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Outline

Last week:

Vectors

Linear dependence and independence

Orthogonal vectors and Orthonormal basis

This week:

Matrix

Matrix operation, and inverse matrix

Eigenvalues and eigenvectors

Linear programming
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Matrix Algebra
General notation of a matrix
A rectangular array of numbers is called a matrix.
A n × m matrix: 

a1,1 · · · a1,m

a2,1 · · · a2,m
... · · ·

...
an,1 · · · an,m


where all a’s are some real values.

Examples of matrices
2 × 2 matrix: [

1 2
3 4

]
4 × 5 matrix: 

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
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Special cases of a matrix: Vector and scalar
When m = 1, the general n × m matrix becomes a column of n
elements:  a1

...
an


which is a column vector.

When n = 1, the general n × m matrix becomes a row of m
elements: [

a1 · · · am
]

which is a row vector.

When n = m = 1, the general n × m matrix becomes one
element:

[a], or often just written as a,

which is a scalar.
Note that a real number is simply a special form of a matrix.
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Matrix addition: Example

2 × 2 matrices:[
1 2
3 4

]
+

[
0 2
3 5

]
=

[
1+0 2+2
3+3 4+5

]
=

[
1 4
6 9

]
2 × 3 matrices:[

0 1 2
9 8 7

]
+

[
6 5 4
3 4 5

]
=

[
0+6 1+5 2+4
9+3 8+4 7+5

]
=

[
6 6 6

12 12 12

]
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Addition: from number to matrix

Only happens for matrices of the same size!
a1,1 · · · a1,m

a2,1 · · · a2,m
... · · ·

...
an,1 · · · an,m

+


b1,1 · · · b1,m

b2,1 · · · b2,m
... · · ·

...
bn,1 · · · bn,m



=


a1,1+b1,1 · · · a1,m+b1,m

a2,1+b2,1 · · · a2,m+b2,m
... · · ·

...
an,1+bn,1 · · · an,m+bn,m
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Be careful

[
1 2 5
3 4 6

]
+

[
0 2
3 5

]
=?

2+
[

0 2
3 5

]
=?

[
0 2
3 5

]
+2 =?
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Matrix Subtraction: Examples

2 × 2 matrices:[
1 2
3 4

]
−
[

0 2
3 5

]
=

[
1−0 2−2
3−3 4−5

]
=

[
1 0
0 −1

]
2 × 3 matrices:[

0 1 2
9 8 7

]
−
[

6 5 4
3 4 5

]
=

[
0−6 1−5 2−4
9−3 8−4 7−5

]
=

[
−6 −4 −2
6 4 2

]
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Subtraction: Same rule as addition

Only happens for matrices of the same size!
a1,1 · · · a1,m

a2,1 · · · a2,m
... · · ·

...
an,1 · · · an,m

−


b1,1 · · · b1,m

b2,1 · · · b2,m
... · · ·

...
bn,1 · · · bn,m



=


a1,1−b1,1 · · · a1,m−b1,m

a2,1−b2,1 · · · a2,m−b2,m
... · · ·

...
an,1−bn,1 · · · an,m−bn,m
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Be careful

[
1 2 5
3 4 6

]
−
[

0 2
3 5

]
=?

2−
[

0 2
3 5

]
=?

[
0 2
3 5

]
−2 =?

10 / 46



Multiplication: Scalar × Matrix
Suppose c is a scalar and A is a n × m matrix

c×A = cA =


c×a1,1 · · · c×a1,m

c×a2,1 · · · c×a2,m
... · · ·

...
c×an,1 · · · c×an,m


Scalar × Matrix: An example

A =

[
4 0 5
−1 3 2

]
2×A =

[
2×4 2×0 2×5

2×(−1) 2×3 2×2

]
=

[
8 0 10
−2 6 4

]

−1×A =

[
−1×4 −1×0 −1×5

−1×(−1) −1×3 −1×2

]
=

[
−4 0 −5
1 −3 −2

]
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Multiplication: Matrix × Vector
(3 × 2 matrix) × (2 × 1 vector) = (3 × 1 vector)
Rule: Number of columns of the 1st matrix = Number of rows
of the 2nd matrix

A =

2 3
1 −5
1 1

 , b =

[
4
1

]

A × b =

??
?


Calculate the first entry using the first Row of A to multiply the
column vector b:

A × b =

 2×4 + 3×1
?
?
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Multiplication: Matrix × Vector

A =

 2 3
1 −5
1 1

 , b =

[
4
1

]
Calculate the second entry using the second Row of A:

A × b =

 11
1×4 + (−5)×1

?


Calculate the 3rd entry using the 3rd Row of A:

A × b =

 11
−1

1×4 + 1×1
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Matrix × Vector: Solution

A =

 2 3
1 −5
1 1

 , b =

[
4
1

]

A × b =

 2×4 + 3×1
1×4 + (−5)×1

1×4 + 1×1

 =

 11
−1
5


Multiplication: Matrix × Vector

A =

 a1,1 a1,2 · · · a1,m
...

... · · ·
...

an,1 an,2 · · · an,m


n×m

, b =

 b1
...

bm


m×1

A × b = Ab =

 a1,1b1 + a1,2b2 + · · ·+ a1,mbm
...

an,1b1 + an,2b2 + · · ·+ an,mbm


n×1
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Multiplication: Matrix × Matrix
(3 × 2 matrix) × (2 × 2 matrix) = (3 × 2 matrix)

A =

 2 3
1 −5
1 1

 , B =

[
4 3
1 −2

]
, A × B =

 ? ?
? ?
? ?


Matrix as a collection of vectors
We can write

B =

[
4 3
1 −2

]
=

[
b1 b2

]
where

b1 =

[
4
1

]
, b2 =

[
3
−2

]
We define

A × B =
[

A × b1 A × b2
]

which combines two side-by-side vectors.
15 / 46



Matrix Multiplication

A =

 2 3
1 −5
1 1

 , B =

[
4 3
1 −2

]
=

[
b1 b2

]

A × b1 =

 2×4 + 3×1
1×4 + (−5)×1

1×4 + 1×1

 =

 11
−1
5


A × b2 =

 2×3 + 3×(−2)
1×3 + (−5)×(−2)

1×3 + 1×(−2)

 =

 0
13
1


Matrix Multiplication: Solution

A × B =
[

A × b1 A × b2
]
=

 11 0
−1 13
5 1
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Matrix Multiplication: General

Let A be a n × m matrix and B be a m × k matrix:

A × B is a n × k matrix

such that

A × B = AB =
[

A × b1 · · · A × bk
]

where [
b1 · · · bk

]
= B
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Be careful

[
1 2 5
3 4 6

]
×
[

0 2
3 5

]
=?

2×
[

0 2
3 5

]
=?

[
0 2
3 5

]
×2 =?
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Example of “work-out” pants from the 1st week (P56)

Market price of the work-out brand pants: P

Sales volume of the produced pants: Q

Market supply: Qs = P − 10

Market demand: Qd = −2P + 200

Market clearing: Qs = Qd = 3Q

Linear equations

2P + 3Q =200

P − 3Q =10

[
2 3 200
1 −3 10

]

The system of linear equations in P and Q is written as[
2 3
1 −3

] [
P
Q

]
=

[
200
10

]
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System of Linear Equation: General expression

A system of linear equations in x = (x1, . . . , xn) is

Ax = b

where A is a m × n matrix and b is a m × 1 vector.

In the above example (m = n = 2):

A =

[
2 3
1 −3

]
, x =

[
P
Q

]
, b =

[
200
10

]

How to solve the linear system Ax = b?

Elimination method discussed in the 1st week

Can we just “divide” both sides of Ax = b by A?

Yes, but it is not always possible.

When is it possible? How can we conduct the “division”?
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How to divide both sides of Ax = b by A
Square matrix
The first requirement is that A is a square matrix, that is,
m = n. In other words, we require that

Number of equations = Number of variables!

If m ̸= n, we need to use elimination to solve the system.

Inverse Matrix
The 2nd requirement is to derive the “Inverse Matrix” of
A. Let A be a n × n square matrix.

Dividing both sides of Ax = b by A is equivalent to
multiplying both sides by the inverse of A, known as A−1

Inverse of Scalar (n = 1)
A=[a], or A=a with the real number a ̸= 0, then

A−1 =
1
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Inverse of a matrix
The inverse of a square matrix A, sometimes called a
reciprocal matrix, is a matrix A−1 such that

A−1A = AA−1 = In

where In is the n × n identity matrix

In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

A square matrix A is invertible if A−1 exists.

A−1 does not always exist. For example, A has only zero
entries.

If the determinant of a given square matrix is non-zero,
then this matrix is invertible.
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Determinant of a matrix
The determinant is a scalar value that is a function of the
entries of a square matrix.

The determinant of a 2 × 2 square matrix is as follows.

Suppose that

A =

[
a b
c d

]
, det(A) = ad − bc

We can also write the determinant as

det(A) = |A| =
∣∣∣∣a b
c d

∣∣∣∣
Determinant of a matrix
The inverse of A is

A−1 =
1

det(A)

[
d −b
−c a

]
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Example of the ‘work-out’ brand pants: Ax = b

A =

[
2 3
1 −3

]

det(A) =
∣∣∣∣ 2 3

1 −3

∣∣∣∣ = 2 × (−3)− 3 × 1 = −9

A−1 =
1

det(A)

[
−3 −3
−1 2

]
=

1
−9

[
−3 −3
−1 2

]
=

[
1/3 1/3
1/9 −2/9

]
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Solve the system: Ax = b

Consider a system of linear equations in x and y:[
a11 a12

a21 a22

] [
x
y

]
=

[
b1

b2

]
, |A| =

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ ̸= 0

Multiply both sides by A−1 on the left :[
1 0
0 1

] [
x
y

]
=

[
a11 a12

a21 a22

] −1

×
[

b1

b2

]
[

x
y

]
=

[
a11 a12

a21 a22

] −1

×
[

b1

b2

]
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Example of Pant-making Firm: Ax = b

[
2 3
1 −3

] [
P
Q

]
=

[
200
10

]
Multiply both sides by A−1 on the left :[

P
Q

]
=

[
2 3
1 −3

] −1

×
[

200
10

]
=

[ 1
3

1
3

1
9 −2

9

]
×

[
200
10

]
=

[ 1
3 × 200 + 1

3 × 10
1
9 × 200 − 2

9 × 10

]
=

[
70
20

]
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An Explicit Formula: Cramer’s Rule

Recall the solution:[
x
y

]
=

[
a11 a12

a21 a22

] −1

×
[

b1

b2

]
Work it out:

x =

∣∣∣∣ b1 a12

b2 a22

∣∣∣∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ , y =

∣∣∣∣ a11 b1

a21 b2

∣∣∣∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣
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Alternative: Cramer’s Rule

[
2 3
1 −3

] [
P
Q

]
=

[
200
10

]

P =

∣∣∣∣ 200 3
10 −3

∣∣∣∣∣∣∣∣ 2 3
1 −3

∣∣∣∣ =
200 × (−3)− 3 × 10

2 × (−3)− 3 × 1
= 70

Q =

∣∣∣∣ 2 200
1 10

∣∣∣∣∣∣∣∣ 2 3
1 −3

∣∣∣∣ =
2 × 10 − 200 × 1
2 × (−3)− 3 × 1

= 20
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Summary: Matrix Operations
Summation and Subtraction: all matrices have same size
Multiplication

Two rules: Scalar × Matrix, Matrix × Matrix

Matrix × Matrix: match the size!

Inverse

Only defined for square matrix

A is invertible if and only if det(A) ̸= 0

Formula for the inverse of 2 × 2 matrix

Summary: Solve linear equations
Consider a system of linear equations in x and y: Ax = b

1) Solve by elimination method (first week lecture)

2) Solve by using inverse matrix

3) Solve by Cramer’s rule (2 × 2 matrix)
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Eigenvalues and Eigenvectors
Definition: An eigenvector of a square matrix A is a
non-zero vector x such that when A is multiplied by x, the
result is a scalar multiple of x, that is,

Ax = λx,

where λ is a scalar called the eigenvalue corresponding to
the eigenvector x.
To solve eigenvalues, we can rewrite Ax = λx as

Ax = λI x, and then (A − λI)x = 0

where I is an identity matrix with same dimension as A
If x is non-zero, this equation will only have a solution if

|A − λI | = 0

which says the determinant of A − λI is zero.
This equation is called the characteristic equation of A
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An Example of solving eigenvalues of a 2 × 2 matrix

Let A =

[
−6 3
4 5

]
. To solve the eigenvalues of A, we have

|A − λI | =
∣∣∣∣[−6 3

4 5

]
−
[
λ 0
0 λ

]∣∣∣∣ = ∣∣∣∣[−6 − λ 3
4 5 − λ

]∣∣∣∣
= (−6 − λ)(5 − λ)− 3 × 4

= λ2 + λ− 42 = (λ+ 7)(λ− 6) = 0

Therefore, the eigenvalues are λ1 = −7 and λ2 = 6.

Examples of solving eigenvalues of a 2 × 2 matrix
Plugging-in λ = −7 into (A − λI)x = 0, we have[

1 3
4 12

]
x = 0

This leads to x1 + 3x2 = 0 and 4x1 + 12x2 = 0
Either equation will lead to x1 = −3x2. So, the eigenvector is
any non-zero multiple of (−3, 1)⊤ 31 / 46



Eigenvector corresponding to λ = 6
Plugging-in λ = 6 into (A − λI)x = 0, we have[

−12 3
4 −1

]
x = 0

This leads to −12x1 + 3x2 = 0 and 4x1 − x2 = 0
Either equation will lead to x2 = 4x1. So, the eigenvector is any
non-zero multiple of (1, 4)⊤

Normallise Eigenvectors

Corresponding to an eigenvalue, the eigenvector is
obtained subject to a non-zero multiplicative scalar. As
such, there are an infinite number of eigenvectors.

One such vector that is particularly nice is that whose
sum of squared elements equals to 1

Normalisation of a vector is to divide it by its norm.

Normalised eigenvectors in the above problem is:
(−3/

√
10, 1/

√
10)⊤ and (1/

√
17, 4/

√
17)⊤
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Rank
The maximum number of linearly independent rows in a
matrix A is called the row rank of A.

The maximum number of linearly independent columns
in A is called the column rank of A.

If A is an m × n matrix, then it is obvious that “row rank of
A is less than m, and column rank of A is less than n”.

What is not so obvious, however, is that for any matrix A,
“the row rank of A = the column rank of A”.
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How to compute the rank: Gaussian Elimination

 1 2 1
−2 −3 1
3 5 0

 2R1+R2→R2−→

1 2 1
0 1 3
3 5 0

 −3R1+R3→R3−→

1 2 1
0 1 3
0 −1 −3


R2+R3→R3−→

1 2 1
0 1 3
0 0 0

 −2R2+R1→R1−→

1 0 −5
0 1 3
0 0 0


Rank

The final matrix (in row echelon form) has two non-zero
rows and thus the rank of matrix A is 2.

Solve the ranks: B =

2 1 3
3 1 5
4 2 6

 , C =

 1 2 3
2 5 7
−1 −2 −4
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Properties of rank

The rank of an m × n matrix A is a non-negative integer
and cannot be greater than either m or n. that means
Rank(A) ≤ min(m,n)

Only a zero matrix has rank zero.

If A is a square matrix (that is, m = n), then A is invertible
if and only if A has rank n (that is, A has a full rank).

If B is any n × k matrix, then

Rank(AB) ≤ min(Rank(A),Rank(B))

If B is an n × k matrix of rank n, then

Rank(AB) = Rank(A)

Rank of A is r if and only if there exist an invertible m × m
matrix X and an invertible n × n matrix Y such that

X AY =

[
Ir 0
0 0

]
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Properties of rank

If A is a matrix over the real numbers, then we have

Rank(A) = Rank(A⊤A) = Rank(AA⊤) = Rank(A⊤)

Applications of the rank of matrices: Linear Equations
Suppose a system of linear equations is: Ax = b, where

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn

 , and b =


b1

b2

· · ·
bm


The augmented matrix is given by

(A|b) =


a11 a12 · · · a1n b1

a21 a22 · · · a2n b2

· · · · · · · · · · · · · · ·
am1 am2 · · · amn bm
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Applications of the rank of matrices: Linear Equations

The linear system is inconsistent if the rank of the
augmented matrix is greater than the rank of the
coefficient matrix.

If the ranks of these two matrices are equal, then the
system must have at least one solution.

The solution is unique if and only if the rank equals the
number of variables, which means

Rank(A) = Rank(A|b) = n.
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Linear Programming: An example
Example 2 in Chapter 17, Essential mathematics for economic analysis (2012): link
here.

Consider a firm that
produces two goods, A and B;
has two factories that jointly produce the two goods; and
receives an order: 300 units of A and 500 units of B
What is the minimal cost to meet this order?

Fixed cost
The costs of operating the two factories are 10 thousand
dollars and 8 thousand dollars per hour.

Total cost (in thousand dollars)

C = 10u1 + 8u2

where u1 and u2 are the number of operating hours for the two
factories, and physical constraints are u1 ≥ 0 and u2 ≥ 0.
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Production constraints
The two factories jointly produce the two goods in the
following quantities (per hour):

Factory 1 Factory 2
Good A 10 20
Good B 25 25

Total production of A: 10u1 + 20u2

Total production of B: 25u1 + 25u2

Order constraints:

10u1 + 20u2 ≥ 300, 25u1 + 25u2 ≥ 500

Formulating the problem
Minimize 10u1 + 8u2

subject to
{

10u1 + 20u2 ≥ 300
25u1 + 25u2 ≥ 500

, and u1,u2 ≥ 0
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Feasible region
First, we need to determine the set of (u1,u2) that satisfies all
the constraints from the picture:

10u1 + 20u2 ≥ 300

25u1 + 25u2 ≥ 500

u1,u2 ≥ 0

Graphical approach: First Constraint
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Adding another constraint

Add the straight line 25u1 + 25u2 = 500.

25u1 + 25u2 ≥ 500: the upper part of the line
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Feasible region
u1,u2 ≥ 0: only look at the first quadrant
Feasible Set S has three ‘corner’ points: A, B, C.

Extreme point theorem
If an optimal solution exists, it must be at one of the corner
points of the feasible region. It is obvious that our problem has
an optimal solution. We need to verify the cost at the corner
points:

A: u1 = 0, u2 = 20

B: u1 =?, u2 =?

C: u1 = 30, u2 = 0
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Determine the corner point

To determine the corner point B, we solve

10u1 + 20u2 =300

25u1 + 25u2 =500

that is [
10 20
25 25

] [
u1

u2

]
=

[
300
500

]
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Solve by Cramer’s Rule

[
10 20
25 25

] [
u1

u2

]
=

[
300
500

]

u1 =

∣∣∣∣ 300 20
500 25

∣∣∣∣∣∣∣∣ 10 20
25 25

∣∣∣∣ =
300 × 25 − 20 × 500

10 × 25 − 20 × 25
= 10

u2 =

∣∣∣∣ 10 300
25 500

∣∣∣∣∣∣∣∣ 10 20
25 25

∣∣∣∣ =
10 × 500 − 300 × 25

10 × 25 − 20 × 25
= 10
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Determine the optimal solution

So we have all corner points now:

A: u1 = 0, u2 = 20,

giving total cost 10u1 + 8u2 = 160$k

B: u1 = 10, u2 = 10

giving total cost 10u1 + 8u2 = 180$k

C: u1 = 30, u2 = 0

giving total cost 10u1 + 8u2 = 300$k
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Solution

The optimal solution is obtained at the corner point A,
corresponding to u1 = 0 and u2 = 20. Hence,

The optimal solution is to operate factory 2 for 20 hours and
not to use factory 1 at all, with minimum cost 160 thousand
dollars.
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