^{\prime}(x)=2 \cdot g^{\prime}(x)=2 \cdot(2 x)=4 x
$$

Our example: total revenue function

$$
f(P)=100 P-5 P^{2}, \quad \text { for } P \in(0,20),
$$

and its derivative $f^{\prime}(P)=100-10 P$ for $P \in(0,20)$.
We could write $f(P)=100 \cdot f_{1}(P)-5 \cdot f_{2}(P)$ with

$$
f_{1}(P)=P, \quad f_{2}(P)=P^{2} .
$$

Therefore,

$$
\begin{aligned}
f^{\prime}(P) & =100 \cdot f_{1}^{\prime}(P)-5 \cdot f_{2}^{\prime}(P) \\
& =100 \cdot 1-5 \cdot 2 P=100-10 P
\end{aligned}
$$

Derivative of Quadratic Functions

The derivative of a quadratic function

$$
f(x)=a x^{2}+b x+c, \quad x \in D
$$

is

$$
f^{\prime}(x)=2 a x+b, \quad x \in D .
$$

Show this in either way:

1) by definition
2) by the power functions and operation rules

Example: A simple saving problem

Suppose you have $\$ 1000$ savings at a bank that incurs interest at 2% annual rate at the end of every year.
■ Savings after 1 year: $\$ 1000 \times(1+2 \%)=\$ 1020$

- Savings after 2 years: $\$ 1020 \times(1+2 \%)=\$ 1000 \times(1+2 \%)^{2}=\$ 1040.40$
- Savings after 3 years:

$$
\$ 1040.4 \times(1+2 \%)=\$ 1000 \times(1+2 \%)^{3} \approx \$ 1061.21
$$

- Savings after x years: $\$ 1000 \times(1+2 \%)^{x}$

Exponential Functions

- Number of Years x is the 'input' variable
- Savings S (in thousand dollars) is the 'output' variable

Amount of savings S (in thousand dollars) is a function of x :

$$
S=f(x), \quad x \in\{1,2, \ldots\}
$$

with $f(x)=(1+2 \%)^{x}$, or $f(x)=1.02^{x}$, which is an exponential function.

Exponential function

An exponential function is of the form

$$
f(x)=a^{x}, \quad x \in D
$$

with some known $a>0$.
In the above example: an exponential function in x

$$
f(x)=1.02^{x}, \quad x \in\{1,2, \ldots\}
$$

with $a=1.02$.

Quarterly compounded interest

Suppose the savings of $\$ 1000$ still receives 2% interest annually, but by the end of each quarter you will receive $2 \% \times \frac{1}{4}$ of the past quarter's interest.
Your savings after
■ 1 quarter: $\$ 1000 \times\left(1+\frac{2 \%}{4}\right)^{1}=\$ 1005$
■ 2 quarters: $\$ 1000 \times\left(1+\frac{2 \%}{4}\right)^{2} \approx \$ 1010.02$

Your savings after
■ 1 year (4 quarters): $\$ 1000 \times\left(1+\frac{2 \%}{4}\right)^{4} \approx \$ 1020.15$
■ x years ($4 x$ quarters): $\$ 1000 \times\left(1+\frac{2 \%}{4}\right)^{4 x}$
Monthly compounded interest
Suppose the savings of $\$ 1000$ still receives 2% interest annually, but by the end of each month you will receive $2 \% \times \frac{1}{12}$ of the past month's interest.
Your savings after
■ after 1 month: $\$ 1000 \times\left(1+\frac{2 \%}{12}\right)^{1} \approx \$ 1001.67$
■ after 2 months: $\$ 1000 \times\left(1+\frac{2 \%}{12}\right)^{2} \approx \$ 1003.34$
■ after 1 year: $\$ 1000 \times\left(1+\frac{2 \%}{12}\right)^{12} \approx \$ 1020.18$
■ x years ($4 x$ quarters): $\$ 1000 \times\left(1+\frac{2 \%}{12}\right)^{12 x}$

Suppose the savings of $\$ 1000$ still receives 2% interest annually, but the cycle of interest payment m times a year. By the end of each cycle, you will receive $2 \% \cdot \frac{1}{m}$ interest of the last cycle.
You savings after

- 1 cycle: $\$ 1000 \times\left(1+\frac{2 \%}{m}\right)^{1}$
- 2 cycles: $\$ 1000 \times\left(1+\frac{2 \%}{m}\right)^{2}$
- after 1 year (m cycles): $\$ 1000 \times\left(1+\frac{2 \%}{m}\right)^{m}$
- after x years ($m x$ cycles): $\$ 1000 \times\left(1+\frac{2 \%}{m}\right)^{m x}$

What is your savings after x years if m is very large?

- It can be shown that

$$
\lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)^{m}=\mathrm{e}, \text { known as Euler's constant. }
$$

- As $m \rightarrow \infty$, the effective interest rate over x year is

$$
r=\left(1+\frac{2 \%}{m}\right)^{m x}=\left(\left(1+\frac{0.02}{m}\right)^{(m / 0.02)}\right)^{0.02 x} \longrightarrow \mathrm{e}^{0.02 x}
$$

Savings after x years

■ Euler's constant $\mathrm{e} \approx 2.7182818$
■ Savings after x years is $S=\$ 1000 \times \mathrm{e}^{0.02 x}$
■ Savings after 1 year is $\$ 1000 \times \mathrm{e}^{0.02} \approx 1020.20$

Natural exponential function

$f(x)=e^{x}$, for $x \in D$.
The solution of $e^{x}=a$ is denoted as

$$
\ln (a), \text { the natural logarithm of } a .
$$

which is interpreted as $\log _{e}(a)$, with some textbooks writing it as $\log (a)$.

Natural logarithm function
$f(x)=\ln (x)$, or sometimes $f(x)=\log (x)$, for $x \in D$. Note that here D cannot contain negative values.

Derivatives of natural exponential and log functions
The 1st principle of taking the derivative of $f(x)$ shows that

$$
f^{\prime}(x)=\lim _{\Delta \rightarrow 0} \frac{f(x+\Delta)-f(x)}{\Delta}
$$

We are able to find out the derivatives of natural exponential and \log functions:

■ The derivative of $f(x)=e^{x}$ is $f^{\prime}(x)=e^{x}$

- The derivative of $f(x)=\ln (x)$ is $f^{\prime}(x)=\frac{1}{x}$

Example
Suppose you have a fixed deposit $\$ 1000$ savings at bank with annual interest rate 2%. How many years will you deposit it so as to accumulate savings of more than $\$ 1060$?
The solution is to solve $1.02^{p}=1.06$. According to properties of the exponential function, we have
$p=\log _{1.02}(1.06)=\ln (1.06) / \ln (1.02) \approx 2.94$
Thus, you need to wait at least three years.
Note that $a^{p}=x$ is equivalent to: $p=\log _{a}(x)$.

Operation Rules

Taking the quadratic functions as examples, we learned the derivative rules:

■ Addition rule
■ Subtraction rule
■ Product rule with a constant
These rules are actually applicable to all functions including exponential and logarithm functions.

Example
If $f(x)=e^{x}+\ln (x)$, then $f^{\prime}(x)=e^{x}+1 / x$

Multiplication by a function

Product Rule

If $f(x)=c(x) \cdot g(x)$, then

$$
f^{\prime}(x)=c^{\prime}(x) \cdot g(x)+c(x) \cdot g^{\prime}(x)
$$

Example: Let $f(x)=x e^{x}$ for $x \in(-\infty, \infty)$.

$$
c(x)=x, \text { and } g(x)=e^{x} .
$$

Hence,

$$
f^{\prime}(x)=1 \cdot e^{x}+x \cdot e^{x}=(1+x) e^{x} .
$$

Product rule: One more example

Define $f_{1}(x)=x, f_{2}(x)=x^{2}, f_{3}(x)=x^{3}$, for $x \in(-\infty, \infty)$.

Use the facts that $f_{1}^{\prime}(x)=1, f_{2}^{\prime}(x)=2 x$ and the product rule to show that

$$
f_{3}^{\prime}(x)=3 x^{2}
$$

Solution: Re-express $f_{3}(x)$ as $f_{3}(x)=x \cdot x^{2}=f_{1}(x) \cdot f_{2}(x)$. According to the product rule, we have

$$
\begin{aligned}
f_{3}^{\prime}(x) & =f_{1}^{\prime}(x) \cdot f_{2}(x)+f_{1}(x) \cdot f_{2}^{\prime}(x) \\
& =1 \cdot x^{2}+x \cdot 2 x=x^{2}+2 x^{2}=3 x^{2}
\end{aligned}
$$

Dividing by a function

Quotient Rule

If $f(x)=\frac{g(x)}{h(x)}$, then

$$
f^{\prime}(x)=\frac{g^{\prime}(x) h(x)-g(x) h^{\prime}(x)}{(h(x))^{2}}
$$

Example: let $f(x)=\frac{\ln (x)}{x}$ for $x>0$.

$$
g(x)=\ln (x), \text { and } h(x)=x
$$

Hence,

$$
f^{\prime}(x)=\frac{\frac{1}{x} \cdot x-\ln x \cdot 1}{(x)^{2}}=\frac{1-\ln (x)}{x^{2}}
$$

Function of Functions

Example

Consider $h(x)=x^{2}, g(z)=e^{z}$, what is $g(h(x))$?
For example, take $x=2$.

1. Plug in $x=2$ to obtain $h(2)=2^{2}=4$.
2. Plug in $z=h(2)$ to get

$$
\begin{gathered}
g(h(2))=g(4)=e^{4} \\
g(h(x))=g\left(x^{2}\right)=e^{x^{2}}
\end{gathered}
$$

Chain Rule

If $f(x)=g(h(x))$, then

$$
f^{\prime}(x)=g^{\prime}(h(x)) \cdot h^{\prime}(x)
$$

Example: $f(x)=e^{x^{2}}$, that is $g(z)=e^{z}$ and $h(x)=x^{2}$

1. Determine $g^{\prime}(z)=e^{z}$, so plug in $z=h(x)$ to get

$$
g^{\prime}(h(x))=e^{h(x)}=e^{x^{2}}
$$

2. Determine $h^{\prime}(x)=2 x$, so

$$
f^{\prime}(x)=e^{x^{2}} \cdot(2 x)=2 x e^{x^{2}}
$$

Derivative of exponential functions

Define $g(x)=e^{x}$.
Use the fact that $g^{\prime}(x)=e^{x}$ and the chain rule to determine the derivative of $f(x)=a^{x}$.
Write $f(x)=a^{x}=\left(e^{\ln (a)}\right)^{x}=e^{\ln (a) \cdot x}=g(h(x))$ with

$$
h(x)=\ln (a) \cdot x,
$$

to get

$$
\begin{aligned}
f^{\prime}(x)=g^{\prime}(h(x)) \cdot h^{\prime}(x) & =g^{\prime}(\ln (a) \cdot x) \cdot \ln (a) \\
& =e^{\ln (a) \cdot x} \ln (a)=a^{x} \ln (a)
\end{aligned}
$$

Derivative in Business

Use derivative for approximations
As $f^{\prime}(x)$ is defined as

$$
\lim _{\Delta \rightarrow 0}[f(x+\Delta)-f(x)] / \Delta
$$

We can approximate the change in $f(x)$ by

$$
f(x+1)-f(x) \approx f^{\prime}(x)
$$

The change in $f(x)$ is approximately $f^{\prime}(x)$ if x increases by $\Delta=1$.
Example of Monopoly: $f(P)=100 P-5 P^{2}$, for $P \in(0,20)$ Recall that $f^{\prime}(P)=100-10 P$, therefore, $f^{\prime}(8)=20$.

$$
f(9)-f(8) \approx 20
$$

However, we know that $f(9)-f(8)=15$ precisely.

Percentage change

Recall that in our revenue $f(P)=100 P-5 P^{2}$, for $P \in(0,20)$.
■ Price $P=8$ increases by 1% : from 8 to 8.08
■ What is the percentage change in $f(P)$ approximately?
■ Change in $f(P)$:

$$
f(8.08)-f(8) \approx f^{\prime}(8) \cdot(8.08-8)=20 \cdot 0.08=1.6
$$

■ Percentage change in $f(P)$ is

$$
\frac{f(8.08)-f(8)}{f(8)} \times 100 \% \approx \frac{1.6}{480} \times 100 \% \approx 0.333 \%
$$

Exact percentage change is 0.327%.

Elasticity

If x is changed by 1%, the percentage change in $f(x)$ is

$$
\begin{aligned}
& \frac{f(x+1 \% \cdot x)-f(x)}{f(x)} \times 100 \% \\
& \approx \frac{f^{\prime}(x) \cdot(1 \% \cdot x)}{f(x)} \times 100 \%=\frac{f^{\prime}(x) x}{f(x)} \%
\end{aligned}
$$

The elasticity of $f(x)$ at point x is

$$
\mathrm{El}_{x} f(x)=\frac{f^{\prime}(x) x}{f(x)}
$$

Elasticity: Revenue Function
Recall our revenue $f(P)=100 P-5 P^{2}, P \in(0,20)$.

$$
\mathrm{El}_{P} f(P)=\frac{f^{\prime}(P) P}{f(P)}=\frac{(100-10 P) P}{100 P-5 P^{2}}=\frac{100 P-10 P^{2}}{100 P-5 P^{2}}
$$

Elasticity: Revenue Function

- $P=8: \mathrm{El}_{P} f(P)=\frac{1}{3} \approx 0.33$
- $P=10: \mathrm{El}_{P} f(P)=0$
- $P=14: \mathrm{El}_{P} f(P)=-1.33$

Elasticity of a power function
Let $f(x)=x^{2}, x \in(-\infty, \infty)$. We have

1) $f^{\prime}(x)=2 x$
2) $\mathrm{El}_{x} f(x)=\frac{f^{\prime}(x) x}{f(x)}=\frac{2 x \cdot x}{x^{2}}=2$

The elasticity is a constant, which does not depend on x.
Elasticity of the natural exp function
Let $f(x)=e^{x}, x \in(-\infty, \infty)$. We have

1) $f^{\prime}(x)=e^{x}$
2) $\mathrm{El}_{x} f(x)=\frac{f^{\prime}(x) x}{f(x)}=\frac{e^{x \cdot x}}{e^{x}}=x$

Summary

■ Non-linear functions: quadratic, polynomial, exponential, natural logarithm

- Derivative definition and operation rules

Sum, subtraction, multiplication, and quotient
■ Derivative of many basic functions: power, quadratic, exponential and natural logarithm
■ Function of functions: chain rule
■ Elasticity

