ETF2700/ETF5970 Mathematics for Business

Lecture 3
Monash Business School, Monash University, Australia

Outline

Last week:
■ Vectors

- Linear dependence and independence

■ Orthogonal vectors and Orthonormal basis
This week:
■ Matrix

- Matrix operation, and inverse matrix

■ Eigenvalues and eigenvectors
■ Linear programming

Matrix Algebra

 GeneraP notation of a matrix A rectangular array of numbers is called a matrix. A $n \times m$ matrix:$$
\left[\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, m} \\
a_{2,1} & \cdots & a_{2, m} \\
\vdots & \cdots & \vdots \\
a_{n, 1} & \cdots & a_{n, m}
\end{array}\right]
$$

where all a 's are some real values.
Examples of matrices
2×2 matrix:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

4×5 matrix:
$\left[\begin{array}{lllll}11 & 12 & 13 & 14 & 15 \\ 21 & 22 & 23 & 24 & 25 \\ 31 & 32 & 33 & 34 & 35 \\ 41 & 42 & 43 & 44 & 45\end{array}\right]$

Special cases of a matrix: Vector and scalar

When $m=1$, the general $n \times m$ matrix becomes a column of n elements:

$$
\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]
$$

which is a column vector.
When $n=1$, the general $n \times m$ matrix becomes a row of m elements:

$$
\left[\begin{array}{lll}
a_{1} & \cdots & a_{m}
\end{array}\right]
$$

which is a row vector.
When $n=m=1$, the general $n \times m$ matrix becomes one element:
[a], or often just written as a,
which is a scalar.
Note that a real number is simply a special form of a matrix.

Matrix addition: Example

2×2 matrices:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{ll}
0 & 2 \\
3 & 5
\end{array}\right]=\left[\begin{array}{ll}
1+0 & 2+2 \\
3+3 & 4+5
\end{array}\right]=\left[\begin{array}{ll}
1 & 4 \\
6 & 9
\end{array}\right]
$$

2×3 matrices:

$$
\begin{aligned}
{\left[\begin{array}{lll}
0 & 1 & 2 \\
9 & 8 & 7
\end{array}\right]+\left[\begin{array}{lll}
6 & 5 & 4 \\
3 & 4 & 5
\end{array}\right] } & =\left[\begin{array}{ccc}
0+6 & 1+5 & 2+4 \\
9+3 & 8+4 & 7+5
\end{array}\right] \\
& =\left[\begin{array}{ccc}
6 & 6 & 6 \\
12 & 12 & 12
\end{array}\right]
\end{aligned}
$$

Addition: from number to matrix

Only happens for matrices of the same size!

$$
\begin{gathered}
{\left[\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, m} \\
a_{2,1} & \cdots & a_{2, m} \\
\vdots & \cdots & \vdots \\
a_{n, 1} & \cdots & a_{n, m}
\end{array}\right]+\left[\begin{array}{ccc}
b_{1,1} & \cdots & b_{1, m} \\
b_{2,1} & \cdots & b_{2, m} \\
\vdots & \cdots & \vdots \\
b_{n, 1} & \cdots & b_{n, m}
\end{array}\right]} \\
\quad=\left[\begin{array}{ccc}
a_{1,1}+b_{1,1} & \cdots & a_{1, m}+b_{1, m} \\
a_{2,1}+b_{2,1} & \cdots & a_{2, m}+b_{2, m} \\
\vdots & \cdots & \vdots \\
a_{n, 1}+b_{n, 1} & \cdots & a_{n, m}+b_{n, m}
\end{array}\right]
\end{gathered}
$$

Be careful

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 5 \\
3 & 4 & 6
\end{array}\right]+\left[\begin{array}{ll}
0 & 2 \\
3 & 5
\end{array}\right]=?} \\
2+\left[\begin{array}{ll}
0 & 2 \\
3 & 5
\end{array}\right]=? \\
{\left[\begin{array}{ll}
0 & 2 \\
3 & 5
\end{array}\right]+2=?}
\end{gathered}
$$

Matrix Subtraction: Examples

2×2 matrices:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]-\left[\begin{array}{ll}
0 & 2 \\
3 & 5
\end{array}\right]=\left[\begin{array}{cc}
1-0 & 2-2 \\
3-3 & 4-5
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

2×3 matrices:

$$
\begin{aligned}
{\left[\begin{array}{lll}
0 & 1 & 2 \\
9 & 8 & 7
\end{array}\right]-\left[\begin{array}{lll}
6 & 5 & 4 \\
3 & 4 & 5
\end{array}\right] } & =\left[\begin{array}{ccc}
0-6 & 1-5 & 2-4 \\
9-3 & 8-4 & 7-5
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-6 & -4 & -2 \\
6 & 4 & 2
\end{array}\right]
\end{aligned}
$$

Subtraction: Same rule as addition

Only happens for matrices of the same size!

$$
\begin{gathered}
{\left[\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, m} \\
a_{2,1} & \cdots & a_{2, m} \\
\vdots & \cdots & \vdots \\
a_{n, 1} & \cdots & a_{n, m}
\end{array}\right]-\left[\begin{array}{ccc}
b_{1,1} & \cdots & b_{1, m} \\
b_{2,1} & \cdots & b_{2, m} \\
\vdots & \cdots & \vdots \\
b_{n, 1} & \cdots & b_{n, m}
\end{array}\right]} \\
=\left[\begin{array}{ccc}
a_{1,1}-b_{1,1} & \cdots & a_{1, m}-b_{1, m} \\
a_{2,1}-b_{2,1} & \cdots & a_{2, m}-b_{2, m} \\
\vdots & \cdots & \vdots \\
a_{n, 1}-b_{n, 1} & \cdots & a_{n, m}-b_{n, m}
\end{array}\right]
\end{gathered}
$$

Be careful

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 5 \\
3 & 4 & 6
\end{array}\right]-\left[\begin{array}{ll}
0 & 2 \\
3 & 5
\end{array}\right]=?} \\
2-\left[\begin{array}{ll}
0 & 2 \\
3 & 5
\end{array}\right]=? \\
{\left[\begin{array}{ll}
0 & 2 \\
3 & 5
\end{array}\right]-2=?}
\end{gathered}
$$

Multiplication: Scalar \times Matrix

Suppose c is a scalar and A is a $n \times m$ matrix

$$
c \times A=c A=\left[\begin{array}{ccc}
c \times a_{1,1} & \cdots & c \times a_{1, m} \\
c \times a_{2,1} & \cdots & c \times a_{2, m} \\
\vdots & \cdots & \vdots \\
c \times a_{n, 1} & \cdots & c \times a_{n, m}
\end{array}\right]
$$

Scalar \times Matrix: An example

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
4 & 0 & 5 \\
-1 & 3 & 2
\end{array}\right] \\
2 \times A=\left[\begin{array}{ccc}
2 \times 4 & 2 \times 0 & 2 \times 5 \\
2 \times(-1) & 2 \times 3 & 2 \times 2
\end{array}\right]=\left[\begin{array}{ccc}
8 & 0 & 10 \\
-2 & 6 & 4
\end{array}\right] \\
-1 \times A=\left[\begin{array}{ccc}
-1 \times 4 & -1 \times 0 & -1 \times 5 \\
-1 \times(-1) & -1 \times 3 & -1 \times 2
\end{array}\right]=\left[\begin{array}{ccc}
-4 & 0 & -5 \\
1 & -3 & -2
\end{array}\right]
\end{gathered}
$$

Multiplication: Matrix \times Vector

$(3 \times 2$ matrix $) \times(2 \times 1$ vector $)=(3 \times 1$ vector $)$
Rule: Number of columns of the 1st matrix = Number of rows of the 2nd matrix

$$
\begin{gathered}
\boldsymbol{A}=\left[\begin{array}{cc}
2 & 3 \\
1 & -5 \\
1 & 1
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
4 \\
1
\end{array}\right] \\
\mathbf{A} \times \mathbf{b}=\left[\begin{array}{l}
? \\
? \\
?
\end{array}\right]
\end{gathered}
$$

Calculate the first entry using the first Row of A to multiply the column vector \boldsymbol{b} :

$$
\mathbf{A} \times \mathbf{b}=\left[\begin{array}{c}
2 \times 4+3 \times 1 \\
? \\
?
\end{array}\right]
$$

Multiplication: Matrix \times Vector

$$
\mathbf{A}=\left[\begin{array}{cc}
2 & 3 \\
1 & -5 \\
1 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
4 \\
1
\end{array}\right]
$$

Calculate the second entry using the second Row of A:

$$
\mathbf{A} \times \mathbf{b}=\left[\begin{array}{c}
11 \\
1 \times 4+(-5) \times 1 \\
?
\end{array}\right]
$$

Calculate the 3rd entry using the 3rd Row of A:

$$
\mathbf{A} \times \mathbf{b}=\left[\begin{array}{c}
11 \\
-1 \\
1 \times 4+1 \times 1
\end{array}\right]
$$

Matrix \times Vector: Solution

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{cc}
2 & 3 \\
1 & -5 \\
1 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
4 \\
1
\end{array}\right] \\
& \mathbf{A} \times \mathbf{b}=\left[\begin{array}{c}
2 \times 4+3 \times 1 \\
1 \times 4+(-5) \times 1 \\
1 \times 4+1 \times 1
\end{array}\right]=\left[\begin{array}{c}
11 \\
-1 \\
5
\end{array}\right]
\end{aligned}
$$

Multiplication: Matrix \times Vector

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, m} \\
\vdots & \vdots & \cdots & \vdots \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, m}
\end{array}\right]_{n \times m}, \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right]_{m \times 1} \\
& \mathbf{A} \times \mathbf{b}=\mathbf{A b}=\left[\begin{array}{c}
a_{1,1} b_{1}+a_{1,2} b_{2}+\cdots+a_{1, m} b_{m} \\
\vdots \\
a_{n, 1} b_{1}+a_{n, 2} b_{2}+\cdots+a_{n, m} b_{m}
\end{array}\right]_{n \times 1}
\end{aligned}
$$

Multiplication: Matrix \times Matrix
$(3 \times 2$ matrix $) \times(2 \times 2$ matrix $)=(3 \times 2$ matrix $)$

$$
\mathbf{A}=\left[\begin{array}{cc}
2 & 3 \\
1 & -5 \\
1 & 1
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{cc}
4 & 3 \\
1 & -2
\end{array}\right], \quad \mathbf{A} \times \mathbf{B}=\left[\begin{array}{ll}
? & ? \\
? & ? \\
? & ?
\end{array}\right]
$$

Matrix as a collection of vectors
We can write

$$
\mathbf{B}=\left[\begin{array}{cc}
4 & 3 \\
1 & -2
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{b}_{1} & \mathbf{b}_{2}
\end{array}\right]
$$

where

$$
\mathbf{b}_{1}=\left[\begin{array}{l}
4 \\
1
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{c}
3 \\
-2
\end{array}\right]
$$

We define

$$
\mathbf{A} \times \mathbf{B}=\left[\begin{array}{ll}
\mathbf{A} \times \mathbf{b}_{1} & \mathbf{A} \times \mathbf{b}_{2}
\end{array}\right]
$$

which combines two side-by-side vectors.

Matrix Multiplication

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{cc}
2 & 3 \\
1 & -5 \\
1 & 1
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{cc}
4 & 3 \\
1 & -2
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{b}_{1} & \mathbf{b}_{2}
\end{array}\right] \\
\mathbf{A} \times \mathbf{b}_{1}=\left[\begin{array}{c}
2 \times 4+3 \times 1 \\
1 \times 4+(-5) \times 1 \\
1 \times 4+1 \times 1
\end{array}\right]=\left[\begin{array}{c}
11 \\
-1 \\
5
\end{array}\right] \\
\mathbf{A} \times \mathbf{b}_{2}=\left[\begin{array}{c}
2 \times 3+3 \times(-2) \\
1 \times 3+(-5) \times(-2) \\
1 \times 3+1 \times(-2)
\end{array}\right]=\left[\begin{array}{c}
0 \\
13 \\
1
\end{array}\right]
\end{gathered}
$$

Matrix Multiplication: Solution

$$
\mathbf{A} \times \mathbf{B}=\left[\begin{array}{ll}
\mathbf{A} \times \mathbf{b}_{1} & \mathbf{A} \times \mathbf{b}_{2}
\end{array}\right]=\left[\begin{array}{cc}
11 & 0 \\
-1 & 13 \\
5 & 1
\end{array}\right]
$$

Matrix Multiplication: General

Let \mathbf{A} be a $n \times m$ matrix and \mathbf{B} be a $m \times k$ matrix:

$$
\mathbf{A} \times \mathbf{B} \text { is a } n \times k \text { matrix }
$$

such that

$$
\mathbf{A} \times \mathbf{B}=\mathbf{A B}=\left[\begin{array}{lll}
\mathbf{A} \times \mathbf{b}_{1} & \cdots & \mathbf{A} \times \mathbf{b}_{k}
\end{array}\right]
$$

where

$$
\left[\begin{array}{lll}
\mathbf{b}_{1} & \cdots & \mathbf{b}_{k}
\end{array}\right]=\mathbf{B}
$$

Be careful

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 5 \\
3 & 4 & 6
\end{array}\right] \times\left[\begin{array}{ll}
0 & 2 \\
3 & 5
\end{array}\right]=?} \\
2 \times\left[\begin{array}{ll}
0 & 2 \\
3 & 5
\end{array}\right]=? \\
{\left[\begin{array}{ll}
0 & 2 \\
3 & 5
\end{array}\right] \times 2=?}
\end{gathered}
$$

Example of "work-out" pants from the 1st week (P56)

■ Market price of the work-out brand pants: P
■ Sales volume of the produced pants: Q
■ Market supply: $Q_{s}=P-10$
■ Market demand: $Q_{d}=-2 P+200$
■ Market clearing: $Q_{s}=Q_{d}=3 Q$

Linear equations

$$
\begin{aligned}
2 P+3 Q & =200 \\
P-3 Q & =10
\end{aligned} \quad\left[\begin{array}{ccc}
2 & 3 & 200 \\
1 & -3 & 10
\end{array}\right]
$$

The system of linear equations in P and Q is written as

$$
\left[\begin{array}{cc}
2 & 3 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
P \\
Q
\end{array}\right]=\left[\begin{array}{c}
200 \\
10
\end{array}\right]
$$

System of Linear Equation: General expression

A system of linear equations in $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ is

$$
\mathbf{A x}=\mathbf{b}
$$

where \mathbf{A} is a $m \times n$ matrix and \mathbf{b} is a $m \times 1$ vector.
In the above example ($m=n=2$):

$$
\mathbf{A}=\left[\begin{array}{cc}
2 & 3 \\
1 & -3
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{l}
P \\
Q
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
200 \\
10
\end{array}\right]
$$

How to solve the linear system $\mathbf{A x}=\mathbf{b}$?
■ Elimination method discussed in the 1st week
$■$ Can we just "divide" both sides of $\mathbf{A x}=\mathbf{b}$ by \mathbf{A} ?
$■$ Yes, but it is not always possible.
■ When is it possible? How can we conduct the "division"?

How to divide both sides of $\mathbf{A x}=\mathbf{b}$ by \mathbf{A}

Square matrix
The first requirement is that A is a square matrix, that is, $m=n$. In other words, we require that

Number of equations $=$ Number of variables!
If $m \neq n$, we need to use elimination to solve the system.

Inverse Matrix

- The 2nd requirement is to derive the "Inverse Matrix" of A. Let \mathbf{A} be a $n \times n$ square matrix.
- Dividing both sides of $\mathbf{A x}=\mathbf{b}$ by \mathbf{A} is equivalent to multiplying both sides by the inverse of \mathbf{A}, known as \mathbf{A}^{-1}

Inverse of Scalar ($n=1$)
$\mathbf{A}=[\mathrm{a}]$, or $\mathbf{A}=\mathrm{a}$ with the real number $a \neq 0$, then

$$
\mathbf{A}^{-1}=\frac{1}{a}
$$

Inverse of a matrix

The inverse of a square matrix \mathbf{A}, sometimes called a reciprocal matrix, is a matrix \mathbf{A}^{-1} such that

$$
\mathbf{A}^{-1} \mathbf{A}=\mathbf{A A}^{-1}=I_{n}
$$

where I_{n} is the $n \times n$ identity matrix

$$
I_{n}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

■ A square matrix \mathbf{A} is invertible if \mathbf{A}^{-1} exists.

- \mathbf{A}^{-1} does not always exist. For example, \mathbf{A} has only zero entries.
■ If the determinant of a given square matrix is non-zero, then this matrix is invertible.

Determinant of a matrix

- The determinant is a scalar value that is a function of the entries of a square matrix.
- The determinant of a 2×2 square matrix is as follows.
- Suppose that

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \quad \operatorname{det}(\mathbf{A})=a d-b c
$$

- We can also write the determinant as

$$
\operatorname{det}(\boldsymbol{A})=|\boldsymbol{A}|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

Determinant of a matrix
The inverse of \mathbf{A} is

$$
\mathbf{A}^{-1}=\frac{1}{\operatorname{det}(\mathbf{A})}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Example of the 'work-out' brand pants: $\mathbf{A x}=\mathbf{b}$

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{cc}
2 & 3 \\
1 & -3
\end{array}\right] \\
\operatorname{det}(\mathbf{A})=\left|\begin{array}{cc}
2 & 3 \\
1 & -3
\end{array}\right|=2 \times(-3)-3 \times 1=-9 \\
\mathbf{A}^{-1}=\frac{1}{\operatorname{det}(\mathbf{A})}\left[\begin{array}{cc}
-3 & -3 \\
-1 & 2
\end{array}\right]=\frac{1}{-9}\left[\begin{array}{cc}
-3 & -3 \\
-1 & 2
\end{array}\right] \\
=\left[\begin{array}{cc}
1 / 3 & 1 / 3 \\
1 / 9 & -2 / 9
\end{array}\right]
\end{gathered}
$$

Solve the system: $\mathbf{A x}=\mathbf{b}$

Consider a system of linear equations in x and y :

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right], \quad|\mathbf{A}|=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right| \neq 0
$$

Multiply both sides by \mathbf{A}^{-1} on the left:

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] } & {\left[\begin{array}{l}
x \\
y
\end{array}\right] }
\end{aligned}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]^{-1} \times\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] .
$$

Example of Pant-making Firm: $\mathbf{A x}=\mathbf{b}$

$$
\left[\begin{array}{cc}
2 & 3 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
P \\
Q
\end{array}\right]=\left[\begin{array}{c}
200 \\
10
\end{array}\right]
$$

Multiply both sides by \mathbf{A}^{-1} on the left:

$$
\begin{aligned}
{\left[\begin{array}{c}
P \\
Q
\end{array}\right] } & =\left[\begin{array}{cc}
2 & 3 \\
1 & -3
\end{array}\right]^{-1} \times\left[\begin{array}{c}
200 \\
10
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
\frac{1}{9} & -\frac{2}{9}
\end{array}\right] \times\left[\begin{array}{c}
200 \\
10
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{1}{3} \times 200+\frac{1}{3} \times 10 \\
\frac{1}{9} \times 200-\frac{2}{9} \times 10
\end{array}\right]=\left[\begin{array}{l}
70 \\
20
\end{array}\right]
\end{aligned}
$$

An Explicit Formula: Cramer's Rule

Recall the solution:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]^{-1} \times\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

Work it out:

$$
x=\frac{\left|\begin{array}{ll}
b_{1} & a_{12} \\
b_{2} & a_{22}
\end{array}\right|}{\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|}, \quad y=\frac{\left|\begin{array}{ll}
a_{11} & b_{1} \\
a_{21} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|}
$$

Alternative: Cramer's Rule

$$
\begin{aligned}
& {\left[\begin{array}{cc}
2 & 3 \\
1 & -3
\end{array}\right] \quad\left[\begin{array}{l}
P \\
Q
\end{array}\right]=\left[\begin{array}{c}
200 \\
10
\end{array}\right]} \\
& P=\frac{\left|\begin{array}{cc}
200 & 3 \\
10 & -3
\end{array}\right|}{\left|\begin{array}{cc}
2 & 3 \\
1 & -3
\end{array}\right|}=\frac{200 \times(-3)-3 \times 10}{2 \times(-3)-3 \times 1}=70 \\
& Q=\frac{\left|\begin{array}{cc}
2 & 200 \\
1 & 10
\end{array}\right|}{\left|\begin{array}{cc}
2 & 3 \\
1 & -3
\end{array}\right|}=\frac{2 \times 10-200 \times 1}{2 \times(-3)-3 \times 1}=20
\end{aligned}
$$

Summary: Matrix Operations

Summation and Subtraction: all matrices have same size Multiplication

■ Two rules: Scalar \times Matrix, Matrix \times Matrix

- Matrix \times Matrix: match the size!

Inverse
■ Only defined for square matrix

- A is invertible if and only if $\operatorname{det}(\mathbf{A}) \neq 0$

■ Formula for the inverse of 2×2 matrix

Summary: Solve linear equations

Consider a system of linear equations in x and $y: \mathbf{A x}=\mathbf{b}$

1) Solve by elimination method (first week lecture)
2) Solve by using inverse matrix
3) Solve by Cramer's rule (2×2 matrix)

Eigenvalues and Eigenvectors

- Definition: An eigenvector of a square matrix \boldsymbol{A} is a non-zero vector x such that when A is multiplied by x, the result is a scalar multiple of x, that is,

$$
A x=\lambda x
$$

where λ is a scalar called the eigenvalue corresponding to the eigenvector x.
■ To solve eigenvalues, we can rewrite $\boldsymbol{A} \boldsymbol{x}=\lambda x$ as

$$
\boldsymbol{A} x=\lambda \boldsymbol{I} x, \quad \text { and then }(\boldsymbol{A}-\lambda \boldsymbol{I}) x=0
$$

where I is an identity matrix with same dimension as \boldsymbol{A}
■ If x is non-zero, this equation will only have a solution if

$$
|\boldsymbol{A}-\lambda \boldsymbol{I}|=0
$$

which says the determinant of $\boldsymbol{A}-\lambda \boldsymbol{I}$ is zero.
■ This equation is called the characteristic equation of A

An Example of solving eigenvalues of a 2×2 matrix Let $\boldsymbol{A}=\left[\begin{array}{cc}-6 & 3 \\ 4 & 5\end{array}\right]$. To solve the eigenvalues of \boldsymbol{A}, we have

$$
\begin{aligned}
|\boldsymbol{A}-\lambda I| & \left.=\left|\left[\begin{array}{cc}
-6 & 3 \\
4 & 5
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\right|=\left\lvert\, \begin{array}{cc}
-6-\lambda & 3 \\
4 & 5-\lambda
\end{array}\right.\right] \mid \\
& =(-6-\lambda)(5-\lambda)-3 \times 4 \\
& =\lambda^{2}+\lambda-42=(\lambda+7)(\lambda-6)=0
\end{aligned}
$$

Therefore, the eigenvalues are $\lambda_{1}=-7$ and $\lambda_{2}=6$.
Examples of solving eigenvalues of a 2×2 matrix
Plugging-in $\lambda=-7$ into $(\boldsymbol{A}-\lambda \boldsymbol{I}) x=0$, we have

$$
\left[\begin{array}{cc}
1 & 3 \\
4 & 12
\end{array}\right] x=0
$$

This leads to $x_{1}+3 x_{2}=0$ and $4 x_{1}+12 x_{2}=0$ Either equation will lead to $x_{1}=-3 x_{2}$. So, the eigenvector is any non-zero multiple of $(-3,1)^{\top}$

Eigenvector corresponding to $\lambda=6$
Plugging-in $\lambda=6$ into $(\boldsymbol{A}-\lambda \boldsymbol{I}) x=0$, we have

$$
\left[\begin{array}{cc}
-12 & 3 \\
4 & -1
\end{array}\right] x=0
$$

This leads to $-12 x_{1}+3 x_{2}=0$ and $4 x_{1}-x_{2}=0$
Either equation will lead to $x_{2}=4 x_{1}$. So, the eigenvector is any non-zero multiple of $(1,4)^{\top}$
Normallise Eigenvectors

- Corresponding to an eigenvalue, the eigenvector is obtained subject to a non-zero multiplicative scalar. As such, there are an infinite number of eigenvectors.
- One such vector that is particularly nice is that whose sum of squared elements equals to 1
- Normalisation of a vector is to divide it by its norm.
- Normalised eigenvectors in the above problem is: $(-3 / \sqrt{10}, 1 / \sqrt{10})^{\top}$ and $(1 / \sqrt{17}, 4 / \sqrt{17})^{\top}$

Rank

■ The maximum number of linearly independent rows in a matrix \boldsymbol{A} is called the row rank of \boldsymbol{A}.

■ The maximum number of linearly independent columns in \boldsymbol{A} is called the column rank of \boldsymbol{A}.

■ If \boldsymbol{A} is an $m \times n$ matrix, then it is obvious that "row rank of \boldsymbol{A} is less than m, and column rank of \boldsymbol{A} is less than n ".

■ What is not so obvious, however, is that for any matrix \boldsymbol{A}, "the row rank of $\boldsymbol{A}=$ the column rank of \boldsymbol{A} ".

How to compute the rank: Gaussian Elimination

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 2 & 1 \\
-2 & -3 & 1 \\
3 & 5 & 0
\end{array}\right] \xrightarrow{2 R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 3 \\
3 & 5 & 0
\end{array}\right] \xrightarrow{-3 R_{1}+R_{3} \rightarrow R_{3}}\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 3 \\
0 & -1 & -3
\end{array}\right]} \\
& R_{2} \xrightarrow{+R_{3} \rightarrow R_{3}}\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{-2 R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc}
1 & 0 & -5 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Rank

■ The final matrix (in row echelon form) has two non-zero rows and thus the rank of matrix \boldsymbol{A} is 2 .

- Solve the ranks: $\boldsymbol{B}=\left[\begin{array}{lll}2 & 1 & 3 \\ 3 & 1 & 5 \\ 4 & 2 & 6\end{array}\right], \quad \boldsymbol{C}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 5 & 7 \\ -1 & -2 & -4\end{array}\right]$

Properties of rank

- The rank of an $m \times n$ matrix \boldsymbol{A} is a non-negative integer and cannot be greater than either m or n. that means $\operatorname{Rank}(\boldsymbol{A}) \leq \min (m, n)$
- Only a zero matrix has rank zero.
- If \boldsymbol{A} is a square matrix (that is, $m=n$), then \boldsymbol{A} is invertible if and only if \boldsymbol{A} has rank n (that is, \boldsymbol{A} has a full rank).
- If B is any $n \times k$ matrix, then

$$
\operatorname{Rank}(\boldsymbol{A} \boldsymbol{B}) \leq \min (\operatorname{Rank}(\boldsymbol{A}), \operatorname{Rank}(\boldsymbol{B}))
$$

- If B is an $n \times k$ matrix of rank n, then

$$
\operatorname{Rank}(\boldsymbol{A B})=\operatorname{Rank}(\boldsymbol{A})
$$

- Rank of \boldsymbol{A} is r if and only if there exist an invertible $m \times m$ matrix X and an invertible $n \times n$ matrix Y such that

$$
X \boldsymbol{A} Y=\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right]
$$

Properties of rank

- If \boldsymbol{A} is a matrix over the real numbers, then we have

$$
\operatorname{Rank}(\boldsymbol{A})=\operatorname{Rank}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)=\operatorname{Rank}\left(\boldsymbol{A} \boldsymbol{A}^{\top}\right)=\operatorname{Rank}\left(\boldsymbol{A}^{\top}\right)
$$

Applications of the rank of matrices: Linear Equations Suppose a system of linear equations is: $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \text {, and } \boldsymbol{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\cdots \\
b_{m}
\end{array}\right]
$$

The augmented matrix is given by

$$
(\boldsymbol{A} \mid \boldsymbol{b})=\left[\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & a_{m}
\end{array}\right]
$$

Applications of the rank of matrices: Linear Equations

- The linear system is inconsistent if the rank of the augmented matrix is greater than the rank of the coefficient matrix.
- If the ranks of these two matrices are equal, then the system must have at least one solution.
- The solution is unique if and only if the rank equals the number of variables, which means

$$
\operatorname{Rank}(\boldsymbol{A})=\operatorname{Rank}(\boldsymbol{A} \mid \boldsymbol{b})=n .
$$

Linear Programming: An example

Example 2 in Chapter 17, Essential mathematics for economic analysis (2012): link here.

Consider a firm that

- produces two goods, A and B;

■ has two factories that jointly produce the two goods; and

- receives an order: 300 units of A and 500 units of B

■ What is the minimal cost to meet this order?

Fixed cost

■ The costs of operating the two factories are 10 thousand dollars and 8 thousand dollars per hour.

Total cost (in thousand dollars)

$$
C=10 u_{1}+8 u_{2}
$$

where u_{1} and u_{2} are the number of operating hours for the two factories, and physical constraints are $u_{1} \geq 0$ and $u_{2} \geq 0$.

Production constraints

The two factories jointly produce the two goods in the following quantities (per hour):

	Factory 1	Factory 2
Good A	10	20
Good B	25	25

■ Total production of $A: 10 u_{1}+20 u_{2}$
■ Total production of $B: 25 u_{1}+25 u_{2}$
Order constraints:

$$
10 u_{1}+20 u_{2} \geq 300, \quad 25 u_{1}+25 u_{2} \geq 500
$$

Formulating the problem
Minimize $10 u_{1}+8 u_{2}$
subject to $\left\{\begin{array}{l}10 u_{1}+20 u_{2} \geq 300 \\ 25 u_{1}+25 u_{2} \geq 500\end{array}\right.$, and $u_{1}, u_{2} \geq 0$

Feasible region
First, we need to determine the set of $\left(u_{1}, u_{2}\right)$ that satisfies all the constraints from the picture:

$$
\begin{gathered}
10 u_{1}+20 u_{2} \geq 300 \\
25 u_{1}+25 u_{2} \geq 500 \\
u_{1}, u_{2} \geq 0
\end{gathered}
$$

Graphical approach: First Constraint

Adding another constraint

■ Add the straight line $25 u_{1}+25 u_{2}=500$.
■ $25 u_{1}+25 u_{2} \geq 500$: the upper part of the line

Feasible region

- $u_{1}, u_{2} \geq 0$: only look at the first quadrant

■ Feasible Set S has three 'corner' points: A, B, C.

Extreme point theorem
If an optimal solution exists, it must be at one of the corner points of the feasible region. It is obvious that our problem has an optimal solution. We need to verify the cost at the corner noints.

Determine the corner point

To determine the corner point B, we solve

$$
\begin{aligned}
& 10 u_{1}+20 u_{2}=300 \\
& 25 u_{1}+25 u_{2}=500
\end{aligned}
$$

that is

$$
\left[\begin{array}{ll}
10 & 20 \\
25 & 25
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
300 \\
500
\end{array}\right]
$$

Solve by Cramer's Rule

$$
\begin{aligned}
& {\left[\begin{array}{ll}
10 & 20 \\
25 & 25
\end{array}\right]}
\end{aligned}\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
300 \\
500
\end{array}\right] .
$$

Determine the optimal solution

So we have all corner points now:
■ A: $u_{1}=0, u_{2}=20$,
giving total cost $10 u_{1}+8 u_{2}=160 \$ k$
■ B: $u_{1}=10, u_{2}=10$ giving total cost $10 u_{1}+8 u_{2}=180 \$ k$
■ C: $u_{1}=30, u_{2}=0$ giving total cost $10 u_{1}+8 u_{2}=300 \$ k$

Solution

The optimal solution is obtained at the corner point A, corresponding to $u_{1}=0$ and $u_{2}=20$. Hence,

The optimal solution is to operate factory 2 for 20 hours and not to use factory 1 at all, with minimum cost 160 thousand dollars.

