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Abstract

This thesis is concerned with the analysis of economic network formation. There are

three novel sections to this thesis (Chapters 5, 6 and 8). In the first, the non-cooperative

communication network formation model of Bala and Goyal (2000) (BG) is re-assessed

under conditions of no inertia. It is found that the Strict Nash circle (or wheel) structure

is still the equilibrium outcome for n = 3 under no inertia. However, a counter-example

for n = 4 shows that with no inertia infinite cycles are possible, and hence the system

does not converge. In fact, cycles are found to quickly dominate outcomes for n > 4

and further numerical simulations of conditions approximating no inertia (probability of

updating & 0.8 → 1) indicate that cycles account for a dramatic slowing of convergence

times.

These results, together with the experimental evidence of Falk and Kosfeld (2003)

(FK) motivate the second contribution of this thesis. A novel artificial agent model is

constructed that allows for a vast strategy space (including the Best Response) and per-

mits agents to learn from each other as was indicated by the FK results. After calibration,

this model replicates many of the FK experimental results and finds that an externality

exploiting ratio of benefits and costs (rather than the difference) combined with a sim-

ple altruism score is a good proxy for the human objective function. Furthermore, the

inequity aversion results of FK are found to arise as an emergent property of the system.

The third novel section of this thesis turns to the nature of network formation in a

trust-based context. A modified Iterated Prisoners’ Dilemma (IPD) model is developed

which enables agents to play an additional and costly network forming action. Initially,

canonical analytical results are obtained despite this modification under uniform (non-

local) interactions. However, as agent network decisions are ‘turned on’ persistent coop-

eration is observed. Furthermore, in contrast to the vast majority of non-local, or static

network models in the literature, it is found that a-periodic, complex dynamics result for

the system in the long-run. Subsequent analysis of this regime indicates that the network

dynamics have fingerprints of self-organized criticality (SOC). Whilst evidence for SOC

is found in many physical systems, such dynamics have been seldom, if ever, reported in

the strategic interaction literature.
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Chapter 1
Introduction to the Thesis

In this chapter, the major themes of this thesis will be introduced. Addi-

tionally, specific chapters that deal with particular aspects of economic

networks will be refered to. A more complete summary and discussion

of Results with an emphasis on future work is given in Chapter 9.

Networks are undoubtedly receiving intensive interest at present both in the schol-

arly literature and increasingly in the halls of government and the popular media. This

new-found interest is due in large part to the realisation that traditional reductionist

approaches to inquiry (understand the atom to understand the whole) do not, in fact,

provide a rich enough framework of investigation for understanding the system in a va-

riety of contexts. Instead, it has been recognised that it is the relationships between the

atoms that must be understood in order that the system can be unmasked, modelled,

and ultimately predicted. Such relationships, it has been found, can cause feedback that

amplify and diminish individual atom activity.

But what of economic networks? Do they provide relationship driven contexts? And if

so, how do social and business relationships develop? What motivates their establishment?

How does the inter-connected network of relationships affect individuals or firms, or the

whole population? Are there network structures, both local and global, that facilitate one

kind of activity better than another? It is the purpose of this thesis to investigate these

kinds of questions as they apply to two fundamental economic network contexts, those of

communication on the one hand and cooperation on the other.

Indeed, it is the suggestion of this thesis, that not only are networks prominent in

economic contexts, economic networks enforce a further layer of challenge for the inquirer

over and above those of the physical sciences due to the unique property of node-agency ;

the nodes think, rationalise, and act. Some reflections on this suggestion and evidences for

2



CHAPTER 1. INTRODUCTION TO THE THESIS 3

the importance and fore-going analysis of economic networks is presented in Chapter 2.

Moreover, as will be explored in Chapter 3, both structurally and dynamically, economic

networks fit well into an emerging field of inquiry known as complexity science, or the

science of complexity. Here, the emphasis is not so much on the ‘difficulty’ of the problem

but rather on the kind of system that the problem presents, such systems being classed as

complex systems, and are associated with phenomena such as self-organization, emergence

and autonomy.

The following three chapters of this thesis (Part II) deal with a model of communi-

cation network formation. Chapter 4 introduces a prominent and insightful analytical

model of non-cooperative network formation, namely that of Bala and Goyal. This model

showed which equilibrium network structures can be expected to form as a result of self-

interested, utility maximizing individuals who use a best response rule to unilaterally

construct a communication network. Chapter 5 then re-visits this model but considers

what might happen if agents do not exhibit strategic inertia, as was assumed by Bala and

Goyal. Both analytical and numerical simulations indicate that the best-response updat-

ing rule leads to non-convergent two-period cycles under these conditions. Furthermore,

such cycling is found to be responsible for dramatically increasing the time to conver-

gence of the best-response model when strategic inertia is approximately small. It is this

result, together with the experimental work of Falk and Kosfeld that motivates Chapter

6 where the best-response updating rule is relaxed, and in its place artificial adaptive

agents are constructed to play the non-cooperative network formation game. By utilis-

ing a novel cognition and learning architecture, this approach pleasingly replicates many

of the results from the human trial, including several features that the Bala and Goyal

model did not predict. It also finds that the suggested explanations for non-Nash human

behaviour in the two-way information flow case need not be modeled explicitly, but rather

arise as emergent properties of the dynamic learning-by-imitation environment. Taken

together, these chapters suggest useful ways that the non-cooperative communication

network framework of Bala and Goyal can be extended and improved.

The following two chapters (Part III), turn to the cooperation network context. Firstly,

a more detailed survey of how cooperation has been investigated and modeled is given in

Chapter 7. This section draws insight from both the biological beginnings of the study of

cooperation (or altruism) and also from models of cooperation in the economic sciences,

especially focusing on models that have attempted to incorporate some kind of interaction

network. This chapter suggests that a historical line of inquiry can be drawn through

the cooperation literature, beginning with random, or anonymous interactions, and then
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imposing at first simple (e.g. line, circle, or grid), and then complex (e.g. random, ‘small-

world’ and ‘scale-free’ graphs), non-uniform interaction structures on agents. This gives

rise to the obvious ‘next-step’ for the analysis of economic networks: the facility for agents

themselves to construct and dynamically change the interaction setting.

It is the purpose of Chapter 8 to do just this, by making a simple modification to

the much studied standard Prisoners’ Dilemma set-up, allowing agents to play a costly

signal that either (re-)establishes a link with a chosen opponent, or relegates them to

a listing of undesirable opponents. This modelling set-up is analytically studied in the

simplest case to check that it conforms to well-known results in the literature, and then

is analysed computationally to yield interesting results on strategic network formation.

Chief amongst these results are: first, that there are minimum criteria that a ‘network’

context must meet to enable otherwise selected against cooperative types to survive; and

second, that for even relatively simple cases, the incorporation of a strategic network

formation environment produces un-stable, out-of-equilibrium dynamics that persist in

the long-run. Further analysis of this system finds evidence that relates it directly to the

foregoing discussion on emergence, self-organization and complexity.

Finally, in Chapter 9, the main results of the thesis are emphasised and discussed,

with particular attention given to how these results interact with the wider literature.

Recent developments are also discussed and motivate discussions of interesting further

work to be pursued as a result of the findings of this thesis.



Chapter 2
An Introduction to Economic Networks

Economic networks are now introduced. Specifically, a review of some

analytical results on economic networks is given, tracing the handling of

models in uniform interaction spaces at first, followed by simple and then

complex interaction spaces. Examples of how ‘networks’ are handled

in the economic literature is then given, with a concluding section on

methods of analysis.

2.1 Economic Networks: order sans design

As crude measures go, networks are a popular topic on the planet. A recent poll of the

Google internet search engine1 returned 3.8 billion hits for ‘network’.2 But what is a

‘network’? A network is suitably described as an ‘interconnected group or system’.3 Put

simply, it expresses a relationship that exists between a number (more than one) of ob-

jects. Generally speaking, networks fall into one of two categories being either explicit,

or implicit. The former are those that can be identified due to their physical presence

(e.g. roads, rail, telecommunication lines, power-grids) whilst the latter are those that do

not have physical connections, but nonetheless are identifiably ‘an interconnected group

or system’ (e.g. sexual-partner networks, business networks, social networks, food-webs).

An important difference between these two kinds of networks is that the former are in the

main a product of design, and thus are largely fixed in place after construction, whereas

the latter develop in an ad-hoc, autonomous way. Except in the most extreme cases,4 this

second class of networks have no central coordination. Individual nodes in these networks

1URL: http://www.google.com
2Incidentally, to calibrate this check, a search for ‘war’ gave 1.31 billion hits, whilst ‘peace’ returned

only 578 million hits. Clearly, ‘network’ is up there in the (digital) world’s consciousness.
3Source: http://www.wiktionary.org/wiki/network.
4The friendship relationships of cell-groups in a prison, for example, though even here it might be

expected to see sub-groups of social interaction forming.

5



CHAPTER 2. AN INTRODUCTION TO ECONOMIC NETWORKS 6

undertake explicit autonomous actions concerning relationships, or alternatively simply

go about their daily behaviours, having only limited interaction with their immediate

‘neighbours’, oblivious to their rôle in the wider set of dependencies. Nevertheless, over

time, these actions aggregate to give rise to enough discernible relationships that a ‘net-

work’ can be observed and drawn (see §3.6 on emergence). At this point, after ‘joining

the dots’ on these relationships, it may be possible to come to some understanding of

the directions of influence and dependency that drive the overall system. Indeed, the

structure of these relationships may in turn affect the individual behaviours themselves,

further contributing to the structure of relationships, and so on. Often such causality leads

to discernible system-wide characteristics over time; it is in this sense that autonomous

networks can give rise to a sense of ‘order sans design.’

Economic networks fall largely into this second class described above. In rough terms,

an ‘economic network’ is a system in which a number (more than one) of discernible in-

teractions between entities (e.g. firms, people, institutions), gives rise to the distribution

or accumulation of value, character traits, or behaviours amongst them. Examples of

economic contexts that fit this kind of description would include communications (infor-

mation as value), social (satisfaction, fulfillment), political (opinions), firm-to-firm (trade)

and cooperation/corruption (information, trade) networks. Furthermore, the way that the

literature uses the term ‘networks’ to describe such systems gives rise to further diversifi-

cation, from simple conceptions of a sub-set of actors on a ‘list’ (e.g. Kali (1999); Taylor

(2000)), to extremely intricate computational models that attempt to capture every link

and node in their description (e.g. Smucker et al. (1994)). However, in each case, these

systems are characterised by largely ad-hoc, un-planned, and un-coordinated changes in

associations and node identities. And indeed, it is these very characteristics that has lead

many researchers to the study of economic networks as examples of so-called complex

systems which I shall return to in detail below (§3.1).

2.2 Why study Economic Networks?

Studying economic networks is important for (at least) two main reasons. The first

reason is also the simplest: ‘networks matter’. Traditional economic problems conducted

on a non-uniform interaction space (i.e. non-uniform probabilities of interaction between

agents) can give rise to a reversal of traditional outcomes. This observation will be visited

below in more detail, but for now, two examples serve to illustrate the point. In the first,

Nowak and May (1992) set agents up on a two-dimensional lattice to play the simple

Prisoner’s Dilemma game with each of their eight neighbours5, with scores for a round

5In clock-wise divisions of a magnetic compass that is: {N, NE, E, ..., W, NW}.
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being simply the summation of payoffs against these eight neighbours. Using the simplest

type of agents, who play either ‘always Defect’, or ‘always Cooperate’, and replacing

each cell with the type who has the highest score out of the previous owner, and the

neighbours, the authors find that in contrast to the canonical result that the fraction

of always-defect would reach unity in finite time, they observe patches of cooperative

play persisting indefinitely. Secondly, Anderlini and Ianni (1996) consider a model of

learning in symmetric, two-player normal form games, situating agents in a similar way

to that of Nowak and May, on a two-dimensional lattice, and allow agents to update their

strategy based on a comparison between their average payoff from their present strategy

and some aspiration level. Again, the traditional result of convergence to a single strategy

under non-local interactions is overturned, with various prescriptions giving rise to ‘mixed’

strategy states under local-learning.

Such results urge a consideration of the way that the overall interaction structure

affects the individual agent behaviour and vice versa. Indeed, this interplay between

levels of activity: agents on the one hand, and epi-phenomena or emergent characteristics

of the system on the other is the basis of a progression in recent scientific inquiry from

pure reductionist analysis, to systems analysis, to the present mixing of the two under

complex systems analysis (to be followed in detail below §3.2). Indeed, recent reflections

on this point, such as that of Heylighen et al. (2004) and Arthur (1999) have noted that

many systems, economic ones included, are particularly affected by such multiple scale

interplay and interaction.6

Second, although incorporating networks (or non-uniform interaction spaces) into eco-

nomic models is an analytically difficult enterprise, economic networks are ripe for study

due to new developments in powerful computational tools.

It is true that progress in purely analytical inquiries of networks as Graphs (see below)

is not new, especially when the inquirer can estimate graph topology via statistical means

(see Erdös and Rènyi (1959)), but the difficulty comes when an attempt is made to place

autonomous decision makers in such complex interaction (and/or information) spaces; the

‘homogeneous agent’ assumption of many economic models necessarily disappears, often

taking with it, the power of neat analytical description. Indeed, it has been found that

these richer systems regularly exhibit non-equilibrium phenomena, with associated dy-

namics that defy easy description, consequently requiring a literal running of the system

from chosen initial conditions to some future point (often many times over) to facilitate

6See also Holland (1998), chapter 10.
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Figure 2.1 Example graph Γa(V, E).

meaningful characterisation (Markose, 2005). Of course, there has been progress in an-

alytical formulations nonetheless7 but increasingly, the most interesting technical results

in networked agent behaviour are arising in quasi- or full- computational descriptions

of these systems.8 A large part of the explanation for this phenomena is the reduction

in costs of computing power and the increasing number of programming languages and

development environments amenable to conducting computational, agent-based experi-

ments.9 Taken together, computational modelling of these previously difficult to study

systems is becoming increasingly feasible for any researcher with a desktop computer and

a rudimentary technical background in programming it.

2.3 Excursus on Terminology

Some basic terminology will be useful for what follows in the rest of this thesis. Networks

are equivalent to graphs in the Theory of Graphs.10 A graph Γ(V,E) comprising n

vertexes and k edges is completely defined by a vertex (node) set V = {v1, v2, . . . , vn}

and an edge (link) set E = {e1, e2, . . . , ek} where each ei is an unordered pair (vi, vj)

representing an edge between the two elements of V (e.g. (a, b) means, ‘a is joined to

b’). For example, the graph Γa(V,E) where V = {1, 2, 3} and E = {(1, 2), (2, 3), (3, 1)}

is shown in Fig. 2.1. Two nodes or edges are said to be adjacent if they are joined by

a shared edge, or incident at a shared node respectively. The number of incident edges

at a node is called the degree of that node. The graph Γa(V,E) is also connected since

there exists an ordered edge vector describing a succession of adjacent edges (a path) from

each node to every other node (the opposite case being disjoint). It is also an example

of a regular graph since each node has a constant number of adjacent edges. Generally

speaking, regular graphs are denoted k-regular where k is the constant degree of each

node (in this case, Γa(V,E) is 2-regular). Further, since there exists an edge from each

7A selection of such results includes Anderlini and Ianni (1996); Bala and Goyal (1998, 2000); Chwe
(2000); Jackson and Watts (2002a,b), returned to in §2.4.

8For example, the two papers mentioned above as examples of non-standard results due to non-uniform
interactions are both strictly computational in nature. See further examples in the many contributions to
the proceedings volume, The Economy as an Evolving Complex System II (Arthur et al., 1997).

9See the vast listing maintained at http://www.econ.iastate.edu/tesfatsi/acecode.htm.
10See B. Bollobas, Modern Graph Theory (Bollobas, 1998) for a thorough introduction to the area, or,

for an example-based, non-technical introduction, see Hayes (2000a,b).
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vertex to every other vertex, Γa(V,E) is a complete graph (if this were not true, it would

be incomplete). Likewise, there is an Hamiltonian cycle (or ‘circuit’) in Γa(V,E) since

we can construct a path H = {e1, . . . , ek} with distinct edges of E that travels each edge

once (for example, H = {(3, 1), (1, 2), (2, 3)} is one such path).

So far we have described an un-directed graph, where each edge can be travelled in

either direction (for some edge set (a, b) feasible paths are {va, vb} and {vb, va}). However,

a second class of graphs, known as directed graphs, or di-graphs are constructed with one-

way ‘flows’ between nodes. Thus E will comprise an ordered set of vertex pairs. In

short-hand we shall denote a directed edge from node a to node b by a → b and an un-

directed edge between the same nodes to be a ↔ b. Similarly, for directed graphs, the

degree of a node can be diversified to the in- and out- degree of a node to describe the

count of in-going and out-going edges at a node respectively.

For convenience, I shall assume a direct correspondence between the informal and

formal languages of networks and graphs respectively, that is, between: network–graph;

node–vertex; and link–edge.

2.4 Some Results from the Analytical Literature

Several workers have attempted to construct dynamic network models analytically, focus-

ing predominately on either the topology of the network gained (e.g. star, cycle, empty)

and/or, the kind of equilibrium (if any) that might persist in the actions of the individ-

uals involved. I will not attempt to make a thorough survey here, rather, some of the

influential contributions to this literature will be reviewed to get a feel for the nature of

the results.

One of the central questions of the literature has concerned that of equilibrium selection

in 2-player coordination games, and so I shall consider one general example in some detail

to aid our discussion. Suppose G1 is such a game,

G1 =

s1 s2

s1 a, a b, c

s2 c, b d, d

(2.1)

the strategy set for each player being S = {s1, s2} with payoffs as given in the table,

{a, . . . , d} ∈ R.11 Several variations of this game might be specified. For example, if

(a − c)(d − b) > 0 then there is a dominant strategy; a standard coordination game

requires (a > c, d > b); and a game having a unique mixed strategy equilibrium occurs

11The discussion and nomenclature given here derives from Kandori et al. (1993).
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when a < c, d < b. Suppose that n players are randomly paired to play G1 once each in a

period and the count of s1 players is given by z, then it is straightforward to show that

expected (average) payoffs π1(z) and π2(z) for s1 and s2 players respectively are given by,

π1(z) =
( z − 1

n− 1

)

a +
(n− z

n− 1

)

b,

π2(z) =
( z

n− 1

)

c +
(n− z − 1

n− 1

)

d.

Consider the coordination version of (2.1), and let the two pure strategy equilibria

be given by E1 = {s1, s1} and E2 = {s2, s2}. Two related questions are immediately

apparent: a) for some given population, how do the agents ‘know’ to coordinate on one

of these equilibria? and further, 2) which of the two equilibria will be selected in the

‘long-run’? The first is a question of convergence to any equilibrium, the second is a

deeper question which concerns attempting to predict choice amongst equilibria.

2.4.1 ‘Trembling’ Towards Agreement

In their influential contribution, Kandori et al. (1993) (kmr) considered the second ques-

tion in detail. They assume that there exists a ‘Darwinian’ strategy updating function

b(zt) such that,

zt+1 = b(zt) (2.2)

where,

sign(b(z)− z) = sign(π1(z)− π2(z)) for z 6= {0, n}. (2.3)

That is, (2.3) specifies that the better performing of the two strategies, s1 and s2 (given

zt), will occur with higher incidence in the following period. This is a general imple-

mentation of the well-known evolutionary dynamic, which not surprisingly stemmed from

the biological literature (see esp. Maynard Smith (1978) and Maynard Smith and Price

(1973)). One such dynamic, which kmr name the ‘best reply dynamic’ is simply,

B(z) =







N, if π1(z) > π2(z),

z, if π1(z) = π2(z),

0, if π1(z) < π2(z).

(2.4)

Further, a mistake-making probability for each agent ε, is specified. That is, they allow for

agents to ‘tremble’ in updating their strategy, such that with some small probability, they

will make the wrong updating behaviour. In these terms, the ‘long-run’ is an asymptotic
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analysis of the situation where ε → 0. It is worth noting, that players here respond

myopically in the sense that they do not take into account the actions of others (who

may be updating strategies just as they are) when considering whether or not to update.

Updating functions such as (2.4) are deterministic but backward looking in nature, leaving

no room for prediction. Significantly, they obtain several powerful results, of which two

were especially taken up by the literature. The first, (Theorem 3 in their paper) is

reproduced as follows:

Theorem 1 Kandori et al. (1993, p.44) Suppose the stage game is a coordination game

and z∗ 6= n/2. For any population size n ≥ 2 and any adjustment process satisfying (D)

(2.3), the limit distribution puts probability one on n if z∗ < n/2, and on 0 if z∗ > n/2.

where, z∗ ∈ R satisfies,

sign(π1(z)− π2(z)) = sign(z − z∗).

It can be seen that z∗ is equivalent to the mixed strategy equilibrium probability on s1

(for large enough n). Further, they identify the following corollary,

Corollary 1 Kandori et al. (1993, p.46) Suppose the stage game is a coordination game

and z∗ 6= n/2. If

N ≥
2(a− d)

(a− c− d + b)
,

the unique long run equilibrium is the risk dominant equilibrium.12

The focus here is on the number of ‘trembles’ (stochastic shocks) that are needed to get

the population to shift from one equilibrium to another (say E1 to E2). The intuition for

their results is that where a risk dominant equilibrium exists, it will take more trembles to

escape from, than the non-risk-dominant equilibrium. Hence, the long-run stochastically

stable equilibrium is selected to be the risk dominant one.

Before moving on, several features of the kmr model are worth noting, bringing to

the foreground its relevance to our present discussion. First and foremost, it must be

stressed that the kmr model is a uniform (non-local, or anonymous) model. Formally,

12Risk dominance is a useful way of describing equilibria, based on their risk with respect to the other
payoffs in the game table. For the coordination game, the question of risk dominance comes down to a
comparison of (a − c) and (d − b), if (a − c) > (d − b) then E1 is said to risk dominate E2, see Harsanyi
and Selten (1988).
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let pi;j ∈ [0, 1] denote the probability that some agent i meets agent j in a given period,

both from the population N = {1, . . . , n}, then uniform interactions would imply,

pi;j =
1

n− 1
∀ j ∈ N. (2.5)

The implication here is that two agents are just as likely to ‘meet’ and play G1 as any

other two. Hence, there is no ‘memory’ or ‘logging’ of previous interactions which might

otherwise be the stuff of friendship-, or acquaintance-networks: agents meet each other

‘anew’ every time.13 Infact, the kmr model requires that this be the case, since the

dynamics are only relevant when each agent responds to the true strategy distribution

in the population.14 Second, and in some ways a re-statement of the first, the agents

gather wide-ranging information from the other n−1 players, that is, although boundedly

rational (and capable of making mistakes) they are nonetheless un-limited in their ability

to observe the other players (they end up obtaining global information).15

2.4.2 Incorporating Economic Networks

Various authors came to point out these short-comings, in particular Ellison (1993) specif-

ically questioned whether the convergence rate of the evolutionary dynamics specified in

kmr would lead to any realisable equilibrium for large populations (as might be considered

for its application). Other authors questioned the information requirements, arguing that

agents rarely are able to take into account such far-reaching information when forming

their decisions. To treat this question, Ellison and others16 considered models of localised

interaction, where agents typically come into contact with only those members of the

population who are their direct ‘neighbours.’ For example, instead of (2.5) (and following

Ellison (1993)), each agent might interact (on a circle) with 2k neighbours (k ∈ N), then,

pij =







1
2k

if |i− j| (modn) = 1, 2, . . . , k

0 otherwise.
(2.6)

3 4 5 6 7

−k -1 i +1 +k

13Hence the use of the term ‘anonymous’ to describe this interaction set-up.
14As is pointed out in kmr, this could arise due to tournament-style play, or a very large number of

random interactions occurring between agents, such that they come to observe the true strategy distribu-
tion.

15It should be mentioned that the nature of bounded rationality in learning as an evolutionary process
also receives comment. See, for example Borgers (1996).

16For example, see Anderlini and Ianni (1996, 1997); Bala and Goyal (1998); Blume (1995); Chwe (2000).
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Interestingly, for many of these contributions, the results of the kmr model are upheld –

that is, convergence to the risk-dominant equilibrium is obtained for large populations who

interact locally (in fact, Ellison concluded that local interactions gave the necessary accel-

eration of the dynamics that would produce plausible convergence to the risk-dominant

equilibrium – serving to strengthen further the early kmr result).17 However, a further

strand of the literature investigated models that allowed for the interaction space itself

to evolve over time.

2.4.3 Allowing the Network to Evolve

Here, two approaches are note-worthy. First, Ely (2002) considered a model in which

agents are afforded ‘mobility’, such that they can periodically choose a new location on a

network, and second, Jackson and Watts (2002b) alternatively argue that agents choose

their contacts, rather than upping and moving to a new location in a social web in one

step. I shall consider them in turn.

In Ely’s model, players inhabit an incomplete graph18 and each period, play the co-

ordination game G1 with each of their neighbours only, receiving an average payoff. It

is to be noted that Ely assumes (with kmr) that {s1, s1} is Pareto efficient, however, in

contrast, he sets payoffs such that s2 is the best reply to an equal mixing, and therefore

risk dominant. Then, with probability β each member of the population ‘dies’ and are

replaced by new players who make a best response decision to the current strategy distri-

bution and interaction graph characteristics (they choose an edge set, edges are undirected

and costless). Further, a proportion α of the surviving agents revise their strategies, in

a best-response manner. In line with kmr, both new agents and (updating) surviving

agents will tremble with probability ε.19 Now, suppose Zk, for k ∈ {1, 2} describes the

set of agents in N who play sk, then the following result is obtained,

Theorem 2 Ely (2002, p.12) Let Γ be any incomplete neighbourhood graph, and let µ∗
αβ

be the limit distribution of the general model. Then for sufficiently large n, and for every

ᾱ, β̄ ∈ (0, 1)

1. µ∗
αβ(Z1) > 0, µ∗

αβ(Z1 ∪ Z2) = 1;

2. limα→0 µ∗
αβ̄

(Z1) = µ∗
0β(Z1) = 1; and

3. limβ→0 µ∗
ᾱβ(Z1) > 0.

17‘Locally’ here is interpreted in a variety of ways determined by the over-all topology of the interaction
space. Popular spaces include placing agents on a line, circle (a line with period boundary constraints) or
a 2-D grid. See references in previous footnote, for examples.

18In his paper, non-degenerate. For the following, I shall attempt to be consistent with previously used
nomenclature.

19As is pointed out in Ely (2002, p.12), in the case of new agents, this can be considered a mutation,
whereas for existing agents, it is akin to a mistake.
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Figure 2.2 Counter example graph Γ2.

This result suggests that for any strategy-revision (α) and agent-replacement (β) fraction

pair the set of agents playing s1 is non-empty and importantly, as these fractions are

pushed towards zero, the efficient strategy is always chosen (s1), even though it is not

risk dominant. Ely suggests that through the use of mobility and strategy revision, agents

are afforded a mechanism by which they can more successfully identify their opponents,

thus favouring the efficient outcome, rather than the risk-dominant one.

Now, as mentioned above, Jackson and Watts (2002b) argue that Ely’s conception of

location change is too severe. Rather, they contend that, ‘in many applications individuals

choose with whom they interact in a more discretionary manner, not having to completely

uproot to form new relationships.’ (p.267) To begin with, they provide a good counter-

example to that of the kmr model, showing that even a simple (n = 4) network such as

Γ2 (see Fig. 2.2) where E = {(1, 2), (1, 3), (1, 4)} gives rise to two stochastically stable

states (either all play s1 (let this be state A) or all play s2 (state B)).

This is due to the simple observation that a single tremble on behalf of the centre

player, 1, will cause a population in state A to switch to state B (since the rest only care

about player 1’s strategy), whilst if in state B, then a tremble by any player will lead to

a switch back to A.20

In contrast to Ely, the authors consider a single edge at a time between two agents i

and j. If it currently does not exist, the link is added if the utility of at least one player

increases (the other player’s remaining fixed), and in the alternate case, is severed, if the

resultant configuration would favour at least one player (again, without damaging the the

other). Case (iii) from their first proposition is reproduced below,

Proposition 1 Jackson and Watts (2002b, pp.275–276) Under constant costs of edge

maintenance k,

(iii) If (b − k) < 0 and/or (c − k) < 0 and (a − k) > 0 and (d − k) > 0, then if

(d − b)/(a − c + d − b) > 1/(n − 1), there are two stochastically stable states, a complete

network with all players playing s1 and a complete network with all playing s2; while if

20As Jackson and Watts (2002b, p.272) point out, A is still more likely, since any tremble from B will
cause A whereas a specific tremble (that of player 1) is needed to go from A to B.
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(d − b)/(a − c + d − b) ≤ 1/(n − 1) then the complete network with all playing s1 is the

stochastically stable state.

With values for {a, . . . , d} just the same as kmr, the proposition implies that with en-

dogenous interaction space updating, it is possible to have the population converge on

the inefficient and non risk-dominant strategy equilibria.

2.4.4 Concluding Remarks

It should also be pointed out that, whereas Jackson and Watts consider mutual, undi-

rected edge formation, other authors consider, for example, unilateral edge formation

(Goyal and Vega-Redondo, 1999) or quasi-endogenous location models (Droste et al.,

2000) of coordination (or conventions) which bring significant changes to the modeling

environment, and consequently find at times in favour, or against the results of Jackson

and Watts. Furthermore, whilst not covered in detail here, significant contributions (for

example, Bala and Goyal (2000); Jackson and Watts (2002a); Slikker and van den Nouwe-

land (2000)) have been made which find equilibrium topologies for the economic network

itself, rather than the strategic implications that might arise due to network endogeneity.

To conclude this section, some general comments from the literature mentioned above

can be drawn:

1. The presence of partner selection due to an economic network in theoretical mod-

els has the capacity to reverse previous results where such mechanisms are not

considered;

2. When economic networks are modeled, the outcome for both equilibrium topolo-

gies and strategic outcomes are sensitive to assumptions including (but not limited

to) the type of non-local interaction (static, dynamic); the nature of edge sponsor-

ship/establishment (unilateral, mutual); the way that stochastic trembles enter the

model; and the type of myopia (or broadly, bounded rationality) agents display.

3. Topological properties of equilibrium networks modeled receive characterisation

(only) at the highest level (e.g. connected, un-connected, complete, incomplete)

or for very small n (e.g. wheel, star); and

4. Models of equilibrium network configuration rely on agents possessing knowledge of

the entire network when constructing ‘best-response’ strategies with respect to edge

sets.

In view of the apparent deficiencies, it must be stressed again, that modeling economic

systems within deductive mathematical constraints is of the highest difficulty.21 As al-

21Private discussions with mentioned authors such as A. van den Nouweland and others support this
view.
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ready mentioned (see §2.2), incorporating the demands of economic activity in models of

complex interaction spaces that are subject to constant change pushes the investigator to

often make major simplifications (e.g. small n, simple graph-characterisation) in order to

make any progress at all.

2.5 Examples of Economic Networks

To this point, several specific examples from the literature of economic networks have

been mentioned, presently, a more general discussion of the uses of the term ‘economic

network’ in the literature is initiated. Here, emphasis centres on approaches to economic

network analysis to show the main themes of the literature. These approaches shall be

discussed under three main groupings: 1) ‘Lists & Subsets’ - the network (simply) as a

listing of agents; 2) ‘Graph Theoretic’ - related to the previous discussion – the detail of

network topology is considered; and 3) ‘Computational’ – the network is again studied

in detail, however, exploiting the power of computational methods, often studying larger,

more complicated systems.

2.5.1 Lists & Subsets

In common conversation, we would rarely talk in explicit terms of some ‘network’ that

we are part of. Rather, such groupings form because of mutual interests (e.g. sporting

clubs) and though possessing an internal social structure that might hold relevance to

us, the fact that we are members of this structure is what is important. This view of

networks – a level of detail between that of anonymous interactions on the one hand, and

specific dependency graphs on the other – is a useful one when considering just this kind

of behavior, where the network membership and associated benefits conferred to members

(rather than the effects of network structure itself) is the focus of inquiry.

In game-theoretic terms, such membership is a clear way to distinguish between types.

Consequently, models that invoke networks in this way are often concerned with the

size of a type grouping versus the population size, and the benefit (if any) that the

network provides over and above a non-network environment. For example, in a model of

quasi-coordination based on such type differentiation, Taylor (2000) studies an ‘old-boy’

network with just this foundation. Agents are paired to undertake mutually beneficial

projects together if each accepts the pairing (a), although having an option to reject the

undertaking (r). Thus, strategies are of the set {a, r}. Two types inhabit the population,

type C - cooperative or competent types, and type D - incompetent or opportunistic types.

Membership to the network is only available to agents who display cooperative/competent

behaviour when playing with a current network member. If accepted by ‘showing their
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colours’ (accepting the project, and displaying type C behaviour), the new member’s

status becomes known to all in the population. Consequently, as the the ‘network’ grows,

it is possible for networked, type C members, to start rejecting all interactions that are not

with fellow (networked) type C members. It is suggested that this leads to discrimination

against type C agents who aren’t yet members, since they will eventually never be able

to join. Therefore, the model suggests that that equilibrium network size is always too

small to be efficient, and in fact, abolishing it would be Pareto improving. Taylor draws a

parallel to Akerlof’s (1976) “rat-race”, in which, ‘no one wishes to run, but any individual

who stops is left behind in the dust.’22

Such networks are often prevalent where institutional mechanisms of type differenti-

ation (e.g. contract law) are either non-existent, or not stable enough to ensure healthy

economic activity.23 An old network system that has arisen in this way, is the Chinese

guanxi network.24 Kali (1999) develops a model of the guanxi network, where agents gain

access to the ‘club’ by donating a one-off gift during an interaction with a pre-existing

member. In a related finding to that of Taylor, considered above, Kali finds that because

of the absorption of honest individuals from the general population into the network, it

is inefficient unless very large (on the scale of the population itself).

In these examples, the network is no more than a grouping of agents, who form a

(proper) subset of the population for the purposes of type-differentiation. It is to be

noted that in this approach, only a single ‘network’ can be considered (agents are either

‘in’ or ‘out’), and subtleties of search within the network, the topology of the relationships,

or the structural causes for its rise and decline are beyond these models.

2.5.2 Graph Theoretic

Various contributions that treat economic networks with an eye to the actual structural

nuances involved in network formation and activity have already been covered (§2.4).

Therefore, only a brief return to such literature is made here.

Obviously, one key economic network, often talked of in a very tangible manner, is

that of research and development (R & D), or technology networks. Here, the focus

is on seeding one firm or agent with some technology and seeing how the technology

spreads throughout the population (diffusion). Or, alternatively, the network – as a

collection of R & D collaborations – is studied as it responds to changing firm-to-firm

22This point is returned to in Chapter 8.
23Travellers to developing countries will be all too aware of the need for good personal information when

procuring various goods and/or services from the indigenous population.
24An unofficial business-to-business, or business-to-government transaction mechanism, relying (largely)

on pre-existing personal, or family, relationships. See for example, Fan (2002); Standifird and Marshall
(2000); Zhang and Li (2003).
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collaborations. Two examples of this approach in the theoretical literature are those

of Goyal and Moraga-Gonzalez (2001) and Mitchell (1999) who study strategic R &

D networks and technology diffusion respectively. In the former, the contributions of

spillover effects (caused by the sharing of effort in collaborative relationships) and market

competition implications (caused by the convergence of competitive conditions under

collaboration) is studied, whilst in the latter, networks are considered as institutional

structures, representing private and public cost and benefit flows when investing in new

technologies.

Communication is a further important consequence of network analysis – questions

here consider the flow of behaviours in a population or the structures that permit effective

communication between agents. For example, Morris (2000) studies a model of contagion,

which focuses on the former question. In a model of binary (0,1) behavioural attributes,

he asks what networks would give rise to contagion – where an action played by a finite

subset of players spreads to the whole population. He finds that low neighbourhood growth

(total neighbour count grows less than exponentially for a given number of ‘hops’ (edge-

movements) away from the agent of interest in the network) and uniformity (a similarity

of structural features) give rise to conditions for contagion. In a related piece of work,

Bala and Goyal (2000) suggest Nash equilibrium structures for communication networks,

showing that under basic assumptions regarding link sponsorship and best response dy-

namics, a finite set of strict Nash networks are formed in equilibrium (see Chapters 4, 5

and 6). Alternatively, communication networks can be considered the product of orga-

nizational construction, such as in Chwe (1995), who studies networks formed under the

principle of ‘strategic reliability’ (as opposed to ‘network reliability’). Here the focus is on

the underlying game that an organization faces when constructing reliable communication

channels (compare Epstein (2003)).

The above references should be considered together with the previously mentioned

network models. Whilst specific results have not been covered in each case, observations

of a general form can be made. First, the network models mentioned consider (in the

main) small n populations (normally n < 10), or they consider easily described graph-

theoretic structures such as complete, regular, uniform, cycle or star structures. Further,

models invariably make use of best-response dynamics when constructing networks, as

this offers a deterministic dynamic in which to progress network characteristics whilst

requiring only relatively acceptable assumptions (e.g. myopia, inertia).
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2.5.3 Computational

A number of contributions have considered economic networks with the aid of computa-

tional analysis. Obviously, the possibility to conduct millions of calculations in a short

amount of time has provided a rich environment for the study of network and strategic

behaviour. Broadly speaking, the literature falls into two main approaches. First, simu-

lations of agent characteristics are conducted on a fixed interaction space (network), or

the interaction space itself is allowed to vary.

Examples of the first approach include the statistical mechanics-style treatment of

the physics literature (e.g. Arenas et al. (2000); Elgazzar (2001, 2003); Laguna et al.

(2003)) where comparisons between uniform matching (complete graphs) and so-called

small-world graphs (see §2.6.1) are popular. The intuition generally concerns attempts

to identify network-specific effects by simulating a ‘base-line’ outcome (under regular, or

uniform matching) and comparing it to the ‘real-world’ network situation (under small-

world, or random matching). For example, Elgazzar (2002) constructs a model on a

circle where each agent is initially endowed with a technology level ai ∈ R++. Provisional

payoffs π(ai|aj), j ∈ {i−1, i+1} contingent on the technology level chosen by their nearest

neighbours are then calculated as follows,

π(ai|aj) =







ai − k1(1− e−(ai−aj)) if ai ≥ aj

ai − k2(1− e−(aj−ai)) if ai < aj

(2.7)

where k1 and k2 are the incompatibility costs resulting from being too advanced or too

backward respectively. The payoff to agent i, πi is then a simple summation across their

near-neighbours,

πi = π(ai|ai−1) + π(ai|ai+1). (2.8)

During a run of the model, a randomly selected agent’s technology level is updated by

a random variable ∆ ∈ (0, 1) and during a succession of time-steps, agents compare

their current payoff πi to that of the average payoff for their neighbourhood (πav =

(πi−1 + πi + πi+1)/3). Agents alter their technology to be that which optimizes their

payoff given the technology levels of {ai−1, ai+1} if the comparison shows a payoff less

than the average. A ‘run’ ends when no agent wishes to update their technology level

further. These conditions are then compared to a synthetic small-world network model,

where with some small probability φ ∼ 0.05, connections are re-wired to a different

(randomly selected) agent (to make short-cuts).



CHAPTER 2. AN INTRODUCTION TO ECONOMIC NETWORKS 20

In general, these authors emphasise the speed at which realistic social networks are

able to facilitate attribute convergence or technology adoption compared to more analyt-

ically accessible graph structures (such as the line, 2-D grid, or circle).25 Furthermore,

because of the ease of computational data generation, probabilistic curves are produced

which display, for instance, the probability distribution function of the total number of

technology changes (the avalanche size). We return to this kind of analysis below (see

§3.5).

Alternatively, authors consider the dynamics of particular strategies on fixed struc-

tures as opposed to (say) random interaction spaces. As has been mentioned in the

introduction to this chapter (§2.2), key to findings in this area are that normal conclu-

sions concerning strategic homogeneity in coordination games (e.g. Anderlini and Ianni

(1996)), or the prevalence of ‘selfish’ play (through studies of the Prisoner’s Dilemma) can

be overturned by the imposition of a particular (local) interaction structure (e.g. Burtsev

and Turchin (2006); Cohen et al. (2001); Grim (1996); Nowak and May (1992)).

In the second approach, computational flexibility is applied to the generation and on-

going dynamics of the interaction structures themselves. In some cases, this is still based

on small n assumptions (Zeggelink, 1995) whilst others consider larger, organizational,

or social network structures (Epstein, 2003; Stocker et al., 2002). It is to be noted, that

although this literature is growing with considerable speed, the identification of what

constitutes a network is not constant across contributions. For instance, in some cases,

an edge in the network is ascribed to interactions that yield higher than average payoffs

(see Smucker et al. (1994, p.10ff), including discussion on this point) or after logging a

number of probabilistic choice and refusal rounds (Ashlock et al., 1996). In these models,

the ‘network’ is to be interpreted as a threshold measure of some quantifiable variable,

rather than an interaction space resulting purely from individual, agent-based decisions

(this point is returned to in Chapter 7).

2.6 Analysing Economic Networks

We have already mentioned some rudimentary terminology that aids network description

and analysis, specifically in terms of Graph-Theoretic principles (see §2.3). However,

certain other features, in particular the study of the small-world effect have come to be

synonymous with such research. We therefore devote some detail to this, and to two other

forms of economic network analysis frequently encountered in the literature.

25See in particular Watts et al. (2002) analysis of search in Milgram’s 1977 classic parcel experiment.
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2.6.1 The ‘Small-world’ Phenomenon

The term ‘small-world’ is now common-place in both our popular conversation and every-

day print media. It neatly depicts the apparent binary opposites inherit in our perception

of a large, incomprehensible, unknowable world, against the frequent experience of the

closeness of contacts within it – things appear smaller than we might have expected.

However, like most popular sayings, the ‘small-world’ description of our social networks

has a technical (though, relatively informal) interpretation in network analysis, and is

used to depict a certain kind of graph, in much the same way as uniform, connected, or

disjoint might.

The small-world phenomenon was classically studied by Milgram (1977),26 his research

giving rise to the popular phrase ‘six degrees of separation.’ He sent parcels randomly

across the USA with the name and rudimentary details of a single target person on them.

Receivers were to add their name to a list and, assuming they did not know the target

person personally, re-post the parcel to a personal contact who they believed would be

in a better position to speed the parcel on its journey to the target person. It is to be

noted that out of 160 parcels, only 42 (∼ 26%) reached their destination.27 However, of

those that reached their destination, the median number of contacts the parcel travelled

through was 5.5, giving rise to the popular saying.

Clearly, for economic and social network investigators, being able to (artificially) create

realistic networks is a priority due to the significant costs associated with gathering real-

life data. In a much cited paper, Watts and Strogatz (1998) suggested that small-world

type networks arise due to an underlying ordering of nodes, together with a small number

of random short-circuit edges that dramatically reduce the path-length between nodes.

A subsequent paper (Watts et al., 2002) proposed a small-world model that could give

rise to the Milgram observation. For example, consider an agent set Vc = {1, 2, . . . , n},

which is placed, in order, on a 4-regular cycle, such that for each agent i ∈ Vc there

exists an edge (i, j) for all {j : |i − j| mod n ∈ {1, 2}}. In their procedure, each edge is

addressed once, and with some probability p ∈ (0, 1] the edge is ‘re-wired’ to any j ∈ V/{i}

(see Fig. 2.3). Obviously, for p → 0, the k-regular graph is simply returned, whilst as

p→ 1, the graph approaches a random graph. However, in between these two extremes,

the authors show that phenomena associated with the so-called small-world effect are

26For an earlier treatment, see Rapoport and Horvath (1961).
27On this point, Milgram relates his work to that of a previous MIT study, conducted in 1961, where

data on how many people a random selection of men and women came in contact with over 100 days was
collected, the average being 500 persons. Milgram notes that simply saying that people are a median of
5.5 intermediates away from each other should not be taken as a measure of relational closeness. (The
geometric progression involved means that if people truly do have around 500 acquaintances then the pool
of possible people the message could go to is around 5005.5, or almost 7 with 14 zeros following.)
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Figure 2.3 Example re-wiring process to form small-world graphs as in Watts and Strogatz
(1998): two edges, (A, B) and (C, D) in a 2-regular graph (left) are randomly chosen to be
re-wired, forming a new graph (right).

observed. First for some undirected graph in this region ΓSW (n, k) having n nodes and

k edges, versus an equivalent random graph ΓR(n, k), the average minimum path length

L(ΓSW ) & L(ΓR); and second, the fraction of feasible 2-regular triangular cycles in the

graph (which they name the ‘Clustering Coefficient’) C(ΓSW ) � C(ΓR). That is, small-

world graphs display a low node-to-node distances, approaching that of random-graphs,

but have orders of magnitude higher clustering, or ‘cliqueishness’ compared to random

graphs. This classification test for small-worlds is an easy one for investigators to calculate

since the corresponding random-graph properties for large n are given by,

L[ΓR(n, k)] ∼
ln(n)

ln(k)
, and (2.9)

C[ΓR(n, k)] ∼
k

n
. (2.10)

Such phenomena has been found to occur in many diverse networks. In Watts and

Strogatz (1998) networks constructed from film actor associations,28 power grids and even

the neural network of C. elegans display small-world attributes. Likewise, other authors

have found the world-wide web (Adamic, 1999; Adamic and Adar, 2003; Clarke et al.,

2000), firm-based collaboration networks (Baum et al., 2003), and recent internet dating

communities (Holme et al., 2004) all display the properties of a small-world network. It

should be mentioned that the Watts and Strogatz rationale for small-world networks is

not the only model in the literature. Subsequent contributions include using random

networks that permit control over degree distribution and clustering (Volz, 2004) and

focusing on small diameter networks with regular degree characteristics (Comellas et al.,

2000).

2.6.2 Cluster Analysis

Within emerging complex economic networks it is often useful to identify groups of agents

that fit one, or both, of two criteria: 1) the group is similar in terms of agent charac-

teristics or attributes; or 2) the group is similar in terms of its topological location (e.g.

28Edges between actors are made if the actors have performed in a film together.
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density of links etc.). Of course, in many models (such as social networks, collaboration

networks) these two descriptions will be highly related. Whilst the first kind of analysis is

relatively straightforward, the second offers some difficult computational and philosophi-

cal challenges. For instance, in a connected graph component, given that there is an area

of high inter-connectivity (i.e. for A ⊂ V where |A| = m then |E(A)| → m(m−1)), where

does the ‘cluster’ finish? Which of the peripheral nodes should be included? What about

nodes that are between clusters – to which cluster should they be assigned?

Consequently, with such inherent subjectivity a variety of approaches have been sug-

gested.29 We cover here, two recent methods by way of example.

Recursive Neighborhood Means (RNM) (Moody, 2001) In this approach, the intuition

is taken from social influence models. Nodes are treated as agents with some ran-

domly endowed vector of opinions. For example, agent i would have opinions Y i =

{yi
1, y

i
2, . . . , y

i
m}, y ∈ R. In iteration t, the value of each agent’s opinion vector is updated

to be the mean of their first-degree neighbourhood set from the preceding iteration, say

N i(t− 1) (adjacent nodes):

Y i(t) =

∑

j∈N i(t−1) Y j(t− 1)

|N i(t− 1)|
(2.11)

In this way, agents that are linked, will naturally move closer together in opinions. The

analysis can be conducted with any number of dimensions, giving finer and finer detail in

terms of clustering.

Of course, there is still ‘art’ to this process, since the investigator must judge at what

point to stop the process and assign grouping within the network. However, a number of

methods are available to aid this process (again, see Wasserman and Faust (1994, part

III)).

Edge Betweeness (Girvan and Newman, 2001) In this method, a property known as the

‘edge betweeness’30 is calculated for each edge. For some edge ei, the edge betweeness

(say) B(ei) is defined as the count of all shortest paths between nodes that go through

ei. For somewhere like Sydney, Australia, the Harbour Bridge, or Harbour Tunnel would

likely have very high edge betweeness since they connect major commercial hubs on each

side of the harbour with no other practical path options available to commuters. The

algorithm for identifying clusters proceeds as follows:

1. Calculate B(e)∀ e ∈ E.

29See Wasserman and Faust (1994, part III) for a treatment of earlier work.
30Closely related to ‘betweeness centrality’ of a vertex, first proposed by Freeman, see ref in footnote

above.
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Figure 2.4 Example clustering tree after applying the edge-betweeness algorithm to a sporting
club relational graph (a). Each leaf-node in (b) represents a vertex in (a) with lines showing
grouping structure (reproduced from Girvan and Newman (2001)).

2. Remove {em : maxB(e)}.

3. Re-calculate B(e)∀ e ∈ E/{em} for only those edges affected by the removal.

4. Repeat from step 2, until no edges remain.

In this way, an hierarchical graph structure can be quickly drawn up, with the first division

arising due to the first edge removed, the second sub-division to the second edge removed,

and so on (see schematic in Fig. 2.4). The algorithm thus constructs a tree-like hierarchical

representation of the graph, with each branching resulting in further sub-branches until

no further discrimination remains.31

2.6.3 Avalanches & Diffusion

As mentioned previously (§2.5.3), a strand of the computational economic network litera-

ture has considered models in which attributes such as technology level spread throughout

a collaboration network for the purposes of joint cooperative technology outcomes. Such

study comes under a number of banners, namely those of technology avalanche, diffusion

31For further examples of the application of this algorithm, other than the reference given above, see
Tyler et al. (2003).
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or even self-organized criticality. Since the latter is an attempt to describe several seem-

ingly universal attributes of inter-connected, non-linear systems and provides something

of an interface between economic network analysis and the science of complexity, we shall

consider it separately below (§3.5).

Returning to computational models of technology adoption mentioned above, natu-

ral measurement questions follow: How many agents undergo technology updating in a

period? What was the total technological improvement in the population for a given

initial perturbation? and, How fast did the avalanche travel? In an early computational

technology network paper, Arenas et al. (2000) provide useful implementations of such

measures. With the technology adoption model as described in (2.7) and (2.8), the count

of updating agents in a given period t is easily defined as the count of agents whose

technology changed,

u(t) = #{i : ai(t) 6= ai(t− 1)}, (2.12)

where #{ } indicates the cardinality of the set. Likewise, we can simply sum the tech-

nology update size for each agent in a period to account for total technological advance

H(t),

H(t) =
n∑

i=1

[ai(t)− ai(t− 1)]. (2.13)

With these two measures, quantification of the mean progress of technology adoption,

given economic network Γb and compatibility difference k = k1 − k2, is given by,

ρ = lim
T→∞

ρ(T ) = lim
T→∞

∑T
t=1 H(t)

∑T
t=1 s(t)

. (2.14)

That is, ρ gives an impression of the total update size per updating agent calculated

over the entire system perturbation. It can also be seen that ρ can give insight as to the

underlying network, or compatibility factors that lead to large or small levels of technology

adoption. It is noted by the authors, that for extreme cases, where k ≤ 2 and k → ∞,

the summed technology update H and the number of updaters s are very nearly equal,

meaning that technology updating per agent approximates closely the average external

perturbation.32

32Compare Scheinkman and Woodford (1994), an alternative model of system responses to external
shocks, studied with a view to criticality.
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2.7 Economic Networks: Concluding Remarks

It must be stressed again that this introduction has not attempted to be thorough in

depth, rather, it has endeavoured to point to significant considerations in the economic

network literature, both of a classical (e.g. analytic) and contemporary (e.g. computa-

tional) nature. However, it ought to have become clear that, as with any field of enquiry,

the investigator of economic networks must pay careful attention to matching her ap-

proach with the question in mind, and, by so doing, embrace the full character of that

chosen approach. For instance, an analytic methodology as applied to economic networks

necessitates a slender description of individual behaviours (e.g. myopic, best-response) and

interaction spaces (e.g. uniform, regular) to achieve progress, whereas, one who utilises a

computational model must acknowledge the inherent problems of some-what subjective,

statistical description (e.g. cluster analysis, small-world attributes), and lack of generality

(e.g. over-specified modeling environments). However, as the examples above attest, each

contributes to our understanding of economic networks and will no doubt receive further

research effort in the future.

Furthermore, up to this point, we have only hinted at more holistic descriptions of

the special behaviour of economic networks. Phenomena such as heterogeneous popula-

tion attributes at the limit due to localised interactions; the sudden on-set of technology

avalanches in spatial models; the small-world nature of economic network topology; and

the boundedly rational behaviour that drives realistic endogenous network generation —

these are the stuff of much broader classifications of system behaviour, which in many

cases, are claimed to have universal application. A few of these classifications have been

mentioned already (albeit in passing only) such as self-organized criticality, complexity,

emergence and evolutionary dynamics, but others such as diversity, chaotic systems and

non-linearity could equally be included. Many of these phenomena or descriptions of

system behaviour come under the study of Complex Systems which broadly speaking,

aims to understand how many systems do not, indeed, attain some equilibrious, easily de-

scribable state over time, rather, they follow complex, non-equilibrium dynamics, defying

prediction and suggesting rich state trajectories; akin to epochs, some noisy, others calm.

Traditionally, such research has been the exclusive domain of the physical sciences, in

particular that of biology, ecology and mathematical physics. However, as we shall see

below, there is a growing interest in such approaches to economic systems, since as men-

tioned, in many ways, they offer one of the most important, and potentially complicated

of the many examples of complex systems on Earth! It is to these considerations that we

now turn.



Chapter 3
Economic Networks as Complex Systems

Following on from the previous chapter, economic networks are now

seen through the framework of Complexity Science. For readers who

are not aquainted with this area, questions such as What is a ‘complex

system’? What is meant by ‘complexity’? What are the characteristics

of a complex system? are covered. Included is a section on the related

concept of self-organized criticality, which has particular relevance for

the analysis of Chapter 8.

3.1 Introduction

Whilst the preceding chapter might have hinted at the appropriateness of considering

economic networks as ‘complex entities’, this is not (only) what I mean by considering

economic networks as complex systems. Rather, I mean that such problems fit into the

broad class of problems that are being increasingly investigated under the ‘Science of

Complexity’ or just ‘Complex Systems’ research. It should be noted that the breadth of

reach of complex systems research is vast, including diverse (and ever-expanding) fields

such as geo-morphology, natural ecology, immunology, virology, traffic dynamics, financial

market analysis, and so on. Consequently, in what follows, examples that are far removed

from economics will be studied, in order to come to a better understanding of general

phenomena that might be expected in economic networks.

So what is distinctive about the study of complex systems? In some ways, the answer

to this question is itself a work in progress, however, various authors have attempted to

described the key factors. For example, Miller and Page (2005) prosaically argue for a

consideration of, what they term, ‘the interest in between’ that these dynamic systems

possess,

27
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Ultimately the study of complex systems illuminates the interest in between

the usual scientific boundaries. It is the interest in between various fields, like

biology and economics and physics and computer science. ... It is the interest

in between the usual extremes we use in modeling. ... It is the interest in

between stasis and utter chaos. Much of the world tends not to be completely

frozen or random, but rather it exists in between these two states.

Or, in the words of Heylighen et al. (2004) (emphasis retained),

What distinguishes complexity science is its focus on phenomena that are

characterized neither by order – like those studied in Newtonian mechanics

and systems science, nor by disorder – like those investigated by statistical

mechanics ... but that are situated somewhere in between, in the zone that is

commonly (though perhaps misleadingly) called the edge of chaos.

So complex systems research inhabits a domain bounded by the twin poles of sta-

tistically independent, many-bodied behaviour on the one hand and the dependent, but

‘ordered’ (and so predictable) behaviour of a finite number of bodies on the other. The im-

plications of this ‘in betweenness’ for the inquirer can be severe; Heylighen et al. capture

this point well,

Order is simple to model, since we can predict everything once we know the

initial conditions and the constraints. Disorder too is simple in a sense: while

we cannot predict the behavior of individual components, statistical indepen-

dence means that we can accurately predict their average behavior, which for

large numbers of components is practically equal to their overall behavior. In

a truly complex system, on the other hand, components are to some degree

independent, and thus autonomous in their behavior, while undergoing var-

ious direct and indirect interactions. This makes the global behavior of the

system very difficult to predict, although it is not random.

This ‘very difficult’ nature of prediction in complex systems is another over-riding theme

and ties into fundamental properties expressed by the theory of chaos and associated

non-linear dynamics (returned to in detail below, §3.3).

In the context of the economic literature, Markose (2005) trace a similar difficulty

that sprang out of the constraints of Formalistic and Deductive methods to eventually

incorporate the Inductive Methods and Self Organizing Dynamics of complex systems

research. They notably mention the contributions of authors such as Hayek, who intro-

duced the concept of ‘the limits of constructivist reason’, and so pushed concepts such as

formalistic incompleteness into the economic domain. A similar perspective was apparent
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in the physical sciences long ago, with authors such as Anderson (1972) questioning the

assumed implicit connection in so many formal models between the reductionist hypothe-

sis (all fundamental elements obey a finite set of laws) and the constructionist hypothesis

– all happenings in the universe can then be constructed from these fundamental laws. In

its place, the gathering results of complexity science would suggest that to know about

some systems, the best place to look is not at the component parts (although these cannot

be ignored), but at the interplay between the components and the whole.

Indeed, this interplay between different levels of enquiry is synonymous with complex

systems research, authors such as Arthur (1999) point specifically to increasing-returns

as the locus for complex dynamics in economic systems, providing a means by which the

elements (human agents) can (unwittingly) produce a distinct epi-phenomenal patterning,

which in turn can constrain or impinge on the elements themselves. Such phenomena pro-

vide the conditions for out-of-equilibrium dynamics, in contrast to the standard equilib-

rium concepts of much formal theory. These principles of emergence and self-organization

prompt deep questions about the fundamental building blocks that together create the

observed, and often fascinating, large-scale phenomena that complex systems are known

for.

3.2 What is a Complex System?

Leaving a discussion of what we mean by ‘complexity’ aside for the moment (see §3.3),

complex systems are often identified in the literature by several system properties. In the

following discussion, I will consider three: 1) system size; 2) nonlinear dynamics; and 3)

local interactions. I shall take each in turn.

First, the system will have some (not insignificant) number of interacting, diverse

components, normally on a scale that renders traditional analytic approaches inadequate.

It is worth pointing out that this does not mean that the number of distinct ‘rules’ in

a system must be large, on the contrary, it is widely accepted that even ‘simple’ system

processes can give rise to complex outcomes (see §3.7 below), however, in general, the

count of actors (elements, nodes, agents) in a complex system is large.

Second, and importantly, the individual components, or collections of these compo-

nents, will interact in a way that is often non-linear. Formally,1 consider a function

f : st → st+1, a single-valued function that describes the state of the system at time t+1

1This discussion follows the very useful introduction to chaos and randomness of Eubank and Farmer
(1990).
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based on the state in time t. A linear function is then described where for two states sa

and sb (say):

f(sa + sb) = f(sa) + f(sb) (3.1)

that is, the principle of superposition holds. Conversely, a non-linear system is one in

which (3.1) does not hold. One can think of this property in terms of a system pertur-

bation: consider some system described by the function st+1 = f(st) (e.g. f(st) = 2st).

Now, suppose the system is linear and we perturb st by an amount ε. Then, in the

following period, we would expect,

st+1 = f(st + ε) = 2st + 2ε = f(st) + f(ε). (3.2)

That is, we simply add the components, with the error term progressing in an highly

predictable way. However, consider a simple non-linear example, say, st+1 = g(st) = 2s2
t ,

then if we perturb the system as before we obtain,

st+1 = g(st + ε) = 2(st + ε)2 = g(st) + h(st, ε), (3.3)

a combination of both the original function g(st) and a new function h(st, ε) (in our

example, h(st, ε) = 2(2stε + ε2)). It is well known that such a small departure from

linearity can have drastic consequences on the trajectory of a system, and hence, the

predictability of its dynamics.

Non-linear dynamics relates the study of complex systems to that of chaotic systems

(§3.3), where the process described above for a small perturbation is characteristically

known as sensitive dependence on initial conditions.2 Here, the major insight is that even

simple (deterministic) systems can give rise to behaviour, that for all intents and purposes,

appears random. Moreover, and causing a re-consideration of previous divisions between

the study of dynamical systems on the one hand, and random process on the other, such

complexity of behaviour is generated by the system itself. An important consequence of

such dynamics is that these systems often display maximal measures of complexity (again,

see below), with the most efficient method of analysis being to simply let the system run

its course; any other attempt at ‘prediction’ being frustrated.

Thirdly, as previous discussions have emphasised (§2.4.3), the presence of localised

interactions between elements creates the conditions for complicated dependencies and

associated dynamics. This is perhaps the most difficult aspect of these systems to model

2First described by Lorenz (1963).
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analytically. A description of each state, and the subsequent transitions between states,

would potentially require an huge number of equations, possibly on the scale of the system

size itself. This difficulty is particularly apparent in models of asynchronous element-wise

updating. Of course, this aspect of complex systems is no doubt one of the key reasons

that computational methods are often pursued, since system-wide diverse interactions can

be calculated from one step to the next within the large-scale memory environment of

modern computers. Not surprisingly, the study of complex systems has become closely

associated to that of graph-theoretic, or network analysis (even if the system itself has no

underlying spacial need for network approaches), we return to this aspect below (§3.4).

Consequently, authors such as Green (2000) point to two main sources of complexity:

iteration and interaction. In the former, a (small) number of rules is repeated over and

over again, giving rise to complex outcomes (e.g. cellular automata), whilst in the latter,

agents or elements that are capable of certain behaviours are brought into contact many

times over (e.g. ecosystems). Of course, these ‘sources’ of complexity are quite related,

since the line between rules being applied to actors, on the one hand, and actors impacting

on other actors by rules, on the other, is rather arbitrary. However, the distinction is an

helpful one to keep in mind when approaching examples of complex systems.

Whilst each of the under-girding characteristics mentioned above are to be found in

both the physical and social sciences, within the economic sciences a fourth and distinctive

degree of difficulty emerges, that of autonomy. As Arthur (1999) notes,

Unlike ions in a spin glass3 which always react in a simple way to their local

magnetic field, economic ‘elements’ – human agents – react with strategy

and foresight by considering outcomes that might result as a consequence

of behaviour they might undertake. This adds a layer of complication to

economics not experienced by the natural sciences.

In the same vein, Holland and Miller (1991) comment on traditional analytic methods of

analysis (even those that assume some kind of bounded rationality) arguing that,

Current theoretical constructs, based on optimization principles, often require

technically demanding derivations. It is an obvious criticism of these con-

structs that real agents lack the behavioral sophistication necessary to derive

the proposed solutions. This dilemma is resolved if it is postulated that adap-

tive mechanisms, driven by market forces, lead the agents to act as if they were

3For example, a chemical glass, displaying high ‘magnetic frustration’: as opposed to ‘normal’ ferro-
magnetic materials, a spin glass displays multiple resting states, such that by applying heat and magnetic
fields in parallel or serial application causes a very path-dependent behaviour. The additive behaviour,
however, conforms to a constant for the glass, and each (and every) ion within the glass follows a consistent
reaction to the applied forces, hence Arthur’s comparison above.
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optimizing ... [Artificial Adaptive Agents] explicitly model this link between

adaptation and market forces, and can thus be used to analyze the conditions

under which optimization behaviour will (not) occur.

Elsewhere Arthur, Durlauf and Lane (1997, Introduction) point to defining features of

economic systems that make them difficult for the ‘traditional mathematics’ used in eco-

nomic analysis, and thus make the case for the complex system approach. They identify

six properties of economic systems that distinguish them for the complexity science ap-

proach: (i) dispersed interactions; (ii) no global controller; (iii) cross-cutting hierarchical

organization; (iv) continual adaptation; (v) perpetual novelty; and (vi) out-of-equilibrium

dynamics. Properties (i) and (ii) speak to the autonomous agent phenomenon: many in-

dividual agents act in parallel across the system in an autonomous way without central

organization. Property (iii) is a consequence of the first two, where emergent organi-

sational building blocks form in an ad-hoc manner across the economy. The last three

properties (iv)-(vi) could be described as different faces of the same trait – the economy

is seen to be never resting, its actors continually coming up with new technologies and

methods of activity that produce new niches to be filled, old ways to be jettisoned.

3.3 Randomness, Chaos & Measures of Complexity

Up to this point, key terms in complexity have not been elaborated on. It will be useful to

ask what words such as complex, complexity, complex system, and even maximally complex

mean? For example, when is anything really ‘complex,’ as opposed, perhaps, to ‘random,’

or ‘chaotic?’ (or just ‘difficult’ for that matter?) Such questions have traditionally been

helpfully treated in the related fields of computer and information science, and so the

discussion below shall draw from this literature.

3.3.1 Random vs. Stochastic

To begin with, it is useful to distinguish between the terms ‘random’ and ‘stochastic,’

since this will indirectly uncover one measure of complexity. Consider two streams of

(binary) information in the form of a string of 20 zeros and ones (known as ‘bits’):4

s1 = 01010101010101010101; and

s2 = 10011001010011011111.

It is immediately obvious that the first string, s1 contains a patterning (a repeated se-

quence), whereas the second string s2 may be describable by a single pattern, but if so,

the pattern is not clear by inspection alone. A consequence of the regular patterning in

4The reader unfamiliar with binary representation, could think of the string as a succession of answers
akin to the game ‘twenty questions,’ where 0 ≡ no and 1 ≡ yes.
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s1 is that if I were to convey the content of s1 to another person, I could compress the

message (e.g. ‘ten zero-one pairs in a row.’). By contrast, s2 does not easily lend itself

to such compression – rather, I might be able to compress parts of it (e.g. I might finish

my description, ‘five ones’), but other parts would simply have to be read out aloud, in

full. For clarity, the term random is generally kept to describe incompressible streams

of information/data such as s2, whereas streams that are produced by chance processes

(e.g. repeated coin-flips), that may indeed contain sections of compressible information,

are called stochastic.

3.3.2 Crude Complexity

Now if a description of the strings in terms of complexity was sought, it is clear it would be

desirable for this description to say that s2 is more complex than s1. As a first attempt,

a description of each string in words could be written down and then the length of each

description measured: the longer the description, the higher the complexity. Clearly, the

level of detail that the description gives (e.g. the proportion of zeros and ones, or the exact

sequence) will bear on the measurement, such a procedure is termed coarse graining in the

literature. The measure just described is called (for obvious reasons) crude complexity, it

is described by Gell-Mann (1994) as follows:

‘The length of the shortest message that will describe a system, at a given level

of coarse graining, to someone at a distance, employing language, knowledge,

and understanding that both parties share (and know they share) beforehand.’

3.3.3 Algorithmic Information Content (AIC)

Crude complexity is not a particularly useful measure of complexity, especially considering

the presence of inherent subjectivity (despite the above quotation’s careful constraints). A

far more useful measure, and one that has great prominence in much of the computational

literature is to standardise the descriptive engine, indeed, to suppose that the strings

are to be described by a universal computer. A universal computer U can carry out

any computable program, even therefore, simulating other universal computers. In the

present case, a program that would print out s1 and s2 and then stop (halt) is required.

The length of such a program, defined as the algorithmic information content (AIC), or

algorithmic randomness, or algorithmic complexity is defined as follows (following Zurek

1990):

KU(s) ≡ |s∗U| (3.4)
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where s∗
U

is the minimal (binary) program that displays sequence s, and the vertical lines

mean simply the size (length) of the string in bits. It might be noticed that it is with

AIC in mind, that the terms random (maximal AIC ) and stochastic as discussed above

are defined.

3.3.4 Effective Complexity

However, as pointed out by Gell-Mann (1994, p.59) AIC does not really accord with what

is normally meant by complexity, since a random string will be measured to (by definition)

have maximal AIC, but be well described by a very short description such as ‘complete

gibberish of length l.’ That is, what is of importance when describing the complexity of

an entity, is not a description of every detail, but rather, the length of the description of

the entity’s regularities (Gell-Mann, 1995). Clearly this can be somewhat context depen-

dent,5 but given some transformation to (say) a bit-string representation, then objective

regularities might be described. Gell-Mann and Lloyd (1996) define such a measure as

effective complexity, and in their prescription, a statistical-mechanics description of the

string is employed, such that rather than computing just KU(s) a set of strings that

probabilistically describe s is constructed, each string sharing the regularities of s but dif-

fering in other respects (the irregularities). That is, a number of alternative strings r that

share the regularities of s together with their respective probabilistic contributions Pr is

formed. Such as set of strings (states) is equivalent to a (quantum mechanic) ensemble

E = {(r, Pr)} description of s. The effective complexity is then,

E ≡ KU(E), (3.5)

the length of the shortest program that describes the members of the set together with

their probabilities. However, in determining E , an obvious concern is which (and how

many) elements will be contained in E – clearly, different observers will find different

regularities in s and thus an element of subjectivity is unavoidable.

3.3.5 Shannon Algorithmic Information

To treat this concern, the authors propose an additional step, that of utilising the Shannon

measure of information (ignorance) I to assess the uncertainty present in the set of strings

in E. For a probability distribution pr over alternatives r, Shannon’s measure is given by,

I = −k
∑

r

pr log pr, (3.6)

5Consider the changing fortunes of so-called ‘junk’ DNA — previous explanations have treated this
portion of the human genome as irrelevant, however, recent authors have contended that this region may
indeed provide the basis for genetic robustness and is therefore well worthy of study.
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where k is an arbitrary positive constant. For example, where k = 1 and logarithms are

taken in base 2, I will be measured in bits. As in Gell-Mann and Lloyd (1996, p.45)

for a single fair coin flip (ph = pt = 1
2), Ipre = −{ph log ph + pt log pt} = 1bit prior to

looking at the coin. However, after the coin has been seen (say heads), ph = 1 and pt = 0

which correspond to Ipost = 0, that is, one bit of ignorance has been lost, and one bit of

information has been gained.

Thus, by considering the AIC of each member r in the ensemble, and computing an

equivalent Shannon ignorance measure,

I ≈
∑

r

PrKU(r|E), (3.7)

where KU(r|E) is simply the contingent AIC of each member of the ensemble, we have

an average contingent AIC of the members of E equivalent to (within 1 bit) the Shannon

ignorance measure, or entropy of the ensemble. Taken together, the effective complexity

E then gives a measure of regularities present in s, whilst I indicates the information

required to specify the residual irregular components. The summation of these properties

is defined to be the total information,

Σ = E + I, (3.8)

and since this should be constant between descriptions (in fact, it should be close to

minimal, given by KU(s)) a trade-off will ensue. A longer, more detailed (complicated)

description of the string’s regularities (higher E) will result in a smaller number of potential

entities described by the ensemble (lower I). Conversely, a concise description of the string

will (normally) result in a broadening of allowable strings possessing those regularities. It

is possible to identify concise (low E), and yet powerful descriptions of a string (vanishing

I), for example, the (seemingly maximal AIC ) decimal expansion of π might be described

in binary form by a simple program to generate the expansion, however, such instances

are rare.

A final point is worth making concerning the relationship between complexity and

chaos. In the language of Eubank and Farmer (1990), ‘chaos provides the link between

determinism and randomness.’ That is, the major insight of chaos theory is that rela-

tively simple, deterministic processes can give rise to system dynamics that to all intents

and purposes are random. No longer is the dichotomy between the study of dynamical

systems (determinism with precise knowledge of initial states) and random processes (un-

certainty concerning initial states or laws of motion) necessary. Chaotic processes, with
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their exclusively non-linear, though often simple, dynamics, give rise to non-smooth state

trajectories (akin to a ‘shuffling’ of states), resulting in uncorrelated processes, even over

short time-frames. Hence, traditional time-series measures (such as correlation) are inad-

equate to describe the system. For this reason, whilst not all ‘complex systems’ satisfy

strict definitions of chaotic processes, they do, in general, require non-linear measures of

system state, such as those discussed above, or their equivalents.

3.3.6 Complexity and the Economy: relationships within and without

The above discussion focuses on a potted history of measures of complexity, and in par-

ticular, on one recent, but powerful approach to this area.6 Others could be given (e.g.

mutual information in random grammars (Kauffman, 1993, p.384)) but none seem to

deal so well with the concerns of the scientific application of complexity as Gell-Mann

and Lloyd mentioned above. Whilst it is possible to apply such measures algorithmically

to system states or population characteristics, the real usefulness of these discussions is

first, in providing depth to an otherwise ethereal term, and second, in giving insight as to

how one might track the complexity or otherwise of a given system (problem). Indeed, in

terms of the previous discussion on complex systems in general, parallels with measure-

ments of complexity are apparent. The idea of complexity science operating ‘in between’

the normal modes of analysis corresponds directly with notions of maximal effective com-

plexity.

Before leaving this section, it should be noted that the direction of the proposed mea-

sures of complexity found above is actually very closely aligned with physical measures of

order and disorder, captured by the thermodynamic quantity, entropy. Entropy is a state

variable of physical systems, and is the only law of thermodynamics that is statistical in

nature. Loosely speaking, it captures the fact that a closed system of entities (e.g. an

insulated box of atoms), having some measurable (and constant) level of various macro-

scopic quantities such as energy, temperature and pressure, can be found to be in a (very

large) number of different configurations (e.g. atomic position, velocity), and although

these configurations do not alter the macroscopic measures, they will give rise to different

levels of entropy. That is to say, it is quite (statistically) unlikely (although possible) that

a large proportion of the atoms would move (reversibly) to a single corner of the box (low

entropy), whereas is highly likely that the atoms will move roughly in a manner such that

a uniform density of atoms is found throughout the box (high entropy). The second law

of thermodynamics expresses this difference of likelihoods, and sets down that systems

such as this will never spontaneously decrease in entropy, and hence, by observing the two

6For a different view of effective complexity, a comparison with Standish (2001) is worthwhile.
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states of the box so described, one could immediately determine which existed in time

before the other. This is perhaps the deepest conclusion of this area of thermodynamics,

since it suggests a physical interpretation for the ‘arrow of time’.

The implications of such findings for economic systems is still unclear, but the possible

connections are tantalising. Does a similar ‘arrow’ exist in social systems? What would

the objects of order and disorder be – distribution of wealth? technology diffusion? Such

questions are left open and are not intended to be pursued by this thesis, it is enough to

note that other workers are presently pursuing these ideas.7

3.4 Complexity & Networks

Networks do not necessarily have to comprise individual agents or properties as nodes, in

fact, a variety of networks can be constructed that describe alternative relationships such

as state trajectories, or variable dependencies in dynamic systems. Indeed, although the

strong isomorphism between deterministic processes in general (dynamical systems) and

directed graphs (di-graphs) is generally accepted, Green (1993) gave formal proof to this

notion by providing three related theorems:

Theorem 3 The patterns of dependencies in matrix models, dynamical systems and cel-

lular automata are all isomorphic to directed graphs;

Theorem 4 In any array of deterministic automata with a finite number of states, the

state space forms a directed graph; and

Theorem 5 Any deterministic automaton, or cellular automaton, with a finite number

of states ultimately falls into either a fixed state, or a finite limit cycle.

The first theorem states that any system with simple or complex dependencies between

variables can be represented adequately by a directed graph. The second and third concern

the relationship between states in the state space (the system trajectory), suggesting that

the state space likewise forms a di-graph, and must, therefore, under finite deterministic

rules give rise to either an absorbing state (single node) in the graph, or a cycle between

a finite number of states (nodes). It is to be noted that the second theorem can be

extended to stochastic automata by assigning edges between states to non-zero probability

transitions. However, as might be noted, this destroys the final result for such systems,

since a trajectory once entered, will seldom be covered again given the probabilistic state-

to-state transitions.

7This area is pursued under the general title ‘Econophysics’, see
http://www.ge.infm.it/~ecph/index.php.
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Figure 3.1 Example of the connectivity avalanche, undirected edges added randomly to initial
10 node null-graph. Average results from 100 trials (solid) ±σ (dotted).

Whilst in some ways, these results are merely a way of thinking or talking about

dynamical systems, they give rise to fascinating outcomes which relate directly to the

recent discussions of effective complexity and chaos given above. To see this, consider

a second strand of literature which began with the work of Erdös and Rènyi (1959) on

undirected graphs, but has subsequently been re-visited on directed graphs by Green

(1993) and Seeley (2000). Here, edges are added in some random fashion to a null-graph,

say G(V,E) where E = ∅ and |V | = N , having zero initial connectivity.8 In both cases,

either with undirected or directed graphs, the connectivity starts small, but begins to

increase with an ever accelerating rate as edges are added. At this stage, small ‘patches’

of connected components appear, although each patch is disjoint with respect to the

others. However, after time, these patches begin to join (much like the coalescence of

oil droplets circulating on water) forming super-patches, and the connectivity begins to

rise sharply. After a short time, the addition of just one or two extra edges can cause

the super-patches to join, forming a giant-component that encompasses almost all of the

nodes (& 85%) resulting in a connectivity measure approaching 1 (see Fig. 3.1).

The point at which the system can experience large connectivity jumps is known as the

‘double-jump’ point, or, as in Seeley (2000), the ‘connectivity avalanche.’ Whilst various

measures undergo their own dynamics with the addition of edges (e.g. the presence of

Hamiltonian cycles), the connectivity avalanche appears to be the most striking. At this

8Recall, connectivity of some graph c(G)is defined as the count of node-pairs for which a path exists,

normalised by the maximum such count, which for an undirected graph of size N , is given by n(n−1)
2

whilst for directed graphs is n(n − 1).
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point, the addition of a pair of appropriately placed edges has the capacity to cause the

system to effectively go from dis-joint to strongly connected. Seeley provides an explana-

tion for the massive rise in connectivity – consider two connected components comprising

n1 and n2 nodes respectively, then, prior to the connections, their total contribution to

connectivity is n1(n1 − 1) + n2(n2 − 1) whilst after the edges are added, this becomes

(n1 + n2)(n1 +n2− 1), an increase of 2n1n2. The multiplicative nature of the component

sizes thus accounts for the large connectivity jump.

It is to be noted that not every additional edge will have such an impact at this

point. Indeed, many additions will have vanishingly small effect on the connectivity, but

as mentioned, with small probability, when the additions fall between nodes in each large

component, then the connectivity can change dramatically. Clearly, such an observation

is just as pertinent for the subtraction of edges as it is for their addition, the so-called

connectivity implosion. For example, consider a firm-based supplier-producer network

– the subtraction of one firm, or one partnership will largely have almost no effect on

network-wide economic activity, but occasionally such a change will drastically cut off

groups of firms, having network-wide ramifications.

Such behaviour is normally addressed under the title criticality, to express the fact that

the system is at some kind of critical stage between very different states. Since this has a

broad application in the sciences, we consider this phenomena in more detail below (§3.5).

For now, it is to be noted that in a dynamically evolving network environment, notions

of criticality can be a key place to look when attempting to explain certain equilibrium

shifts in dynamic systems. In fact, as is discussed presently, some authors argue that

naturally evolving interaction networks actually self-organize to this region of criticality

and thereafter maintain this state.

3.5 Self-Organized Criticality & ‘The Edge of Chaos’

In a much cited work on Boolean NK networks Kauffman (1993, ch.5,6) follows just

this path. Although initially conceived to study the network effects of genetic activity,

the model provides interesting results for the the emergence of equilibria in complex

interaction environments. Here, each node (gene) was either ‘on’ (1) or ‘off’ (0), and was

placed on a random directed graph of size N with an average of K incident edges. The

incident edges carry the state of the adjacent nodes, with each node following a rule-based

digital transition function to determine its subsequent state. For example, for an N = 3,

K = 2 Boolean network, each node must have a response for 2K = 4 possible input

states, which in this case are given by the set: {00, 01, 10, 11} (an example graph is given
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Figure 3.2 Example N = 3, K = 2 Boolean graph as described in Kauffman (1993, chs 5,6).

in Fig. 3.2). So, for example, the program for node A might be given by (0010), which

means, ‘return 0 in all cases, except for an input of [10].’

A further control parameter, P was introduced to define the proportion of ones found

in each rule (that is, a measure of bias). After extensive simulations, tracing the system

state (values of each node), it was discovered that either varying K (given N) or varying

P (given K and N) resulted in three clear phenomena. In one phase (K & 5 or P → 0.5),

the system displayed chaotic dynamics (attractor sizes scaling exponentially with N),

however, as either K → 2 or P → 1, systems quickly establish ordered dynamics, often

achieving a limit cycle or fixed state on a time-scale orders of magnitude less than 2N

(the total number of states). Characteristic of this state, was a central frozen region in

the network (a cluster of nodes with fixed or cycling states), which appeared to force its

ordering on the rest of the network via percolation. However, in between these regions, a

fascinating transient phase was apparent where any frozen sections that did occur, were

just as likely to ‘melt’ amidst seemingly complex signaling regions. That is, order and

dis-order existed alongside each other, either in space or time.9

The work on random Boolean networks, couched as it was in the context of biological

evolution, gave the first hint of the rich behaviour present in the ‘middle ground’ of many

of these systems. In fact, the term ‘the edge of chaos’ was coined to describe this sub-

critical state, where the system could equally display chaotic or ordered dynamics, often

returning to the ‘edge’ only to diverge again. Indeed, Kauffman (1993, p.219) points to

the significance of this region as being perhaps the characteristic of robust and ‘useful’

systems, not just with reference to Boolean networks – though they clearly provide a

foundational example – but as a universal phenomena of complex adaptive systems. His

description continues,

“...if a network is deep in the frozen phase, then little computation can occur

within it. At best, each small unfrozen, isolated island engages in its own

internal dynamics functionally uncoupled from the rest of the system by the

frozen component. In the chaotic phase, [the] dynamics [are] too disordered

to be useful. Small changes at any point propagate damage to most other

9Compare a visual example, based on Class IV cellular automata behaviour in Fig. 3.5 below.
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elements in the system. Coordination of ordered change is excessively difficult.

At the boundary between order and chaos, the frozen regime is melting and

the functionally isolated unfrozen islands are in tenuous shifting contact with

one another. It seems plausible that the most complex, most integrated, and

most evolvable behaviour might occur in this boundary region.”

Moreover, and receiving great interest of late with respect to self-organized criticality,

he makes the following ‘bold hypothesis,’

“Living systems exist in the solid regime near the edge of chaos, and natural

selection achieves and sustains such a poised state.”(Kauffman, 1993, p.232)

That is, not only do natural systems (including therefore human systems) exhibit ‘edge

of chaos’ dynamics, but these systems naturally evolve towards them, even to the extent

of returning there after a transient disturbance. In other words, he (and others) would

argue that these systems are able to self-organize to this state.

Such considerations are clearly related to previous discussions of complexity. In-

deed, Gell-Mann (1995) argues that natural systems are those that display high effective

complexity, having many operating regularities (rules) complimented by some stochastic

influence – that is, the transient ‘edge of chaos’ exists between the two poles of order

and chaos. From this view-point, dynamic network systems are themselves examples

of complex adaptive systems. The rules or ‘schema’ they develop over time are used

for processing the myriad data transfers within the system (so the Boolean programs of

Kauffman’s networks). Gell-Mann notes, “a complex adaptive system functions best in

a situation intermediate between order and disorder.”(Gell-Mann, 1994, p.249) We turn

now to some examples of systems that appear to display such phenomena, and in turn,

the relative claims for this contentious universal phenomena in complex adaptive systems.

In largely theoretical work, Bak et al. (1988) suggested (in their terms) that ‘spatially

extended dynamical systems’ – systems possessing both time- and space- degrees of free-

dom – would reach, from any starting point, a critical state.10 They consider ‘composite’

systems (very large systems of a number of non-linearly interactive elements) arguing

that these systems ‘self-organize’ or evolve naturally to a critical state. Once there, as

opposed to sub-critical (dampening at short distances) or super-critical (run-away reac-

tion) behaviour, these systems return to the critical state after a collapse. That is, they

are always ‘at’ the critical state. This is surprising, since it was previously believed that

such a state could only be achieved through the ‘tweaking’ of control parameters (such

10See also the less-technical treatment in Bak and Chen (1991), and another treatment by Kadanoff
et al. (1989).
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(a) (b) (c)

Figure 3.3 Example Self-Organized Criticality analysis of a computational simple displacement
model as undertaken by Bak et al. (1988) showing power-law scaling in both spatial and temporal
dimensions: (a) Example superimposed time series of actual fluctuations of the system; (b)
Example frequency distribution of the size of resultant perturbation outcomes; and (c) Example
power-spectrum analysis of the time-series.

as the fine control required to maintain the nuclear fission reaction at the critical state).

Aleksic (2000, p.113) comments,

In equilibrium physics criticality is the exceptional case. ... But for the Game

of Life, and some large dissipative systems the critical scale-free spatial and

temporal behaviour naturally self-organize. The critical state of these systems

has a large basin of attraction: for a wide range of initial conditions the system

will evolve to this critical state. 11

The ‘signatures’ of such self-organized criticality appear to be spatial self-similarity (frac-

tal scaling) and power-law scaling phenomena, in the spatial- and temporal- dimensions

respectively (see Fig. 3.3). The latter being previously referred to as the ubiquitous ‘1/f ’

noise that had previously been treated as a measurement error, with the power spectrum

S(f) scaling as 1/f at low frequencies.

Surprisingly, the quintessential example of this behaviour is that of the humble sand-

pile. Adding grains of sand to a suitable surface will cause a pile to form, which after

time will suffer from a number of slippage events as more sand is added (attaining the

angle of ‘repose’). Significantly, rather than collapsing completely (a runaway response),

or allowing near infinite addition (over-dampening), the edge of the pile always returns

to the same angle through a process of many small, but sometimes large, ‘avalanches.’

11The Game of Life is a reference to Conway’s (Berlekamp et al., 1982) famous model of an astonishingly
simple cellular automaton (covered below) that was capable of displaying highly complex pattern-based
behaviour over many, many time intervals.
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Indeed, Held et al. (1990) carried out the physical version of this experiment, finding that

for small sand-piles, critical mass fluctuations were observed.12

Moreover, since such scaling is apparent in a diverse range of physical systems (e.g.

earth-quake incidences, light emitted by quasars, current in resistors, sand flow in an hour

glass, river flows, stock market fluctuations), the authors generally claim that a universal

phenomena is being observed. This universality appears to stem from the long-term

non-linear coupled interactions that each of these systems possess, the authors note,

In retrospect, it is hard to see how 1/f noise, with long temporal correlations,

could possibly occur without long-range spatial correlations, (Kadanoff et al.,

1989, p.373)

Clearly, the work by Seeley mentioned above (§3.4) has such thoughts in mind.

It is not difficult to see the relevance for the present study. Many economic sys-

tems (e.g. the stock-market, supplier-producer networks, person-to-person interaction

networks) display the potential for exactly these long-range spatial interactions. Indeed,

elsewhere Bak and Chen (1991, p.33) argue that,

Conventional models (of economics) assume the existence of a strongly stable

equilibrium position for the economy, whereby large aggregate fluctuations

can result only from external shocks that simultaneously affect many different

sectors in the same way. Yet it is often difficult to identify the reasons for

such large-scale fluctuations as the depression of the 1930s. If, on the other

hand, the economy is a self-organized critical system, more or less periodic

large-scale fluctuations are to be expected even in the absence of any common

jolts across sectors.

Indeed, Scheinkman and Woodford (1994) show just such an outcome with a simple model

of a supply-demand economy. They argue that economic interactions must display ‘local

and significantly nonlinear’ (emphasis retained) dependencies for criticality of this sort

to emerge.13 Alternatively, Canning et al. (1998) consider the importance that criticality

considerations have for aggregation to the scale of national growth rates, whilst several

authors have attempted to point to more esoteric renditions of the world economy (or

world system) through power-law scaling phenomena. However, in these efforts, it is less

clear how the process of aggregation gives rise to the macroscopic outcomes surveyed.14

12For larger systems, relaxation oscillations were observed instead, however, this could be explained by
the necessary change in the experimental drop height.

13For an econophysics approach see Arenas et al. (2000).
14See for example, Devezas and Modelski (2003) or Matutinović (2002).
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To summarize, whether or not self-organized criticality is a phenomenon of all strongly

interacting non-linear systems, or just those that fit some subset, it is clear that such con-

siderations cannot be ignored when aggregating from the individual to the whole. In

particular, it would seem that the theory’s explanatory power is greatest when shocks are

able to propagate over extensive inter-temporal scales via lagged, or time-intensive spatial

interactions. Specifically, when dealing with explicit network-based systems where indi-

vidual nodes exhibit agency contingent on their connections, scaling phenomena should,

at the very least, be unsurprising.

3.6 Emergence & Self-organization

A kind of self-organization related to the processing ability of a system with respect to

external shocks has already been mentioned, however, more commonly, self-organization,

and its broader partner, emergence, are associated with complex systems in describing

(often surprising) aggregate behaviour. The property of emergence received significant

interest in the latter half of the previous century, in no small part due to contributions

made by authors in the field of artificial life. Here, the emphasis was, and continues to be,

on determining the supposed ‘simple’ rules and processes that drive natural organisms,

with a view to exploiting the resultant robust and adaptive properties that these creatures

display. In this way, emergence became a criterion of ‘good’ systems, since it appeared

to be synonymous with the way that often rudimentary, autonomous processes – albeit

interacting in sometimes complicated ways – could give rise to coordinated or ‘intelligent’

behaviours.

But what is emergence? At one level, emergence can be thought of as turning on

the level of description that a system lends itself to. Following Standish (2001), suppose

that the fundamental components of a system can be described by L1, a ‘microlanguage,’

which, for example, might describe the number of pedestrians on a side-walk, their in-

dividual velocities and positions. However, suppose further that because of the myriad

interactions of the people on the sidewalk over time, two flows are apparent, one trav-

eling in each direction. In this case, a second (presumably shorter) description, L2 – a

‘macrolanguage’ – could be used to describe the system. We then have a definition of an

emergent phenomenon, Standish summarises,

An emergent phenomenon is simply one that is described by atomic concepts

available in the macrolanguage, but cannot be so described in the microlan-

guage.

or in the words of Aleksic (2000, p.99),



CHAPTER 3. ECONOMIC NETWORKS AS COMPLEX SYSTEMS 45

The regular patterns that can be discriminated in domains other than the

generating domain are examples of emergent phenomena. ... [They] exist as

the result of the aggregate behaviour of more elementary parts.

In this view, the property of emergence is closely related to that of self-organization,

since to organize is, by definition, to reduce the level of disorder, and hence, to identify

regularities that lend themselves to an aggregate description. However, this may not

necessarily be the case – a chaotic pattern might indeed result from a very ‘simple’ system

– here, the emergent phenomena would be negatively correlated with organization! Of

course, such a discussion is very closely related to previous comments regarding complexity

(§3.3).

In many ways, this description of emergence may seem trivial, but the identification

of emergent phenomena has had a profound affect on the current understanding of many

complex systems. Indeed, some authors would argue that complex systems are worthy

of study because they display emergent phenomena. For example, Holland (1998) draws

lessons from Conway’s celebrated Game of Life, that: ‘1) simple rules (absurdly so)

produce coherent, emergent phenomena; 2) emergence relies on interactions that are

more than the sum of the individual parts (that is, relying on non-linearities); and 3)

that persistent emergent phenomena can serve as components of more complex emergent

phenomena.’ Here, emergence has come to be a meta-description of complex systems

in general and that these emergent phenomena can themselves become components for

further aggregate behaviour.

Whilst much of the theoretical literature on emergence has studied abstract models

such as the Game of Life (Berlekamp et al., 1982), Cellular Automata (Wolfram, 1984a),

simulated evolution (Ray, 1993) and a variety of Lindenmayer (L-) systems (Lindenmayer,

1971), there is a growing interest in the way that the many decisions made by human

actors can aggregate. Concepts such as herding in financial systems, or the famous work

of Arthur (1994) on inductive reasoning are obvious candidates.15

For the economic literature, the most obvious implication of these studies, and of the

general phenomena that is described by emergence, is that aggregate data need not be

described by the combined actions of many self-interested optimizing agents. Rather,

through the interactions of many sub-optimal decision making entities, aggregate vari-

ables may be generated, sometimes displaying remarkable overall optimizing behaviour,

or alternatively, generating seemingly chaotic trajectories. This is not a new realization

(see for example, Alchian (1950); Sugden (1989)), but has important ramifications when

15See also Surowiecki (2004), The Wisdom of Crowds.
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Table 3.1 A Fibonacci sequence generated with the two rule L-system (3.9), (3.10).

Iteration State

0 A
1 B
2 AB
3 BAB
4 ABBAB
5 BABABBAB
6 ABBABBABABBAB
7 BABABBABABBABBABABBAB

coupled with the recent ability to computationally simulate the interactions between large

numbers of non-rational agents (Holland and Miller, 1991).

3.7 Modeling Complex Systems

What does a ‘complex systems approach’ look like (in terms of research method)? The

examples that follow can be broadly split into two main approaches: the first, and earlier

of the two, aims at uncovering underlying properties of complex systems by investigating

abstracted yet transparent models; whilst the second aims at achieving more practical

outcomes, either in terms of optimization or explanatory/predictive modeling of real-

world systems. I shall take each approach in turn.

3.7.1 Theoretical Approaches

The first style of complex systems modeling is no doubt the most familiar. This owes

in part to the surprising insights that this approach originally yielded, and in part to

the range and depth of properties that these models have come to be associated with.

Examples here include L-systems and Cellular Automata (CA) (including Conway’s Game

of Life, a notable special case of 2-dimensional CAs). L-systems use simple components

and rules that together define a formal grammar which simulate growth in an algorithmic

way. For example, (following Green 2000) an L-system F(G) on syntax G to generate a

Fibonacci sequence could be constructed with variables {A,B} , initial condition A, and

rules as given in (3.9) and (3.10).

F1 : A −→ B, and (3.9)

F2 : B −→ AB. (3.10)

That is, an application of F for several iterations would yield the sequence in Table 3.1.

which can readily be verified to have the structure,
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Figure 3.4 Example Chaetomorpha linum growth model constructed with L-system G (see
text).

|Sn| = |Sn−2|+ |Sn−1|, ∀ n ≥ 2, (3.11)

where |Sn| denotes the length of state n ∈ [0,∞) – the Fibonacci sequence. Alternatively,

a model for algal growth (in this case, Chaetomorpha linum) G could be constructed by

defining rules:

G1 : A −→ DB

G2 : B −→ C

G3 : C −→ D

G4 : D −→ E

G5 : E −→ A .

As can be seen in Fig. 3.4, G quickly gives rise to a starkly realistic (complex) algal

growth pattern. The two examples considered are known as context-free, since any rules

address only individual elements, rather than groupings (elements in a context). In re-

ality, there is no known bio-chemical basis for the intermediate rules in these grammars

(i.e. those that define the timing of branching), and therefore, context-sensitive models

are more likely a better representation of reality. However, L-systems provide insight

as to the generation of self-similar structures since they neatly generate similar charac-

teristics over a range of scales (i.e. fractal properties). The following result (reproduced

from Green 2000, Theorem 2.1) captures this,
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Theorem 6 Let L(G) be a context-free grammar that is generated from the syntax G. If

there exists an integer m, such that Sm can be expressed in terms of Sm−i, where i < m,

then this same relationship holds for Sn, for all n > m.

For example, the F(G) system previously mentioned can be represented,

Sn = Sn−2‖Sn−1, ∀ n ≥ 2 , (3.12)

where ‖ represents an horizontal concatenation.

CA models, generally attributed to von Neumann (1966) have proved to be a powerful

modeling environment in which to understand complex system behaviour. The idea is

simple, with a single dimension cellular automaton being a line of sites, {a1, a2, . . . , an},

each capable of k discrete states. Updating of each site follows some deterministic rule

(φ) contingent on the site’s previous value, together with the value of all neighbours up

to and including r sites away,

at+1
i = φ[at

i−r, a
t
i−r+1, . . . , a

t
i+r−1, a

t
i+r] . (3.13)

For example, φ might be a totalistic rule, such that, at+1
i is simply defined by,

at+1
i = φ̂





i+r∑

j=i−r

at
j



 , j ∈ Z , (3.14)

where a look-up table might be used to define φ̂ for the possible k2r+1 summation values

(a total of kk(2r+1)
such functions exist). Such a two-state (k = 2) CA with r = 2 was

used to generate the selection of sub-figures in Fig. 3.5. Each figure was initialized with

a random state seed (top row), with subsequent time steps being printed thereafter.16

What is most interesting about even these simple 1-D CAs, is the diverse range of be-

haviours exhibited. Most of the ‘rules’ quickly settle to one of the quiescent (Fig. 3.5(a)),

periodic (Fig. 3.5(b)) or chaotic states (Fig. 3.5(c)), so-called Class I, II and III behaviour

respectively. However, a very small number (measure zero in large sets) display what

Wolfram labeled Class IV behaviour (Fig. 3.5(d)), eventually becoming associated with

the ‘edge of chaos’ descriptions already encountered. The CA environment then offers a

transparent system to analyse the properties of each dynamic behaviour. Further analysis

by Wolfram (1983, 1984b) identified the statistical mechanic properties of these classes

(e.g. entropy, information processing) and indicated the possibility that Class IV CAs are

16In this figure, black and white pixels indicate cell values 1 and 0 respectively.
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(a) Class I (36) (b) Class II (56) (c) Class III (10) (d) Class IV (52)

Figure 3.5 Example behaviours for Totalistic Cellular Automata: k = 2, r = 2; (a) homoge-
neous steady-state; (b) periodic steady-state; (c) chaotic; and (d) transition phase exhibiting
complex localized regions, sometimes long-lived. Generating ‘rules’ given in parenthesis.

able to exhibit universal computation (and thus by nature, their state trajectories are in-

herently undecidable). Indeed, the previously mentioned Game of Life can be represented

as a 2-D CA and similarly has been shown to possess this same property (Berlekamp et al.,

1982).

Furthermore, and with clear parallels to Kauffman’s work, later investigation by Lang-

ton (1992) who defined an order parameter λ ∈ [0, 1] as the percentage of non-zero values

in the look-up table, showed that: for λ → 0, Class I behavior (quiescent) is observed;

Class II behavior (periodic) arises for small, but increasing λ; and as λ → 1, Class III

behaviour (chaotic) prevails. However, for a small region between Class II and Class III

behaviour, a transition state according to the complex patterns of Class IV were observed,

suggesting that, as with Kauffman’s Boolean nets, a critical value λc could be determined

to describe the ‘edge of chaos.’

Clearly there are many other examples of useful theoretical frameworks for investigat-

ing complex system behaviour, we have considered here only two of the most influential.

However, from these, several features are apparent, namely: that the ‘edge of chaos’ is

associated with a transient, and quantitative region of the state space; that around this

region, emergent phenomena, akin to the frozen/melting sections of random NK nets

is apparent; and perhaps most clearly seen in these models, that the mantra of many

complex systems workers holds true – complex phenomena need not rely on complex gen-

erating functions. Gell-Mann (1994, p.313) comments concerning systems such as the CA

model that,

‘The most striking feature of those simulations is the emergence of complex

behaviour from simple rules. Those rules imply general regularities, but the

working out of an individual case exhibits special regularities in addition.’
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3.7.2 Adaptive Approaches

The second, and now ever-popular adaptive stream of complex systems research has grown

largely from biological metaphors such as adaptation, evolution and selection. Whilst it

seems that such an approach is now unavoidable across the academy, the social sciences,

and in particular, the economic sciences, have proved eager adopters.

Historically-speaking, evolutionary metaphors that sought to explain relative returns

within the economy have been with us for decades (e.g. Alchian 1950). And in particular,

with the influential work of Maynard Smith (1978) in mind, the Theory of Games formed a

natural substrate for further adoption of (successful) biological metaphors such as random

perturbation in equilibrium selection (e.g. Kandori et al. 1993). Moreover, as attributes

such as mistake-making, rules-of-thumb, conventions and other forms of non-rational play

(e.g. fairness) came to form the most surprising results from the experimental/behavioural

psychology literature in recent times (e.g. Camerer 1998, 1997), an awareness that reality

may in fact be better described by the aggregate behaviour of a number of diverse agents

arose within the field (e.g. Arthur 1994). Together with this awareness came the parallel

increase in affordability of computing technology such that even standard desk-top PCs

now provide a readily accessible platform with which to construct increasingly facile and

quantitative models of such complex systems (e.g. Holland and Miller 1991; Tesfatsion

2003).

Subsequently, adaptive complex systems approaches generally take one of two related

forms, the second being more relevant to the present study. The first harnesses the

attractive non-linear optimization properties of adaptive systems to search large-scale

multi-dimensional parameter spaces. Here, generations of solutions, typically encoded

in binary form, are iteratively selected, combined and ‘mutated’ to hone in on global

optima. The infamous Genetic Algorithm (GA) approach (Holland, 1992) with its diverse

applications (e.g. Hillis 1990; Miller 1996a) continues to be the subject of heavy research.

However, it turns out that given the right conditions, such models have appeal in

explaining the underlying behaviour of agents that gives rise to various aggregate phe-

nomena. For instance, models that employ a GA underpinning often explain generation-

to-generation changes in terms of learning (e.g. via the crossover operator or similar) and

innovation, or mistake-making (via the mutation operator). Alternatively, adaptive mod-

els may employ rule-based updating of agent strategy profiles, with (say) some stochastic

shock that causes stickiness. Desirable qualities of these approaches are several-fold:

1. Diverse agent behaviours (intelligences) can be implemented, limited only by com-

putational complexity;
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2. Agent behaviours can be easily made dynamic, allowing for realistic learning/adaptation

qualities;

3. Learning rules such as imitation/diffusion and experimentation/mistake-making are

afforded within easily tunable parametrisation;

4. Interaction spaces can be varied or endogenised; and

5. Quantification of time-series model attributes such as diversity, self-organization,

complexity, similarity etc. are accessible.

As mentioned, the approach was adopted early by workers who studied the evolution of

strategic behaviour — games such as the Prisoner’s Dilemma was an obvious initial choice,

but continues to offer fertile modeling territory (Anderlini and Ianni, 1997; Binmore and

Samuelson, 1992; Grim, 1996; Kirchamp, 2000; Lindgren, 1992; Masuda and Aihara, 2003;

Miller, 1988, 1996b; Miller et al., 2002; Nowak and May, 1992); as does that of technology

transfer/adoption (Elgazzar, 2002), trading (Ashlock et al., 1996; Tesfatsion, 1997), and

sector-shock modeling (Scheinkman and Woodford, 1994).

In each of these models, where the representation of firm or agent behaviours and

interactions is attempted, several challenges persist. First, because of the necessity to al-

most exclusively use computational methods in dealing with these many-body modeling

environments, the investigator not only has the problem of rendering behaviours in nu-

meric, or even digital form, but also must ensure that any transitions between behaviours

should also be ‘legal’. That is, that at the end of the operation the agent or firm is

still a functioning agent or firm. This is known as the ‘encoding problem’ and can be a

source of great frustration for the researcher. Commonly, a tactic used to overcome this

problem is to encode a ‘genotype’ – a binary representation of each strategy, which after

manipulation will still give rise to further (computable) binary strings.

Second, is the challenge of representing realistic learning behaviours by such models.

In some ways, this is to be expected, for in attempting to model agents with an higher

level of detail than previously implemented, the investigator invites scrutiny as to why

some behaviours were included, and others omitted.17

Finally, there is the challenge of defining an appropriate ‘fitness’ criterion. In an

optimization setting, adaptive fitness is no more than the focus of the optimization itself.

So long as it can be measured, it can be optimized. However, where adaptive agents

are used to model real economic and social systems, defining a fitness function is rarely

so straightforward. For instance, one of the great insights that these approaches have

17An interesting recent comment on this debate is brought to bear by Krakauer (2004), who argues that
even the biological story is more complicated than previously thought, suggesting that the traditional
simplistic mapping from genotype to phenotype is misplaced, let alone the use of such a mapping in the
social sciences.
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offered is to show how systems can display both ‘intelligent’ and sub-optimal behaviour

at the aggregate level in the course of a single ‘run,’ a property that traditional theoretic

approaches find difficult to capture. Obviously, a relative fitness criterion is necessary to

facilitate such freedoms, being the basis of adaption itself, but of these, the investigator

must be careful – like some views of the market, these models will give back just what

the investigator asks for, whether or not that is actually what she wants.

3.8 The Dangers of ‘Complexity’

I shall end this consideration of the complex systems approach with a final reflection on the

dangers of complexity. As has been touched on above (§3.7.2), modeling complex economic

systems is not without its difficulties. What has not been mentioned so far, however, is

the somewhat unique problem of abundance. That is, where traditional approaches focus

on an extremely rudimentary functional or aggregate level approach, computationally

modeling complex systems often requires the investigator to ‘drink from a fire-hydrant of

information.’ The ease with which parameters can be added is astonishing. Very quickly,

even the parameter space introduced by the implementation of a model can overwhelm,

let alone the actual state space produced by the model itself. Gell-Mann (1994, p.313) –

considered by many a founding ‘father’ of such research – summarises the situation well,

The trick in designing a manageable simulation is to prune the rules so as

to make them even simpler, but in such ways that the most interesting kinds

of emergent behaviour remain. The designer of a simulation must then know

a good deal about the effects of changes in the rules on behaviour in many

different scenarios. ... the design of simple simulations rich in interesting

consequences remains more of an art than a science.

For such reasons, the literature is still developing with respect to what constitutes a ‘good’

contribution in this area, such that these models move beyond the level of simple metaphor

and begin to provide new and relevant insight. As previous discussions have emphasised

(§3.3) this, in part, has resulted in the development of new non-linear measures. However,

one suspects that such considerations will be on-going for the near-future at least.

It should not be forgotten that effective execution is possible nonetheless, indeed, the

survey reported here has covered several contributions that have forced a reconsideration

of long-held beliefs about multi-agent interactions and how they aggregate. Indeed, some

of the founding contributions have sparked new fields in themselves.18

18Consider Kauffman and Bak’s independent contributions to self-organized criticality, or Wolfram’s
CA models of complexity and the ‘edge of chaos.’
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If a ‘test’ need be applied to the burgeoning field of complex systems in economics in

general, or computational economics in particular, then Gell-Mann’s further comments,

although easily applied to any academic enquiry, seem worthwhile,

In the end, though, what really matters is the relevance of the simulations

to the real-world situations that they imitate. Do the simulations supply

valuable intuition about real situations? Do they suggest conjectures about

real situations that could be tested by observation? Do they reveal possible

behaviours that had not been thought about before? Do they indicate new

possible explanations of known phenomena?

3.9 Themes to be Pursued in the Following Chapters

Before moving on, it will be helpful to emphasise a few of the main themes covered in the

preceding discussion that will surface again in what follows. The immediately following

introduction of the Bala and Goyal analytic model of network formation (Chapter 4),

together with the further analysis under no inertia (Chapter 5) in Part II are informed

by the discussions above concerning the terminology of networks (as graphs) (§2.3), re-

sults covered from the analytical literature (§2.4), and examples of economic networks as

handled by the literature (§2.5).

Both the enriched model as presented in Chapter 6 together with the discussions and

model concerning cooperation to be found in Chapters 7 and 8, broadly follow the themes

of endogenous network formation (§2.4.3) in the analytic sense, but draw on foundations

in computational approaches to network modelling (§2.5.3) and graph analysis (§2.6) for

their inspiration. Finally, it is in the analysis of state dynamics in Chapter 8 that the

more recent discussions concerning complexity (§3.2), measures of complexity (§3.3), and

themes of emergence and self-organization (§3.6) and self-organized criticality (§3.5) will

be relevant.



part II

Communication Networks



Chapter 4
The Bala & Goyal Model: A Summary

Chapters 5 and 6 to follow speak directly to the non-cooperative com-

munication network formation model of Bala and Goyal. To this end, the

present chapter introduces the Bala and Goyal (2000) model, relevant

nomenclature, and some important results for the following analysis.

4.1 Introduction

In this part, attention is focused on the non-cooperative network formation model of

Bala and Goyal (2000) (hereafter, referred to as BG). The model is a relatively simple

implementation of the network formation situation and a summary of its main features is

given below. It should also be mentioned that this summary draws on the work of Falk

and Kosfeld (2003) (hereafter referred to as FK).

Before going into the details, two features of the BG model that directly impinge on

the present work are introduced. First, the BG model assumes that agents update their

strategies (in this case, a vector of edge sponsorship decisions to other agents, explained

below) based on a myopic best response updating rule, i.e. choosing one of their strategies

that yield maximum payoffs given the play of the other agents in the preceding period. A

point to be returned to presently. Second, agents update this vector with some degree of

inertia, that is, BG assume that at least one agent decides not to respond to the strategies

of the other players, and instead, plays their strategy from the previous period again in

the present one.

4.2 The BG Model

A set of agents N = {1, . . . , n} play a simple network formation game as follows. Each

agent is assumed to hold some information which is valuable not only to himself but to the

n−1 other players, and importantly, this information can be observed by either one of two
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Figure 4.1 Example communication network structures.

network formation processes. In the first case, some representative agent i can sponsor

an edge (link) to another agent j and thus gain access to j’s information (in addition to

their own); such a case is known as the one-way information case. In the second instance,

an edge sponsored by i to another agent j not only yields access to j’s information for

agent i, but also, agent j automatically gains access to i’s information, in a reciprocal

manner; such a case is known as two-way information flow.1 An important implication

of the information sharing structure is that each agent obtains access to another agent’s

complete set of information by linking to them (or being linked to by them, in the case

of two-way information flows).

The sponsorship decisions of each agent forms a strategy for that agent, which is then

an n− 1 element row vector of the form,

gi = (gi,1, . . . , gi,i−1, gi,i+1, . . . , gi,n) ,

where gi,j ∈ {0, 1}. The set of all such strategies for agent i is Gi and has cardinality, |Gi| =

2n−1, consequently, the space of pure strategies for all agents is simply G = G1× · · · ×Gn.

It is convenient to depict the strategies of each agent as a graph where the vertex set is

simply N and the edge set is an ordered (or un-ordered, in the case of two-way flow) set

of vertex pairs such that ei,j = (i, j) ∀ gi,j = 1.

Figure 4.1 gives an example of two information networks formed under one-, and

two-, way information flows respectively.2 By way of example, agent 2 in 4.1(a) has

information set {1, 2, 3, 4}, whereas agent 4 has information set {4} only. In the two-way

case (see 4.1(b)) agent 2 has information set {2, 3, 4} even though she is playing strategy

g2 = {0, . . . , 0}.

1To the Theory of Graphs, these cases are simply directed and undirected graphs respectively.
2Note: following Bala and Goyal, edge sponsorship under two-way flows is indicated by a filled circle

on the edge closest to the sponsoring agent.
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4.2.1 Payoffs

Nomenclature is now defined for the count of agents that some agent i sponsors a link to,

and the number of agents that agent i is explicitly and implicitly connected to (i.e. who

they can observe). For one-way information flow, define by N d(i; g) = {j ∈ N |gij = 1}

the set of agents that i maintains a link to, and by N(i; g) the set of agents for whom

there exists a path from agent i to k ∈ N(i; g). Note again, that in the one-way flow case,

this will imply there exists gi,k = 1 or some sequence gi,i1 = gi1,i2 = · · · = gim,k = 1, by

convention, i ∈ N(i; g). The maintenance of edges in the communication network confers

costs upon the sponsoring agent together with providing benefits due to information

observation in the following way. Define by µi(g) = |N(i; g)| the count of agents that i

can observe, and by µd
i (g) = |Nd(i; g)| the number of agents that i sponsors a link to.

Then, the agent’s payoff function Πi : G → R is given by,

Πi(g) = φ(µi(g), µd
i (g)) , (4.1)

where φ is strictly increasing in µi(g) and strictly decreasing in µd
i (g). In this way, φ

implements the benefits of information observation accruing to each agent and the costs

of edge sponsorship they incur as a result of non-zero elements in their strategy vector gi.

Under two-way information flow, it is useful to define by ḡ = cl(g) the closure of g

such that ḡi,j = max{gi,j , gj,i}. Consequently, define by N(i; ḡ) the set of agents that i

observes under two-way communication and hence, µi(ḡ) = |N(i; ḡ)| as its cardinality. It

can be observed that under two-way information, N(i; ḡ) implies that a set of adjacent

edges must exist, say {e1, . . . , em} such that i ∈ e1 and k ∈ em for all k ∈ N(i; ḡ). For

two-way flow the definitions of N d(i; g) and µd
i (g) are unchanged. Similarly, the payoff

function is defined in an analogous way to (4.1) above,

Πi(g) = φ(µi(ḡ), µd
i (g)) , (4.2)

Bala and Goyal analyse a special case of the function φ in some detail, that of linear

payoffs,3 e.g.,

Πi(g) = µi(g)V − µd
i (g)C , (4.3)

where V and C are the benefit associated with observing one player’s information and

the cost incurred by sponsoring one link respectively.

3The special case is defined in an analogous way for the two-way case.
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(a) Circle (b) Empty (c) Centre-
sponsored star

(d) One-way mini-
mally connected

(e) Two-way mini-
mally connected

Figure 4.2 (a-c) Nash and Strict Nash equilibrium structures (as referred to in text); and (d-e)
Minimally connected structures under one-way and two-way information flows.

4.2.2 Network Structures

It will be useful to introduce key network structures as described by BG, Figure 4.2 shows

each of the structures referred to below. The circle is related to the cycle (of Graph

Theory), however, to BG, the path must begin and return at the same node, traversing

each node and edge once. The circle structure possesses the useful property that although

each agent sponsors only one link, through the coordination successes of the structure, all

agents enjoy full node observation through information flows. The minimally connected

structures demand, in the one-way case, that agents enjoy full observation but the cutting

of any one link would result in this not being the case. In the two-way minimally connected

structure, this property must hold, and furthermore, there must be no cycles, nor any

two agents who both sponsor a link to each other.

4.2.3 Nash, Strict Nash, & Efficient Networks

It is useful to define by g−i the network that remains when all of some agent i’s links

have been removed and shall often be referred to as the absentee network for i. Hence,

the union of the edges of gi and g−i will return the full network g. The set of all i’s

best responses to this absentee network is denoted by BRi(g−i), where i plays the best

response to g−i if,

Πi({gi, g−i}) ≥ Πi({g
′
i, g−i}) , for all g′i ∈ Gi . (4.4)



CHAPTER 4. THE BALA & GOYAL MODEL 59

It is to be noted (for our study) that there may be more than one gi that satisfies the

best response condition, in which case, it is assumed that the agent chooses one of these

strategies in an equiprobable manner. The best response criterion then gives rise to a

definition of a Nash Network as follows.

Definition 1 Nash Network The network g = {g1, . . . , gn} is a Nash Network if, for

all agents i ∈ N , gi ∈ BR(g−i).

Furthermore, the refinement of this Nash definition to give a single structure is ob-

tained by the Strict Nash Network as follows.

Definition 2 Strict Nash Network The network g = {g1, . . . , gn} is a Strict Nash

Network if, for all agents i ∈ N , gi ∈ BR(g−i) and |BR(g−i)| = 1.

That is, not only does each agent play a best response strategy, but each has only one

such strategy to choose from.

A simple welfare measure is defined to be the sum of payoffs accruing to each agent,

W (g) =

n∑

i=1

Πi(g) , (4.5)

which gives rise to the definition of an efficient network as follows.

Definition 3 Efficient Network A network g ∈ G is said to be efficient if W (g) ≥

W (g′) for all g′ ∈ G.

4.3 Results

The summary is concluded by reviewing some important results from BG. The first of

which is the characterisation of Nash Networks.4

Proposition 2 (BG, Prop 3.1 and 4.1) In the 1-way flow model a Nash network is

either empty or minimally connected . In the two-way information flow model a Nash

network is either empty or minimally two-way connected.

The second result introduces, for the linear payoffs case, the various structures to be

expected when link-sponsorships are low, equal, or high relative to the benefit of observing

one agent’s information.

Proposition 3 (BG, Prop 3.2 and 4.2) In the one-way flow model a Strict Nash

Network is either the empty network or the circle. In the linear payoffs case, if V = 1

and c < 1 the circle is the unique Strict Nash Network. If 1 < c < n − 1, both the

empty network and the circle are a Strict Nash Network. If c > n− 1, the empty network

4The results summary below follows that of FK.
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is the unique Strict Nash Network. In the two-way flow model a Strict Nash Network

is either the empty network or the center-sponsored star. In the linear payoff case, the

center-sponsored star is the unique Strict Nash Network if c < 1, and the empty network

is the unique Strict Nash Network if c > 1.

Finally, efficient structures are identified, clearly corresponding to Nash play in each

case.

Proposition 4 (BG, Prop 3.3) In the one-way information flow case with linear pay-

offs and V = 1, the circle is the unique efficient network if c < n − 1, while the empty

network is the unique efficient network if c > n−1. In the two-way information flow case

with linear payoffs, if c ≤ n, a network is efficient if and only if it is minimally two-way

connected. If c > n the empty network is the unique efficient network.



Chapter 5
Network Formation Under the Best-reply

Dynamic: Non-convergence

Having introduced the non-cooperative communication network forma-

tion model of Bala and Goyal (2000) in the previous chapter, this chapter

develops new results concerning conditions equal to, or approximating,

no strategic inertia in agent updating.

5.1 Introduction

The preceding chapter has outlined the main features of one relatively recent, but certainly

prominent, analytic network formation model, namely that of Bala and Goyal. This

model has many appealing properties, not least of which is its relative simplicity: actions

of agents are constrained to a simple yes/no decision vector of sponsorships; this decision

vector completely defines an agent’s strategy (there is no subsequent strategic intent or

interaction on the network); and behaviour is simply described by myopic best-response

updating (issues of fore-sight, boundedly rational play, fairness, reciprocity etc. do not

interfere). From within this deceptively simple set-up, however, there is a very many

ways that the game might be played – the strategy space, even for small n is immense,

befitting the difficult realm of endogenous network formation.

As has been mentioned, Bala and Goyal derive a number of useful and strong results on

the nature of networks formed under various specifications. In the present work however,

I wish to investigate in detail, the implications of one of their fundamental modelling

assumptions, that of agent-updating as the best-response dynamic. Or rather, to be

precise, I study the effects of this dynamic when the assumption of strategic inertia is

relaxed, or is very nearly relaxed.

61
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Strategic inertia for agents describes the modelling prescription that with some non-

zero probability, an agent will choose not to update their current strategy via the best-

response dynamic, but rather, will choose to keep the same strategy as in the previous

period. That is, suppose that r is the probability of displaying inertia, then define p =

1− r to be the probability that an agent will update their strategy (using the best-reply

dynamic) in the present period. I shall hereafter refer to p as an agent’s probability of

updating. In their model, Bala and Goyal assume that p is strictly less than unity, and

this assumption features prominently in their proof-work for the major network structure

propositions. Indeed, this assumption, coupled with the fact that agents are made to

randomize across optimal strategies if they find more than one best-response to play,

ensures that the Markov chain on the space of all network structures never rests on a

non-strict Nash network. However, as the authors note, it is possible that ‘the Markov

chain cycles permanently without converging to a strict Nash network’ (see footnote,

p.1184).

The question is, how severe is this possibility on the dynamics of the model? In this

piece, I wish to investigate this question, and so ascertain the suitability of such dynamics

to the network formation problem. I find the following three results: i) that Theorem

3.1(a) (of BG2000) can be extended to the n = 3, no inertia case (only); ii) by counter-

example, for n > 3 and no inertia Theorem 3.1(a) cannot be extended; and iii) as n grows

large, the predominant result of the best response dynamics is non-convergence, with a

two-period cycle obtained with increasing probability.

5.2 Convergence: n = 3

The intuition of the following result rests on observing that the best response decision

for any agent with respect to a second agent depends wholly on the strategy decision

of the third agent towards the second. That is, in this most simple case, the presence

of an exploitable externality completely drives the strategy decisions of each agent. This

observation leads to a set of solvable dynamic equations derived directly from the relevant

adjacency matrices for two subsequent (periodic) states.

Proposition 5 Where p = 1 and n = 3, the only strict-nash equilibrium network arising

from one-way information flows (V > c) is the wheel network.

Proof Consider some 3 vertex graph Γ(t) having adjacency matrix G(t) with elements gt
ij (i, j ∈

{1, 2, 3}; gii = 0). Let each agent’s strategy space, Si be composed of strategy vectors, si

such that si
j ∈ {0, 1} describes the sponsorship decision of agent i towards agent j (i 6= j):

for example, for i = 1, s1 = {s1
2, s

1
3}. Define by Πi[ŝ

i : Γ(t)] the payoff to agent i given

Γ(t) and strategy ŝi. Now since V , the value of ‘observing’ one agent’s information is
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always greater than c, the strategy ‘no-link sponsorship’, si = {0, 0}, is strictly dominated

by strategy ‘sponsor-all’ si{1, 1}: Πi[{1, 1} : Γ(t)] > Πi[{0, 0} : Γ(t)] and hence, all agents

must have at least one non-zero element in si∗, their best response strategy. Now further

denote G(t) by the matrix:







0 At Bt

Ct 0 Dt

Et Ft 0







and, note that for any agent i, the best response strategy s(t) will depend on the value of

gt−1
kj for k 6= i, j:

gt
ij =

{

1− gt−1
kj , ∀ k 6= i, j

}

∀ i 6= j (5.1)

It is the other non-zero element of the jth column of G(t-1) that determines the value of

gt
ij .

1 From this observation, several dynamic equations can be written due to BR updating:

At = 1− Ft−1

Bt = 1−Dt−1

Ct = 1−Et−1

And in equilibrium, this must be the case for all periods, thus we can omit the time subscripts

and write,

A = 1− F (5.2)

B = 1−D (5.3)

C = 1−E. (5.4)

Likewise, knowing that all agents must have at least one non-zero element in their best

response strategy we can write three further equations,

A + B ≥ 1 (5.5)

C + D ≥ 1 (5.6)

E + F ≥ 1. (5.7)

Moreover, by summing over (5.2) to (5.4) it is trivial to note that in fact equations (5.5)

to (5.7) can be written as equalities. However, since we do not have full specification,

1The intuition for this rests on understanding the externality that is created by link formation. If agent
i is considering sponsoring a link to agent j, it will always be efficient to make the link herself, unless
agent k (of three agents) is sponsoring a link to j themselves. In such a case, it is clearly better for i to
exploit the externality thus created, and not form a direct link to j.
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any choice of one value for some parameter will solve the system. Thus, only two possible

solutions arise,

G′ =







0 1 0

0 0 1

1 0 0







G′′ =







0 0 1

1 0 0

0 1 0







. (5.8)

The clockwise and counter-clockwise ‘wheel’.�

Proposition 6 For n = 3, any initial graph subject to best response dynamics as de-

scribed in BG2000, with p = 1 converges in finite time to a wheel network, and conse-

quently Theorem 3.1 can be extended.

Proof Consider the n = 3 adjacency matrix as before with entries gij , however, let each gij be

continuous Reals on [0, 1]. That is, consider them as probabilities that an edge exists from

agent i to agent j. Now, we notice, as above, that the full description of an agent’s strategy

is contingent on the preceding period, that is, si = {gij , gik} where j, k ∈ N/{i}, and is

given by,

g
′

ij = (1− gkj) + (α)(gjkgkj) (5.9)

g
′

ik = (1− gjk) + (1− α)(gjkgkj) (5.10)

where g
′

ij indicates value of gij in the following period. These equations capture the two

cases in which an agent i will sponsor a link to j: i.) if k did not sponsor a link to j; or ii.)

if both j and k sponsored a link to each other then i will randomize with probability α of

sponsoring to j and the remainder, (1− α) of sponsoring to k.

Now, dynamics are then given by taking the partial derivatives of (5.9) and (5.10),

δg
′

ij

δgkj

= αgjk − 1 ≤ 0 (5.11)

δg
′

ij

δgjk

= αgkj ≥ 0 (5.12)

δg
′

ik

δgkj

= (1− α)gjk − 1 ≤ 0 (5.13)

δg
′

ik

δgjk

= (1− α)gkj ≥ 0 (5.14)

Which imply that given any starting probabilities of edge sponsorship (that is, any starting

network configuration), there will be two sub-sets of edges that within these sets will move

in the same direction, whilst between sets will move in opposite directions, namely,

{gij , gjk , gki} and {gik, gji, gkj}
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Figure 5.1 Two-period cycle obtained under no-inertia (p = 1) and n = 4.

or, for clarity, in terms of the alphabetised adjaceny matrix above,

{A, D, E} l {C, B, F}

Where l implies that the sets move in opposite directions. This gives rise two possible

absorbing states,

Ga =







0 0 1

1 0 0

0 1 0







or Gb =







0 1 0

0 0 1

1 0 0







the clockwise and counter-clockwise wheel. �

5.3 Non-Convergence: A Counter-example at n = 4

One counter-example at n = 4 with best response dynamics and no-inertia is used here

(Fig. 5.1) to show that Theorem 3.1(a) cannot be extended past n = 3 under these

conditions. It is to be noted that this is a deterministic cycle, in the sense that all agents

have only one BR strategy to the absentee-graph g−i each period (they do not randomise

over a number of optimal strategies).

Proposition 7 Theorem 3.1(a) cannot be extended to the one-way information case with-

out inertia (p = 1) for n > 3.

Proof Denote by gO and gE the odd (left) and even (right) graphs in Figure 5.1 respectively.

Further, we shall use {µj(gX
i ) : i, j ∈ {1, 2, 3, 4}; X ∈ {O, E}} to denote the observable

information of agent j in either the odd or even graphs, sans i’s links (by convention, j can

always observe themselves). We can then obtain the best response of agent i to gX and

shall use BRi(g
X) for this purpose. Finally, we also define by BR(gX) the best response

adjacency matrix obtained by this process.

Consider first the odd graph (left). For agent 1: µ2(gO
−1) = {2}; µ3(gO

−1) = {3}; µ4(gO
−1) =

{4}; and thus, BR1(g
O) = {2, 3, 4}. For agent 2: µ1(gO

−2) = {1, 3}; µ3(gO
−2) = {1, 3};

µ4(gO
−2) = {1, 3, 4}; and thus, BR2(g

O) = {4}. For agent 3: µ1(gO
−3) = {1, 3}; µ2(gO

−3) =

{2, 1, 3}; µ4(gO
−3) = {4, 1, 3}; and thus, BR3(g

O) = {2, 4}. For agent 4: µ1(gO
−4) = {1, 3};
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µ2(gO
−4) = {1, 2, 3}; µ3(gO

−4) = {1, 3}; and thus, BR4(g
O) = {2}. Which can be summarised,

thus,

BR(gO) =










0 1 1 1

0 0 0 1

0 1 0 1

0 1 0 0










,

the adjacency matrix of gE .

Now, consider the even graph (right). For agent 1: µ2(gE
−1) = {2, 4}; µ3(gE

−1) = {2, 3, 4};

µ4(gE
−1) = {2, 4}; and Thus, BR1(g

E) = {3}. For agent 2: µ1(gE
−2) = {1, 2, 3, 4}; µ3(gE

−2) =

{2, 3, 4}; µ4(gE
−2) = {2, 4}; and thus, BR2(g

E) = {1}. For agent 3: µ1(gE
−3) = {1, 2, 3, 4};

µ2(gE
−3) = {2, 4}; µ4(gE

−3) = {2, 4}; and thus, BR3(g
E) = {1}. For agent 4: µ1(gE

−4) =

{1, 2, 3, 4}; µ2(gE
−4) = {2, 4}; µ3(gE

−4) = {2, 4}; and thus, BR4(g
E) = {1}. Which can be

summarised, thus,

BR(gE) =










0 0 1 0

1 0 0 0

1 0 0 0

1 0 0 0










.

the adjacency matrix of gO, which completes the proof. �

It is to be noted that computational results suggest that for any n > 3, there exists a

non-convergent two-period cycle.

5.4 Non-Convergence: Increasing Dominance with n

Obviously, such an observation would be scarcely important if the non-convergent phe-

nomenon was only ever an improbable facet of the dynamics. To test this hypothe-

sis, a computational model2 was developed to investigate the case in question (V = 1,

c ∈ (0, 1)).

Initially, Bala & Goyal’s experiments were replicated to verify the model (see Ta-

ble 5.1), then, setting p = 1 and adding a further ‘catch’ to the model to identify periodic

behaviour, the following convergence table was produced for n ∈ {1, . . . , 8, 12} (Table 5.2).

A ‘periodic cycle’ type identification required a double trigger. First, a recurring (twice)

two-period graph cycle had to be evident, and second, the count of best response strategy

vectors for each agent in all four periods (a double cycle) had to be unity. That is, as

per the model presented by Bala and Goyal, if agents determine more than one feasible

2All modeling conducted in the Matlab programming language. Full source code available upon
request.
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Table 5.1 Model verification, see Bala & Goyal (2000) Table 1 (p. 1201), column one.

n Experiment Bala & Goyal
p = 0.2 p = 0.2

3 14.80 (0.53) 15.29 (0.53)
4 22.86 (0.71) 23.23 (0.68)
5 29.43 (0.89) 28.92 (0.89)
6 37.51 (1.09) 38.08 (1.02)
7 49.90 (1.38) 45.90 (1.30)
8 54.46 (1.63) 57.37 (1.77)

Notes: c ∈ (0, 1); 500 repeats, standard errors
in parenthesis.

best response strategy they will randomise over these strategies, and for the purposes of

a recurring cycle, such randomisation is untenable.

Table 5.2 No inertia: c ∈ (0, 1) and p = 1 for n ∈ {1, . . . , 8, 12}.

n Non-conv. Wheel Cycle log(fw) log(f̂w)

3 0 10,000 0
4 0 2,044 7,956 −0.690 −0.764
5 0 673 9,327 −1.172 −1.174
6 0 239 9,761 −1.622 −1.584
7 0 91 9,909 −2.041 −1.994
8 0 36 9,964 −2.444 −2.405
12 0 1 9,999 −4.000 −4.045

Notes: fw and f̂w are the experimental and estimated wheel
convergence frequency respectively, where the basic model f̂w =
αe−βn, α = 0.877 and β = 0.410 was estimated by a simple
log − linear least squared regression.

From Table 5.2, it can be seen that cyclic behaviour is quickly established as the

dominant outcome of simulations. Indeed, the wheel graph is obtained as the equilibrium

outcome with exponentially diminishing frequency. Thus, rather than the non-convergent

behaviour being unimportant or rare, it is the predominant case when p = 1.

5.5 Discussion

The present results indicate that the arrival at non-convergent, two-period cyclic be-

haviour occurs with greater speed as n increases (p = 1). This stands in stark contrast

to Bala & Goyal’s reported convergence outcomes with high values of p (periods to con-

vergence to the wheel network approximately scaled exponentially with n).

The existence of cyclic behaviour is not limited to the p = 1 case. Indeed, after

uncovering the role of cycles in the deterministic case, it was thought that perhaps when
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p→ 1 cycles might account for the apparent slowing of convergence times at larger n.3 To

test this hypothesis, a number of further numerical experiments were conducted for p < 1,

with an analytical measure added to count the number of periods spent in a cyclic pattern

before the system converged to the wheel structure. Here, as before, a cycle required the

double trigger. However, since we are dealing with p < 1, it was possible that an agent

might not update over the preceding three periods. For the purposes of the investigation,

only the updating agents’ best response strategies were considered, with non-randomising

behaviour again considered as sufficient for a two-period cycle.

Table 5.3 Mean periods to convergence, p→ 1.

p
n 0.80 0.90 0.95 0.99

3 6.2 (0.1) 6.6 (0.2) 7.1 (0.2) 7.8 (0.2)
4 13.0 (0.3) 17.3 (0.5) 29.1 (1.0) 98.0 (3.5)
5 29.3 (0.8) 44.6 (1.3) 81.9 (2.7) 350.1 (12.0)
6 54.7 (1.5) 96.9 (3.0) 196.0 (5.8) 858.8 (27.6)
7 111.4 (3.3) 232.5 (7.0) 483.4 (14.8) 2337.8∗ (101.0)
8 219.8∗ (8.8) 569.3∗ (24.4) 1326.9∗ (61.1) 6801.8∗ (296.1)

Notes: Data represents mean over 1000 independent trials, except where indicated
by (∗), where 500 trials were conducted; standard errors in parenthesise.

As might be expected, allowing p→ 1 gave rise to a further slowing of the convergent

dynamics (Table 5.3), but interestingly, for ‘moderate’ values of p ∈ [0.2, 0.8], the slowing

could not be attributed to cyclic patterns, giving strength to Bala and Goyal’s hypothesis

that pure mis-coordination is to blame for the slow-down. It is to be noted, that for p <

0.2, cyclic behaviour was prominent (and increasingly so as p → 0), with approximately

20% of periods spent in a periodic patterning. However, this is to be expected, since with

such a low updating probability, graph sequences over relatively short time frames are

likely to be single-state. However, for high, to very-high values of p, two-period cycles did

indeed dominate (Table 5.4), rendering an enormous toll on convergence times.

The current findings suggest that the propensity for mis-coordination in a purely

best-response dynamic environment is high, with non-sensical cycling of states a feasible

and increasingly prevalent outcome under conditions of high strategy revision and ‘small’

player numbers, and thus, should be borne in mind by practitioners when attempting to

model such networks. Indeed, more recent experimental work (Falk and Kosfeld, 2003)

suggests that although it is possible for human subjects to attain strict Nash networks in

finite time, their decision processes are influenced at least in part by diverse considerations

other than the best response. Such thoughts motivate the following chapter.

3My thanks to private communications with Sanjeev Goyal for encouraging this line of enquiry.
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Table 5.4 Mean fraction of periods spent in cycles, p→ 1.

p
n 0.80 0.90 0.95 0.99

3 0.000 0.000 0.000 0.000
4 0.003 0.037 0.153 0.507
5 0.003 0.048 0.196 0.650
6 0.002 0.039 0.186 0.685
7 0.001 0.029 0.164 0.683∗

8 0.001∗ 0.020∗ 0.138∗ 0.660∗

Notes: Data represents mean over 1000 indepen-
dent trials, except where indicated by (∗), where
500 trials were conducted.



Chapter 6
Endogenous Communication Networks

with Boundedly Rational Agents

This chapter continues to investigate the non-cooperative communica-

tion network formation model of Bala and Goyal (2000). Motivated

by the results of the previous chapter, and experimental results of Falk

and Kosfeld (2003), a new artificial adaptive agent model of agent be-

haviour is developed and calibrated, finding good agreement with the

experimental data.

6.1 Introduction

Communication networks are an apparently ubiquitous feature of many business and inter-

personal contexts. In each, depending on the costs of information access and benefits of

information content, entities (e.g. firms, individuals) face a strategic problem of who to

engage with in mutual or unilateral information sharing partnerships given the actions of

other entities that together comprise the information ‘landscape’. Although several com-

munication network models have been reported under varying specifications (Chwe, 1995,

2000; Comellas et al., 2000; Jackson and Watts, 2002a; Slikker and van den Nouweland,

2000) this chapter is particularly concerned with the non-cooperative communication net-

work formation model of Bala and Goyal (2000)1 who identified equilibrium information

network structures under various treatments, including cost of edge sponsorship and direc-

tion of subsequent information content flows. Namely, they identify minimally connected

Nash equilibrium structures in both one- and two- way specifications and using the Strict

1To be referred to as BG in this chapter hereafter.

70
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Figure 6.1 Example Strict Nash equilibrium networks, as in BG: (left) Circle (or ‘wheel’);
(middle) Empty; and (right) Centre-sponsored Star (two-way information flow; smaller dots
near centre node indicate sponsorship cost of centre node).

Nash equilibrium refinement2 obtained specific equilibrium structures, namely: empty,

circle3 and centre-sponsored star, under given treatments (see Fig. 6.1). A more thor-

ough review of this work has been given in Chapter 4 and an investigation of equilibrium

convergence was presented in Chapter 5.

In their model, agents are assumed to be able to observe all previous period network

sponsorship decisions of their opponents and when given the opportunity to update their

strategy, choose the (myopic) best-response to this graph. Convergence is guaranteed by

in-built strategic inertia which describes the condition that at least one agent plays the

sponsorship strategy of period t−1 in period t (i.e. they choose not to update), a process

that searches the space in an incremental fashion, eventually arriving at one of the Nash

structures.

However, subsequent human trials of the BG non-cooperative network formation set-

up (n = 4), conducted by Falk and Kosfeld (2003)4 find that the BG results receive mixed

support in the field. Specifically, in the one-way information flow case, under both low and

high costs of edge sponsorship, agents do discover Nash outcomes a majority of the time;

especially so towards the end of each treatment. However, in the two-way information

case, subjects performed remarkably poorly with respect to finding minimally-connected

(Nash) networks as described by BG, barely finding the Strict Nash (centre-sponsored

star) outcome at all. Such evidence demands further explanation. It is the purpose of

this chapter to first construct a richer modelling environment, and second to attempt

to uncover reasonable strategic updating assumptions that produce the observed field

behaviour.

In their discussion, FK point to various problems for subjects with the two-way Strict

Nash equilibrium structure including the serious asymmetry in both a strategic and a

2In this case, the Strict Nash refinement implies that not only will each player play a utility maximising
strategy in response to each other player’s utility maximizing strategy, but each player will only have one
such strategy.

3That is, arrange all nodes on a circle, connect one to another in a ‘daisy-chain’ procedure such that
each agent’s in- and out- degree is unity. NB: BG actually refer to this case as the ‘wheel’, we shall use
the terms interchangeably.

4Subsequently referred to as FK in this chapter.
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payoff sense, conjecturing that agents dislike such conformations. Further, by use of

regression analysis, FK show an apparently strong explanatory correlation between inertia

(as explained above) and experienced payoff equality in the previous period (controlling

for previous best-response play) to support their claim. That is, if other agent payoffs are

roughly similar (either low or high) in the previous period, then a subject is more likely

to exhibit strategic inertia in the present period.

Such considerations will clearly require a review of the Best Response decision rule to

model these contexts. Indeed any form of boundedly rational behaviour due to irrational

preferences or other, is not well catered for by the standard best-response decision making

rule. It is quite likely that agents are employing (consciously or not) a diverse set of

heuristics to determine their strategic play. The problem, of course, is to determine

which rules to include in the model. Whilst, for instance, the insightful work of Matros

(2004) finds that for generic n-player games, so long as all players are using decision rules

from within the union-set of weakly rational rules5 and the best-response rule, then in the

short-run the outcomes are ‘identical’ to that if individuals were constrained to just the

best-response rule, giving implicit support to the BG frame-work, it is not clear from FK

that such conditions do prevail in reality. Rather, it appears more likely that individuals

draw their decision-making rules from outside of such ‘minimal curb sets’.6 Moreover,

the FK results show that subjects undergo an incremental improvement processes as they

play the game with different opponents. Subjects in the one-way information case found

minimally connected structures with greater frequencies in the later stages. Hence, an

extension of the BG set-up ought incorporate at least these two elements: one, to allow

for a diverse range of feasible decision-making heuristics for each agent such that non-

rational play enters in a non-prescriptive fashion; and two, to model some kind of learning

process, such that selection between such heuristics occurs in a stage-wise manner.

In the present paper, such considerations are dealt with in a novel way. First, the

complexity of decision-making in the network formation game is reduced to a tractable

(and implementable) human-decision making process. This is achieved by assuming that

individuals are able to recognise and respond to equivalent structures under relabelling as

explained below. Second, agent cognition is dealt with by constructing a manageable series

of response-rules to each structure under a common reference frame-work but without

biasing the relative ‘intelligence’ of any individual agent. And third, in consequence and

in the spirit of Arthur’s (1994) artificial bar attendees, since agent cognition architecture

5Informally, a set of simple rules is weakly rational if the application of these rules on a sub-set of
states (a minimal curb configuration) will return one of the member states of this sub-set; the rules are
then “consistent with an equilibrium”.

6Compare the suggested decision-making influences above – those of symmetry and equity.
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is common to all agents, between-agent learning and experimentation or mistake-making

is afforded and directly observable.

The results of the current approach can be summarised as follows: first, classic payoffs

(i.e. benefits minus costs, as in BG) appear to be an unsuccessful candidate for the

objective criterion used by agents to motivate strategy adoption/revision; second, and in

the place of classic payoffs, a ratio of benefits and costs, together with a strategic altruism

component gives rise to comparable outcomes to that of the experimental data; and third,

although equality and best response considerations are found to be significantly associated

with strategic inertia as found by FK, these effects appear to be emergent in nature, rather

than being the driving dynamic in the learning environment as they suppose.

The rest the paper includes a summary of the pertinent results from both BG and FK

(§6.2) and a description of the model and its implementation (§6.3). This is followed by

computational modelling results and analysis (§6.4) before several concluding comments

are drawn (§6.5).

6.2 Background

6.2.1 BG Model Predictions

The key predictions from the BG model are summarised in Table 6.1.

Table 6.1 Predicted structures by BG2000 under each treatment.

Flow Edge Costsa
Structureb

m1c circle empty m2c cs-star

One-way
Low 4 N∗

High 4 N∗ N

Two-way
Low 4∗ N

High N 4∗

Notes: a Low C ≤ V , High C > V ; b structure m1c and m2c are minimally-connected

non-empty graphs in one- and two- way information flow cases respectively. (4) non-

empty nash, (N) strict nash, (*) indicates that the structure is also efficient (following

FK2003).

Each structure has previously been explained in Chapter 4. Recall that the ‘minimally-

connected’ networks imply that all agents obtain full information, in the sense that they

can observe the information of each other agent. However, for the one-way case the

minimally-connected property implies that each edge is necessary, that is, the removal

of any edge will cause some agent(s) to lose their access to the other (n − 1) agents’

information. In the two-way case, such a criterion results in cycles being ruled out (one

edge would be unnecessary), plus any case where two agents mutually sponsor a direct
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(a) m1c (b) m2c

Figure 6.2 Examples of minimally-connected structures (following FK): (a) the one-way infor-
mation flow case; and (b) the two-way case (periphery-sponsored star).

link to each other (again, one would be unnecessary). Such is the nature of two-way

information flows. Examples of each type of minimally-connected structure can be seen

in Fig. 6.2.

6.2.2 FK Experimental Findings

The authors of the FK study reproduced the BG network formation context in an ex-

tremely faithful manner. For a full description of their study, the reader is referred to the

reference. However, to summarise the procedural details, a total of 160 subjects, 32 in

each of 5 treatments – 3 under one-way information flows (edge sponsoring costs 5, 15 and

25 points) and 2 under two-way flows (costs 5 and 15 points) – were randomly grouped

into 8 mixing groups of 32 subjects to play 5 rounds of a four-person network formation

game. After this so-called ‘stage’, the 32 subjects in each mixing group were shuffled

and re-assigned to 8 new groups of 4 (drawn from within the 32 member mixing-group)

for a further five rounds. In all, 3 stages were conducted for each treatment. Subjects

interacted with a computer screen (after familiarisation) to both observe the sponsorship

decisions of their opponents in the preceding round, and to enter their own sponsorship

decisions in the current round. Subjects received 10 Swiss Francs for showing-up, and

received monetary reward for their play; information observation of one node gained 10

points with all costs (as just mentioned) measured in points with 10 points representing

0.9 Swiss Francs (subjects received around 50 SF on average).

Several FK results are relevant. First, under the four treatments over information flow

direction and edge sponsorship costs, the proportions of each graph-type as predicted by

the BG results are striking (see Table 6.2). Under one-way information flow, aggregated

across all (three) learning stages and all (five) rounds within each stage, a strong tendency

for playing Nash more often than not is revealed. Moreover, in a large proportion of cases

where a Nash structure was played, the Strict Nash structure (either just the circle-graph,

or the circle and the empty graph type) were played. This result is dashed however

in the case of two-way flows, where Strict Nash play was non-existent and the Nash

structures that did result were played in a significantly lower number of rounds relative
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to the one-way case, with low edge costs yielding a Nash frequency of around 30% (as

opposed to around 50% for one-way), reducing to less than 10% when edge costs were high.

Interestingly, average agent edge sponsorship reveals a roughly constant pattern between

information flow regimes, indicating that strategic, rather than purely edge sponsorship

propensity is the likely cause of failure when flows are two-way.

Table 6.2 Summary of selected FK2003 experimental results under

relevant treatments. (Compare Table 6.1.)

Flow Edge Costsa
Structure

〈di〉m1cb circle empty m2cb cs-star

One-way
Low (5) 0.48 0.41 1.19

High (25) 0.59 0.49 0.10 0.76

Two-way
Low (5) 0.31 0.00 0.91

High (15) (nr) 0.09 0.75

Notes: a figures indicated in parenthesise are in ‘experimental points’ – 10 points equated

to 0.9 Swiss Francs (about $US 0.59) and value of one agent’s information constant at

10 points; b minimally connected values include other structures (such as Strict Nash as

appropriate); (nr) indicates ‘not reported’.

Proportions of Nash play both between and within each learning stage further re-

veals the problems that subjects experienced with the two-way information regime (see

Fig. 6.3). As can be seen, in the one-way case subjects underwent a strong improve-

ment dynamic between stages, and within stages achieved a similar improvement. Within

stage improvements, or alternatively, low frequencies in the early rounds of each stage,

are attributed by the authors to mis-coordination due to the mixing of subject groups

that occurs between learning stages. In the two-way case, the lack of Nash structures

in comparison is stark with both the between-stage and within stage improvements not

nearly as evident or non-existent.

6.2.3 Background Summary

To summarise, the model introduced in the next section attempts to specifically enrich the

standard BG behavioural basis. Agents are initialised with a range of strategic decision

rules, which upon revelation through the stage and round-based communication network

formation game can be learnt by other agents in the population. Of key interest is whether

the dual experimental facts of round-based learning and poor two-way information flow

performance can be replicated within this richer framework as a basis for future modelling

of human network formation games.
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Figure 6.3 FK frequency of Nash graph structures under each information flow regime. Bars
represent average frequency for all edge costs (5, 15 and 25 points) in the one-way case (a),
and over all edge costs (5 and 15 points) in the two-way case (b). Shading represents average
frequency in each one of the five rounds per stage across all cost treatments. NB: refer to
Table 6.1 for graph structures that are ‘Nash’ under each information and cost scenario.

6.3 Model

6.3.1 Overview

The present model aims to incorporate reasonable assumptions of human decision-making

to investigate and explain the analytic claims and experimental observations of agents in

a particular non-cooperative network formation problem. To do this, agents are given

a strategy of action that equips them to respond to the network-formation decisions of

others through the assumed ability to recognise the type of network before them. As the

game progresses, agents who are initially endowed with a mixture of ‘good’ and ‘poor’

plays, as measured in action by some objective function, will observe the plays of their

counterparts and mimic successful strategies at least in part. Further, between rounds,

agents are able to update their own decision-making rules unilaterally through a process

of low-level search of the decision space.

6.3.2 The Network Formation Game

Suppose a playing-group of agents N = {1, . . . , n} are selected from a population N to play

a communication network formation game.7 Let the communication network be comprised

of vertexes as given by N , and edges as given by the set of edge-sponsorship actions8

7Nomenclature in this section largely follows that of BG where possible for consistency.
8NB: we differ here to the description of BG since gi gives the outcome of an agent’s strategy (that is,

an action to be taken), rather than comprising the strategy itself, as described by BG.
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g ∈ gn, g = {g1, . . . , gn}, where gi = (gi,1, . . . , gi,i−1, gi,i+1, . . . , gi,n−1) is an ordered (row)

vector of pair-wise sponsorship decisions, and gi,j ∈ {0, 1}, ∀ j ∈ N/{i}. Correspondingly,

let the communication network be represented by the graph G(N, g) ∈ G.

The communication network confers benefits on agents by gaining them access to the

information of other agents. In the terminology of BG, each agent is able to ‘observe’ the

information of an agent they sponsor a link to. Importantly, however, indirect ‘flows’ of

information are allowed. Hence, if (i → j) ≡ (gi,j = 1) then the graph where (a → b)

and (b → c) is true implies that a can not only observe herself (by convention), they

can also observe b (by direct sponsorship) and c (by indirect information flow). In the

linear benefits specification of BG, followed in both FK and in the present paper, let each

agent’s information be of value V ∈ R+, and let {µi(G) ∈ N | µi > 0} be the number

of agents i observes, and further let C ∈ R+ be the cost associated with sponsoring one

edge, and δi(G) ∈ Z+ be the count of edges that i sponsors (that is, the out-degree of

vertex i). Then define each agent’s payoff function π : G→ R as

πi(G) = µi(G)V − δi(G)C . (6.1)

Further, let a strategy (decision-making rule) for an agent i in some stage t ∈ {1, . . . , T}

be a mapping S t
i : G → g, and denote the set of all such rules S. Within such a stage,

each agent will take part in a number of rounds, enumerated by r ∈ {1, . . . , R}. And

hence, an agent’s strategy S t
i will be current for all R rounds of some stage t. Indeed,

we can define a communication graph in period r as Gr(N, {gr
1, . . . , g

r
n}), since it will be

constructed from each agent’s link sponsorship decisions, gr
i .

The timing of the game is simple in nature. In the first stage, each agent simultane-

ously reveals their initial sponsorship decisions to form the first round graph G1(N, g1).

Given the resultant communication network, payoffs are awarded to each agent as in

(6.1). After observing the structure of the graph, each agent then applies their decision-

making rule, S1
i (G1) = g2

i and then reveals their new sponsorship decisions which forms

the new round two communication graph G2(N, g2), with payoffs again being awarded

accordingly, and so on. This process continues until R rounds have been played, at which

point, agents enter a new stage (stage 2) and the process is repeated in full until stage T

has been completed. Importantly, however, whilst the retention of an edge sponsorship

between rounds is costly (incurring C), the severing of an edge between rounds is not

(apart from the potential loss of any information value that will result from the break).
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1

2 3

4

Figure 6.4 Example graph G′.

Example Communication Network

For example, suppose N = {1, . . . , 4}, and g ′ has the form,

g′1 = {1, 0, 0} ,

g′2 = {0, 1, 0} ,

g′3 = {0, 0, 1} ,

g′4 = {1, 0, 0} ,

then, under one-way information flows, the corresponding graph G′(N, g′) would be a

cycle, as given in Fig. 6.4.

6.3.3 The Decision-making Rule S

In the present work,9 S is implemented so as to permit full inspection of all decision-

making processes at any time, and to model possible learning, and/or, decision-making

hypotheses. Hence, let S be of the form (for some agent i), Si = {s(T1), . . . , s(Tk)} where

T(n) = {T1, . . . , Tk} is the set of all minimal absentee graphs (types) for given n (to be

explained below), and s(·) : T→ g – the engine room of the decision-making process.

Suppose G is the set of all n-person graphs, then T ⊂ G is the set of all non-equivalent

graphs in G. In fact, all n-person graphs can be constructed from T under a simple

re-labelling of nodes. That is, T represents the minimal set of non-equivalent structures,

such that each morphologically similar graph set is represented in T by a single member

of that set. For instance, define a relabelling operator R : G(N, g) → G′′(N ′′, g) where

N ′′ is simply a re-ordering of the elements of N , then

{T | R : T→ T} , (6.3)

9It is to be noted that for BG, S has a single member, being the best-response decision making rule,
such that gr+1

i (for all i ∈ N) solves the profit maximisation problem,

max
gi ∈g

ˆ

πi(gi ∩ gr
j )

˜

∀ j ∈ N/{i} (6.2)

Or, in the case of FK, S is none other than the decision-making rules that reside in each subject’s mind
(the locus of our inquiry).
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Figure 6.5 A 3-member graph equivalence set.

where T indicates the compliment of T. Then (6.3) implies that any effective relabelling

operation applied to some T in the minimal graph set T results in a graph outside of

the set since by definition T necessarily cannot contain a second morphologically similar

graph. For example, Fig. 6.5 gives the complete set of morphologically equivalent 3-node

graphs of the form
{
G(N3, g̃) | g̃ = {(0, 1), (0, 1), (0, 0)}

}
. Consequently, the set T (for

n = 3) must contain exactly one of these (the choice is arbitrary).

The importance of the minimal graph set T to the present work is the following. First,

we shall assume that each agent is able to recognise when two graphs are equivalent under

re-labelling, as formulated in A. 1,

A 1 (Type Recognition) Given k un-identical graphs

{
G1(N

n
1 , g), . . . , Gk(N

n
k , g)

}

differing only in the ordering of elements in N n (e.g. N 4
1 = {1, 2, 3, 4} and N 4

2 =

{2, 3, 1, 4}), then any agent i ∈ N will recognise {G1, . . . , Gk} ≡ Tj, where Tj ∈ T(n).

Such an assumption means that given any graph G(n), an agent will be able to recognise

which minimal graph type T she has in front of her.

Second, as S has been defined above, the agent must be able to decide on an edge-

sponsorship decision g that applies to the instance, that is, to the graph G. For this

reason, we shall make the second cognitive assumption as below,

A 2 (Context Invariance) Given any instance of an information network G which cor-

responds to a minimal graph T , any agent i ∈ N is able to apply the resultant edge spon-

sorship decision s(T ) to the context, and thus arrive at the gi that accords to the instance

G before her.

This assumption indicates that an agent, on recognising the basic type that the present

graph is drawn from, is able to apply s(T ) accurately to the actual graph before them.

That is, the agent is assumed to be able to relabel their generic response s(T ) correctly

to the given circumstance.



CHAPTER 6. COMMUNICATION NETWORKS 80

Figure 6.6 Full set of minimal absentee graph types, T(3), one-way flows.

A final non-trivial simplification of T is possible for graphs under one-way flows. It

can be observed that for some agent i ∈ N , under one-way information flows, the decision

making process will only ever need to consider a graph G(N/{i}, g/{i}), that is, the graph

G with node i’s in- and out- edges removed (by removal of node i). Two related reasons

support this observation: first, adjacent inward bound edges – sponsored by another

agent to i – do not increase i’s observation set, and second, for any decision on some edge

gi,j(j 6= i), whether to set gi,j = (1 or 0), the state of the link in the previous period is

unimportant.10 Hence, for the n-player game, each agent’s strategy vector S need only

prepare responses for the set T(n− 1). For example, if n = 4, then the full set of graphs

they need to respond to will be comprised of node count |N/{i}| = 3, and be drawn from

the canonical minimal set T(3) as shown in Fig. 6.6.

For comparison, it is worth noting that the intuition that leads to the reduction of

the one-way flow minimal set by one node does not apply in the two-way flow case. Here,

since sponsorships result in two way flows, adjacent in-bound edges are of importance

(they contribute to the current information set of that agent), and so must be considered.

Hence, there is not the one-way reduction of important nodes from n to n− 1. However,

10Consider, if gr
i,j = 0, then establishing a link will incur cost C, which is the same as if gr

i,j = 1, whilst
leaving the link un-sponsored has neutral cost impact, which is the same as if gr

i,j = 1, as before, since
under this specification, there is no added cost for severing a link.
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Figure 6.7 Full set of minimal absentee graph types, T(3), two-way flows.

the situation is made simpler due to the limited number of permutations in the two-way

structure. For example the full set of distinct graphs in T for n = 4 has 11 members only

and is given in Fig. 6.7.

Example Application of S

Consider a 4-player network formation game under one-way information flows, and sup-

pose that in some stage and round, the current network is of the form Gr(N, gr), where

gr
1 = (1, 0, 0), gr

2 = (1, 0, 0), and gr
3 = (1, 0, 0), whilst gr

4 = (1, 0, 0) (Fig. 6.8(a)). Consider

agent 4 (currently sponsoring one link), they must form a decision response to the ab-

sentee graph G/{4} (Fig. 6.8(b)). Now according to A.1, suppose G/{i} is recognised as

a member of type T7, and thus, suppose that she considers her response to such a type

(say, g∗4), and then by A. 2 judges that this response implies the sponsorship decision

g2
4 = (0, 0, 1) in the given context (sponsor a link to 3, as in Fig. 6.8(c)). We might

summarise this process as,

Gr −→ Gr/4

A. 1
︸︷︷︸

−→ T7 −→ s(T7) −→ g∗4

A. 2
︸︷︷︸

−→ gr+1
4 . (6.4)

6.3.4 Properties of the Decision-making Rule S

Although formal in nature, such a process is directly equivalent to the informal, ‘recognise

the graph type, and make a response that fits the given instance of that type.’ In this
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Figure 6.8 Example decision process: (a) The original graph Gr; (b) the absentee graph, or type
graph Gr/{4} ≡ T7; and (c) the resultant graph, with 4’s decision incorporated Gr/{4}∪ gr+1

4

(assuming gr+1
j = gr

j ∀ j ∈ N/{i}).

way, the process is intuitive and somewhat obvious, but the reader will realise that such

a decision-making process has some pleasing properties.

First, as has been mentioned, the present implementation of S greatly reduces the

cognitive expectation on the artificial agents. It is trivial to show that the total number

of distinct graphs that are possible for a given number of agents (without reduction) is

2n(n−1) and 2
n(n−1)

2 for directed (one-way) and undirected (two-way) graphs respectively.

Which, for example, under one-way information flow and n = 3 or n = 4 equates to a total

of 64 or 4096 graphs respectively. However, in the present formulation, since we focus on

the absentee graphs, and then on equivalent classes of such graphs only for one-way flows,

the total number of distinct structures |T(n− 1)| is 3 and 16 (the count of structures in

Fig. 6.6) accordingly; a dramatic reduction in the complexity of the modelling problem.

Thus, we have a strong reason to suppose that the present formulation accords with

what an average person could cognitively manage. Obviously, some people will be able

to recognise more structures than others, and the numbers given should be treated as the

upper-bound of what is required. By way of example, if the full graph set were considered

for n = 5, a total of |G(5)| = 220 ' 1× 106 graphs would feature, or reducing this to just

the absentee set, |G(n− 1)| = |G(4)| = 212 = 4096, whilst by constraining this set to just

the minimal absentee graphs, that is |T(n−1)| = |T(4)| = 218, a four order of magnitude

reduction is achieved. Figure 6.9 shows these counts for n = {2, . . . , 5} under one-way

flows.

Second, as is the intention of this model, the specification of S in this way clearly allows

for all manner of updating strategies. It should be pointed out that the ‘best response’

function (see footnote above) is accommodated in this framework – the best response is

none other than the solution to a profit maximization problem contingent on the absentee

graph as described above. However, in the present specification, by constructing S in the

current way, we allow for all kinds of response functions. For example, strategies ‘always
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Figure 6.9 Count of distinct graphs in possible response sets under one-way flows: the full
graph set G(n), the absentee full set G(n− 1), and the minimal absentee set T(n− 1).

sponsor-none’,

s(Tk) = (0, . . . , 0) ∀ Tk ∈ T(n) ;

‘always sponsor-all’,

s(Tk) = (1, . . . , 1) ∀ Tk ∈ T(n) ;

and various strategies in between (e.g. ‘uniform random’:

s(Tk) = (a, . . . , a) ∀ Tk ∈ T(n) ,

where E[a] = 1
2) are all possible. In fact, the total strategy space |S| as a function of n

under one-way flow is given by,

|S(n)| = 2(n−1)|T(n−1)|

and for n equal to three or four is 512 and 2.8×104 respectively! Thus we have a truly rich

environment, whereby via inoculation, or some other process (e.g. learning, see below),

diverse agents can be modelled and interact.

6.3.5 Learning & the Decision-rule S

It is clear from the experimental work of FK that subjects engaged in this non-cooperative

decision problem undergo a process of improvement throughout the stages of the game
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(as indicated by the positive gradient to Nash networks as reported in their paper, see

Fig. 6.3). This kind of activity is natural in such a complicated setting since it employs

largely foreign terms of reference (subjects would rarely play, or be aware that they are

playing, such a game) and so, the game itself provides a forum whereby ‘good’ plays are

revealed to agents over time.

Whilst it is noted that BG (for example) were largely interested in the equilibrium

(long-run) outcome of the non-cooperative network formation process, the interest of this

paper is on how networks that are realised by human decision making come about. Hence,

it is incumbent on the modeler that some attempt at modeling this fact is made.11

In the present framework agents are able to develop their strategies by learning from

other agents. Such a learning mechanism is equivalent to a (horizontal) cultural transmis-

sion process (see Cavalli-Sforza and Feldman (1981)). Learning dynamics generally fall

into either an R-shaped (limited exponential growth) or S-shaped curve (logistic growth).

The former is identified with environmental learning factors where agents gain increasing

proficiency through practice (see Jovanovic and Nyarko (1995)). The latter is associated

with biased cultural transmission where the agent imitates (learns) off a subset of other

agents, who are often esteemed due to their prestige, or the value of their good deci-

sions. Empirical studies suggest that the majority of human learning is of this second

kind (Henrich, 2001).

In the present problem, although the dynamics of learning are ambiguous towards the

type of the curve in the empirical data, both the nature of feedback (e.g. full-strategy

choices of other agents) and type of problem (i.e. many-agent coordination) point to an

n-person coordination problem, and hence, further re-enforce the hypothesis that a social

transmission process is at play in the network formation game. It is to be noted, that

such horizontal transmission, along with being prevalent in human learning, can be a

powerful form of problem solving, especially where the problem environment is dynamic

(see Acerbi and Parisi (2006)).

In the first stage (t = 1), agents are endowed with some decision rule (e.g. random

allocation as described in the foregoing paragraph), which they employ for all rounds (for

all r = {1, . . . , R}) in that stage. At the end of this stage, a measure of the successfulness

of each agent strategy is applied (e.g. π = 1
R

∑R
r=1 πr) and used to rank each agent’s

performance. The highest ranked agent (or agents, if more than one agent shares the

11It is to be noted that BG’s solution process (best-response updating with inertia) might be construed
as a type of ‘learning’ process, since gradual steps towards Nash structures results. However, in this
case, agents are not actually changing anything in their underlying decision-rule – they are playing the
Best Response every time. Hence, the BG process was not in fact (nor was it so intentioned) a learning
mechanism as defined here.
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highest rank) shall then be called ‘teachers’, and the remainder of the agents (assuming

a non-empty remainder set) the ‘students’. The learning phase then ensues, with a single

student taking on a public part of a teacher’s strategy (chosen equiprobably if more than

one). That is, since not all graph types will necessarily be observed during a stage,

the student only has access to those responses actually employed by the teacher in the

previous stage.

It is to be noted that so far, although agents might enter the model with a diversity of

decision-making rules, if the model only ever allows for imitation within those rules, then

long-run behaviour will be drawn only form the support of the initial rule distribution.

Clearly, subjects are prone to discover new ways of solving the network formation problem

that are drawn from outside of their counterparts’ rules. Therefore (and as is natural in

modelling such artificial adaptive agents for precisely this reason), during the learning

phase, let m(S, e) where m : S × [0, 1] → S be a mistake-making or ‘innovation’ filter

which is applied such that each agents’ graph-type response decisions are reversed with

vanishing probability (e ' 0.01) (e.g. from ‘sponsor this link’, to ‘do not sponsor this

link’).12

Taken together, the learning mechanism, whilst related to the Genetic Algorithm

(GA) approaches of various authors13, diverges significantly from the canonical rendition

in two main respects. First, agents to do not combine their strategic information to give

rise to new agent strategies (the ‘cross-over’ operator in standard GAs), but rather, the

transmission of strategic information is one-way, with the student taking on some of the

strategic information of the teacher, without the reverse transmission occurring. Second,

rather than agents having access to the fundamental strategic information of another

agent (that is, the entire strategy encoding, whether revealed or not), the student is only

allowed access to the portion of the teacher’s strategy information that has been revealed

in the round-based play.14

12The qualitative naming given to such a filter is somewhat arbitrary. Importantly, what m brings is
the capacity for a broader solution-space than was present initially to be searched by the agents, and thus,
they are able to realise solutions not previously known to them, or even known in-part to a member of
their playing group.

13See for an introduction Holland (1992) and its application in economics with artificial adaptive agents,
Holland and Miller (1991).

14Other literature would recognise this as imitation based on phenotypic, rather than genetic informa-
tion.
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(a) (b)

Figure 6.10 Learning example graphs: (a) T1; and (b) T5

Example of the Learning Process

Suppose two agents a and b with strategies Sa and Sb respectively have played the 4-player

network formation game for R periods, and a ranking measure

πi =
1

R

R∑

r=1

πr
i , i = {a, b} (6.5)

has been applied with outcome πa > πb .Then further suppose that a has responded to just

two minimal absentee graphs in the previous stage (her public or observable plays), T1 and

T5 (as shown in Fig 6.10) and in each case, her strategy response has been sa(T1) = (1, 1, 1)

and sa(T5) = (0, 0, 1) respectively. Learning then proceeds as follows: first, as a result of

the imitative part of the learning process,

‖sb(T1) sb(T5)‖ = ‖sa(T1) sa(T5)‖

where ‖ . . . ‖ indicates that a contiguous sub-vector of the horizontally concatenated pub-

lic/observed plays is learnt; and second, the innovation filter is applied to the learning

agent’s decision-making rule, m(Sb, 0.01).

For example, this might have the outcome for b that

Sb =
{
(1, 1,

↓

0), . . . , sb(T4), (0, 0, 1), sb(T6), . . . , sb(Tk)
}

;

in this example, b has learnt from a by imitation, but has made a single mistake (or

change) in this imitation which has caused the generation of an altogether new decision-

making rule over the two structures (summarised in Fig. 6.11).

6.3.6 Implementation

In order that the results from the present model could be compared effectively with those

of FK, the subject-oriented experimental design was matched as closely as possible (see

Algorithm 1). The total population of artificial ‘subjects’ N is partitioned into a number
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Figure 6.11 Outcome of learning process ([—] absentee graph edges, [· · · ] agent responses):
agent b (b,left) learns a’s (a,left) response to the graph T1 imperfectly; but agent b (b,right)
successfully imitates a’s (a,right) response to graph type T5.

of mixing groups M (line 1.1), so-called since over the subsequent stages, the game-

playing groups N = N1, . . . , Ng that an agent will be allocated to (to play the n-player

network formation game) will be drawn only from members of her mixing group. Hence,

the mixing group will share ‘playing information’ over time with other members within

the group, but not, therefore, with members outside of this group. Figure 6.12 shows this

two-stage partitioning method schematically.

Algorithm 1 The main program

1: M← partition population(N, n);
2: S[0]← initialize strategies;
3: for t← 1 . . . T do . For all stages
4: for all Mi ∈M do
5: N = N1 . . . Ng ← form game-play groups(M);
6: for all Ni ∈ N do
7: S ← SNi ; . Get strategies
8: G← S(T0);
9: P [0]← G; . Record plays as public

10: for r = 1 . . . R do . For all rounds
11: G← g∗ ← S[T (G)]; . Update graph
12: O[r]← objective(G);
13: P [r]← G;
14: end for
15: S(N)← apply learning(P,O);
16: end for
17: end for
18: end for

At the beginning of a modelling run, each sponsorship decision in the decision-making

rule S is set to an equiprobably (sponsor)/(not-sponsor) element for all players {0, 1} (line

1.2), and at the beginning of each network-formation game (that is, at round r = 0), the

graph is formed from each agent’s first sponsorship action vector s(T0). Thereafter, the

network is defined by the round-wise application of each agent’s decision making rule as

described above (line 1.11).
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Figure 6.12 Schematic of the two-stage partitioning of the artificial population, following the
experimental design of FK. At the start of an ‘experiment’ the artificial population is partitioned
into mixing groups M. As each stage begins, a number of n person playing-groups are formed
to undertake the multi-round network formation game. Hence, between stages, agents within
the one mixing group have an opportunity to undergo constrained mixing.

After allocation of agents first into their mixing groups and then at the beginning of

a stage into their actual game-playing groups, each network formation game is played in

turn for a total of R rounds. Here, as described in the model above, agents respond to

the current minimal absentee graph (T ) as it appears to them from the present full graph

(G), subsequently realising some objective measure of each agent’s decisions (line 1.12).

Additionally, the sponsorship decisions played by each agent are recorded as ‘public’ (since

they are now revealed) and can then be imitated in the later learning phase (line 1.13).

After all rounds for a game-playing group have been played, summary objective mea-

sures are compiled, and agents are designated by ranking to be either students or teachers,

with the students copying something of the public plays of the teachers as revealed through

the fore-going rounds, thus forming a new strategy vector for the foregoing stages (line

1.15). This process continues for all experimental groups, and all stages, ending the

modelling procedure.

Agent Learning

The present modelling prescription allows for a relatively simple treatment of learning.

As explained above, each agent retains a vector Si of sponsorship-decisions towards the

n− 1 other agents for the total number of minimal absentee graph types they might face.

Since it is assumed that agents are able to both recognise graph types (from the current

instance) and then apply (via manipulation) their chosen response to the instance, inter-

agent imitation is quite easily handled by simply reading a teacher’s response vector,

say St and writing it to the appropriate section of the student’s response vector Ss (see

Fig. 6.13). A uniform random process determines how many teacher sections are imitated

in each learning process.
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St =
(

s(T1), . . . ,

section to be
imitated

︷ ︸︸ ︷

000, 110, 001, 101, . . . , s(Tk)
)

Ss =
(

s(T1), . . . , 011, 010, 011, 001, . . . , s(Tk)
)

⇓

S∗s =
(

s(T1), . . . , 000, 111, 001, 001, . . . , s(Tk)
)

Figure 6.13 Example of a teacher-student learning process for one-way flows and n = 4 (thus
each s(T ) comprises a sponsor-decision over n − 1 = 3 edges; {0, 1} represent ‘not-sponsor’
and ‘sponsor’ respectively; 1 indicates a mistake.

Additional to this learning-by-imitation mechanism is a standard mistake-making op-

erator, applied with vanishing probability (less than one mistake per 100 sponsorship

decisions, or m = 0.0075) to each learnt decision, allowing agents to innovate, or mistake-

make, their way to possible ways of playing not present in the original strategy space.

Further, as can be seen in Fig. 6.13, students learn sections at a time from the teacher’s

revealed strategies. That is, if a particular response strategy requires nine bits (as in the

example) to be correctly described, then students will learn those nine-bits, rather than

seven bits of this response and two of the next which happen to lie alongside on the

string. This methodology is known as ‘punctuated learning’ and usefully implements the

learning of only fully specified responses, rather than part-responses.15 In all experiments

presented below, after ranking, if at least one agent could be ranked below at least one

other agent, the single lowest and single highest ranked agents were selected to be the

student and teacher respectively. If two or more agents were found to share a ranking as

on either level, agents were split equiprobably.

6.4 Results & Analysis

Initial experiments focused on replicating as many of the experimental facts as possible

through a process of parameter search and calibration. This process was conducted on

the one-way information flow case, since this context yielded the most information in

human trials. Once the model achieved a degree of relevance to the one-way case data,

two-way information flows were studied to investigate if, and why, a break-down in agent

strategies was observed.

6.4.1 Agent Performance

As the foregoing discussion has indicated, the present model focuses attention on how

agents improve their performance (find more Nash structures) over time. Supposing

15In practice, applying non-punctuated learning does not qualitatively change any results presented
below.
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Figure 6.14 Graphs L (a) and R (b) giving rise to equal net payoffs for agent a.

that a process of horizontal transmission between agents coupled with a low-frequency

mistake/innovation method can represent the learning process, the key question becomes

how to rank agent performance for subsequent learning? Who should be ‘students’ and

whom should they learn off (the teachers)? Whilst the possibilities for such a ranking

procedure are limitless, three are considered below as a reasonable first pass.

The first and most obvious choice is the net payoff to each agent, as conferred by

the communication network itself and is simply calculated for a round by (6.1) and for a

whole stage by (6.5). This method is attractive for simplicity and basic acceptability in

motivating agent behaviour.

However, it is possible that subjects do not rely on individual payoffs alone in deter-

mining ‘good’ structures. An example will illustrate some consequences of a simple payoff

regime. Consider the graphs presented in Fig. 6.14, for agent a, it is trivial to calculate

πa under (6.1) (denoting graph (a) L, and (b) R),

πa(L) = 4V − 3C;

πa(R) = 3V − C;

which result in equal payoffs to agent a for V = 2C (a specific case studied in FK). It is

reasonable to assume that the situation on the right (b) displays a better use of existing

edge sponsorships for a out of the two, and such an agent would be more likely to receive

imitative behaviour. Of course, ‘obvious’ examples like these do not translate easily into

ranking procedures.

Some progress can be made by noting that the non-cooperative network formation

game actually gives rise to an externality generating environment. Principally due to

the assumption of information flows between agents, each agent’s edge sponsorships do

not just have an effect on their own information observations, but actually provide an

information gathering structure for other agents.

Thus, a second ranking measure is constructed along these lines: the measure should

capture the extent to which an agent has been able to exploit any externalities in the graph

structure. Intuitively, a simple ratio of observations (µ) and degree (δ) for each agent
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Figure 6.15 Example benefit/cost ratio measure example networks for agent a (n = 4): (a)
minimum; (b) maximum (one-way flows); and (c) maximum (two-way flows). Agent sponsorship
strategy represented by dotted lines. NB: in (c), (following BG), sponsorship is indicated by
small dot on edge sponsored by closest agent.

ought provide such a measure. However, the convention of self-observation (µ = 1) with

zero link-sponsorship (δ = 0) must be taken into account, hence the following measure is

formed,

fi(µi, δi) =
µiV + C

C(δi + 1)
. (6.6)

The denominator simply normalizes the δ = 0 case whilst the numerator comprises the

benefit to observation plus a further C term as explained presently. It is to be noted, that

as desired, fµ > 0 and fδ < 0, but moreover, by rearranging, one obtains,

fi(µi, δi) =

(
1

δ + 1

)[(
V

C

)

µ + 1

]

,

which indicates that the ratio of observation benefits and edge sponsorship costs V/C

weights the relative importance of the number of observations, versus the number of

sponsorships. Hence, when V/C is large (i.e. low cost-regime), information observed is

favoured in the measure, and numbers of edges sponsored is not, whereas in the alternate

case when V/C is small (i.e. high cost-regime), edge-sponsorships become more ‘costly’,

having a greater relative effect on benefit/cost ratio. Hence, although the measure cap-

tures the main interest by rewarding externality exploiting strategies, it also retains a

connection to the actual cost of edge-sponsorship. Without this feature, the measure

would be agnostic as to the particular cost-benefit regime they are a part of, which is a

key part of both the BG and FK analysis.

By way of example, and to normalize f on [0, 1] the maximum and minimum strategies

can be identified by considering the best- and worst- case externality scenario in each of the

one- and two- way conditions. In the one-way case, the worst-case scenario is any strategy

in which µi = n and δi = (n−1) (sponsor-all); such a case can be seen in Fig. 6.15(a). The

best-case result for an agent in the one-way case with low edge sponsorship costs is when

they get the highest externality for their strategy, which can be easily verified to be where
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µi = n and µi = 1; this situation is shown in Fig. 6.15(b). However, it can be shown16

that in the one-way case, the optimal value of f depends on the relation C ≷ V (n − 2)

and that in fact, if C > V (n − 2), then the maximal value for an agent is obtained by

sponsoring no links at all. That is, the return to sponsoring one link, even if it returns

full information, is lower than the cost of sponsoring that link. Clearly, this is a natural

phenomena and will have important ramifications in modelling.

Table 6.3 Efficiency measure f(µi, δi) for all feasible combinations of
µi and δi with n = 4. One- and two- way information flows indicated
by → and ↔ respectively.

C = 5 C = 25

µi δi → ↔ → ↔

1 0 0.33 0.11 1.00 0.38

2 0 - 0.41 - 0.59

3 0 - 0.74 - 0.80

4 0 - 1.00 - 1.00

2 1 0.11 0.04 0.33 0.13

3 1 0.56 0.19 0.60 0.23

4 1 1.00 0.33 0.87 0.33

3 2 0.04 0.01 0.11 0.04

4 2 0.33 0.11 0.29 0.11

4 3 0.00 0.00 0.00 0.00

In the two-way case, although the minimum is unchanged, the best-case strategy

becomes ‘sponsor-none’ (as shown in Fig. 6.15(c)), since it is possible to obtain full-

information and yet provide no support for the information network. This is akin to a

truly non-cooperative (‘defect’) strategy since all benefits are retained, with costs born

by others. The full results for normalized values for f calculated by (6.6) under n = 4

and information flow of both types is given in Table 6.3 for comparison. It can be seen

that subtle changes in preference ordering do occur within columns due to the cost of link

sponsorship; ultimately these will be reflected in learning outcomes when f(µ, δ) is the

objective ranking measure.

Finally, the third ranking procedure considered was that of a random base-case. This

was implemented so as to cause a student to update their strategy by imitating a teacher

as often as would have happened under ranking measure f . However, rather than the

16We ask, is it possible that sponsoring no links, i.e. gaining f(1, 0), could ever be greater than the
externality exploiting strategy that yields f(n, 1),

f(1, 0) ≥ f(n, 1) ,

V + C

C
≥

nV + C

2C
,

C∗ ≥ V (n − 2) .
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Figure 6.16 Nash (non-empty) structures under one-way information flows: (left) C = 5; and
(right) C = 25, under different objective measures: payoffs (π), benefit/cost ratio (f) and naive
(random) learning.

student being identified by ranking due to π or f , the ranking was uniform random, and

hence, provides a true test of the trial measures by testing whether pure imitation alone

can account for observed subject behaviour.

6.4.2 Objective Measures & Learning

To begin, the one-way information flow case was analysed over a range of parameteri-

sations with a relatively short time-scale.17 Specifically, both high- and low- edge spon-

sorship costs were considered together with the three ranking procedures measures as

described above. Results for these experiments are given in Fig. 6.16.

A primary insight is immediately apparent from these plots, namely that pure im-

itation alone is not a proxy for human learning in the network formation game. The

naive-learning plots both show no significant change through the stages, in contrast to

the treatments where ranking was informed by one of the two objective measures, and

was therefore non-random.

Second, both non-naive ranking procedures gave reasonable improvement dynamics

across stages for low-cost conditions, but the opposite is true of the high-cost regime where

these measures are indistinguishable in performance from the naive learning process. To

gain a better perspective on the difference between these regimes, average agent degree

plots were prepared as reported in Fig. 6.17. It can be seen that in the high cost regime

17Results given for 20 independent trials, each comprising of 10 mixing groups of 40 agents each to form
the n = 4 game-playing groups for each stage play, over 50 stages, playing a 20 round network formation
game. Experiment parameters as follows: V = 10, m = 0.0075 others given in caption to Fig. 6.16. In
each line plot, data were smoothed by averaging two points to the left and right to clarify trends, that is
a mean of 5 measurements in total.
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Figure 6.17 Average agent degree under one-way information flows: (left) C = 5; and (right)
C = 25, objective measures as for Fig. 6.16.

(right) the artificial agents quickly chose to sponsor few edges under both non-naive

ranking conditions as opposed to the low cost regime where high sponsorship levels, near

the naive case, were observed for the π measure, whilst the f measure saw sponsorships

decline to around 1 per agent.

The above experiments indicate that the artificial agents were probably under-sponsoring

compared to their human counterparts. This is especially so in the high-cost regime, where

edge sponsorships continued to trend pass one per agent, and this, regardless of the non-

naive objective measure used for ranking. The FK trials show that subjects roughly had

a preference for sponsoring about one edge at a time. It can be concluded that the pure

non-naive objective measures alone as measures for strategic development are not good

proxies for human learning in this context. This is not surprising in the low-cost case

since as mentioned above, agent payoffs can carry confusing information about ‘good’

strategy, and in the high-cost case, payoffs will cause individuals to undersponsor on the

whole due to free-rider temptations.

6.4.3 Altruism, Reciprocity, & Learning

With the perspective obtained above, the importance of maintaining average agent spon-

sorship levels is underlined. Indeed, the game can be considered as a kind of n-player

public good game where the benefits of the network are not conferred in a dyadic or

triadic relationship, but are available to all players. The difference between the model

results and the subject trials indicate that real subjects appeared willing to incur personal

costs in sponsoring links to support the public benefit of the network (and subsequent

improved personal return). Such behaviour is consistent with empirical evidence which
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continues to show that humans prefer a kind of altruism often associated with fairness

as opposed to strict self-interested play (Camerer, 1995). There are various hypotheses

concerning how and why humans exhibit altruistic behaviour, with attendant models such

as reciprocal altruism relying on repeated interactions (Axelrod and Hamilton, 1981), in-

direct reciprocity through image recognition (Nowak and Sigmund (1998), compare Riolo

et al. (2001)), or so-called strong-reciprocity involving pro-social rewards and anti-social

punishments (Bowles and Gintis, 2004).

In the context of the network formation game, the specific form of reciprocity that is

at play is unclear. An agent who decides to bear a personal cost to support a link, re-

gardless of the strategic decisions of others, does engage in a kind of reciprocal behaviour,

since the benefit they receive is additive to the extent that others imitate this network

formation behaviour; the good deed is returned. However, the feedback works in the

reverse direction, the agent who does not sponsor a link, if imitated, will find that any

free-riding benefit is quickly scotched.

Consequently, an altruism measure was added to the transmission process between

stages to augment the objective measures previously described. Specifically it was sup-

posed that for each revealed sponsorship decision within a round, agents are assigned (it

is supposed by the observation of the other agents) a basic altruism measure ri as follows,

ri =







0 for δin = {0, 1}, δout = 0 ,

1 for δin = 1, δout ≥ 1 ,

2 for δin = 0, δout ≥ 1 ,

(6.7)

where δin and δout are an agent’s in- and out- degree respectively (the count of edges inci-

dent to the agent, and the count of edges the agent sponsors respectively). For each agent

over R rounds, the mean value of r is calculated and contributes to the overall ranking

measure used to determine ‘teachers’ and ‘students’ by simple convex combination,

Ωi = α〈ri〉+ (1− α){〈πi〉, 〈fi〉} (6.8)

where α ∈ [0, 1], and 〈·〉 indicates arithmetic mean.

To calibrate this new combined ranking measure, the one-way network formation game

was again experimentally studied for several values of α ∈ {0.0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0}

with the f measure.18 Results given in Fig. 6.18 indicate that for values of α less than

0.4 little change occurs to the overall down-ward trend in edge sponsorship, however, a

non-linear movement for α ≥ 0.4 yields an increase of the sponsorship levels as desired.

18Experiment parameters as per previous experiment.
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Figure 6.18 Combined (altruism,benefit/cost ratio) objective measure calibration results at
different α values.

A value of α = 0.6 was therefore chosen since it appeared to provide agreement to the

human trial sponsorship levels of about one link per agent. Taking this new combination

objective measure (setting α = 0.6) to a combined low- and high- cost regime study gives

rise to more realistic improvement and behavioural outcomes (see Fig. 6.19). In three of

the four cases (both measures with C = 5, and for f with C = 25), agents reduce average

edge-sponsorship numbers towards 1.0 or above, with resultant strategic outcomes also

displayed in relatively good p(Nash) growth over time. However, the payoff measure,

even with the added altruism component is unable to discover Nash structures over time.

This result appears to further underscores the low level of information that agents receive

via the individual payoff measure. For this reason, the new combined benefit/cost ratio

and altruism measure was pursued as an approximate proxy for the ranking measure.

6.4.4 Learning Dynamics over the Long-run: Strategy & Prediction

One-way Flows

To study the dynamics of the learning process for comparison with the subject data, two

long-run experiments were conducted. In the first, the conditions as determined above

were implemented as is: one-way flow, low- and high- costs of edge sponsorship. In the

second, the two-way information flow condition is introduced for the first time, to see if

the calibrated conditions chosen above are applicable to replicate the poor subject results

of the two-way flow game.

Figure 6.20 gives Nash structure frequencies (left) for the combined benefit/cost and

altruism measure over 250 (learning) stages. In this case, the low cost regime does re-

markably well, plateauing out at around an average of 16%, whilst the high-cost case,

although improved by the altruism measure achieves roughly half this rate. Of further
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Figure 6.19 Frequency of (non-empty) Nash structures (left) and average agent degree (right)
under one-way information flows and combined objective measure conditions. In each case,
α = 0.6, different link costs and objective measure treatments are labelled as in Fig. 6.16.

interest, is the proportion of Nash structures that are actually the circle type, the struc-

ture seemingly requiring the highest level of coordination. As can be seen in both cost

regimes, Nash play is largely accounted for by Strict Nash play. Recall that to play Strict

Nash, the artificial agents have individually contributed to forming one of six structures

out of a possible 2n(n−1), or around 4000 for n = 4, structures which is a remarkable result

considering the limited cognitive and learning architecture they are endowed with. The

naive results presented for the long-run case show conclusively that imitation of others

alone without the benefit of the combined ranking measure has no effect on frequency of

Nash or Strict Nash play. This result resonates with the cultural learning literature that

speaks in terms of biased cultural transmission rather than simply ‘cultural transmission’.

The ways of behaving or solving problems are transmitted from a desirable sub-set of the

population to the others, rather than just from any (randomly chosen) sub-set (Henrich,

2001).

For ease of comparison with FK, the long-run studies were split into meta-stages so

that both play within and between learning junctions can be compared. To this end, in

each bar-chart that follows, the 250 explicit model stages were grouped under 3 meta-

stages (that is, t ∼ (1, . . . , 83), . . . , (167, . . . , 250)) and within each of these, average data

for play within specific rounds were split into 5 groups (that is, r = (1, . . . , 5), . . . , (16, 20))

to represent comparison ‘rounds’. The outcome for the one-way case is very interesting

(see Fig. 6.21), with improvements clearly visible both within and between phases. This

phenomena is exactly as observed in the FK subject trials; the authors hypothesised
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Figure 6.20 Results of long-run study under combined altruism – benefit/cost ratio measure
at different costs. Naive learning included as a control. Nash structures (non-empty) are
predominantly comprised of the Strict Nash (one-way) circle structure.

that in the early rounds of a stage (recall: groups are re-formed between stages), mis-

coordination occurs due to the unfamiliarity with the playing partners, but this goes

away over time. Whilst some improvement between stages was to be expected, due to

the modelling set-up, that the artificial agents mimic human Nash structure discovery

behaviour within stages is extremely pleasing.

The calibration work above appears to suggest a seemingly strong correlation between

average degree and propensity of groups to find Nash structures, it could be hypothesised

that the strong learning results between stages and improvement dynamic within stages

are simply the result of random occurrence aided by players lessening the number of edges

that they sponsor. To test this hypothesis, the same data treatment is performed on mean

agent degree for the one-way case (see right of Fig. 6.21). As can be seen, although there

is a slight reduction of average edge sponsorships over the 3 meta-stages which may indeed

account for some of the overall learning dynamic between stages, within each stage, there

appears to be a vanishingly small difference in agent edge sponsorship numbers.

Whereas the probability of finding the Strict Nash structure (in this case, the circle-

graph) grows markedly. Hence, one can conclude that the apparent improvement dynamic

within stages of the artificial agents is not by chance alone under lower edge sponsorships,

and is therefore due to strategic learning as modelled.

To further investigate the strategic behaviour of agents, a simple measure of prediction

was developed, which asks whether an agent’s sponsorship decisions would have achieved

an higher or lower objective measure against the actions of opponents in the last period,
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Figure 6.21 Within- and between- stage learning as evidenced by improving (non-empty)
Nash structure probability. Average agent degree also shown (right), showing little within-stage
variation, despite large equivalent performance variance (left). Data shown is average over all
mixing groups and repeats.

or against their actions as revealed in the present period,

M r
i = sign

[

f(gr
i ∩ gr

−i)− f(gr
i ∩ gr−1

−i )
]

. (6.9)

Thus the measure will take the value of 0 on average if an agent does no better nor worse

by playing their chosen sponsorship vector against the actions of the other players last

period, or as revealed this period, whilst a positive value will accord with the sponsorship

vector giving better outcomes than not against the future graph, and vice versa. By again

taking the average of this measure across the collected rounds and stages, an indication

of when agents have been able to play predicatively can be obtained. Figure 6.22 gives

these results for the C = 5 long-run case as discussed above, with the naive regime also

given for comparison.

The plot shows that agents do indeed learn to play predicatively over the stages, with

marked increase in this kind of play within round groupings as well when compared to

the naive plot. Interestingly, both graphs (naive and non-naive) indicate that the first
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Figure 6.22 Prediction measure results for within- and between- stages for combined and
naive learning rules for comparison. A strong correlation with performance is clear (compare
Fig.fg:bar:oneway)

few rounds in the non-naive case are played in a responsive way, rather than a predictive

way. This is not surprising, since the first rounds of a stage are where agents have just

been mixed, and will initially mis-coordinate. Recall, that these initial rounds are also

when the artificial agents are likely to sponsor more links on average. Putting these two

observations together, the artificial agents appear to have learnt to compensate for the

lack of early coordination by sponsoring more links.

Two-way Flows

Turning to the two-way information flow case, it is of interest to see whether the present

specification of learning calibrated on the one-way outcomes gives rise to problematic

play in the two-way case, as was the result in human trials. Figure 6.23 certainly seems

to suggest that this is the case. Both in the low- and high- cost regimes, performance

overall is poor, with a regression in performance observed due to stage-based ‘learning’,

rather than improvement. The results are particularly stark for the Strict Nash structure

(cs-star) which finds less than one per cent frequency in the low-cost case. This is in good

accordance with the human trials, where the one-way Nash structures were largely due

to the Strict Nash cycle structure, whilst in the two-way case, graphs were found to be

Nash a smaller number of times, but with only two cs-star structures observed across the

entire human trial. Both of these facts are generated in the present model.

Furthermore, Figure 6.24 indicates that sponsorship levels were roughly similar to

those of the one-way case, as was found in the human trials, and thus cannot be attributed
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Figure 6.23 Frequency of (non-empty) Nash (left) and CS-Star (Strict Nash) (right) structures
under two-way information flows. Data given for combined altruism – benefit/cost ratio under
each cost regime and naive learning for comparison. Note change of scale in CS-Star plot.
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Figure 6.24 Average agent degree under two-way learning, data shown as for Fig. 6.23.

with the main source of error. Indeed, the summary bar-charts shown in Fig. 6.25 indi-

cate that a break-down in any improvement between stages, or within stages is entirely

strategic, with the average degree stage and round plot resembling closely that of the

more successful one-way case.

6.4.5 Inertia: Inequality & Emergence

Finally, the FK study considered reasons why agents were able to find Strict Nash out-

comes so readily in the one-way flow case and not in the two-way case. Their argument

centred on two main effects, the first being the natural observation that the Strict Nash

structure in the one-way case (the circle) displays a high degree of symmetry, both in
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Figure 6.25 Frequency of Nash structures (non-empty) under two-way learning showing limited
within- and between- stage learning (compare Fig. 6.21).

payoffs, and in terms of strategies. In contrast, the two-way Strict Nash structure (the

cs-star) displays neither of these symmetries. Within the present framework, it is difficult

to test this hypothesis.

However, the second argument invoked by FK was a social preference one that sug-

gested that agents certainly dislike inequality of outcomes and probably do not value

inefficiency either (see refs in FK for details). To test the social preference hypothesis,

FK ran a probit regression of the occurrences when a subject showed strategic inertia

(played the same sponsorship vector in the present period as in the previous one) and

tested for payoff inequality in the previous round. That is, they hypothesised that if

an agent experienced higher inequality of payoffs in a round, they were more likely to

change their strategy in the next round.19 They found that inequality was significant and

negative, as expected, in explaining agent inertia, even after controlling for whether an

agent played a best response (in payoff terms) in the previous round.

To test whether a similar fact was found in the present model, a plot of agent inertia

over learning stages was prepared for the one-way flow case (Fig. 6.26). Clearly, both the

low- and high- cost cases showed increasing agent inertia over time relative to the naive

baseline case. This is very interesting, as it indicates that as well as being strategically

predictive, agents are able to choose to play inertia after learning, presumably giving

rise to the conditions for Nash play. Secondly, to directly investigate the connection

between inequality and inertia, a plot in inertia-inequality space was prepared to show

19Note that this is not the same as asking whether or not an agent chose to update their strategy or not
since they could possibly playing the same strategy as the previous round, and hence would not display
strategic inertia.
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Figure 6.26 Strategic inertia arises endogenously in the model. Agent inertia as a function of
learning stage under one-way information flows (left); and the same shown in Inertia-Inequality
space showing the relationship between the two, (+) indicate final experiment state (right).

the trajectory of the low- and high- cost cases. Agent inequality (following Fehr and

Schmidt (1999), in FK) was calculated as follows,

ei =
∑

j

|πi − πj| , (6.10)

for all j 6= i; the sum of absolute differences between an agent’s individual payoff and

the payoffs of all other agents. As can be seen, a correlation is found in equivalence with

the human trial work – lower agent inequality is correlated with higher agent inertia.

However, what makes this result interesting is that rather than constructing a model that

represented all the observed human preference as an input (as might be a possible course

of action), the model constructed above is extremely parsimonious with regards depiction

of cognitive structure or process. To find the social preference thesis arise as an emergent

property of the system further indicates the usefulness of the present approach.

6.5 Conclusions

This work has attempted to construct, calibrate and test a model of human decision

making in the richly complicated communication network formation game as proposed by

BG and tested in the field by FK. By applying a novel graph-equivalence criterion and

mapping technique, it has been shown that the apparently vast and seemingly unfeasible

strategy space presented to the artificial agents can be modelled in an intuitive and

feasible manner. Whilst this approach is likely useful for n . 10, it is in this region that

the problem retains strategic interest given the limits of human functionality.
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Further, through a calibration process via human subject data, the limits of a purely

payoff driven approach have been shown, with a suggested alternative criterion combining

a ratio (rather than difference) of benefits and costs together with a simple altruism

measure proving a more reliable proxy for human action in this context.

From this basis, key questions in modelling these difficult systems have been answered.

Are artificial agents able to play strategically from a simple case-based action vector? The

steady sponsorship levels between rounds contrasted with improvements in Nash play

affirm that the artificial agents are indeed strategic. Can artificial agents who have only

one round of ‘memory’ play predicatively? The answer to this appears ‘yes’, especially so

in later rounds of each stage, and later stages of each experiment. This suggests that the

deterministic ‘observe-recognise-play’ method that each player has been endowed with for

a round settles to an approximate pattern of play in the graph state space, giving rise to

the observed predictive play.

Moreover, whilst (individual) perceptions of altruism were explicitly modelled in the

learning cognition for agents, a response to payoff inequality or inefficiency (a social mea-

sure) was not. Yet, these features arose as an emergent property of the system, suggesting

that such preference need not necessarily be incorporated in the model explicitly, but can

be derived from it.

The above results suggest that lack of symmetry leading to a coordination breakdown

in the case of two-way information flows is the most likely cause of human difficulty

in finding the Strict Nash structure. Whilst a large number of facts from the human

trial were observed in the present model, the modelling prescription with the combined

measure incorporating altruism, paradoxically makes the centre-sponsored star a very

unlikely structure to obtain.

It remains to discuss why although many of the features of the subject’s Nash play

were replicated here, the level of play (in the one-way case) was not (falling short by

around 40%). Several points can be made. First, a focal structure was not programmed

into the agent cognition – there was no explicit ranking of structures that directed the

play towards one of the several structures that would appear similar in objective measure

to the circle. It seems reasonable to think that humans might actually find the circle an

appealing structure to play given the symmetry as discussed above. In effect, the artificial

agents were programmed to be fundamentally indifferent to all structures.

Second, within the framework, agents were only endowed with a single round of ‘mem-

ory’. They observed the structure of the present period, recognised it, and played their

response. An obvious extension would be to allow agents to recognise a two- (or more)

round sequence of structures and play their response. Clearly, as has been maintained
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throughout, the network formation problem is fundamentally complex enough for humans

to negotiate and thus a focus of the present approach was to keep the cognitive architec-

ture within the bounds of what might be considered humanly capable (e.g. the recognition

of at most 16 and 11 unique structures in the one- and two- way flow cases respectively).

Hence, one suspects the layers of memory cannot honestly be increased much beyond two

or three but by doing so agent performance would likely improve.

Third, although raw payoffs alone, or in concert with a measure of altruism appear not

to provide enough information to agents to give rise to realistic behaviours, as mentioned

above, any number of alternatives could be chosen. The ratio measure above provided a

reasonable choice, but others could be investigated (e.g. if memory is expanded, objective

measures over sequences of plays akin to a gambit could be considered, allowing for the

adoption of short-run loss/long-term gain strategies).

Nevertheless, this work has indicated a fruitful line of further work in modeling net-

work formation in communication networks in particular, and other economic networks

in general. Whilst the BG analysis provided an excellent framework for thinking about

non-cooperative network formation with results in the one-way case being largely con-

firmed in the field, the present computational model has enriched this understanding

considerably. Elements such as biased cultural transmission as learning, emergent social

preference phenomena, altruism and the exploitation of externalities through modified

objective function design have been raised and investigated.
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Cooperation Networks:

Endogeneity & Complexity



Chapter 7
Cooperation & Networks: towards

endogeneity

Attention is now turned to the emergence of cooperation. Specifically,

this chapter reviews some key contributions to the cooperation literature

beginning with biological treatments. The literature is covered within

a framework that suggests a progression from uniform (non-local) in-

teractions, to static local interactions, and eventually, to dynamic local

interactions. The model to be presented in Chapter 8 relates directly

to this trajectory, constructing a truly endogenous network formation

model of cooperation.

7.1 Introduction

The strategic literature has seen a long-standing interest in the nature of cooperation, with

many contributions considering the simple but insightful two-player Prisoner’s Dilemma

(PD) game,

j

C D

i
C (a, a) (b, c)

D (c, b) (d, d)

(7.1)

where c > a > d > b and a > (b + c)/2.1 The rudimentary text-book form of this model

is considered as a simple one-shot, or finite repeated game between two agents. Since

the following chapter is predominantly concerned with an evolutionary model of learning

and adaptation in a population, the text-book form will be mentioned here in passing

only. Moreover, the discussion to follow will not attempt to be exhaustive of this broad

topic, but rather, reflecting the model to be presented in the following chapter, will aim

1As in Axelrod and Hamilton (1981).
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Figure 7.1 Uniform matching, n = 4.

to give some background as to how cooperation has been handled from its beginnings in

the biological literature to its study in social settings, with a particular emphasis on how

agent interactions are handled.

7.1.1 Uniform Interactions

Traditionally, such games were analysed under an uniform interaction specification such

that two representative agents i and j from a population N = 1, . . . , n are selected

equiprobably to play a single (or repeated) two-player game such as in (7.1) and then

returned to the population pool.2 It is convenient to think of this kind of matching in

graph-theoretic terms as a choice of one edge out of n(n−1)/2 edges in a complete graph

of size n (Fig. 7.1). This kind of matching seems best suited to situations where

agents are essentially the same (homogeneity), have no memory of previous interactions,

are essentially un-recognisable to other agents (anonymity), and are not bounded by

spatial considerations (non-local). In physical terms, such a matching method is akin to

a perfectly mixed, pure atomic gas. As can be seen in what follows, many contributions

to the cooperation literature have attempted to enrich this description, bringing in more

realistic elements as the domain of enquiry has demanded. Indeed, a progression from the

uniform, anonymous interaction case to that of non-uniform and endogenous interaction

environments as studied in the following chapter can be identified.

7.2 Biological Treatments

In the first (and perhaps oldest-running) case, the biological literature has studied the

nature of cooperation (or altruism) in evolutionary game-theoretic models by endowing

agents with non-homogeneous identities whilst still assuming uniform interactions. The

main questions of interest for these workers is how cooperation or rather, altruistic acts

should come about between species or within animals of the same species that ought

to care only for themselves (or in more extreme renditions, only for their own genetic

lineage3).

Early explanations came in different forms and mainly centered on the (continuing)

debate between proponents of models motivated by purely self-interested but genetically

2In the following discussion, we shall refer to this case as ‘uniform interaction’.
3So Dawkins (1999).
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related animals and others who alternatively suggested that cooperation conferred benefits

to groups of possibly unrelated animals who would be positively selected for by virtue of

group selection. The former approach forms the basis ‘kin-selection’ models where animals

who are similar enough (genetically) will sacrifice their own reproductive health for the

sake of the reproductive health of relatives. The latter approach does not require such

relatedness but instead argues that selection does not only apply at the level of individuals

and actually may be dominant at higher levels, namely groups. A reproductively low-

fitness individual may yet be positively selected for if part of a high-fitness group.

To begin with the kin selection camp, Hamilton (1964) classically contributed a now

well-known condition to describe why an altruist would sacrificially support a relative,

rb− c > 0 . (7.2)

Hamilton’s rule suggests that an altruistic act will occur between two members of the same

species if the benefit b in greater related offspring accruing to the recipient is greater than

the reproductive cost c incurred by the donor. Significantly, the rule states that this will

only occur if the discounting factor r, a measure of genetic relatedness between donor and

recipient is high enough. Hence, it came to be the signature model of the ‘kin selection’

party.

An early (and celebrated) example of such an approach is found in the seminal work of

Maynard Smith and Price (1973) (see also Maynard Smith (1964)) who drew inspiration

from natural examples of apparent cooperation between related animals such as the mule

deer (Odocoileus hemionus) whose males fight ‘furiously but harmlessly’. Maynard Smith

and Price computationally analysed a simple numerical model and showed that more

aggressive (and so, energy intensive) strategies such as hawk (attack to kill) may not

be evolutionary superior to more defensive (and so energy conserving) dove strategies

(mild attack, don’t attempt kill). A more recent treatment is given by Riolo et al. (2001)

who implement kin selection by modelling agents who match under uniform probabilities

but can recognise certain arbitrary characteristics of other agents like themselves (a ‘tag’)

and choose to donate to them. Over time, although the individual concerned gains little

directly from their action, members of their ‘kin’ will prosper through similar behaviours,

and so, benefit the species in fitness terms.

Despite the persuasiveness of the kin selection theory, and its subsequent entry as a

standard in evolutionary biology texts, the alternative group selection perspective, though

once virtually banished, is presently making a heavy-weight return. In a 1994 review by
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two of the major contributors to this debate, Wilson and Sober,4 were able to list over

200 positive references in support of group selection of various methodological approaches

from 1970. Indeed, the title of this review, “Reintroducing group selection to the human

behavioral sciences” reflects the ‘return from the wilderness’ mood amongst its propo-

nents.

Significantly, E.O. Wilson, a major contributor to the early kin selection literature,

and founder of the field of sociobiology,5 has recently recanted his previous beliefs and

sought to redress the neglect of group selection as a credible theory (Wilson, 2005). Wilson

returns to the Hamilton Rule and notes several objections, principle among which is the

mounting evidence in biological systems that negates the relatedness assumption required

by kin selection (the non-zero value of r in (7.2) above). A signature case is provided by

that of the worker castes in social populations of ants and wasps as famously studied for

many years by Wilson himself (Wilson, 2001). In contrast to kin selection theory, he finds

that these colonies of workers are founded by genetically unrelated queens. Consequently,

he notes that the previously held idea that agents within cooperative colonies had to be

genetically related to each other as a necessary condition for their collective activity, in

fact need not be the case. Rather, the apparent relatedness (in the cases that it is found)

can be explained as a product of the successful colony. He concludes, ‘individuals do not

form colonies because they are closely related .. they are closely related because they

form colonies’ (Wilson, 2005). E.O. Wilson suggests a revised version of the Hamilton

rule to account for this fact,

rbk + be − c > 0 , (7.3)

where bk is now the collateral kin selection benefit accruing to the donor based on relat-

edness to the recipient, and the additional term, be is the colony-level benefit independent

of relatedness. Even so, a common methodology in group selection models has been to

use cohesive groups as the basis for improvements to individual fitness, and so show how

group-level organisation can be decisive in retaining members of a population who would

otherwise have been selected against (Traulsen and Nowak, 2006; Wilson, 1975, 1976).

4In this debate, names are a source of great confusion. Two are unavoidably referred to: E.O. Wilson;
and David Sloan Wilson. The former is the eminent insect biologist and founder of sociobiology which is
based on kin selection, whilst the latter has been a steady (and continuing) proponent of group selection.

5Sociobiology sought to find evolutionary underpinnings for all observed social (e.g. colony-level)
behaviour in animals on the basis of kin selection motivations, see E.O. Wilson (1975), Sociobiology: The

New Synthesis, Belknap Press of Harvard University Press: Cambridge.
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It should be noted that a popular alternative to kin selection and group selection is

that of reciprocal altruism. As the name suggests, reciprocal altruism requires cooper-

ative agents to come into contact with other recognisable cooperators and so receive a

‘return benefit’. If two agents are required to meet again to obtain their recompense, it is

the direct form of reciprocal altruism, the alternative being indirect reciprocity. In this

latter case, it is supposed that such meetings do not have to be repeated between two

specific individuals, but merely between two members of the cooperative sub-population.

Recent examples include Nowak and Sigmund (1998) and Bowles and Gintis (2004) who

suggest reciprocal mechanisms such as ‘image scoring’ (a kind of community esteem for

cooperative individuals) and ‘strong reciprocity’ (rewards and punishments on normative

lines) respectively. Reciprocal altruism differs from kin and group selection in that the

cooperating individual them self is the instrument of genetic information transmission,

rather than a related individual (so kin selection) or an unrelated, but group-wise helpful

individual (so group selection).

The debate in the biological literature will no doubt continue for some time, each

side having their battle-hardened protagonists. For the present purposes, the contrasting

theories of cooperation are instructive. As will become apparent below, social scientists,

and in particular, economic theorists and practitioners have unconsciously incorporated

elements of one or more of these biological theories in models of human behaviour. In

some ways this is inevitable, and forms the closing remark of Wilson’s reflection on the

falling stocks of kin selection, commenting,

“For the present, however, the ongoing shift to group-level selection forced by

empirical evidence suggests that it might be profitable to undertake a similar

new look at the wellsprings of social evolution in human beings ... where, I

believe, surprises also await us.” (Wilson, 2005, p.165)

In fact, the incorporation of networks (in different guises) as considered below can be

thought of as doing just this. Non-uniform interaction structures, be they set-based,

regular grids, lines, circles, or more exotic descriptions, imply the formation of interaction

boundaries, or ‘groups’, and many of the results from the area note how such boundaries

facilitate non-uniform equilibrium populations. Whether these models (and future models

for economic activity), explicitly attempt to differentiate between the competing kin- and

group- (or reciprocal altruism) selection models of the biological literature is less clear.

However, that humans engaged in economic activity feel the effects of levels of selective

pressure seems obvious (e.g. business units, firms, regions, countries), and hence, one

suspects fruitful future interplay between the two literatures.
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7.3 Non-uniform Interactions

7.3.1 Networks as Types

As a first step towards incorporating non-uniform interaction pattern formation in human

systems, authors have considered cooperation (or corruption) ‘networks’ as relatively

crude typing mechanisms. In these studies, a ‘network’ is used to describe a (proper)

subset of agents in the population who are then distinguished from the majority in some

way. For example, in Taylor’s ‘old-boy network’ (Taylor, 2000), agents who are in the

network are known to be of a certain type – the qualified/competent type. Membership of

this network is conferred upon the individual after ‘showing their colours’ in an interaction.

The mixing of agents is population-wide, and therefore, in this model, the ‘network’,

although giving important type information for future transactions, plays no more part in

the interaction space, nor does the actual topology of the network matter.6 Since there is

no network exit criterion, nor behavioural dynamic, Taylor finds that networks are rarely

socially optimal (as opposed to anonymous transactions) since a bleeding of the ‘good’

types from the general population ensues. Further, in a model of institutional reliability,

Kali (1999) finds the same results, with a comparison between two business regimes

for the transaction of an homogeneous good at fixed price being either: open market

(anonymous transactions); or network (buyer and seller operating on given norms). In

this case, the network in mind is that of the guanxi network in China where a gift

given upon joining is a form of type identification, and all transactions in the network

are assumed to be honest ones; dishonesty resulting in ejection from the network set.7

However, these approaches suffer from the constraints imposed by the analytic framework,

thus only allowing one (informal) fully-connected component to form with such formation

not endogenised. Authors assume that where networks are sustainable they will form.

7.3.2 Structural Imposition

As with some biological examples, social and economic models have increasingly been tied

to static non-uniform interaction spaces, especially through games of strategy on these

networks. Here, some form of topological imposition, other than the complete graph, such

as uni-dimensional play on a line, circle, or higher-dimensional interaction on a regular

graph (e.g. a torus) is usually applied, with more recent contributions allowing for richer

(statistical) graph environments such as so-called ‘small-world’ graphs (Elgazzar, 2002;

Kirchamp, 2000; Masuda and Aihara, 2003; Stocker et al., 2002).

6As is perhaps clear, this is not a network in the sense of a formal graph with an edge set, but can be
thought of as a disjoint graph with the ‘network’ comprising a complete connected component.

7For further reading on the guanxi network, see Fan (2002); Standifird and Marshall (2000).
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For instance, early work by Nowak and May (1992) with simple agents playing a

standard PD game with near-neighbours on a regular two-dimensional lattice revealed

how cooperative types could co-exist with defection types indefinitely – cooperation with

neighbours would be reciprocated directly due to spatial locality (changing the interaction

probabilities). Moreover, their work emphasised how even in this simple spatial struc-

turing to simulate local-interactions, richly diverse population distributions with fractal

properties could be obtained.8 In a similar vein Cohen et al. (2001) specifically place

agents on a spectrum of regular to irregular interaction networks and again find regions

where cooperation can be sustained.

The topological significance of the interacting space has been stressed by these authors

as it appears to influence the degree to which cooperation is achievable. Other examples

include Anderlini and Ianni (1996) and Anderlini and Ianni (1997) who find that different

actions of a pure coordination game survive in the long-run at different locations on the

interaction space. Whilst Kirchamp (2000) computationally studies interacting agents on

a torus playing the PD and coordination games, with cooperation and non-risk-dominant

coordination outcomes observed respectively. Consequently, and reflecting a burgeoning

interest in networks of all kinds, much attention has been paid to the study of realistic

social networks (Barabasi et al., 2002; Baum et al., 2003), with statistical network char-

acterisation (Watts and Strogatz, 1998; White et al., 2004) and clique analysis similarly

receiving interest (Girvan and Newman, 2001; Tyler et al., 2003).

7.4 Non-uniform, quasi-endogenous Interactions

7.4.1 Walking Away

One simple non-uniform interaction specification has been motivated by the observation

in both biological and human cases for individuals to ‘walk away’. For instance, Joyce

et al. (2006) stress that a long-standing feature of animal psychology is that ‘animals

tend to leave a situation that they find distasteful’. That is, although local-interaction

structures promote reciprocal altruist behaviours, they do not allow for defensive types

to move away from predators. One very recent contribution (Burtsev and Turchin, 2006)

goes some way to admitting this element. They use a novel input-output weighting

implementation of species cognition and therefore allow agents to move left and right

on a two-dimensional grid (in addition to other actions such as eat, reproduce, attack

etc.) in response to environmental stimuli such as predators in near-bye cells. Their main

8Interestingly, although Nowak and May’s early (1992) work generated striking chaotic patterns in
(even) a simple two-dimensional interaction space, the cooperation literature seldom admits such dynamics
thereafter. A point to be returned to in the following chapter.
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finding is that ecologies of agents with specific niche skills can arise endogenously once

the ability to move and exploit multi-agent action is incorporated. Although this work

has biological foundations and objectives it is an interesting development, and further

motivates the modelling of interactions between the agent and their matching environment

as is considered in the following chapter.

On this score, humans appear no different, choosing to leave unhappy interactions

(Orbell and Dawes, 1993). Agents respond to good and bad play with their feet. Attempts

to capture this modification have concentrated on a simple ‘exit-criterion’ such that an

agent can choose to cease the interaction with a playing partner and be re-assigned to

another agent from the ‘singles’ pool, if some pre-determined trigger is satisfied (e.g.

the first defection of an opponent). The effect of such a modification is non-trivial and

contrasting.

Computational experiments by Yamagishi and Hayashi (1996) that mimic those of

Axelrod and Hamilton’s tournament games of the 1980s but add in the exit-option suggest

that the strategy out-for-tat (exit if partner plays defect) can overcome the famous

tit-for-tat strategy. In this formulation, one would therefore expect that the exit-

option will increase overall cooperation levels in the population.9 However, an opposing

theory suggests that incorporating an exit-option will decrease cooperation by reducing

‘perceived dependence on the other’; a ‘hit-and-run’ type player can flourish in a short-

interaction environment without opportunity for retaliation by the victim.

Laboratory experiments reported by Boone and Macy (1999) attempt to tease out the

differences in these theories. Their experimental design aimed to discriminate between the

countervailing effects of partner selection and relational dependence (following Pruitt and

Kimmel (1977)), respectively capturing the ability to choose a desired partner, and the

need for future help from a specific partner without the ability to turn elsewhere. Subjects

who were aggressive in nature (favouring retaliation) displayed reduced cooperation in

regimes where an exit play was allowed (they had to play with like- outcasts), whereas

defensive types increased cooperation. Conversely, where exit was forced on players,

defensive types cooperated less (compared to optional-exit), whereas cooperative play by

aggressive players was unaffected. The authors conclude that the natural ability of players

to exit from an undesirable interaction causes different effects on players for different

reasons according to their underlying type, hence producing overall increases or decreases

in cooperation accordingly.

9This result is replicated in Joyce et al. (2006), although out-for-tat is relabelled moth (My-Way-
Or-The-Highway).
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7.4.2 Partner Choice and Refusal

Apart from a few exceptions in the theoretical literature that aim to speak to questions of

optimal organisation, or communication structures/motifs on a relatively small-scale (Bala

and Goyal, 2000; Dutta et al., 1998; Ely, 2002; Jackson and Watts, 2002a; Mitchell, 1999;

Slikker and van den Nouweland, 2000), authors have not allowed the interaction environ-

ment itself to vary, either (for example) due to some exogenous schedule or as a result

of processes endogenous to the model. Such a modelling feature comprises an highly

desirable step towards treating realistic economic and social networks. The generally ac-

knowledged guanxi business network in China as documented in (Standifird and Marshall,

2000) and (Fan, 2002) appears to be a clear example of a dynamic and strategic network

in action. One promising approach that generalises the ‘walk-away’ models mentioned

previously is the preferential partner selection (choice) and optional rejection of an offer

to interact (refusal) literature (or IPD/CR when the game is the IPD). Here, the emphasis

is on how the added mechanism of choice and refusal affects the emergence of cooperation

in IPD games. As noted above, in discussion of the exit-criterion, such a mechanism is

seen as more realistic, from both a biological, and social perspective.10

Indeed, by analysing the outcome of interactions between agents in such a set-up,

a network of activity can be identified and analysed. For example, Ashlock and co-

workers (1996) construct a computational model (see below) to consider the effects on

cooperative behaviour with varying levels of preferential selection, finding that most ecolo-

gies converge to full cooperative behaviour but that ‘wallflower’ ecologies are possible if

intolerance to defection is high, or costs to social exclusion is low.11 Such findings are sup-

ported to some extent by the experimental work of Hauk and Nagel (2001) who find that

cooperative behaviour increases over time under unilateral choice of partners (opponent

must accept to play).

A second paper by Smucker et al. (1994) again considers a computational model, but

in addition to considering the strategic implications of various levels of choice and refusal,

they also perform some characterisation of the evolving network of interactions. In the

SSA model, agents are modeled as 16 state Moore machines12 who are programmed to

play the IPD. Importantly, agents keep track of their expected payoffs for interaction

10See the introduction to Smucker et al. (1994) on such observations.
11See also, Tesfatsion’s work on trading games with endogenous partner selection (Tesfatsion, 1997).
12[As in (Miller, 1996b, p.91), see also Miller (1988)] A Moore machine is defined by the four-tuple

{Q, qo, λ, δ} where Q is the set of internal states; qo is the initial state; λ is a mapping from each state to
the subsequent action to be played λ : Q ↔ Si, for example, in the PD, Si ∈ {C, D}; and δ is the transition

function that maps from the current internal state of the machine to the new internal state, contingent
on the opponent’s reported move, δ : Q × S∼i ↔ Q, S∼i ∈ {C, D} being the opponent’s reported move
last period (in this case, for the PD).
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with all other n − 1 agents in the population. For example, player i keeps track of the

expected payoff for an interaction with some player j, and if this value is higher than some

‘tolerance’ τ , then, it is said, i wishes to play with j (choice). Such offers are naturally

bounded and subject to the receiver accepting the offer to play (‘mutual tolerance’), which

forms the ‘refusal’ mechanism. A single or repeated (IPD) interaction follows, with each

player naturally changing its Moore machine state accordingly.

However, the ‘network’ in the SSA model (as for Ashlock et al. (1996)) is defined by

a simple global rule – if the number of interactions between two players is (statistically)

significantly larger than the mean interaction count for the whole population, then an

edge is assigned between these players. Thus, for SSA, the ‘network’ is more a record

of ‘acceptable payoff outcomes’ rather than a functional entity which shapes future in-

teractions. This is an acknowledged limitation of the work. Furthermore, in addition to

storing payoff outcomes, agents store a unique Moore machine state for every opponent.

That is, an agent’s Moore machine describes their total behaviour set, but against any

given opponent, they choose the ‘side’ of their behaviour (i.e. they choose an initial state)

reflecting their current playing ‘history’ with that player.

7.5 Towards a Truly Endogenous Strategic Network Model

A developmental thread can be drawn through the literature considered above. From

socio-biological beginnings where uniform interactions were assumed and the interactions

between individuals enriched, to the imposition of firstly static, and then in some limited

way, dynamic networks, the next logical step for this inquiry is to allow agents to determine

the interaction structure themselves. Although recently considered contributions like that

of the SSA model are useful first steps, they again do not permit the agents to define the

interaction environment as a result of their own actions and strategies, instead choosing

to define a network based on exogenously defined interaction metrics.

The incorporation of network formation as a truly agent-motivated activity suggests

two directions of important causality, first with respect to how a changing interaction

environment might affect strategic outcomes for agents (the ‘topological’ effect); and sec-

ond, how agents through their own strategic actions might impact on the very interaction

space itself (the ‘agency’ effect). With the perspective of the biological literature men-

tioned above, it can be seen that the former effect is a kind of group selection effect: if

agents, by virtue of their own specific actions in a connected component, are simply part

of a network structure with heavy negative externalities, or poor performance in compar-

ison to another component, they will be selected against. Likewise, the latter effect, that

of agency, can be seen as a generalisation of both the ‘walk-away’ and ‘choice-refusal’
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literature, since agents will mutually choose to construct or break interaction patterns

depending on their preferences. It is to be noted, that this will not necessarily mean that

an agent is receiving high utility in each interaction, rather, their preference may be to

fulfill a kind of mediator role (say) where the emphasis is on the quantity of interactions,

not their quality. These dual issues will be jointly tackled in an endogenous strategic

network formation model.

With reference to Chapters 2 and 3 of this thesis, it is to be recognised that such

a hypothetical system of interacting agents, with heterogeneity in agent behaviour and

interaction profiles fits well into the so-called ‘science of complexity’. As mentioned,

this approach seeks to identify and study systems whose components interact in some

non-uniform, (and usually) non-linear manner. In particular, due to the inherent unpre-

dictability of such non-equilibrium systems, agent-based computational modeling tech-

niques provide an extremely useful method of enquiry especially where non-rational learn-

ing based behavior is also suspected (Arthur, 1994; Holland and Miller, 1991).13

The modelling framework that follows in the next chapter reflects such an approach.

Specifically, both constraints concerning agent rationality and rigid agent interactions are

relaxed within a fundamentally agent-based modelling framework. Moreover, in contrast

to the somewhat related approach of SSA mentioned above, agents are given strategic

abilities to change the interaction space themselves (i.e. to change interaction probabili-

ties) during pair-wise game-play. It is in this sense that a ‘network’ arises in the model,

and hence, such a network is said to be a truly endogenous feature of the modelling

framework; a feature which to this author’s knowledge has not been previously handled

with boundedly rational agents.

To conclude, the model presented and studied in the following chapter aims to address

several of the mentioned shortcomings of the literature. First, by implementing network

formation as a strategic and therefore truly endogenous process; second, and following on

from the first, by allowing for multiple networks to form simultaneously (rather than one

connected component only); and third, by implementing agent strategies as finite state

automata, both bounded rationality and learning are incorporated in a transparent way.

13See also applications of artificial adaptive agents to organizational problems in Choi (2002); Marsili
et al. (2004); Stocker et al. (2002).



Chapter 8
A Model of Endogenous Cooperation

Network Formation: from simplicity to

complexity

Following on from Chapter 7, a model of cooperation in a truly en-

dogenous, dynamic interaction environment is introduced and analysed.

Specifically, the model indicates that with a small change to the stan-

dard Iterated Prisoners’ Dilemma set-up to afford network formation, a

variety of strategic networks can result including both cooperation and

defection based structures. Furthermore, the long-run dynamics of this

model are analysed and relate directly to foregoing discussions of com-

plexity, emergence, and self-organization in Chapter 3.

8.1 Introduction

In the previous chapter a variety of cooperation models was considered with a particular

interest in those that have attempted to incorporate a ‘network’ in some way. As expressed

in the preceding chapter, the model to be developed and analysed presently aims to

provide a significant step forward in both ways of thinking about, and (surprising) results

concerning, the parallel modelling of cooperation and strategic network formation. The

approach taken seeks to make a small modification to the standard iterated Prisoners’

Dilemma (IPD) set-up, so that in the first case where interactions are uniform in nature,

an analytic analysis is tractable and can be directly compared to canonical evolutionary

game-theoretic results. Following this, the modelling set-up permits a ‘turning-up’ of the

impact that strategic decisions by agents are having on the interaction structure, that is,

a network is allowed to develop. It is from here that the inquiry focuses on how and why

118
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networks of various guises might form, and then what happens to these networks over

longer time-scales.

The key insights of the present work can be summarised as follows: first, an ana-

lytic analysis without network formation reveals that the modification to the standard

IPD framework introduced below does not change the canonical behaviour of the sys-

tem; second, that when network formation is afforded, stable cooperation networks are

observed, but only if both a type-selection and enhanced ‘activity’ benefit of the network

are present; third, that the extended system under certain interaction lengths is inher-

ently self-defeating, with both cooperation and defection networks transiently observed

in a long-run specification; and fourth, that the network formation process displays self-

organized criticality and thus appears to drive the complex dynamics observed in the

long-run.

The rest of the paper is organised as follows: first, the model is introduced in overview,

and then in detail, paying particular attention to the modelling of agents and the incor-

poration of network forming behaviour; second, analysis is performed analytically on the

basic (non-network forming, or uniform interaction) model before extension to incorporate

network formation is performed on both short- and long-run time horizons; and finally,

some concluding observations and a discussion of possible extensions is made.

8.2 The Model

8.2.1 Overview

Agents are modeled as finite state automata (FSA) with a maximum number of feasible

states. As with normal renditions of these automata, each agent has an initial state which

is not contingent on the opponent they are playing, and each state describes both their

action for that state, and their state transition contingent on the play of their opponent.

Agents begin with a uniform interaction environment (a null-graph) and within a

period undergo at least some minimum number of interactions with other agents to play

the IPD. Within each interaction, agents are able to influence the interaction environment

by signaling to their opponent that they wish to break the interaction and reveal their

positive or negative response to their opponent. If both players play positive signals,

an edge is assigned between them, and the two agents will meet each other with higher

probability in the future. The exact value of this probability is contingent on how many

other agents each has already formed a link with.

In this way, the concept of ‘partner-scarcity’ is incorporated: though link-formation

increases the probability that two agents will meet again, it does not guarantee it. Con-

sequently, successful agents must either protect themselves completely from exploitative
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players through link formation, or display a depth of complexity in their strategy that

can manage playing against undesirable opponents (or a combination of the two).

At the end of a period, total payoffs are determined for each agent, and an ‘elite’ frac-

tion of the population is retained for the next period, with the remainder being replaced

by new agents.1 New agents are generated from a combination of existing elite behaviours

and new behaviours (a type of learning) followed by mistake-making/innovation. Elite

agents retain their links between periods (so long as they are to fellow elites) whereas en-

trants begin with no links, befitting the concepts of incumbency and network dynamism.

In this way, links are established within a period by mutual agreement between two

agents. However, links can only be broken when an agent leaves the population after

selection, severing all pre-existing links.

8.2.2 Details

Let N = {1, . . . , n} be a constant population of agents and denote by i and j two repre-

sentative members of the population. Initially, members of the population are uniformly

paired to play the modified IPD game G described below. When two agents are paired

together, they are said to have an interaction. Within an interaction, agents play the IPD

for up to a maximum of τ iterations, receiving a payoff equal to the sum of the individual

payoffs they receive in each iteration of the IPD. An interaction ends prematurely if either

player plays a ‘signal’ thus unilaterally stopping the interaction. A strategy for a player

s describes a complete plan of action for their play within an interaction, to be explained

presently. In addition to the normal moves of cooperate (C) and defect (D), an agent can

also play one of two signal actions, #s and #w respectively. Thus, in any one iteration of

the IPD, the action-set for an agents is {C,D,#s,#w}. As mentioned above, the playing

of a signal by either player leads to the interaction stopping, possibly prior to τ iterations

being reached. The playing of a signal can thus serve as an exit move for a player.

The interpretation of the two types of signal is as follows. Although initial pairing

probabilities between all players are uniform random, agents can influence these interac-

tion probabilities through the use of the signals. Formally, let some agent i maintain a

preference vector,

{
f i : f i

j ∈ {ps, p0, pw} ∀ j ∈ N/i
}

(8.1)

1Alternatively, one can think of this as a steady-state strategy framework, whereby the stock of agents
is constant between periods, but some fraction decide to update their strategies. In what follows we shall
continue to think in terms of ‘entrants’ (new agents), though either interpretation is equally valid.
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where f i
j is the preference status of agent i towards agent j and ps > p0 > pw are Natural

and denote strengthen, untried and weaken preferences respectively. Initially all entries

are set to p0 for all j ∈ N/{i}. A probability vector ri for each agent is constructed from

the preference vector by simple normalisation onto the Real line,

{

ri : ri
j =

f i
j

∑
f i

∀ j ∈ N/{i}

}

, (8.2)

such that each opponent occupies a finite, non-zero length on the line [0, 1] with arbitrary

ordering. Since we study here a model of mutual network/trust formation, preferences

can be strengthened only by mutual agreement. Specifically, if agents i and j are paired

to play the IPD, then when the interaction ends in iteration t ≤ τ ,

f i
j = f j

i =







ps if si
t = sj

t = #s ,

pw else ,
(8.3)

where si
t denotes the play of agent i in iteration t. That is, in all cases other than mutual

coordinated agreement, the two agents will lower their relative likelihood of being paired

again (though the playing of #w might cause the interaction to end prematurely with the

same result). Payoffs for each iteration of the PD are given by (8.4) below.

G(I, II) =

II

#s C D #w

I

#s (0,0) · · · (0,0)

C ...
(3, 3) (0, 5) ...D (5, 0) (1, 1)

#w (0,0) · · · (0,0)

(8.4)

The playing of signals, is costly: the instantaneous cost for that period is the foregone

payoff from a successful iteration of the IPD.

8.2.3 Example

Let two agents i and j be chosen to play (8.4) in some period and let maximum interaction

length τ = 3. Consider the following interaction,

Iteration Pi Pj πi πj

1 C C 3 3

2 D C 5 0

3 #(s) C 0 0
∑

πx 8 3

note that i played an unrequited strengthen signal in the third (last) iteration; both

players’ interaction preference entries would be set to pw.



CHAPTER 8. A MODEL OF ENDOGENOUS NETWORK FORMATION 122

C DC
C

D
D

Figure 8.1 Example FSA: Tit-for-tat.

8.2.4 Game Play

In a period each agent is addressed once in uniformly random order to undergo m inter-

actions with players drawn from the rest of the population (N/{i}). An agent is paired

randomly in accordance with their interaction probability vector r i with replacement after

each interaction. Preference and probability vectors are updated after every interaction.

Thus, it is possible that, having previously interacted with all agents, an agent retains

only one preferred agent, whilst all others are non-preferred, causing a high proportion

(if not all) of their m interactions to be conducted with their preferred partner. However,

it is to be noted that the value of m is only a minimum number of interactions for an

agent in one period, since they will be on the ‘receiving end’ of other agents’ interactions

in the same period. In this way, agents who incur an immediate cost of tie strengthening

(foregoing iteration payoffs) can gain a long-term benefit through further preferential

interactions.

At the end of T periods, the population undergoes selection. A fraction θ of the

population is retained (the ‘elites’), whilst the remainder (1 − θ) are replaced by new

agents as described below. Selection is based on a ranking by total agent payoffs over the

whole period. Where two agents have the same total payoff in a period, the older player

remains.2

8.2.5 Agent Modeling

Each agent is modeled as a k (maximum) state FSA.3 Since the interaction will stop

immediately after either player plays the signal # each state must include two transition

responses only: R(C) and R(D). For example, an agent’s first three states might take

the form (schematic representation given in Fig. 8.1),

State P R(C) R(D)

1 C 1 3

2 C 2 1

3 D 1 3

where the first state could be read as,

‘play C next, if the opponent plays D, go to state 3; else, stay in state 1.’

2Following SSA Smucker et al. (1994).
3To facilitate the computational modeling of this environment, agent strategies were encoded into

binary format. See Miller et al. (2002) for an analogous description of this method for FSA.
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An agent will have k such states as part of their ‘strategy’. By convention, the first state

is taken as the initial one.

It can be shown4 that the maximum number of states k possible for an FSA playing

some game with count |R| feasible transition responses lasting at most τ rounds is simply,

k(R, τ) =

τ−1∑

t=0

|R|t , (8.5)

hence, under this regime, the maximum interaction length τ and the number of opponent

plays requiring a response defines the maximal FSA length. However, it is to be noted

that there is no guarantee that all k states for a given agent will be accessed (consider the

example given immediately above, state 2 is present but is strategically redundant). In

this way, FSA give a tangible sense of ‘strategic complexity’ when it comes to individual

strategies. An agent who uses all of their k > 1 states as part of their strategy will

no-doubt display a deeper strategy in action, than an agent who is playing merely (say)

all-c. Of course, such complexity of strategy may or may not correspond to relative

success in the population.5

After each period, a fraction θ will stay in the population, with the remaining agents

being filled by new entrants. Here, the process of imitation and innovation/mistake-

making is implemented via two foundational processes from the genetic algorithm (GA)

literature.6 Initially, two agents are randomly selected (with replacement) from the elite

population. A one-point crossover operator is applied to each agent, and two new agents

are formed. The strategy encoding (bit-strings) of these new agents then undergo point

mutations at a pre-determined rate (5 bits per 1000). This process (random selection,

crossover and mutation) continues until all the remaining spots are filled. An algorithmic

representation of the main procedure is given in Alg. 2.

8.3 Results & Discussion

8.3.1 Uniform interactions

To begin, we study a static uniform interaction space to check any unwanted outcomes

due to the modified IPD set-up. In this situation, rather than agents upgrading their

4Consider a single-rooted logic tree where each node is a state, and each branch some transition.
Without any re-use of states, the tree can be at most τ − 1 nodes deep. Now observe that after the initial
node (call this layer t = 0) each new layer will produce |R|t new nodes. The result follows.

5For example, it has been shown countless times before that the humble tit-for-tat (play C until
the opponent plays D, then switch to D until the opponent plays C, then switch back to C, and so on.)
strategy (and its variants) is often an extremely effective one against all manner of opponents, even though
it can be represented by just two states!

6See, for example, Goldberg (2002) or for a non-technical introduction, Holland (1992).
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Algorithm 2 The main program

1: N ← {1 . . . n}
2: s← initialize strategies(n, τ)
3: age← 0 for all N
4: f ← p0 for all N . Set all preferences to unknown
5: r ←normalize(f)
6: for T periods do
7: φ← shuffle(N)
8: Π← 0 for all N . Initialize period payoffs
9: for each i ∈ φ do

10: for m interactions do
11: j ← choose(ri)
12: [πi,j , f

i,j ]← play game(G, τ |si , sj)
13: r ← normalize(f)
14: Πk ← Πk + πk for k = {i, j}
15: end for
16: end for
17: E ← selection(Π, age, θ) . Elites
18: sF ← generate strategies(sE) . Entrants
19: age← 0 for all F
20: agei ← agei + 1 for all i ∈ E
21: f ← p0 for all F
22: r ← normalize(f)
23: N ← E ∪ F
24: end for

preference vector after each interaction, the preference vector is uniform and unchanged

throughout the model. In this way, the effect of the modification to the standard IPD

framework can be analysed. Under such a scenario, the action set for each agent reduces

to {C,D,#} since the signal action # has no interaction space interpretation, but still

provides a means of prematurely ending the interaction (thus we may drop the sub-script).

To keep matters simple, we consider a model in which the maximum interaction length

τ = 2, which by (8.5) yields a maximum FSA state count of k = 3. Under these conditions,

a strategy will be composed simply of a first play, and response plays to C and D.

With uniform interaction probabilities, this model can be thought of as a modified

evolutionary game theoretic framework. The probability of interacting with a certain

agent type is directly equal to the proportional representation in the population of that

type. Modification of the standard framework is due to the genetic algorithm approach,

the crossover operator providing for imitation in addition to the more standard ‘random’

mutation operator. However, in terms of evolutionary stable strategies, this modification

is insignificant.

In this setting, no evolutionary stable strategy will include # as a first play, since the

payoff for such a strategy with any other agent is 0.7 This leaves strategies in the form

7The interaction would end after the first iteration, and G(#x|y) = 0 for all x ∈ {s, w} and y ∈
{C, D, #(s), #(w)}.
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C #C
D

Figure 8.2 Agent strategy sC# : {C, C, #}.

C DC
D

Figure 8.3 Agent strategy sCD : {C, C, D}

C #C
D

C DC
D

D

D

Figure 8.4 (Clock-wise from top) sC# is stable in the presence of sD only but is susceptible to
attack by sM which in turn will yield to sD, the final evolutionary stable strategy component.

of a triplet,

s : {P1, R(C), R(D)} ,

where P1 ∈ {C,D} and R(.) indicate subsequent plays in response to either C or D plays

by the opponent R(.) ∈ {C,D,#}. In all, 18 unique strategies can be constructed.

It is instructive to consider whether cooperative strategies might be evolutionary stable

in this scenario. Clearly, a strategy sC : {C,C,C} will yield strictly worse payoffs than

the strategy sD : {D,D,D} in a mixed environment of the two. It can be shown8 that

the strategies sC# : {C,C,#} and sCD : {C,C,D} (Figs. 8.2 and 8.3), constitute the only

two ESSs in an environment of sD,D,D only. However, both sC# and sCD are themselves

susceptible to attack by a ‘mimic’ agent such as sM = {C,D,D}, which itself will yield

to the familiar sD.

In this way, even with the added facility of being able to end the interaction prema-

turely, the only evolutionary stable strategy with respect to the full strategy space is that

of sD,D,D. Any intermediate resting place for the community will soon falter and move

to this end (Fig. 8.4).

8See Lemma 1 in Appendix.
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Figure 8.5 Population fraction of strategies under uniform mixing: (D-TFT) ‘nasty’ Tit-for-

tat; (C-TFT) ‘nice’ tft; (C-#) plays C, returns D with #; (C-TURN) ‘turn-coat’, plays C, but
D thereafter; (D-RESP) sum of all players who play D and return D with D.

8.3.2 Uniform Interactions: Computational Results

Computational experiments were run under uniform mixing as described above as a

method of model validation. Given the maximum interaction length of τ = 2, results

for strategies present as a fraction of the total population are given in Figure 8.5.9 As

predicted above, the model shows the clear dominance of sD under uniform mixing. Ad-

ditionally, as predicted, the initial ‘shake-out’ periods (t < 30) gave rise to interesting

wave-like strategic jostling. Agents playing cooperation first, and replying to D with

# were the first to have an early peak, if short-lived, which is not unexpected, since

playing the signal is not the best-response to any subsequent play. Thereafter tft-nice

(C) peaked, but were soon overcome by the turn-coat type (who dominates tft-nice).

However, as the stock of C players diminish, ‘turn-coat’ too, yields to the D-resp type

strategies (such as tft-nasty (D)).

We may conclude then, that the presence of the signal play (#) does little to af-

fect strategic outcomes in the standard IPD set-up; defection still reigns supreme in the

uniform IPD environment.

8.3.3 Non-uniform Interactions: Network Formation

From the preceding analysis, a natural question arises: under what circumstances, if any,

do networks emerge? Whilst it is possible to think of the network formation process as

9Modelling notes: each plot-line represents the average result from 20 modelling runs where in each run:
n = 100 and m = 20 with 20 agents replaced after each period, under roulette-wheel type selection of elites
(with replacement) and p(mutation) = 0.5%. Results were unchanged in substance for m ∈ {2, 5, 10}.
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an aid to certain dominated behaviour (e.g. mutual cooperation), it is not obvious to

what degree the network must shield certain players from hostile behaviour before their

interaction community can be self-supporting.

Two factors that will clearly affect the propensity for cooperative networks to arise

are:

1. The ‘impact’ of the network on the interaction space; to what extent a strengthening

signal actually changes mixing probabilities – formally, the values of the preference

set {p0, ps, pw}; and

2. The minimum number of interactions within a period over which two agents can

exploit a beneficial relationship – formally, the value of m.

These two factors are related, since a low interaction impact may be compensated for by

an high absolute number of interactions within a period.

The impact of network formation decisions by agents was parametrised in the com-

putational experiments as follows,

pw = (1− η)2 and (8.6)

ps = (1 + η)2 , (8.7)

where η ∈ [0, 1). The choice of the expression is somewhat arbitrary, however, the current

specification retains symmetry about p0 = 1 for all values of η and by taking the squared

deviation from 1, the ratio ps/pw could be easily varied over a wide range. For example,

by choosing η = 0.8, we yield pw = 0.04 and ps = 3.24, which gives a ratio of preferences

in f i for agent i for two agents with such values of 81. That is, the preferred agent

(where an edge is assigned for the purposes of visualisation) will be met around 80 times

more regularly than the less preferred agent when i is being addressed. However, actual

interaction probabilities are determined by the full vector of preferences. If n = 100, and

η = 0.8 and i had only 1 opponent j whom they preferred (the other n− 2 agents being

non-preferred), the matching probability between i and j would be around 0.45.

To determine what conditions are favourable for network formation, a second compu-

tational experiment was conducted, this time ‘turning up’ the interaction space impact

of any signalling play by the agents. Specifically, the network tuning parameter η was

varied in the range [0.2, 0.95] together with the minimum interaction parameter m over

[2, 20].

It was found that necessary conditions for sustainable network formation were η & 0.8

and m & 10. In terms of the population, these accord with a ratio of ps to pw (by (8.6) and

(8.7)) of around 80 times, and a minimum fraction of interactions per period of around

10% of the population size.
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Figure 8.6 Fraction of mutual cooperation per PD vs. average agent degree under each
condition listed in Table 8.1. Line (---) indicates simple OLS regression expected values.

Table 8.1 Mean values (over 20 trials) for final period (50) agent de-

gree, 〈d〉 and fraction of PD plays where mutual cooperation resulted,

f(C, C). (see also Fig. 8.6).

〈d〉 f(C, C)

m�η 0.80 0.90 0.95 0.80 0.90 0.95

10 0.000 0.000 0.000 0.0000 0.0000 0.0000

14 0.004 0.001 0.391 0.0001 0.0000 0.0058

18 2.441 11.859 8.587 0.0286 0.1109 0.0735

20 7.959 11.073 9.548 0.0914 0.0941 0.1185

Further, the fraction of mutual cooperative plays (of all PD plays) moved in an highly

correlated way with degree (see Table 8.1 and Fig. 8.6). It would appear, therefore, that

network formation in this model is due to agents who play C first, and P [R(C)] = #s.
10

A closer look at the dynamics of prevalent strategies under network forming conditions

confirms this conclusion (see Fig. 8.7).

We study here an example (m, η) combination at m = 20, and η = 0.8 (see Fig. 8.7.

Four agent types are of interest (along with the summed D-responder types): the coop-

erative network forming type (C-NET); the defection network forming type (D-NET); and

two types which engage in an highly asymmetric relationship – the opportunist (D-OPP)

and so-called ‘sucker’ (C-SCK) types. Again, the periodic rise and fall of strategy types is

10Recall, agents are free to form networks with any kind of behavioural basis.
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Figure 8.7 Example mean population fraction types playing various strategies (over 20 trials)
under necessary network formation conditions (m = 20, η = 0.8): (C-NET) robust cooperation;
(D-NET) robust defection; (D-OPP) opportunist; (C-SCK) ‘sucker’; and (D-RESP) mutual defector
types.

evident, but importantly, it can be seen that although C-NET, D-NET and D-OPP appear

to co-exist for a time, it is only the cooperative network forming type who prevails in the

long run.

To better understand these dynamics, a series of network snapshots for one represen-

tative network formation trial under the above conditions is shown in Figs. 8.8 and 8.9.

Here, at least four distinct phases are discernible.

Phase 1: Amorphous connected (Figs. 8.8(a) and 8.8(b)) The existence of many sucker

types leads to a super network with high average degree. In this case, almost all of the

cooperative types have formed links to at least one sucker type, whilst the opportunists

are largely integrated into the super network, with a range of agent types as adjacent

nodes.

Phase 2: Segregated connected (Figs. 8.8(c) and 8.8(d)) The network remains super

connected, but clear segregation begins to occur, such that agent-to-agent edges become

highly assortative. Fewer sucker types means that opportunists become competitive for

activity in the network (e.g. Fig. 8.8(d)). Cooperative and defection communities subse-

quently establish themselves (higher intra-community connectivity).

Phase 3: Segregated disjoint (Figs. 8.3.3 and 8.3.3) The sucker type disappears, leading

to a ‘shake-out’ in the population – the over-supply of opportunist types is rectified, with

only those who were able to integrate with the defection community able to survive. The
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Figure 8.8 Example network dynamics (m = 20, η = 0.8): network state at end of indicated
period; agent ID show next to each node; agent coloring as follows – (•) robust cooperative;
(•) robust defection; (•) opportunist; and (•) ‘sucker’ (see text for explanation).

network is now dis-joint, with highly defined community characteristics. Further agent

survival depends on raw mutual payoff characteristics.

Phase 4: Homogeneous connected (Figs. 8.3.3 and 8.3.3) With the significantly higher

intra-community payoffs yielded to the cooperative community, edges here become highly

dense, approaching a complete component graph. The defective community disappears,

with no possibility of infiltration into the cooperative community (see discussion below).

New agents of cooperative network forming type are able to join and be integrated. Some

sucker–opportunist relationships arise on margins but are short lived only.

Network Agent Types

A dissection of the prominent strategies that arose in the above experiment was conducted

on period 13 (Fig. 8.8(c)). A comparison of the network itself with the agent autopsies
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Figure 8.9 Example network dynamics (cont.): network state at end of indicated period (see
Fig. 8.8 for explanation). NB: Agent ID omitted for periods 35 and 40.



CHAPTER 8. A MODEL OF ENDOGENOUS NETWORK FORMATION 132

C

D

#(s)

D

C

(a) ID 10 ‘robust-
C’

D

D

#(s)

D

C

(b) ID 92 ‘oppor-
tunist’

C #(s)
C, D

(c) ID 85 ‘sucker’

D #(s)C
D

(d) ID 79 ‘robust-D’

Figure 8.10 Example types visible in the network of period 13 above (see Fig. 8.8).

given in Fig. 8.10 makes clear the difference between each agent’s activity in the network.

Clearly, the interaction of the opportunist and sucker types (Fig. 8.10(b) and 8.10(c)

respectively) will lead to tie-strengthening conditions, but with highly asymmetric payoff

outcomes.

Importantly, however, the ‘robust-C’ type (agent 10 in period 13) is immune to this

play by responding with D to the opportunist’s D opening; a transition that works equally

well for agent 10 when facing the robust-D type (agent 79 in period 13). For this reason,

as can be seen in the agent networks presented so far, the cooperative types avoid tie-

strengthening with either the robust-D or the opportunist types, which in both cases

ensures adequate type-selection, but in the latter case, protects the cooperative network

forming types from the opportunist shake-out that was inevitable with the decline of the

sucker types in periods 13 to 17.

At the statistical level, these interactions are borne out in the periodic struggle of the

initial network dynamics (see Fig. 8.7). The initial rise of the sucker types (establishing

network ties to any other tie-strengthening agent) provides fertile ground for the oppor-

tunist types, who in turn, support the defection network types. However, over time, as

each loses its respective ‘feed-stock’, network dynamics resolve in favour of the cooperative

network forming types.

It is important to note that within this boundedly-rational framework, robust net-

work formation is highly dependent on ‘purity’ of network structures. As can be seen in
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Figure 8.11 Scatter plot, mean Payoff per interaction vs. mean Age for each point which rep-
resents a single connected component. Coloring indicates dominant (> 50%) type in each com-
ponent: (•) ‘suckers’; (•) ‘opportunists’; (•) defection network builders; and (•) cooperation
network builders. NB: line at interaction payoff 2 indicates expected payoff for non-connected
D-types. (Other parameters as for Fig. 8.7).

Fig. 8.11, connected components that experience longevity must be able to attain more

than the going ‘outside’ payoff rate of 2 per interaction.11

As can be identified, connected components that have a high proportion of sucker or

opportunist types will yield large mean payoffs, but are very short-lived (rarely having

mean agent ages greater than 5 periods) due to the volatile nature of payoff asymmetries.

On the other hand, the cooperative networks who can overcome the short-term heteroge-

neous phase are very likely to retain higher than 2 average payoffs and so be positively

selected for in the end-of-period strategy revision phase. Clearly, ensuring good ‘disci-

pline’ within a cooperation network must be an high priority for the sustainability for the

agents therein.

Interestingly, it appears from the data presented, that although predominantly defec-

tion type networks can yield very high payoffs, they will also suffer a type differentiation

problem, mixing easily with the opportunist types. In the early stages of population

dynamics, this is a positive attribute since it will provide these types with high period

payoffs through greater ‘activity’ (more plays of the IPD), ensuring their individual sur-

vival. However, over time, with the propensity for opportunist types to lose valuable

11The payoff yield between two All-D types (for example) who play a two-iteration IPD game, gaining
1 in each iteration.
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payoff opportunities with sucker types, the defection networks yield strictly worse aver-

age payoffs than the ‘outside’ defection population, since they are necessarily sacrificing

a unit of payoff every time they re-affirm/establish a link with a fellow defection network

type.

8.3.4 Multiple Equilibria & the Long Run

In the previous section, conditions were identified in which stable networks were formed

under parsimonious agent specification (τ = 2 implying k = 3) to enable correlation with

established results in the analytic literature. Here, this constraint is relaxed and instead

agents interactions of up to four iterations of the IPD game (τ = 4) are considered

and their long-run dynamics studied. Recall, by increasing the length of the IPD game,

the maximal FSA state count increases markedly: for τ = {3, 4} maximum state count

k = {7, 15}.

Previous conditions were retained, with η = 0.8 and m = 20, and each trial allowed

to run for 1000 periods. Since a full description of the state is not feasible12 we consider

an aggregate description of two fundamental state characteristics, f(C,C) – the fraction

of plays in a period where mutual cooperation is observed (strategic behaviour); and

〈d〉 – mean agent degree (network formation). Results are presented for five long-run

trials in Fig. 8.12. Under low interaction length the system moves within 100 steps

to one of two stable equilibria – either a stable cooperation network is formed (as was

studied in the previous section) or no network arises and a stable defection population

sets in. However, as the interaction length increases (and so the associated complexity

of behaviour that each agent can display), the dynamics become increasingly erratic,

with multiple, apparently stable, equilibria visible in each case, but transient transitions

between these equilibria observed. This situation is synonymous with that of complex

system dynamics.

12Consider that each time period, a population constitutes n × |s| bits, where |s| is the length of a
string needed to represent each agent’s strategy, and the network n(n − 1)/2 bits; taken together, gives

rise to a possible 2n(n−1)/2+n|s| states, which for τ = 2 is 29×106

! (It is possible to reduce this number by
conducting automata autopsies, but the problem remains.)
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Figure 8.12 Long-run system dynamics under different maximum interaction lengths indicating
increasing complexity; five trials shown at each value of τ (data smoothed over 20 steps).
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Figure 8.13 State transitions, f(C, C)− 〈d〉 space. Contours indicate (log10) density of time
periods spent at (f, 〈d〉) points over all trials; lines represent smoothed trial trajectories (20
steps), coloring shows each trial.

To better see this transition, the locations of the system in f(C,C)− 〈d〉 state-space

were plotted (see Fig. 8.13). Here the transition from relatively well-defined attractors

for τ = 2 to complex dynamics at τ > 2 is clear. Indeed, five stationary locations are

visible in Fig. 8.13(b) with location I, II and V appearing to be transiently stable, with

state trajectories both entering and leaving these locations, whilst locations III and IV

appear to be absorbing for the system. Interestingly, these absorbing locations give rise

to relatively similar average network formation, but different levels of cooperation, being

low and moderate respectively.
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Similarly, but with greater clarity, the dynamics of τ = 4 shows very erratic behaviour

(Fig. 8.13(c)), appearing to have only two absorbing locations, IV and V, whilst each of I,

II, and III appear to be transient. In this case, the absorbing locations are very different in

character, being an almost complete graph, but similarly defection-based in the first case,

or again, with high participation, but markedly cooperative in the second. The former

equilibrium suggests an unusual outcome for network formation. In this case, it is not

that agents form a network as a type-guarantee (as in say Taylor (2000)) or as protection

against unwanted interactions (so Kali (1999)), but rather, the network is being exploited

for the extra activity that it generates. The message here is that if you want to survive in

the heavily defection-based environment, you have to be part of the ‘network set’. This

has resonance with Akerlof’s 1976 reflection on how indicators (measures of performance)

can give rise to a Rat Race. Here, the private returns for additional interactions via the

network outweighs the benefits to cooperation based play.

Surprisingly, such complex dynamics arise in a relatively simple model of network

formation. Recall, that the longest that any of the agent interactions can be in these

studies was just two, three or four iterations of the modified Prisoner’s Dilemma given

in (8.4). To be very sure that such dynamics are not a consequence of the encoding of

the automata themselves, an identical study was run with τ = 4, but setting η = 0 such

that all interactions would continue to be of uniform probabilities. However, in all cases,

the system moved to a zero cooperation regime within the first 100 periods and remained

there. Clearly then, we conclude that endogeneity of network formation is driving such

complex dynamics as observed above.

8.3.5 Network Formation & Self-Organized Criticality

Next, given that the system displays complex dynamics for given values of τ and that

network endogeneity is critical to such dynamics, it is natural to study the dynamics

of network formation itself. For these purposes, the size (node count) of the principle

(largest) network component that exists at the end of each period is studied. Example

time-series for one τ = 4 run are given in Fig. 8.14. In the first figure, the size

of the network itself is shown, whilst in the second, the first differences are given (i.e.

St − St−1). It can be seen from this example, that changes in network size occur both on

many time-scales and to various degrees. Such phenomena is synonymous with systems

exhibiting critical behaviour (Bak et al., 1988); perturbations to the system cause mostly

small, damped outcomes, but can occasionally have dramatic effects, likened to a ‘domino-

effect’ (refer to §3.5 in Chapter 3 for a lengthier treatment of self-organized criticality).
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Figure 8.14 Example time series of principle component size (a) and change in size (b) for
τ = 4.

To investigate this feature, frequency distributions of average network fluctuation

sizes D(∆S) were prepared for each interaction length. As can be seen in Fig. 8.15 the

distributions appear to follow a power-law behaviour, that is of the form,

D(∆S) ∼ ∆S−α . (8.8)

Such a relationship is often termed ‘scale-free’ since it indicates that the same overall

systemic dynamics are operating on all spatial scales; small deviations build up over time

and lead to large deviations in the long-run due to connectivity within the system.

Spatial self-similarity is one feature of critical systems, the second is that similar

power-law scaling is observed in the temporal domain as well; normally manifesting as so-

called ‘1/f ’ noise, which appears ubiquitous in nature.13 A power spectrum was therefore

prepared of the time-series network size to study this possibility.14 Fig 8.16 gives the

outcome of this analysis, showing clear power-law scaling behaviour. Linear fits were

prepared for the first 10 data points15 with good agreement in all cases. Exponents of

13Examples from the introduction to (Bak et al., 1988) include: light from quasars, the intensity of
sunspots, the current through resistors, the flow of sand in an hour glass, the flow of the Nile river, and
stock exchange price indexes.

14Suppose s(t) is the (discrete) times-series of some network size data (as per Fig. 8.14(a)), then using
Matlab a Fast-Fourier-Transform, F (s) was performed with N = 28 points, followed by the standard
power-function, FF ′/N , where F ′ is the complex conjugate of F . Figures show the resultant power spectra
without the first constant-shift term f(0), and are cut below S(f) ≤ 5 × 10−4.

15Fitting power-law models has received some interesting study in recent times due to difficulties in
forming goodness-of-fit tests etc. Here we follow Goldstein et al. (2004) in form, fitting the linear specifi-
cation to only a selection of the primary points, thus avoiding undue bias in the tails (which represent a
very small mass of the spectrum).
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Figure 8.15 Mean principle component network size distribution for each interaction length.
Lines given as guide only.



CHAPTER 8. A MODEL OF ENDOGENOUS NETWORK FORMATION 140

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

f

S
(f

)

(a) τ = 2

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

f

S
(f

)

(b) τ = 3

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

f

S
(f

)

(c) τ = 4

Figure 8.16 Mean power spectra of principle component network size for each interaction
length. Lines represent power-law fits to first 10 points with α = −1.9,−1.8,−1.7 for τ = 2, 3, 4
respectively.

the relationship,

S(f) ∼ f−α , (8.9)

were found all found to be −1.8± 0.1.

Taken together, the spatial and temporal fingerprints of criticality observed in the

network formation dynamics, indicate that the system is indeed very capable of the kind

of complex dynamics observed and discussed above, and that the network formation
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appears to be a key factor in such behaviour. Furthermore, as has been proposed by

various authors, rather than such criticality arising from fine tuning of system parameters

such as occurs in designed critical industrial systems (e.g. nuclear fission reactors), the

system appears to naturally move towards this critical state, and keep returning to it

over time. It is for this property that authors such as Bak et al. (1988) have termed such

phenomena ‘self-organized criticality’. Indeed, it appears that such phenomena is a strong

indicator of complex dynamics, and may indeed be the necessary system state to give rise

to the kind of non-equilibrium processes observed in various dissipative systems.16

The existence of such dynamics in economic systems has recently received growing

interest (see for example, Krugman (1996)). Indeed, power-law behaviour on both a

macro (Canning et al., 1998; Devezas and Modelski, 2003) and micro- interactions scale

(Arenas et al., 2000; Scheinkman and Woodford, 1994) has been incorporated into both

model and empirical evidence, and some assert is fundamental to our understanding and

thus modelling of economic systems (Arthur, 1994). This point will be returned to in the

following chapter.

8.4 Conclusions

In contrast to previous attempts at capturing the dynamics of strategic network for-

mation, the present model provides a relatively simple foundation, but powerfully rich

behavioural and topological environment within which to study the dynamics of strate-

gic network formation. Moreover, in contrast to previous dynamic and strategic network

models, by incorporating the network formation decision-process into individual agent

strategies, a rich ecology of agent types and consequent network topologies was observed.

Significantly, this model suggests that the network formation process must deliver rela-

tively symmetric payoffs to network members. If this is not true, networks formed will

likely be heterogeneous in nature, with disruptive edge formation and breaking sequences

which can effectively destroy any benefits that the network might have conferred on mem-

bers (e.g. the opportunist-sucker network volatility of phases I and II mentioned above).

Analytical and subsequent computational components of the present paper indicate

that in this simple modified IPD set-up, cooperation is not sustainable without the addi-

tional benefits conferred by the type-selection and type-protection network externalities.

Specifically, agents require at least some level of repetition of interaction within the current

population to gain sufficient incentives to form the network; and secondly, the ‘impact’ of

the network on the interaction space was found to be a necessary condition for cooperative

network formation, with network emergence only observed when the network allows for

16See for example, Langton (1992) for a discussion on this point.
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relatively high (though not complete) discrimination (probabilistically) from the wider

population.

Furthermore, the dynamical properties of the present model have been investigated

and indicate that even with parsimonious descriptions of boundedly-rational agent strate-

gies, complex dynamics are observed, with multiple and transient stationary locations a

feature of the state space. These dynamics increased in complexity with increasing in-

teraction length. Additionally, evidence on the fluctuations in the size of networks over

time indicates that the network formation and decay processes themselves are likely the

main driving force behind the complex system dynamics, with both spatial and temporal

scaling behaviour indicating the existence of so-called ‘self-organized criticality’. To this

author’s knowledge, this is the first strategic network formation model to produce and

study such complex dynamics. Such observations clearly raise tantalising avenues for fu-

ture work; I shall raise a selection in finishing: do realistic cooperative networks display

complex dynamics? if not, what mechanism of agency overcomes such instability? if

networks can be shown to have such dynamics (admittedly these data are still largely out

of reach) what are the implications for supporting cooperative institutions? and finally,

given an autonomous, locally interacting world, how should the social planner intervene

in such networks to pursue welfare maximizing aims?
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Appendix 1: Proof of Lemma 1

Lemma 1 For a population playing the IPD as given in G under uniform interaction

probabilities and maximum FSA state length τ = 2, the strategy triplet sD : {D,D,D} is

the only evolutionary stable strategy (ESS).

Proof To begin with, consider a population consisting of only two types of agents, where one type

is sD and the other the strategy triplet sS : {P S
1 , RS(C), RS(D)} where P S

1 is the agent’s

play in state one and RS(x) represents the agent’s play in response to opponent’s play x in

the preceeding iteration. For convenience, call these types D and S respectively.

Define the total payoff to an agent X undergoing an interaction with agent Y to be Π(X |Y )

and note that,

Π(D|S) = G(D|P S
1 ) + G(D|RS(D)) (8.10)

Π(D|D) = 2× G(D|D) (8.11)

Π(S|D) = G(P S
1 |D) + G(RS(D)|D) (8.12)

Π(S|S) = G(P S
1 |P

S
1 ) + G(RS(P S

1 )|RS(P S
1 )) (8.13)

Further, let α be the proportion of type S in the population. Then, the expected interaction

payoffs for each agent type with uniform mixing is given by,

E[Π(S)] = αΠ(S|S) + (1− α)Π(S|D) (8.14)

E[Π(D)] = (1− α)Π(D|D) + αΠ(D|S) . (8.15)

Now suppose α→ 1, if S is to be stable in the presence of D then it follows from (8.14) and

(8.15) that,

Π(S|S) ≥ Π(D|S), (8.16)

which by (8.10) to (8.13) becomes,

G(P S
1 |P

S
1 ) + G(RS(P S

1 )|RS(P S
1 )) ≥ G(D|P S

1 ) + G(D|RS(D)) . (8.17)

Now suppose that P S
1 = C then by payoffs given in (8.4), (8.17) becomes,

G(RS(C)|RS(C)) ≥ G(D|RS(D)) + 2 , (8.18)

which implies that RS(C) must be C and that RS(D) 6= C. Hence, there are only two

candidates for S, namely sCD : {C, C, D} and sC# : {C, C, #}. However, both sCD and

sC# are not stable in the presence of the mimic agent sM : {C, D, D} which itself does not

satisfy the condition given in (8.17).



CHAPTER 8. A MODEL OF ENDOGENOUS NETWORK FORMATION 144

Suppose on the other hand that P S
1 = D. This would imply (by substitution of payoffs into

(8.17)) that,

G(RS(D)|RS(D)) ≥ G(D|RS(D))

which has no solution unless RS(D) = {D, #}.

Now, consider a population where α → 0 and suppose there exists some strategy S′ such

that E[Π(S′)] ≥ E[Π(D)] which again yields,

G(P S
1 |D) + G(RS(D)|D) ≥ 2 . (8.19)

If P S
1 = C (8.19) becomes,

G(RS(D)|D) ≥ 2

which has no solution. Likewise, if P S
1 = D we have,

G(RS(D)|D) ≥ 1

which has a solution only if RS(D) = D, completing the proof. �
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Elite agent 1 0 1 . . . . . . 0 1 0 0 0 1 . . . . . . 0 0

Elite agent 2 1 1 . . . . . . 1 0 1 1 1 0 . . . . . . 1 0

New agent 1 0 1 . . . . . . 0 1 0 1 1 0 . . . . . . 1 0

New agent 2 1 1 . . . . . . 1 0 1 0 0 1 . . . . . . 0 0

crossover()

Figure 8.17 Schematic of the crossover operator.

Appendix 2: The Genetic Algorithm

Crossover Operator

In this model, the crossover operator represents learning by imitation. It is assumed that

new agents enter the population after having witnessed the behaviour of the incumbent

elites, and so enter having copied part or all of these successful strategies.

The crossover operator (Fig. 8.17) is extremely simple to apply: two agent bit-strings

from the elite population are selected at random; at some uniform random point along

each string, a ‘cut’ is made17, and the two trailing pieces are switched, thus forming

two ‘new’ agents (assuming there is at least one difference in these two pieces) from the

strategies of the ‘old’ agents.

It is important to note that the ‘cut-point’ is selected at random along the string

length. In this way, after successive ‘generations’ of play, successful portions of each

strategy will be replicated and amplified in the new population. Such accumulation of

strategic insight over time speaks directly to real-life technology adoption or behavioural

learning. However, attention is drawn to the fact that in this framework, the new popu-

lation’s technology accumulation content is contingent entirely on the previous period’s

population only. There is little facility here (except consistency between periods, or

chance) for the new population to replicate exactly portions of successful strategies from

several or more periods previous to the current one.18

17This is the so-called ‘one-point’ crossover operator, other versions include ‘two-point’, ‘three-point’
and so on.

18One may also care to notice that although the cut-point is uniform random, the probability that a
given bit will be ‘switched’ in the crossover operation is not. Infact, for some bit at position a, with string
length L, the probability that a will undergo crossover is a

L
. Thus, in this formulation, bits to the left

(start) of the string are least likely to undergo crossover, whilst those to the right (end) of the string are
most likely. Hence, the initial strategy state is more likely to be retained between elite and new agent,
with subsequent states more likely to undergo switching.
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{

0 1 . . . . . . 0 0 0 . . . . . . 1 1 0 . . . . . . 0 0
}

{

0 1 . . . . . . 0 1 0 . . . . . . 1 0 0 . . . . . . 0 0
}

mutation()

Figure 8.18 Schematic of the mutation operator.

Mutuation Operator

Following application of the crossover operator, each new agent bit string undergoes a

mutation operator. Simply put, with low (independent) probability (1 or 5%) each bit

in the string is ‘flipped’: 0 → 1; or 1 → 0 (see Fig. 8.18). For example, at the 1% and

5% levels, a six state strategy (66 bit) would undergo approximately < 1 and 3 bit ‘flips’

respectively.

Such flipping is akin to the ‘mistake making’, or ‘trembling hand’ interpretation else-

where in the strategic literature. In the current context, it represents either imperfect

imitation/learning from successful incumbents, or self-driven innovation by entrants. Re-

gardless, its random strategy generation, taken together with the non-random selection

mechanism, provide an opportunity for the population to evolve in a positive manner.

Successful components of new strategies are rewarded with more followers in future pop-

ulations, whilst unsuccessful agents leave, making way for fresh entrants.



Chapter 9
Summary of the Thesis & Directions for

Further Work

This thesis has primarily investigated the formation of economic net-

works. In particular, the two contexts of communication and coopera-

tion network formation were studied. In this chapter the key findings of

this thesis are summarised and placed within the wider body of research.

Especially, emphasis is placed on recent related results which indicate

further interesting lines of inquiry for the present work.

Chapters 4 to 6 analysed the non-cooperative communication network formation model

of Bala and Goyal (BG). After its initial introduction in Chapter 4, several new results

were obtained through analysis and numerical simulation in Chapter 5. Primarily, these

results suggest that the Best Response updating rule, combined with conditions approx-

imating no strategic inertia can produce extremely time-consuming two-period graph

cycles. Indeed, although a result is obtained for n = 3 that the Strict Nash graph under

one-way flows is still realised (the circle), a counter example is given for n = 4 showing

that an infinite cycle is possible with no inertia. In some ways, this result is not surprising

since similar two-person games can produce such cycles. However, numerical simulations

indicate that for conditions approximating no inertia, cycles take an enormous toll on

convergence times and under exact no inertia conditions cycles are overwhelmingly the

predominant case for moderate sizes of n.

These theoretical results, together with the experimental results of Falk and Kosfeld

(2003) motivate the development, calibration and analysis of an enriched artificial adaptive

agent model in Chapter 6. This work incorporated a novel cognition architecture for the

agents which enabled the modeling of a biased cultural learning process (learning from

observed neighbour plays) between stages. It was found that this process, together with

147
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Figure 9.1 In the modified experimental set-up of Berninghaus et al. (2006), although agent i
sponsors a two-way link to agent j, they would only receive information from the set {i, j, k, l};
not {i, j, k, l, m, n, o} as in the BG set-up.

an appropriate joint-objective measure based on a ratio of benefits and costs together

with an altruism score could produce many of the experimental outcomes with fidelity.

Moreover, the suggested inequality aversion hypothesis of Falk and Kosfeld to explain the

poor performance of human subjects in the two-way flow case was found to be unnecessary

as a modeling input, but rather arose as an emergent property over learning stages.

Very recently, the BG model has received further experimental investigation. Bern-

inghaus et al. (2006) implemented a human trial of a slightly modified version of the BG

model, motivated in particular by the lack of Strict Nash play under two-way flows found

in Falk and Kosfeld (2003).1 Specifically, they modified the BG set-up in two ways: first,

rather than assuming information flows along any finite connected path of players, they

distinguish between actively, passively and indirectly connected neighbours. Referring

to Fig. 9.1, j would be the only active neighbour of agent i, whilst agent i would be a

passive neighbour of agent j (j obtains the information of i as an outcome of i’s action).

Whilst agents l and k would be indirect neighbours of i since they represent ‘all actively or

passively reached neighbours of all actively reached neighbours of i’ (p.240). This leaves

the other agents, m,n, o in this example graph not part of i’s neighbour set, which is a

significant departure from the BG set-up where any finitely connected node to i in the

two-way information case would be in i’s neighbour set. Essentially, the Berninghaus et al.

formulation restricts neighbours to being no more than two hops away. Naturally, this

changes the game and so taking this into account, the authors show elsewhere that the

Strict Nash network under the new set-up are either empty, or the periphery-sponsored

star (ps-star).

Second, and less significantly, Berninghaus et al. set the updating of the agent strate-

gies to being continuous, rather than periodic and so simultaneous as in BG. This is of

less significance, for the theory of BG, since as mentioned above, and explored in Chapter

5, in the BG proof work, by assuming at least one agent experiences strategic inertia

1Indeed, an earlier titling of the Berninghaus et al. work, ‘Searching for “Stars”: Recent Experimental
Results on Network Formation’ (Berninghaus et al., 2004) is telling.
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(they don’t update) each period, the case where only one agent updates in a period (so

the ‘continuous’ case) is handled.

Nevertheless, the main findings of their study: that around 30% of the time was spent

in a ps-star configuration suggest a significant difference to the results of FK where the

similarly structured centre-sponsored star (cs-star) was only observed twice in the entire

study. In particular, since the ps-star is just as asymmetric as the cs-star, the authors

suggest that asymmetry aversion is not a complete story. Further, given that the central

agent in the ps-star configuration accumulates a significant ‘bonus’ over time from actions

of the other players, Berninghaus et al. report that indeed they observed a ‘sharing’ of

the central role. For the authors, this suggests that inequity aversion in payoffs is a

motivating behaviour for subjects.

Of course, whilst this recent study provides some very interesting further evidence

on network formation, the Berninghaus et al. set-up is a different model, and should

not be seen in direct comparison to the BG results, nor the FK trials. Nevertheless, the

results clearly indicate further avenues of research for the work presented in Chapter 6.

For instance, both the neighbourhood and timing modifications could be relatively easily

dealt with in the present set-up. The former would require a simple thresholding to the

path-length finding procedures of the model, whilst the latter is traditionally handled

with a Poisson selection process – agent’s ‘numbers’ coming up for updating resulting

from the sampling procedure. In fact, although these would bring in more parameters

(p in the Poisson distribution and the neighbourhood path-length threshold) they would

provide access to very interesting further questions, such as: does the updating probability

affect the propensity for Strict Nash play in a smooth manner, or are phase-changes

of behaviour apparent? Or, perhaps with larger n, do agents exhibit poor strategic

play as their focus becomes more ‘local’, and hence inefficient (i.e. as the path-length

threshold for neighbours goes to zero)? One expects that further work, both theoretical

and experimental will continue to provide motivation for the kind of computational inquiry

presented in Chapter 6.

Following on from this work on communication networks, Chapters 7 and 8 then

considered an endogenous network formation model of cooperation. The first novel con-

tribution of this work was to model a truly strategic form of network formation. This

was achieved by implementing Finite State Automata (FSA) agents playing a modified

Iterated Prisoner’s Dilemma (IPD) game that allowed network formation play as part

of the action-set. This approach stands in contrast to previous theoretical models with

uniform interactions such as Kandori et al. (1993), or computational contributions on

static networks such as Masuda and Aihara (2003), or of the few computational network
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formation approaches previously reported such as Smucker et al. (1994) or Ashlock et al.

(1996). Although many models speak helpfully to the context of network formation, none

allows agents as part of their actual playing strategy to change the interaction environ-

ment. Where the interaction environment does change, it is the result of an externally

set tolerance or threshold process.

Secondly, Chapter 8 presents results on the minimum conditions for network forma-

tion by utilising a novel tuning parameter. It is found that cooperation is possible due

to network formation only where two criteria are met: first, that the network institution

has sufficient impact on the interaction probabilities of agents; and second, that there

is sufficient basic activity in the population to afford enough opportunities for agents to

exploit their costly network linkages. Furthermore, and of most interest, it is found that

for relatively small agent strategies, the standard results of long-run equilibrium attain-

ment in cooperation models are not upheld. Instead, a-periodic, complex dynamics in

the two-dimensional aggregate measure space of mutual cooperation fraction and aver-

age agent degree persist. In accounting for this result, further analysis of the dynamic

network/interaction environment suggests the existence of a self-organized critical system.

To place this result, it is worth noting that overwhelmingly, the previous work on the

nature of cooperation using computational/numerical-simulation analysis such as that of

Axelrod (1981); Axelrod and Hamilton (1981); Maynard Smith and Price (1973); Riolo

et al. (2001) with uniform interactions find equilibrium, or simple switching between

cooperation and defection regimes in the long-run. The same is apparently true of models

which analyse cooperation on non-uniform interaction but static spaces such as Masuda

and Aihara (2003) or Cohen et al. (2001), or even models with random mobility of agents

such as Vainstein et al. (2006). However, in contrast, of the few contributions that do

report complex long-run dynamics such as the recent biological model of intentioned agent

movement of Burtsev and Turchin (2006), or the endogenous local/global interaction

model of Choi (2002), or the preferential partner selection IPD model using thresholds as

mentioned above of Ashlock et al. (1996), it is the changing interaction environment that

appears to be the common factor.

Of course, there are exceptions to this rule, for example Nowak and May’s (1992)

classic (static) spatial chaos model of the Prisoners’ Dilemma with evolutionary updat-

ing. But even here the long run average cooperation fraction is steady; it is the spatial

distribution of cooperators and defectors which varies chaotically with such remarkable

fractal patterns. Similarly, Lindgren’s (1992) model of variable memory automata play-

ing a repeated Prisoners’ Dilemma style game generated hallmark dynamic complexity

in population fractions (see Fig. 9.2) in the long-run (for more than 80,000 generations).
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Figure 9.2 Complex dynamics exhibited by population fractions over time in Lindgren’s (1992)
variable memory, Cellular Automata PD model.

However, in this model, it is to be noted that only around 10% of cases generated the

‘interesting’ dynamics, with the other 90% getting ‘stuck’ in an evolutionary stable stasis.

Clearly, it will be some time before a consensus is reached about what might be the

ultimate cause of such interesting dynamics as was found in Chapter 8. However, the

brief discussion given above suggests that such dynamics accompany situations where

the interaction environment is endogenously updated. Certainly, the results presented in

Chapter 8 add further weight to this hypothesis, although other explanations would need

to be excluded before firm conclusions are drawn. For instance, one would need to run

further experiments with different updating methodologies, or encodings. However, given

that the complex dynamics disappeared for the uniform interaction case in the present

model, all else being equal and that other PD models mentioned above which were run

with static but complicated networks (e.g. Masuda and Aihara (2003)) didn’t report

complex dynamics, it would seem reasonable to maintain the importance of endogenous

network dynamics to the phenomena.

Further, evidence of Self-Organized Criticality (SOC) occurring in similar PD systems,

has to my knowledge, not been presented in any of the fore-going models. Nevertheless,

as the discussion of section §3.5 in Chapter 3 indicated, SOC provides an interesting

potential basis for very many well known power-law distributions occurring not just in

natural systems, but in financial and economic systems also. Often these arguments stem

from the identification of some spatially extended dynamical system which is able to

exhibit long-memory effects. Indeed, the link between such under-girding processes as

SOC and economic systems that exhibit the ubiquitous power-law (Pareto) distribution

is the essential focus of the previously mentioned field of Econophysics.2

Taking together the results that have been reviewed and discussed above, the interplay

between the various conceptual approaches to the study of economic systems can be seen.

2The reader is referred to Markose’s discussion on this point in (Markose, 2005, §4.2).
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Furthermore, as has been argued, especially in Chapters 2 and 3, the difficult area of

economic networks will no doubt continue to receive this multi-faceted approach. In fact,

a trajectory through this thesis can be drawn from more classical analytical approaches

and numerical simulations of rational actors in Chapter 5, to agent-based simulation of

non-rational strategic play and learning in a small n model of Chapter 6, to the large n,

complex environment modeled with artificial adaptive agents of Chapter 8. This trajectory

offers a microcosm of a wider movement in several literatures where the interplay between

levels of analysis mirrors a growing understanding of the interplay between different scales

of systems.

It is the nature of agents who act with strategy, foresight and various shades of reason

that in particular distinguish the difficulty associated with the study of economic networks.

Nonetheless, the field is very much intensifying in its activity on these problems of late,

and no doubt will continue to benefit from the variety of approaches mentioned above.

Whether complexity science leads or supports this inquiry is yet to be seen, however,

as this thesis has shown, it will at the very least, offer challenging perspectives to the

traditional approaches and results. And in the case of computational modeling itself – a

ready tool for the study of these deterministic yet unpredictable systems – Kollman et al.

(1997, p.485-486) capture well its likely role,

We are neither advocating nor predicting a dramatic change in the social

sciences, where computational techniques replace mathematical techniques.

Instead, we foresee the future of computational modeling as a steady develop-

ment of new methods that extend and occasionally overturn existing theoret-

ical insights.

Indeed, such considerations will no doubt demand a progression in our understanding from

purely atomistic conceptions of behaviour, to more holistic system-wide understandings

and formulations. I shall leave it to one of the earliest workers to conceptualise economic

systems as complex systems to conclude on this point, Arthur (1999, p.4) writes,

After two centuries of studying equilibria – static patterns that call for no fur-

ther behavioural adjustments – economists are beginning to study the general

emergence of structures and unfolding patterns in the economy. Complexity

economics is not a temporary adjunct to static economic theory, but theory at

a more general, out-of-equilibrium level. ... When viewed in out-of-equilibrium

formation, economic patterns sometimes simplify into the simple, homoge-

neous equilibria of standard economics. More often they are ever-changing,

showing perpetually novel behaviour and emergent phenomena. Complexity
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therefore portrays the economy not as deterministic, predictable and mecha-

nistic; but as process-dependent, organic and always evolving.
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Some Technicalities

On the Generation of Pictures for Part Pages

Each picture is the resultant state-space in R2 of the system of non-linear equtions,

xt+1 = byt + F (a, xt) , and

yt+1 = −xt + F (a, xt+1)

where,

F (a, x) = ax + (1− a)
2x2

0.5 + x2
.

Some will recognise this system as being related to that of Gumowski and Mira. In this

case, the parametrs (a, b) = (−0.809, 0.97) were used, based on an interactive evolutionary

search process. A program was written in Matlab to generate a 3×3 grid of state-space

pictures with a series of seed parameters, I would then choose the picture I liked the best

and whether or not the picture was ‘close’ to a favourite solution, and the program would

create 9 new pictures based on a genetic algorithm updating procedure.

The pictures used in the thesis represent the state space with 1,000, 10,000, and

100,000 points plotted respectively for each successive Part page. In all cases, an initial

input of (x0, y0) = (0.5, 0.5) was used.

On the Generation of Network & FSA Diagrams

Networks, encoded by their adjacency matrix were optimized for minimum node-overlap

by generating random positions in R2 and applying a modified force-directed-algorithm

(see for example, Fruchterman and Reingold (1991)). Two modifications were made,

firstly, rather than a ‘spring’ model, nodes were given masses and inter-atomic forces

were applied to the space, a method that avoids problematic ‘energy walls’ from hindering

placement. Second, an annealing schedule was applied to node velocities, in order that
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cyclic or eliptical orbits were slowed and eventually stopped in the lowest energy state. In

this case, programs written in Matlab were used to automatically generate LATEX2εcode

for use with the pst-node package.

Finite State Automata (FSA) diagrams were produced in a simlar way, although

in some cases nodes were placed on a circle of set radius rather than doing a free-

optimization.

All algorithms used in the production of this thesis are available from the author by

request.




