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Outline

Last week:

Real numbers and fraction

Linear equations, inequalities and intervals

Percentage and percentage change

Quadratic equations

Linear functions and linear equations

Solving system of linear equations using matrix

This week:

Vectors

Linear dependence and independence

Orthonormal basis
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Linear Algebra
Scalar and vector

A scalar is a quantity that only has magnitude or size. For
example, any real number is a scalar.

A vector is a list of quantities, and therefore, it has a
magnitude and a direction.

A vector can be written as a column such as
(

1
2

)
, or a row

such as (1, 2).
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Elements of a vector
Elements of a vector are the entries inside the brackets

size (also called dimension or length) of a vector is the
number of elements it contains.

A vector of size n can be called an n-vector

We denote an n-vector using the symbol a⃗ (or a if it won’t
cause confusion), the ith element of the vector a⃗ is
denoted as ai, where the subscript i is an integer index
that runs from 1 to n, the size of the vector

Two vectors a⃗ and b⃗ are equal, which we denote a⃗ = b⃗, if
they have the same size and ai = bi, for i = 1, 2, . . . ,n

Elements of a vector are scalars. If these scalars are real
numbers, we call the vector a real vector

The set of all real numbers is written as R, and the set of
all real n-vectors is denoted as Rn

If we write a⃗ ∈ Rn, this is another way to say that a⃗ is an
n-vector with real entries
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Special vectors

A zero vector is a vector with all elements being zero

A unit vector is a vector with all elements being equal to
zero, except for one element being equal to one

Transpose of a vector

If a⃗ denotes an n-vector, then by default, it is a column
vector, which has one column with n elements in an order
listed from top to bottom

Transpose of a⃗, denoted as a⃗⊤ or a⃗′, is to express the
elements of a⃗ in a row with the elements in the same
order listed from left to the right

Example: Unit vectors in 3-dimensional space

Any point can be represented as x⃗ = (x1, x2, x3)
′, where

the elements are coordinates
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There are three different unit vectors:

i⃗ = (1, 0, 0)⊤, j⃗ = (0, 1, 0)⊤, k⃗ = (0, 0, 1)⊤.

Any vector x⃗ = (x1, x2, x3)
⊤ can be represented as

x⃗ = x1⃗i + x2⃗j + x3k⃗.

Example: A vector given by p⃗ = (2, 3, 5)⊤ is expressed as

p⃗ = 2⃗i + 3⃗j + 5k⃗.

6 / 40



Vector addition
Two vectors of the same size (dimension) can be added
together by adding the corresponding elements, to form
another vector of the same size, which is called the sum of
the two vectors

Suppose a⃗ = (0, 4, 3)′ and b⃗ = (1, 2, 1)′, and then
a⃗ + b⃗ = (1, 6, 4)′

Vector subtraction is similar a⃗ − b⃗ = (−1, 2, 2)′.

The result of vector subtraction is called the difference of
the two vectors

Properties of vector addition

Vector addition is commutative: a⃗ + b⃗ = b⃗ + a⃗

Vector addition is associative: (a⃗ + b⃗) + c⃗ = a⃗ + (b⃗ + c⃗)

a⃗ + 0⃗ = 0⃗ + a⃗ = a⃗, and a⃗ − a⃗ = 0⃗,
where 0⃗ has the same dimension as a⃗
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Example: Market clearing

Suppose the k-vector q⃗i represents the quantities of k
goods or resources produced (when positive) or
consumed (when negative) by Agent i, for i = 1, 2, . . . ,N

For instance, (q⃗5)4 = −2.7 means that Agent 5 consumes
2.7 units of Resource 4

The sum s⃗ = q⃗1 + . . .+ q⃗N is the k-vector of total net
surplus of the resources (or shortfall when entries are all
negative)

When s⃗ = 0⃗, we have a closed market, which means that
the total quantity of each resource produced by the
agents balances the total quantity consumed.

In this case, the k resources are exchanged among the
agents, and we say that the market clears
(with the resource vectors q⃗1, . . . , q⃗N )
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Multiplication of a vector by a scalar

Multiplication of a vector by a scalar is conducted by
multiplying every element of the vector by the scalar

(−2)×

1
9
6

 =

 −2
−18
−12

 ,

1
9
6

× 1.5 =

 1.5
13.5

9

 .

Scalar multiplication on the left has the same meaning as
that on the right, which is obtained by multiplying each
component by the scalar

Note that 0 × a⃗ = a⃗ × 0 = 0⃗

By definition, we have c × a⃗ = a⃗ × c, for any scalar c and
any vector a⃗. It is called the commutative property of
scalar-vector multiplication

Scalar-vector multiplication can be written in either order
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Scalar multiplication laws
Let a⃗ and b⃗ denote 2 vectors and c1 and c2 denote 2 scalars

(c1 × c2)× a⃗ = c1 × (c2 × a⃗)

Left-distributive property: (c1 + c2)× a⃗ = c1 × a⃗ + c2 × a⃗

Right-distributive property: a⃗ × (c1 + c2) = a⃗ × c1 + a⃗ × c2

Another version of right-distributive property:
c1 × (a⃗ + b⃗) = c1 × a⃗ + c1 × b⃗

Linear combinations
If a⃗1, . . . , a⃗n are p-vectors, and c1, . . . , cn are scalars, then the
new vector

c1a⃗1 + . . .+ cna⃗n.

is called a linear combination of the vectors a⃗1, . . . , a⃗n. The
scalars c1, . . . , cn are coefficients of the linear combination
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Linear combination of unit vectors
Let a⃗ = (a1, . . . ,ak)

⊤ denote a k-vector, and e⃗1, . . . , e⃗k denote k
different unit vectors (of the dimension k). We can express a⃗
as

a⃗ = a1e⃗1 + . . .+ ak e⃗k

A simple example is−1
3
5

 = (−1)×

1
0
0

+ 3 ×

0
1
0

+ 5 ×

0
0
1


Special forms of linear combination c1a⃗1 + . . .+ cna⃗n

Sum of vectors: c1 = . . . = cn = 1

Average of vectors: c1 = . . . = cn = 1/n

Affine combination: c1 + . . .+ cn = 1

Convex combination (aka as a mixture or a weighted
average): c1 + . . .+ cn = 1, and ci ≥ 0, for i = 1, . . . ,n
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Inner Product
The (standard) inner product (also called dot product) of two
n-vectors a⃗ = (a1, . . . ,an)

⊤ and b⃗ = (b1, . . . ,bn)
⊤ is defined as

a⃗⊤b⃗ = a1b1 + . . .+ anbn

which is the sum of the products of corresponding entries,
also denoted as a⃗ · b⃗ or ⟨a⃗, b⃗⟩

Here is a simple example:

[−1, 2, 3]

 1
0
−2

 = (−1)× 1 + 2 × 0 + 3 × (−2) = −7

It is the sum of element-by-element multiplication of a
row vector and a column vector

Dimensions of the two vectors are compatible:
(1 × n)× (n × 1)
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Properties of Inner Product

Commutativity: a⃗⊤b⃗ = b⃗⊤a⃗

Associativity with scalar multiplication: (ca⃗)⊤b⃗ = c(a⃗⊤b⃗)

Distributivity with vector addition:
(a⃗1 + a⃗2)

⊤b⃗ = a⃗⊤
1 b⃗ + a⃗⊤

2 b⃗

For any vectors a⃗1, a⃗2, b⃗1 and a⃗2 of the same size
(dimension), we have:

(a⃗1 + a⃗2)
⊤(b⃗1 + b⃗2) = a⃗⊤

1 b⃗1 + a⃗⊤
1 b⃗2 + a⃗⊤

2 b⃗1 + a⃗⊤
2 b⃗2

Can you prove this?

General examples

Unit vector: e⃗⊤i a⃗ = ai (inner product of vector a⃗ with the
ith standard unit vector gives the ith element a⃗)

Sum: 1⃗′a⃗ = a1 + · · ·+ an (inner product of vector a⃗ with
the vector of ones gives the sum of the elements of a⃗)
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General examples

Average: a⃗⊤1⃗/n (inner product of an n-vector a⃗ with the
vector 1⃗/n gives the average or mean of the elements of a⃗)

Sum of squares: a⃗⊤a⃗ = a2
1 + · · ·+ a2

n (inner product of a
vector with itself gives the sum of the squares of the
elements)

Selective sum: Let b⃗ be a vector with all entries being
either 0 or 1. Then b⃗⊤a⃗ is the sum of the elements in a⃗ for
which bi = 1

Example: Polynomial evaluation
Suppose the n-vector c⃗ represents the coefficients of a
polynomial p(x) of degree n − 1

p(x) = c1 + c2x + c3x2 + · · ·+ cnxn−1

Let r be a real number, and let z⃗ = (1, r, r2, . . . , rn−1) be an
n-vector of powers of r . Then c⃗⊤z⃗ is the value of p(x) at x = r
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Example: Discounted total
Let c⃗ be an n-vector representing a cash flow with ci being the
cash to be received (when ci > 0) by the end of the ith year.
Let d⃗ be an n-vector defined as

d⃗ =

(
1,

1
1 + r

, . . . ,
1

(1 + r)n−1

)⊤

where r is an interest rate. Then

d⃗′c⃗ = c1 +
c2

1 + r
+ · · ·+ cn

(1 + r)n−1

is the discounted total of future-year cash flow, that is, its net
present value (NPV) at the end of the current year with
interest rate r .
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Linear functions
The notation f : Rn → R means that f is a function that
maps real an n-vector to a real number, that is, it is a
scalar-valued function of an n-vector

If x⃗ is an n-vector, then f (x⃗), which is a scalar, denotes the
value of the function f at x⃗

In the notation f (x⃗), x⃗ is referred to as the argument of
the function

We can also interpret f as a function of n scalar
arguments, the entries of the vector argument, in which
case we write f (x⃗) as

f (x⃗) = f (x1, x2, · · · , xn)

Inner product function
Suppose a⃗ = (a1, . . . ,an)

⊤ is an n-vector. We can define a
scalar-valued function f of an n-vector x⃗ = (x1, . . . , xn)

⊤:

f (x⃗) = a⃗⊤x⃗ = a1x1 + a2x2 + · · ·+ anxn
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Linear functions: Superposition and linearity

The inner product function function satisfies

f (αx⃗ + βy⃗) = a⃗⊤(αx⃗ + βy⃗)

= a⃗⊤(αx⃗) + a⃗⊤(βy⃗)

= α(a⃗⊤x⃗) + β(a⃗⊤y⃗)

= αf (x⃗) + βf (y⃗)

This property is called superposition

A function f (x⃗) is called a linear function if it satisfies the
superposition property:

f (αx⃗ + βy⃗) = αf (x⃗) + βf (y⃗)

On the left-hand side, the term αx⃗ + βy⃗ involves
scalar-vector multiplication and vector addition

On the right-hand side, αf (x⃗) + βf (y⃗) involves ordinary
scalar multiplication and scalar addition
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Linear functions: Superposition and linearity

If a function f is linear, superposition extends to linear
combinations of any number of vectors, and we have

f (α1x⃗1 + . . .+ αk x⃗k) = α1f (x⃗1) + . . .+ αkf (x⃗k)

for any n-vectors x⃗1, . . . , x⃗k and any scalars α1, . . . , αk .

This more general k-term form of superposition reduces
to the 2-term form given above when k = 2.

Superposition for f (αx⃗ + βy⃗)

Homogeneity: For any n-vector x⃗ and any scalar α, we
have f (αx⃗) = αf (x⃗)

Additivity: For any n-vectors x⃗ and y⃗, we have
f (x⃗ + y⃗) = f (x⃗) + f (y⃗)

Homogeneity: scaling x⃗ is the same as scaling f (x⃗)

Additivity: adding the vector arguments is the same as
adding the function values
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Inner product representation of a linear function
Suppose f is a scalar-valued function of an n-vector, and is
linear, that is,

f (αx⃗ + βy⃗) = αf (x⃗) + βf (y⃗)

holds for any n-vectors x⃗ and y⃗, and for any scalars α and β.
Then there exists an n-vector a⃗, such that

f (x⃗) = a⃗⊤x⃗, for all x⃗.

We call a⃗⊤x⃗ the inner product representation of f (can you
prove this statement? try to do it!)

Affine functions
A linear function plus a constant is called an affine
function

A function f : Rn → R is affine if and only if it can be
expressed as f (x⃗) = a⃗⊤x⃗ + b for some n-vector a⃗ and
scalar b
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Affine functions
Example: the function of x⃗ = (x1, x2, x3)

⊤ defined by

f (x⃗) = 2.3 + 2x1 + 1.3x2 − x3

is affine, with b = 2.3 and a⃗ = (2, 1.3,−1)⊤

Any affine scalar-valued function satisfies the following
variation on the superposition property:

f (αx⃗ + βy⃗) = αf (x⃗) + βf (y⃗)

for all n-vectors x⃗ and y⃗, and all scalars α and β that satisfy
α+ β = 1 (can you prove this statement? try to do it!)
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Norm
The Euclidean norm of an n-vector x⃗ (named after the
Greek mathematician Euclid), denoted as ∥x⃗∥, is the
square root of the sum of the squares of all elements:

∥x⃗∥ =
√

x2
1 + . . .+ x2

n

Euclidean norm can also be expressed as the square root
of the inner product of the vector with itself ∥x⃗∥ =

√
x⃗⊤x⃗

Euclidean norm of a scalar c is ∥c∥ =
√

c2 = |c|.
Euclidean norm can be considered a generalisation or
extension of the absolute value or magnitude, that applies
to vectors

Properties of Norm

Nonnegative homogeneity: ∥cx⃗∥ = |c| × ∥x⃗∥.
The norm of multiplying a vector by a scalar c equals the
norm of the vector multiplied by the scalar.
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Properties of Norm

Nonnegative homogeneity: ∥cx⃗∥ = |c| × ∥x⃗∥.

Triangle inequality: ∥x⃗ + y⃗∥ ≤ ∥x⃗∥+ ∥y⃗∥. Euclidean norm
of a sum of two vectors is no more than the sum of their
norms.

Non-negativity: ∥x⃗∥ ≥ 0.

Definiteness: ∥x⃗∥ = 0 if and only if x⃗ = 0⃗.

The properties of non-negativity and definiteness is called
positive definiteness, which states that the norm is always
non-negative, and zero only when the vector is zero.

Norm of a sum
Euclidean norm of a⃗ + b⃗ is

∥a⃗ + b⃗∥ =

√
∥a⃗∥2 + 2a⃗⊤b⃗ + ∥b⃗∥2
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Distance
Euclidean distance between a⃗ and b⃗ is

dist(a⃗, b⃗) = ∥a⃗ − b⃗∥

Distance: Example
Consider three 4-vectors

u⃗ =


1.8
2.0
−3.7
4.0

 , v⃗ =


0.6
2.1
1.9
−1.4

 , w⃗ =


2.0
1.9
−4.0
4.6



dist(u⃗, v⃗) =
√
(1.8 − 0.6)2 + (2 − 2.1)2 + (−3.7 − 1.9)2 + (4 + 1.4)2

≈ 8.368

dist(u⃗, w⃗) ≈ 0.387, and dist(v⃗, w⃗) ≈ 8.533

So, u⃗ is much closer to w⃗ than it is to v⃗. 23 / 40



Distance: Triangle inequality
For any three vectors a⃗, b⃗ and c⃗, which are of the same
dimension (size), we have

∥a⃗ − c⃗∥ ≤ ∥a⃗ − b⃗∥+ ∥b⃗ − c⃗∥.

To show how it holds, we have

∥a⃗ − c⃗∥ = ∥(a⃗ − b⃗) + (b⃗ − c⃗)∥.

According to the triangle inequality of Euclidean norm, we
have

∥(a⃗ − b⃗) + (b⃗ − c⃗)∥ ≤ ∥(a⃗ − b⃗)∥+ ∥(b⃗ − c⃗)∥.

Therefore, the triangle inequality holds for the distance
measure.
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Cauchy-Schwarz Inequality
An important inequality that relates norms and inner
products is the Cauchy-Schwarz Inequality:

|a⃗⊤b⃗| ≤ ∥a⃗∥ × ∥b⃗∥,

for any n-vectors a⃗ and b⃗.
Expressing in terms of elements of vectors, this inequality
becomes

|a1b1 + . . .+ anbn| ≤ (a2
1 + . . .+ a2

n)
1/2(b2

1 + . . .+ b2
n)

1/2.

To show that this inequality holds, we have the following 2
scenarios.

1) If a⃗ = 0⃗ or b⃗ = 0⃗, the equality sign clearly holds.

2) Assume a⃗ ̸= 0⃗ and b⃗ ̸= 0⃗ and let c1 = ∥a⃗∥ and c2 = ∥b⃗∥.
We observe that
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Cauchy-Schwarz Inequality

0 ≤ ∥c2a⃗ − c1b⃗∥2

= ∥c2a⃗∥2 − 2(c2a⃗)⊤(c1b⃗) + ∥c1b⃗∥2

= c2
2∥a⃗∥2 − 2c2c1(a⃗⊤b⃗) + c2

1∥b⃗∥2

= ∥b⃗∥2∥a⃗∥2 − 2∥b⃗∥∥a⃗∥(a⃗⊤b⃗) + ∥a⃗∥2∥b⃗∥2,

which results in

0 ≤ 2∥a⃗∥2∥b⃗∥2 − 2∥b⃗∥∥a⃗∥(a⃗⊤b⃗).

Dividing both sides by 2∥b⃗∥∥a⃗∥, we obtain that

a⃗⊤b⃗ ≤ ∥b⃗∥∥a⃗∥.

Applying this inequality to −a⃗ and b⃗, we obtain

−a⃗⊤b⃗ ≤ ∥b⃗∥∥a⃗∥.
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Cauchy-Schwarz Inequality
Putting these 2 inequalities together, we obtain

|a⃗⊤b⃗| ≤ ∥b⃗∥∥a⃗∥.

Prove triangle inequality of Euclidean norm
We can use the Cauchy-Schwarz inequality to prove the
triangle inequality for vectors. Let a⃗ and b⃗ be any vectors, then
we have

∥a⃗ + b⃗∥2 = ∥a⃗∥2 + 2a⃗⊤b⃗ + ∥b⃗∥2

≤ ∥a⃗∥2 + 2∥a⃗∥∥b⃗∥+ ∥b⃗∥2

=
(
∥a⃗∥+ ∥b⃗∥

)2
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Linear Dependence

A collection of n-vectors a⃗1, . . . , a⃗k (with k ≥ 1) is called
linearly dependent if

β1a⃗1 + · · ·+ βk a⃗k = 0⃗

holds for some β1, . . . , βk that are not all zero.

The zero vector can be formed as a linear combination of
the vectors, with coefficients that are not all zero

Linear dependence of a list of vectors does not depend on
the ordering of the vectors in the list

When a collection of vectors is linearly dependent, at least
one of the vectors can be expressed as a linear
combination of the other vectors. For instance, if βi ̸= 0,
then

a⃗i = (−β1/βi)a⃗1 + . . .+ (−βi−1/βi)a⃗i−1 + (−βi+1/βi)a⃗i+1 + . . .

+ (−βk/βi)a⃗k
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Linear dependence

If any vector in a collection of vectors is a linear
combination of the other vectors, then the collection of
vectors is linearly dependent

Linear dependence is an attribute of a collection of
vectors, and not individual vectors

Linear independence

A collection of n-vectors a⃗1, . . . , a⃗k (with ≥ 1) is called
linearly independent if it is not linearly dependent, which
means

β1a⃗1 + · · ·+ βk a⃗k = 0⃗

only holds for β1 = · · · = βk = 0

Linear independence is an attribute of a collection of
vectors, and not individual vectors
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Linear independence: Examples

A list consisting of a single vector is linearly dependent
only if the vector is zero. It is linearly independent only if
the vector is nonzero.

Any list of vectors containing the zero vector is linearly
dependent. For instance,

0a⃗1 + · · ·+ 0a⃗k + βk+10⃗ = 0⃗,

where the coefficients attached to a⃗1, . . . , a⃗k are 0, but the
coefficient attached to 0⃗ is non-zero

A list of two vectors is linearly dependent if and only if
one vector is a multiple of the other vector

A list of vectors is linearly dependent if any one of the
vectors is a multiple of another vector
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Linear independence: Examples

The following vectors

a⃗1 =

 0.2
−7.0
8.6

 , a⃗2 =

−0.1
2.0
−1.0

 , a⃗3 =

 0.0
−1.0
2.2


are linearly dependent, because a⃗1 + 2a⃗2 − 3a⃗3 = 0⃗.

The following vectors

a⃗1 =

1
0
0

 , a⃗2 =

 0
−1
1

 , a⃗3 =

−1
1
1


are linearly independent.
To show this, let β1a⃗1 + β2a⃗2 + β3a⃗3 = 0, which becomes β1 − β3

−β2 + β3

β2 + β3

 =

0
0
0


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Linear independence: Examples

1) Take the sum of the last two equations and obtain that
β3 = 0

2) Plug-in β3 = 0 into the 1st-and 2nd-equations and obtain
β2 = β1 = 0

3) β1a⃗1 + β2a⃗2 + β3a⃗3 = 0⃗ if and only if β1 = β2 = β3 = 0

4) Therefore, a⃗1, a⃗2 and a⃗3 are linearly independent

Unit vectors are linear Independent
The following unit n-vectors

e⃗1 =


1
0
· · ·
0

 , e⃗2 =


0
1
0
· · ·

 , · · · , e⃗n =


0
· · ·
0
1


are linearly independent. Let β1e⃗1 + β2e⃗2 + · · ·+ βne⃗n = 0⃗. Its
left-hand-side is actually (β1, β2, · · · , βn)

⊤ and equals 0⃗
32 / 40



Linear combinations of linearly independent vectors

Suppose a vector x⃗ is a linear combination of
a⃗1, a⃗2, . . . , a⃗k :

x⃗ = β1a⃗1 + β2a⃗2 + . . .+ βk a⃗k

When the vectors a⃗1, a⃗2, . . . , a⃗k are linearly independent,
the coefficients that form x⃗ are unique

If x⃗ can be a linear combination of a⃗1, a⃗2, . . . , a⃗k with
another set of coefficients

x⃗ = γ1a⃗1 + γ2a⃗2 + . . .+ γk a⃗k ,

then γi = βi, for i = 1, 2, . . . , k.

We can find the coefficients that form a vector x⃗ as a
linear combination of linearly independent vectors.

To prove this, we have

0⃗ = x⃗ − x⃗ = (γ1 − β1)a⃗1 + (γ2 − β2)a⃗2 + . . .+ (γk − βk)a⃗k
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Independence and dimension inequality

If the n-vectors a⃗1, a⃗2, . . . , a⃗k are linearly independent,
then k ≤ n.

A linearly independent collection of n-vectors can have at
most n elements (vectors).

Any collection of n + 1 or more n-vectors is linearly
dependent

Basis
A collection of n linearly independent n-vectors is called a
basis

If the n-vectors a⃗1, a⃗2, . . . , a⃗n are a basis, then any
n-vector x⃗ can be written as a linear combination of them.

Any n-vector b⃗ can be written in a unique way as a linear
combination of a basis a⃗1, a⃗2, . . . , a⃗n.
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Expansion in a basis

When we express an n-vector x⃗ as a linear combination of
a basis a⃗1, a⃗2, . . . , a⃗n, we refer to

x⃗ = β1a⃗1 + . . .+ βna⃗n

as the expansion of x⃗ in the basis of a⃗1, a⃗2, . . . , a⃗n.

The numbers β1, β2, . . . , βn are called the coefficients of
the expansion of x⃗ in the basis of a⃗1, a⃗2, . . . , a⃗n

Examples

The n standard unit n-vectors e⃗1, . . . , e⃗n are a basis. Any
n-vector b⃗ = (b1, . . . ,bn)

⊤ can be expressed as linear
combination:

b⃗ = b1e⃗1 + . . .+ bne⃗n

When we express an n-vector x⃗ as a linear combination of
a basis a⃗1, a⃗2, . . . , a⃗n, we refer to x⃗ = β1a⃗1 + . . .+ βna⃗n as
the expansion of x⃗ in the basis of a⃗1, . . . , a⃗n.

Examples

The numbers β1, β2, . . . , βn are called the coefficients of
the expansion of x⃗ in the basis of a⃗1, a⃗2, . . . , a⃗n
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Orthonormal vectors
Orthogonal vectors: A collection of vectors a⃗1, a⃗2, . . . , a⃗k is
orthogonal if a⃗⊤

i a⃗j = 0 for any i and j with i ̸= j, and
i, j = 1, . . . , k

Orthonormal vectors: A collection of vectors a⃗1, a⃗2, . . . , a⃗k

is orthogonal if it is orthogonal and ∥a⃗i∥ = 1, for
i = 1, . . . , k

These two conditions can be combined into one
statement about the inner products of any pair of vectors
in the collection: a⃗1, a⃗2, . . . , a⃗n is orthonormal means that

a⃗⊤
i a⃗j =

{
1 for i = j
0 for i ̸= j

Orthonormal property is an attribute of a collection of
vectors, and not an attribute of vectors individually.

Linear independence of orthonormal vectors
Orthonormal vectors are linearly independent.
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Linear independence of orthonormal vectors
To prove this, suppose a⃗1, a⃗2, . . . , a⃗k are orthonormal, and let

β1a⃗1 + . . .+ βk a⃗k = 0⃗.

Taking the inner product of this equality with a⃗i, we have

0 = a⃗⊤
i 0⃗ = a⃗⊤

i (β1a⃗1 + . . .+ βk a⃗k)

= β1(a⃗⊤
i a⃗1) + . . .+ βk(a⃗

⊤
i a⃗k) = βi

Linear combinations of orthonormal vectors
Suppose a vector x⃗ is a linear combination of orthonormal
vectors a⃗1, a⃗2, . . . , a⃗k are orthonormal:

x⃗ = β1a⃗1 + . . .+ βk a⃗k .

Taking the inner product of this equality with a⃗i, we have

a⃗⊤
i x⃗ = a⃗⊤

i (β1a⃗1 + . . .+ βk a⃗k) = βi
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Linear combinations of orthonormal vectors
For any x⃗ that is a linear combination of orthonormal vectors
a⃗1, a⃗2, . . . , a⃗k , we have

x⃗ = β1a⃗1 + . . .+ βk a⃗k .

Taking the inner product of the left- and right-hand sides of
this equation with a⃗i, we have

a⃗⊤
i x⃗ = a⃗⊤

i (β1a⃗1 + . . .+ βk a⃗k) = βi,

because a⃗⊤
i a⃗j = 0 for any j ̸= i.

Replacing βi with a⃗⊤
i x⃗ in linear combination eqn, we have

x⃗ = (a⃗⊤
1 x⃗)a⃗1 + . . .+ (a⃗⊤

k x⃗)a⃗k . (1)

This identity is a method to check if an n-vector y⃗ is a linear
combination of orthonormal vectors a⃗1, . . . , a⃗k .
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Orthonormal basis
For a given orthonormal basis of a⃗1, . . . , a⃗k , if an n-vector y⃗
satisfies

y⃗ = (a⃗⊤
1 y⃗)a⃗1 + . . .+ (a⃗⊤

k y⃗)a⃗k ,

then y⃗ is linear combination of a⃗1, . . . , a⃗k .

Orthonormal basis: Example
Show that the following three 3-vectors are orthonormal

a⃗1 =

 0
0
−1

 , a⃗2 =
1√
2

1
1
0

 , a⃗3 =
1√
2

 1
−1
0


Simple calculation shows that a⃗⊤

1 a⃗2 = a⃗⊤
1 a⃗3 = a⃗⊤

2 a⃗3 = 0

∥a⃗1∥ =
√

02 + 02 + 12 = 1,

∥a⃗2∥ =
√

(1/
√

2)2 + (1/
√

2)2 + 02 = 1, and

∥a⃗3∥ =
√

(1/
√

2)2 + (−1/
√

2)2 + 02 = 1
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Linear combination of orthonormal basis: Example
Show that the 3-vector y⃗ = (1, 2, 3)⊤ is a linear combination of
the orthonormal basis given above.
Answer: Simple calculation shows that

a⃗⊤
1 y⃗ = −3, a⃗⊤

2 y⃗ = 3/
√

2, a⃗⊤
3 y⃗ = −1/

√
2

(a⃗⊤
1 y⃗)a⃗1 =

0
0
3

 , (a⃗⊤
2 y⃗)a⃗2 =

3/2
3/2

0

 , (a⃗⊤
3 y⃗)a⃗3 =

−1/2
1/2

0


Therefore, the sum of these 3 vectors are

(a⃗⊤
1 y⃗)a⃗1 + (a⃗⊤

2 y⃗)a⃗2 + (a⃗⊤
3 y⃗)a⃗3 =

1
2
3

 ,

which is exactly y⃗. This concludes that y⃗ is a linear
combination of the the orthonormal basis a⃗1, a⃗2 and a⃗3.
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