Monash University
 Semester One 2008 Demonstration Exam
 Faculty of Business and Economics

EXAM CODES: ECC5650
TITLE OF PAPER: MICRO-ECONOMIC THEORY
EXAM DURATION: 3 hours
READING TIME: 15 minutes
THIS PAPER IS FOR STUDENTS STUDYING AT: Clayton

Conditions of this Examination

- During an examination, you must not have in your possession: a book, notes, paper, calculater, pencil case, mobile phone or other material/item which has not been authorised for the examination or specifically permitted as noted below;
- Any matieral or item on your desk, chair or person will be deemed to be in your possession;
- You are reminded that possession of unauthorised materials in an exam is a discipline offence under Monash Statute 4.1.

Authorised Materials: NONE

CALCULATOR NONE
OPEN BOOKS NONE
OTHER SPECIFICALLY PERMITTED ITEMS NONE

Instructions to Candidates

- There are three sections in this examination: A, B and C;
- Each section is not worth the same amount of marks;
- Marks for each section are given in the paper;
- You must answer each section;
- In section A you must answer all questions;
- In section B and C you do not have to answer all questions;
- Indicate the question you are attempting in the answer booklet. Your working should be consice, logical and clear.

Section A

You must answer all questions in this section. This section is worth 15 marks.

1. In standard Consumer Theory, state and explain the meaning of the following axioms:
(a) Completeness;
(b) Local nonsatiation.
2. Sketch the following situations to illustrate that the conditions of Brouwer's Fixed-Point theorem are sufficient, but not necessary.
(a) S is compact, S is convex, f is not continuous, and a fixed point of f exists.
(b) S is compact, S is not convex, f is continuous, and a fixed point of f exists.
3. Without appealing to the method of Calculus, provide a proof for the claim:
"The function $f: \mathbb{R} \rightarrow \mathbb{R}$, such that, $f(x)=\log x^{\beta}$ is a concave function."

Section B

Answer 3 out of the following 4 questions. Each question is worth equal value. This section is worth 30 marks.

1. In the Theory of Consumption under Uncertainty, state and explain the meaning of the following axioms:
(a) Completeness;
(b) Continuity;
(c) Substition;
2. Consider the utility maximization problem:

$$
\max _{x_{1}, x_{2}} u\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \quad \text { s.t. } \quad x_{1}^{\alpha}+x_{2}^{\alpha}=b
$$

(a) Appeal to the Envelope Theorem to find $\frac{\delta v\left(x_{1}, x_{2}\right)}{\delta b}$.
(b) Obtain an expression for $v\left(x_{1}, x_{2}\right)$ and so verify your answer given in (a).
3. For the following minimization problem, you may assume (i.e. without proof) that the optimal solution is $x_{1}^{*}=28 / 13$ and $x_{2}^{*}=36 / 13$. Show that the optimal
solution does indeed satisfy the Kuhn-Tucker conditions for a minimum.

$$
\begin{array}{rl}
\min _{x_{1}, x_{2}} & C=\sum_{i=1}^{2}\left(x_{i}-4\right)^{2} \\
\text { subject to } & 2 x_{1}+3 x_{2} \geq 6 \\
& -3 x_{1}-2 x_{2} \geq-12 \\
\text { and } & x_{i}>0, \quad i=1,2
\end{array}
$$

4. Consider the compensated, or Hicksian demand function $x_{i}^{h}=x_{i}(\mathbf{p}, e(\mathbf{p}, \bar{u}))$.
(a) Show that the price effect on compensated demand is given by,

$$
\frac{\delta e}{\delta p_{i}}(\mathbf{p}, \bar{u})=x_{i}^{*}(\mathbf{p}, \bar{u}),
$$

(b) And hence, provide a proof for the Slutsky Equation;
(c) Write brief notes on the two components of the Slutsky Equation.

Section C

Answer 1 out of the following 2 questions. Each question is worth equal value. This section is worth 15 marks.

1. Suppose that a preference relation on $X \subset \mathbb{R}_{+}^{m}$ is complete, reflexive, transitive, continuous and strongly monotonic. Assume also that a utility function u : $\mathbb{R}_{+}^{m} \rightarrow \mathbb{R}$ has been shown to uniquely exist. Complete the existence proof for the function $u(x)$ by showing:
(a) That $u(x)$ actually represents the preference relation; and
(b) That $u(x)$ is a continuous function.
2. Consider the Stone-Geary Utility function,

$$
u(\mathbf{x})=\prod_{i=1}^{n}\left(x_{i}-a_{i}\right)^{b_{i}}
$$

where $b_{i} \geq 0$ and $\sum_{i=1}^{n} b_{i}=1$, and each $a_{i} \geq 0$ can be interpreted as the 'subsistence' level of consumption of the commodities in \mathbf{x}.

Derive:
(a) The Marshallian demand functions, and so
(b) The indirect utility function, and hence,
(c) Show that $v(x)$ is proportional to $y-\sum_{i=1}^{n} a_{i} p_{i}$ (the level of 'discretionary income').

Equation Sheet

Roy's Identity

$$
x_{i}^{*}=-\frac{\delta v}{\delta p_{i}} / \frac{\delta v}{\delta y}
$$

Shephard's Lemma $\quad x_{i}^{h}(\mathbf{p}, \bar{u})=\frac{\delta e(\mathbf{p}, \bar{u})}{\delta p_{i}}$
Slutsky Equation $\quad \frac{\delta x_{i}(\mathbf{p}, y)}{\delta p_{j}}=\frac{\delta x_{i}^{h}(\mathbf{p}, \bar{u})}{\delta p_{j}}-\frac{\delta x_{i}(\mathbf{p}, y)}{\delta y} x_{j}(\mathbf{p}, \bar{u})$
Elasticity Relations

$$
\begin{aligned}
\eta_{i} & =\frac{\delta x_{i}(\mathbf{p}, y)}{\delta y} \frac{y}{x_{i}(\mathbf{p}, y)} \\
\epsilon_{i j} & =\frac{\delta x_{i}(\mathbf{p}, y)}{\delta p_{j}} \frac{p_{j}}{x_{i}(\mathbf{p}, y)} \\
s_{i} & =\frac{p_{i} x_{i}(\mathbf{p}, y)}{y}
\end{aligned}
$$

