Fatigue life of laser clad hardfacing alloys on AISI 4130 steel under rotary bending fatigue test

Novana Hutasoit a,⇑, Vladimir Luzin b, Aaron Blicblau a, Wenyi Yan c, Milan Brandt d, Ryan Cottam a

a Industrial Research Institute Swinburne, Faculty of Engineering and Industrial Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
b Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
c Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
d School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Bundoora, VIC 3083, Australia

A R T I C L E I N F O

Article history:
Received 28 September 2013
Received in revised form 25 October 2014
Accepted 2 November 2014
Available online 13 November 2014

Keywords:
Laser cladding
Hardfacing coatings
Fatigue life
Neutron diffraction
Residual stresses

A B S T R A C T

Fatigue life study of structures constructed by laser cladding using two types of hardfacing alloy, Stellite 6 (Co base) and Deloro 40G (Ni base) on AISI 4130 steel substrate was conducted using rotary bending fatigue test at ambient temperature 20 °C. The laser clad specimens showed a reduced fatigue life compared to the specimen without cladding but of the same size due to the presence of residual stresses in substrate and coating regions. The presence of higher compressive residual stresses in substrate region and lower tensile residual stress in coating region of specimen laser clad with Stellite 6 generated longer fatigue life compared to the specimens laser clad with Deloro 40G, at a similar coating thickness level. With the same final structure size, coating thickness produced an inversely proportional effect on fatigue life where thinner coatings result in less reduction of fatigue life compared to thicker coating. The analytical model employed in this study demonstrated that thinner coatings alters axial residual stress by generating lower tensile residual stress in coating region which enhance fatigue life, compared to thicker coatings. This work has demonstrated the influence of coating type, coating thickness and load level on the fatigue life of the laser clad structures.

1. Introduction

Laser cladding is a laser surfacing technique that can enhance the properties and/or regenerate the surface of a component. In laser cladding, laser radiation is absorbed and melts a small region of the substrate into which the coating material is injected and fuses the coating material to the substrate, thus producing a new layer (Fig. 1). Compared to other thermo-mechanical processes, laser cladding is identified to be superior in terms of its capability to produce lower dilution levels [1–3] and finer microstructure in clad layer [2,4], thus this technique has been implemented to enhance surface properties, i.e. increases surface hardness [5,6], wear resistance [3,7,8] and corrosion resistance [9,10]; refurbish deteriorated engineering component across different industries [4,11–16]; and perform rapid prototyping with the aid of numerically controlled equipment (CNC) [17]. Despite the extensive research on laser cladding for re-surfacing or rapid prototyping, little information can be found on fatigue life of structure constructed by laser cladding, a type of loading that many engineering components are exposed in service. Several studies have addressed fatigue life of structure constructed by laser cladding using uniaxial tensile-compression fatigue load [18] and bending fatigue load [19] which represent two of the types of loading applications for fatigue. However, the fatigue life behavior based on rotary bending loading, in particularly simulating a shaft refurbished by laser clad hardfacing alloys on its surface, has not been extensively investigated. The analysis of fatigue life is based on the alteration in residual stresses generated by laser cladding processes.

2. Experimental and numerical simulation

2.1. Laser cladding

The substrate and coating materials used in this experiment were AISI 4130 steel, Stellite 6 and Deloro 40G, respectively, with chemical composition shown in Table 1. Laser cladding was performed with a fiber delivered Nd:YAG Rofin Sinar laser, using a power of 550 W, a spot size 3 mm with a Gaussian beam profile and was shielded by Argon gas, with a scan speed of 500 mm/ min. Stellite 6 and Deloro 40G powder was injected using an off-axis nozzle inclined at 60° to the substrate surface with powder...
feed rate of 4 g/min. Multiple tracks and multiple layers of Stellite 6 and Deloro 40G, each with powder size of 45–150 μm, were circumferentially deposited onto the surface of the grooved part of round bar AISI 4130 steel (Fig. 2).

2.2. Laser clad and fatigue test specimens manufacturing

The manufacturing of laser clad specimens were initiated by cutting a 12 mm diameter 4130 steel rod into 146 mm sections and followed by created groove at the middle of each section (Fig. 2). The diameter of grooved sections was set to three different size 5.5 mm, 6 mm and 6.5 mm that after laser cladding will create three different thickness of coating layer when cladding of the grooved section reaches the target diameter of minimum 8.3 mm. Smallest grooved section diameter (5.5 mm) is expected to generate the thickest coating layer (1.4 mm) while the largest grooved section diameter (6.5 mm) generate the thinnest coating layer (0.9 mm). Following the manufacturing of grooved section, multiple tracks with 70% overlap between track and multiple layers with 0.25 mm increment between each layer of Stellite 6 hard-facing alloy was laser clad onto the grooved section until the final grooved section diameter reached the minimum 8.3 mm, measured using Vernier caliper. Using the similar specimen geometry and laser processing parameters, sets of specimens were manufactured by deposited Deloro 40G hard-facing alloy on the grooved section of the specimens. This combination of initial groove diameters and laser cladding process parameters generated cladding layers with average thicknesses ranging from 1.06 to 1.82 mm in the machined fatigue samples.

Following the manufacturing of laser clad specimens, one specimen with grooved section diameter of 5.5 mm laser clad with Stellite 6 (specimen code STS) and one specimen laser clad with Deloro 40G (specimen code DS) were separated for residual stress measurement using neutron diffraction while others underwent a machining process to convert laser clad specimens to fatigue test specimens (Fig. 3). Along with laser clad specimens, substrate only (uncoated 4130 steel) also machined in order to manufacture fatigue test specimens (Fig. 3). All laser clad specimens that were machined down to fatigue test specimens geometry showed that coated region fully covered by coating material and no undercut was observed. This implied that the addition of 0.15 mm thick of coating layer that yielded 8.3 mm diameter on grooved section was sufficient to compensate dimensional distortion (e.g. bent) that occur during laser cladding process. Fatigue test specimens manufacturing was finalized by applying surface notch on the surface of substrate only (Fig. 4a) and on the surface coated specimen (Fig. 4b). The surface notch was made using wire cut method with a wire diameter of 0.25 mm, the depth of notch was 0.5 mm.

2.3. Metallography and hardness

The laser clad specimens were cut perpendicular to the laser clad track direction and ground-polished down to 1 μm. The samples were then etched in 2% Nital solution to reveal the microstructure of coating and heat affected zone at the vicinity of interface (location C and H in Fig. 4b). The Stellite 6 and Deloro 40G were electrolytically etched in 2% Nital solution using a circuit voltage of 8–10 mV. Micro-Vickers hardness measurements were performed using Buehler Micro Hardness Tester unit under 100 g load to measure the hardness of the coating and the substrate.

2.4. Residual stress measurement

Considering the fact that bending of a solid cylindrical object generates tension and compression along its axial direction, therefore the main interest of this research is to measure the axial residual stress that affecting the tension and compression stresses in axial direction of the specimen.

Table 1

<table>
<thead>
<tr>
<th>Composition (wt%)</th>
<th>Fe</th>
<th>C</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Si</th>
<th>Cr</th>
<th>Mo</th>
<th>Co</th>
<th>Ni</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISI 4130</td>
<td>Bal</td>
<td>0.28–0.33</td>
<td>0.40–0.60</td>
<td>0.035 max</td>
<td>0.04 max</td>
<td>0.15–0.30</td>
<td>0.80–1.10</td>
<td>0.15–0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical composition Stellite 6</td>
<td>3</td>
<td>1.2</td>
<td>1</td>
<td></td>
<td></td>
<td>1.5</td>
<td>29</td>
<td>1.5</td>
<td>Bal</td>
<td>3</td>
<td>4.5</td>
</tr>
<tr>
<td>Deloro 40G*</td>
<td>1.5</td>
<td>0.35</td>
<td>3.5</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bal</td>
</tr>
</tbody>
</table>

* Material Safety Data Sheet (MSDS) of Deloro 40G.
Upon specimen installation on the sample table, a series of intensity scan to measure the neutron counts by changing scan time with a given gauge volume, were performed to obtain statistically relevant neutron counts, where higher neutron counts yield a better accuracy and resolution. After a series of intensity scans, a program code was set up for strain scanner to automatically perform inter planar spacing (d-spacing) in substrate and coating region (Fig. 6). With reference to measured d-spacing obtained from strain scan, each component strain (ε_A, ε_R, ε_H) were calculated using equations

\[
\varepsilon_A = \frac{(d_n - d_0)}{d_0} \quad \text{(Axial)} \tag{1}
\]

\[
\varepsilon_R = \frac{(d_n - d_0)}{d_0} \quad \text{(Radial)} \tag{2}
\]

\[
\varepsilon_H = \frac{(d_n - d_0)}{d_0} \quad \text{(Hoop)} \tag{3}
\]

Then using of Poisson's ratio and elastic modulus with strain information, the stress in the three directions was calculated using the following equations [20]

\[
\sigma_R = \frac{E}{(1 + \nu)(1 - 2\nu)} \left\{ \varepsilon_R(1 - \nu) + \nu(\varepsilon_H + \varepsilon_A) \right\} \quad \text{(Radial direction)} \tag{4}
\]

\[
\sigma_H = \frac{E}{(1 + \nu)(1 - 2\nu)} \left\{ \varepsilon_H(1 - \nu) + \nu(\varepsilon_R + \varepsilon_A) \right\} \quad \text{(Hoop direction)} \tag{5}
\]

\[
\sigma_A = \frac{E}{(1 + \nu)(1 - 2\nu)} \left\{ \varepsilon_A(1 - \nu) + \nu(\varepsilon_R + \varepsilon_H) \right\} \quad \text{(Axial direction)} \tag{6}
\]

Since a high neutron count was only observed in the 4130 steel substrate region during intensity scan stage, accuracy of residual measurement is only available for this region. The parameters of d_0, E and ν of 1.731 Å, 224 GPa and 0.289 respectively, calculated from the data obtained in strain scanning stage were used to estimate the magnitude of the residual stresses in substrate region. As for the residual stresses measurement in Stellite 6 coating, the parameter of d_0, E and ν of 1.089 Å, 214.38 GPa and 0.302 respectively, were employed. In order to measure the residual stress in Deloro 40G coating, the parameter of d_0, E and ν of 1.075 Å, 214.38 GPa and 0.302 respectively, were employed. Following the measurement of residual stress using neutron diffraction technique, an analytical model was also employed to estimate the magnitude of the residual stresses, elucidated in Section 2.4.2.

Residual stress measurements using neutron diffraction technique in this research was performed on KOWARI neutron diffraction strain scanner at Australian Nuclear Science and Technology Organization (ANSTO), Lucas Heights, New South Wales, Australia.
2.4.2 Residual stress numerical modeling

Numerical modeling of residual stress formation in laser clad specimens was performed using a model developed by Tsui and Clyne [21] which analytically models residual stress formation in coated cylindrical geometry specimens. This analytical model not only took into account the dimension of coating and the substrate, but also the deposition stress of coating material; and coefficient of thermal expansion (CTE) of the coating and the substrate in calculating the magnitude and sign of the residual stresses. The deposition stress is defined as the unbalanced stress in the layer before it comes into equilibrium with the underlying material, at a particular substrate temperature [21], in which this unbalance stress causes misfit strains that for a coated specimen, is expressed as

\[\Delta \varepsilon = \frac{\sigma_d}{E_d} \]

where \(\Delta \varepsilon \) is the misfit strain, \(\sigma_d \) is the deposition stress and \(E_d \) is the elastic modulus of the coating. The definition of deposition stress also implies that the deposition of consecutive layer(s) affects the misfit strain and in turn affects the stress generated in the substrate and in the subsequent layer in the three directions, axial, radial and hoop. The elastic modulus of Stellite 6 and Deloro 40G employed in this study are considered as isotropic with value of 213 GPa [22] and 206.9 GPa [22], respectively. The other factor accounts for the formation of residual stress is the thermal contraction effect that causes misfit strain between deposited layers with the underlying material. In the case of coated substrate, misfit strain due to thermal contraction effect is expressed as [21]

\[\Delta \varepsilon = (\alpha_s - \alpha_d) \Delta T \]

where \(\alpha_s \) is the substrate’s CTE, \(\alpha_d \) is the coating’s CTE, \(\Delta T \) is the temperature difference between initial temperature and final temperature. The initial temperature can be the deposition temperature while the final temperature is the temperature when the specimen has undergone cooling process down to ambient temperature. As in residual stress formation due to deposition stress, the deposition of consecutive layer(s) affects the residual stress formation in substrate and in subsequent layer(s) that in turn affects the total residual stresses formed in the coated specimen. Coefficient of thermal expansion of different material employed in this study is presented in Table 2.

<table>
<thead>
<tr>
<th>Material</th>
<th>Coefficient of thermal expansion (CTE) ((^\circ\text{C}^-1))</th>
<th>Temperature range ((^\circ\text{C}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISI 4130 [49]</td>
<td>12.2 (at 20 (^\circ\text{C})), 14.2 (at 600 (^\circ\text{C}))</td>
<td>20–600</td>
</tr>
<tr>
<td>Stellite 6 [50]</td>
<td>11.35, 12.95, 13.6, 13.9, 14.2, 14.5, 14.7, 15.05, 15.5, 17.5</td>
<td>100–1000</td>
</tr>
<tr>
<td>Deloro 40G [51]</td>
<td>11.14, 12.49, 13.05, 13.56, 14.15, 14.70, 15.24, 16.22</td>
<td>100–800</td>
</tr>
</tbody>
</table>

^a Based on Inconel 617 material.

The detail derived equations, constants and assumptions of the residual stress analytical model are presented in [21]. Considering the concepts employed in the model developed by Tsui and Clyne [21], this analytical model is capable to predict the magnitude and the sign of the residual stresses in coating region, after laser cladding process and furthermore capable to predict the change of the magnitude of residual stresses when incorporating changes in the dimension of substrate and coating.

2.5. Fatigue test

Fatigue tests were performed on cantilever type rotary bending test rig (Fig. 7), under load of 100 N, 150 N and 200 N, with loading...
ratio \((R)\) of \(-1\). Fatigue test rig was driven by electric motor operating in 2850 rpm.

In this study, the presence of artificial notch on the surface of uncoated substrate and on the laser clad region of fatigue test specimen (Fig. 3) provide the crack initiation site for further crack propagation during fatigue loading, therefore fatigue life investigation was based on crack propagation stage until the specimens fractured. Uncoated substrate AISI 4130 steel specimens were employed as the reference in studying the effect of different type of coating materials and thicknesses on fatigue life of laser clad specimens. The actual coating thickness was measured on the surface of fractured specimen after fatigue test (Fig. 8).

Fatigue life analysis was performed using Weibull distribution analysis due to its ability to be used with small sample sizes when fitting the data [23]. Prior to implementing the Weibull distribution in fatigue life analysis, the relationship between load amplitude and fatigue life of, is presented as an S–N diagram which is implemented in rotary bending fatigue test of uniform material and surface treated material [24–29], which can be presented in an equation that follow power law function

\[
\sigma_a = a(N_f)^b
\]

where \(\sigma_a\) is the load amplitude, \(N_f\) is fatigue life and \(a, b\) are the power equation constants. Due to small number of specimens tested (3 specimens per condition), fatigue life is analyzed by calculating the mean fatigue life of each condition using maximum likelihood estimation (MLE) approach.

3. Results and discussion

3.1. Microstructure and micro Vickers hardness

The microstructure of Stellite 6 coating obtained in this experiment is a mixture of dendrites (bright color) structure that is rich with Co [30–32] and inter-dendritic structure (dark color) (Fig. 9) rich with eutectic carbide [31–35] formed by a eutectic reaction. Microstructure of heat affected zone (HAZ) for the specimen coated with Stellite 6, shown in Fig. 10, consists of ferrite (white color phase), pearlite (dark color phase) and tempered martensite or bainite (gray color phase). The microstructure in the coating area and the heat affected zone of the specimen coated with Deloro 40G is shown in Figs. 11 and 12 respectively. The microstructure of Deloro 40G coating obtained in this experiment is a mixture of dendritic (bright color) structure rich in Ni [36] and inter-dendritic structure (dark color) (Fig. 10) rich with carbide [36,37].

From Fig. 13, it can be observed that coating region is harder than substrate region. This higher hardness level is contributed by the presence of carbides in dendritic and inter dendritic structure (Figs. 8 and 10) as the result of higher content of strong carbide forming elements (Co, Cr, W) in Stellite 6 and mainly Cr element in Deloro 40G compared to the ones in AISI 4130 (Table 1). As for coating region, Stellite 6 coating shows a higher hardness level than Deloro 40G coating due to the presence of a larger amount of hard carbides as result of more carbide forming elements (Table 1).
3.2. Residual stress measured by neutron diffraction method

Due to its symmetrical geometry in the form of solid cylinder, residual stress data obtained in the measurement were presented in half geometry at different radial distances from center of specimen toward outer surface of specimen, as shown in Fig. 14. Residual stresses in substrate region of the specimen’s laser clad with thick Stellite 6 and Deloro 40G were found in compressive type, in axial direction. In addition, higher compressive residual stresses were formed in substrate region in specimen coated with Stellite 6 compared to the specimens coated with Deloro 40G (Fig. 14). Contrary to a small fluctuation of axial residual stress in substrate region, coating region exhibited a large deviation of residual stress that distributed from +610 MPa to −538 MPa in Stellite 6 coating and from +359 MPa to −539 MPa in Deloro 40G coating (Fig. 14). In addition to the effect of the multiple layers of coating material laser clad onto steel substrate, it was also expected that the presence of Cobalt element in Stellite 6 and Boron element in Deloro 40G (Table 1), influenced the large deviation of residual stress measured in coating region. As indicated by low neutron count during intensity scan in coating region, Cobalt and Boron tend to absorb rather than diffracting the incoming neutron which is required in order to obtain more accurately measurement. Therefore, the measurement of strain changes in coating region was expected to yield a less accurate result.

3.3. Residual stresses from numerical modeling

3.3.1. Numerical modeling validation

Numerical modeling was performed by adjusting deposition stress value for each type of coating material in conjunction with coefficient of thermal expansion value of substrate and coating material (Table 2) until the calculated residual stress in axial direction is coincident with average value measured by using neutron diffraction. In addition, by taking into account the deviation of residual stresses measured by neutron diffraction at radial distance 0 mm, 0.5 mm and 1.0 mm in substrate region (Fig. 14), the profile of residual stress was found to be closer to a linear line that is used as the reference in validating the numerical modeling. The locations indicated by radial distance of 1.5 mm and 2.0 mm (Fig. 14) are located closer to interface between substrate and coating region where dilution takes place [38], which causes larger deviation of residual stresses compared to the regions closer to...
the center of the substrate. Therefore measured residual stresses at locations close to interface were not referred to validate numerical modeling approach.

Numerical modeling of axial residual stress in substrate region that was calibrated by the result obtained by neutron diffraction method is contained in Fig. 15. From this figure, it can be observed that calculated axial residual stress in substrate region of specimen laser clad with Stellite 6 is in good agreement with the result obtained through neutron diffraction method. In the case of specimen laser clad with Deloro 40G, calculated axial residual in substrate region was found approximately 7% differ from the result obtained through neutron diffraction. This implied that after calibration, the analytical model employed in this study is found adequate to estimate the magnitude of residual stress in the substrate region and provided a reasonable estimation of the magnitude of residual stress in coating region. Analytical model employed in this study estimated the magnitude of axial residual stress generated in Stellite 6 coating region was +380 MPa (Fig. 15), lies in the upper portion of residual stress range measured by neutron diffraction method (Fig. 14). For comparison purpose, this magnitude of axial residual stress was found lower than tensile residual stress in Stellite 6 laser clad on tool steel, around +450 MPa that was measured using X-ray diffraction method [39]. This discrepancy is expected to contribute by different type of steel substrate used in the experiment that lead to different CTE; and different geometry of laser clad specimen employed in each study where these two factors influence the formation of residual stress. In addition, since X-ray diffraction method tends to estimate the residual stress higher than estimated by neutron diffraction method [40–42], the numerical modeling employed in this study that was calibrated by neutron diffraction result, provided a reasonable estimate of the magnitude of residual stress in coating region. As for the other type of coating material, the analytical model employed in this study estimated the magnitude of axial residual stress generated in Deloro 40G coating was +565 MPa (Fig. 15), higher than the maximum axial tensile residual stress measured by neutron diffraction method (Fig. 14).

3.3.2. Effect of coating thickness

In this study, coating thickness was varied by a combination of the specimen’s initial diameter and number of coating layers applied so that the outer diameter of the clad specimens was consistent. Specimen’s initial diameter is the diameter of region in the specimen that is laser clad with coating materials (Fig. 2), in this experiment, three groups of specimens prepared where different initial diameters were assigned, 5.5 mm, 6.0 mm and 6.5 mm. Number of coating layers applied is the total number of coating layer applied in the manufacturing of laser clad specimen before being machined down to manufacture the fatigue test specimens. Therefore, in order to manufacture the laser clad specimen, 8 layers of coating laser clad on specimen with small diameter (5.5 mm) and a less number of coating layers on specimen with a larger diameter (6.5 mm).

Parametric study on residual stress formation in laser clad specimen revealed that the magnitude of axial residual stress in substrate region and lower tensile residual stresses in coating region, in axial direction when compared to specimen laser clad with Deloro 40G. This can be contributed to the difference of coefficient of thermal expansion (CTE) at high temperature of Stellite 6 and Deloro 40G compared to AISI 4130 substrate (Table 2). The difference in CTE between AISI 4130 and Stellite 6 is lower than between AISI 4130 and Deloro 40G, thus a lower strain misfit between occurs between the two material (Eq. (8)) that leads to a lower level of residual stresses formed (Fig. 15). Whereas for the Deloro 40G there is a larger difference in CTE between AISI 4130 and Deloro 40G structure which forms a larger strain misfit that leads to higher residual stresses generated in the structure.

3.3.3. Effect of coating material

From Fig. 15, it can be observed that specimens laser clad with Stellite 6 tend to generate higher compressive residual stress in
Table 4
Fatigue life calculation for uncoated substrate AISI 4130 steel specimens and specimens laser clad with Stellite 6 and Deloro 40G, using Weibull method.

<table>
<thead>
<tr>
<th>Coating material/thickness</th>
<th>Load (N)</th>
<th>Fatigue life</th>
<th>Scale parameter (η)</th>
<th>Shape parameter (β)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>Mean</td>
<td>Standard deviation</td>
<td>Expected lower 95% confidence limit</td>
</tr>
<tr>
<td>Uncoated substrate AISI 4130 steel</td>
<td>200</td>
<td>55,729</td>
<td>53,520</td>
<td>1970</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>105,901</td>
<td>116,100</td>
<td>5863</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>500,645</td>
<td>445,000</td>
<td>45,770</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>53,411</td>
<td>48,490</td>
<td>4166</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>194,138</td>
<td>212,000</td>
<td>17,690</td>
</tr>
<tr>
<td>Stellite 6/1.29</td>
<td>200</td>
<td>39,789</td>
<td>40,570</td>
<td>1028</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>113,007</td>
<td>109,100</td>
<td>2822</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>250,102</td>
<td>228,100</td>
<td>18,340</td>
</tr>
<tr>
<td>Stellite 6/1.06</td>
<td>200</td>
<td>82,696</td>
<td>75,600</td>
<td>6975</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>143,888</td>
<td>142,100</td>
<td>13,610</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>386,375</td>
<td>279,400</td>
<td>83,970</td>
</tr>
<tr>
<td>Deloro 40G/1.82</td>
<td>200</td>
<td>3,776</td>
<td>3259</td>
<td>422</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>8724</td>
<td>8504</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>18,871</td>
<td>17,910</td>
<td>1458</td>
</tr>
</tbody>
</table>

(continued on next page)
strate and coating region was altered by coating thickness while maintaining constant deposition stress and coefficient of thermal expansion of substrate and coating material. Thick coating was produced by applying 8 layers of coating on the surface of grooved section with diameter of 5.5 mm while thin coating was produced by applying 6 layers of coating on the surface of grooved section with diameter of 6.5 mm.

In the case of thinly coated specimens constructed by using a larger initial diameter specimen and applying a less number of coating layers, it was estimated that lower compressive residual stresses in substrate region and lower tensile residual stress in coating region, in axial stress direction, were generated (Fig. 16). In contrary to thin coated specimen, the thick coated specimen constructed by using small initial diameter and applying more coating layers, exhibited the opposite trend (Fig. 16).

3.4. Fatigue life

Coating thickness data is contained in Table 3 while fatigue life calculation based on Weibull method of uncoated substrate AISI 4130 steel specimens and specimens laser clad with Stellite 6 and Deloro 40G is contained in Table 4; and presented in the form of S–N curve in Fig. 17.

3.4.1. Effect of type of coating material on fatigue life

Fatigue life comparative study between specimen laser clad with Stellite 6 and Deloro 40G shows that for similar coating thicknesses, specimen laser clad with Stellite 6 exhibited a longer fatigue life compared to the specimen laser clad with Deloro 40G (Fig. 17). This can be contributed to the difference of coefficient of thermal expansion (CTE) at high temperature of Stellite 6 and Deloro 40G compared to AISI 4130 substrate (Table 2) that yield different level of residual stress generated in substrate and coating region. Numerical simulation of residual stresses formation as the result of different CTE (Table 2) has revealed that specimens laser clad with Stellite 6 generated higher compressive residual stresses in substrate region and lower tensile residual stresses in coating region, in axial stress direction, compared to the specimen laser clad with Deloro 40G (Fig. 15). The presence of tensile residual stress is detrimental to fatigue life while compressive residual stress enhances fatigue life [43–46].

![Fig. 17. S–N curves for uncoated substrate AISI 4130 steel specimens and specimens laser clad with Stellite 6 and Deloro 40G coating material.](image-url)
3.4.2. Effect of coating thickness on fatigue life

From the fatigue tests, it is evident that fatigue life of specimen laser clad with Stellite 6 and Deloro 40G is inversely proportional to coating thickness where fatigue life decreases when the coating thickness increases (Fig. 17). This phenomenon is expected to be contributed by the change in residual stress in the substrate and coating region after laser cladding. As estimated by the analytical model employed in this study, thin coated specimen showed larger reduction of tensile residual stress in coating region than the reduction of compressive residual stress in substrate region, in axial stress direction (Fig. 16). Therefore, the presence of compressive residual stress in substrate region in conjunction with lower tensile residual stress in coating region, in axial stress direction, enhanced the fatigue life of thin coated specimens.

4. Conclusion

Fatigue behavior of laser clad hardfacing alloys on AISI 4130 steel has been examined, and the following conclusions can be drawn from this study:

1. Specimen constructed by laser clad Stellite 6 (Co base) and Deloro 40G (Ni base) on AISI 4130 steel to a certain size showed decrease in fatigue life compared to specimen of the same size without cladding, due to the presence of tensile residual stress in coating area of laser clad specimen.

2. The presence of higher compressive residual stress in substrate region and lower tensile residual stresses in coating region in specimen laser clad with Stellite 6 generated longer fatigue life compared to the specimens laser clad with Deloro 40G, at similar coating thickness levels.

3. With the same final structure size, increasing the coating thickness reduced the fatigue life of laser clad specimens as the result of tendency toward the presence of higher tensile residual stress in axial stress direction in coating region.

Acknowledgements

The author gratefully acknowledges Mr. Brian Dempster and Mr. Girish Thiruvedupara from Swinburne University of Technology for conducting the laser cladding process using the Nd:YAG laser; and Australian Institute of Nuclear Science and Engineering (AINSE) for funding the neutron diffraction beam time under proposal number P2502.

References

