Freedom from Powerpoint
An introduction to creating clear, structured, & efficient presentations & notes for conferences and lectures with \LaTeX\ and Beamer

Simon Angus

School of Economics

11 October, 2006
Agenda

- The problem;
- Introduction to A Better Way;
- The Beamer system;
- Fancy stuff;
- Some considerations ‘from the field’.
The **PowerPoint/Word** philosophy ...

Content must be laboriously created for each instance of the communication!
Content must be laboriously created for each instance of the communication!
The *PowerPoint/Word* philosophy ...

Content must be laboriously created for each instance of the communication!
Content must be laboriously created for each instance of the communication!
Content must be laboriously created for each instance of the communication!
Content must be laboriously created for each instance of the communication!
The PowerPoint/Word philosophy in practice

- Changes to the idea must be replicated in *every* *communication medium*;
The PowerPoint/Word philosophy in practice

1. Changes to the idea must be replicated in every communication medium;

2. Changes to the aesthetics (unless very strictly following ‘styles’) must be done in every instance;
The **PowerPoint/Word** philosophy in practice

1. Changes to the idea must be replicated in *every* communication medium;
2. Changes to the aesthetics (unless very strictly following ‘styles’) must be done in *every instance*;
3. Mathematics not easily dealt with (is that x_{ij} or x_{ij}!?).
The **PowerPoint/Word** philosophy in practice

1. Changes to the idea must be replicated in *every communication medium*;
2. Changes to the aesthetics (unless very strictly following ‘styles’) must be done in *every instance*;
3. Mathematics not easily dealt with (is that x_{ij} or x_{ij}!?)
4. File sizes become enormous due to poor memory management...
The **Powerpoint/Word** philosophy in practice

1. Changes to the idea must be replicated in *every communication medium*;

2. Changes to the aesthetics (unless very strictly following ‘styles’) must be done in *every instance*;

3. Mathematics not easily dealt with (is that x_{ij} or $x_i j$?);

4. File sizes become enormous due to poor memory management…

5. Leading to system crashes, difficult in moving/backing-up files;
The **Powerpoint/Word** philosophy in practice

1. Changes to the idea must be replicated in every *communication medium*;
2. Changes to the aesthetics (unless very strictly following ‘styles’) must be done in *every instance*;
3. Mathematics not easily dealt with (is that x_{ij} or x_{ji}!?);
4. File sizes become enormous due to poor memory management...
5. Leading to system crashes, difficult in moving/backing-up files;
6. Fonts can go ‘weird’ .. not standard libraries between computers.
The Beamer \LaTeX2ε philosophy ...

Content created once (one file), with multiple outputs ...

Idea
The Beamer /\LaTeX/ philosophy …

Content created once (one file), with multiple outputs …

- Idea
- Content
 - Lecturer-notes
 - Slides
 - Student-notes
 - Other … ???
The Beamer \LaTeX philosophy ...

Content created once (one file), with multiple outputs ...

Idea

Content

Lecturer-notes Slides Student-notes Other ... ???
Content *reuse* at the heart of the process: write ONCE!
The Beamer \LaTeX{} \(2\&\) philosophy in practice

1. Content *reuse* at the heart of the process: write ONCE!
2. Using tags *in the text* mean that aesthetic changes can be made once, and flow through the document
The Beamer \LaTeX philosophy in practice

1. Content *reuse* at the heart of the process: write ONCE!
2. Using tags *in the text* mean that aesthetic changes can be made once, and flow through the document
3. Can also extract specific sections of the content, based on tags for special documents (worked solutions, definitions etc.)
The Beamer \LaTeX philosophy in practice

1. Content *reuse* at the heart of the process: write ONCE!
2. Using tags *in the text* mean that aesthetic changes can be made once, and flow through the document.
3. Can also extract specific sections of the content, based on tags for special documents (worked solutions, definitions etc.)
4. All files are *text-based* hence sizes *much* smaller;
The Beamer \LaTeX 2e philosophy in practice

1. Content *reuse* at the heart of the process: write ONCE!
2. Using tags *in the text* mean that aesthetic changes can be made once, and flow through the document.
3. Can also extract specific sections of the content, based on tags for special documents (worked solutions, definitions etc.)
4. All files are *text-based* hence sizes *much* smaller;
5. PDF format is native output, giving far less font problems;
The Beamer /\LaTeX\ philosophy in practice

1. Content *reuse* at the heart of the process: write ONCE!
2. Using tags *in the text* mean that aesthetic changes can be made once, and flow through the document
3. Can also extract specific sections of the content, based on tags for special documents (worked solutions, definitions etc.)
4. All files are *text-based* hence sizes *much* smaller;
5. PDF format is native output, giving far less font problems;
6. That *shmick* appeal (!) at conferences, and with students ...
Additional features

- Professional quality mathematics, diagrams;
Additional features

- Professional quality mathematics, diagrams;
- \LaTeX{} encourages good structure to the presentation;
Additional features

- Professional quality mathematics, diagrams;
- \LaTeX{} encourages good structure to the presentation;
- Automatic generation of features that are impossible with Powerpoint/Word:
 1. Table of Contents
 2. Index
 3. In-presentation navigation tools
Additional features

- Professional quality mathematics, diagrams;
- \LaTeX\ encourages good structure to the presentation;
- Automatic generation of features that are impossible with Powerpoint/Word:
 1. Table of Contents
 2. Index
 3. In-presentation navigation tools
- Fancy extensions: ps-tricks, books etc.
By far the greatest advantage of the \LaTeX\ 2ε approach combined with Beamer is that you only have to write the material \textbf{ONCE}...

This one document is then used to produce all the other kinds of output...
By far the greatest advantage of the \LaTeX\ 2ε approach combined with Beamer is that you only have to write the material \textbf{ONCE}...

This one document is then used to produce all the other kinds of output...

How is this achieved?
Under the hood: The basic document

\documentclass[\textit{options}]{beamer}
\usetheme{Frankfurt}
\title{My Presentation title}
\author{Simon Angus}
\date{\today}
\begin{document}
% \frame{\titlepage}
\section{Introduction}
% \frame{The first slide}
\begin{itemize}
 \item Here is a list of points;
 \item That I am making for the;
 \item Audience to pay attention to;
\end{itemize}
% \frame{The Next slide}
\begin{itemize}
 \item Some more text
 \item \ldots
\end{itemize}
% \frame{The Next slide again}
\section{A Lecture Toolbox}
\section{Extensions and Tricks}
\section{Conclusions}
Once the basic content is written, then the real muscle begins!
This basic format will produce the ‘beamer’ version for presentations (as a .pdf doc, like what I’m showing now);
Once the basic content is written, then the real muscle begins!

This basic format will produce the ‘beamer’ version for presentations (as a .pdf doc, like what I’m showing now);

In the declaration at the top, we can simply write:

```
1 \documentclass[<options>]{article}
2 \usepackage{beamerarticle}
```

... and the document is made into an article format instantly.
Once the basic content is written, then the real muscle begins!

This basic format will produce the ‘beamer’ version for presentations (as a .pdf doc, like what I’m showing now);

In the declaration at the top, we can simply write:

```
\documentclass[<options>]{article}
\usepackage{beamerarticle}
```

... and the document is made into an article format instantly.

What about slide-handouts, or transparencies??

```
\documentclass[handout]{beamer}
or,
\documentclass[trans]{beamer}
```
Often we want to reveal text (or maths, or diagrams) in a piece-wise manner;

This is achieved through **overlays**:

\item<2-> This text on the second overlay, and following..
The Overlay

- Often we want to reveal text (or maths, or diagrams) in a piece-wise manner;
- This is achieved through overlays:
 \item<2-> This text on the second overlay, and following..
- Or,
 \visible<1-3>{Know where this is, but only show on 1, 2 and 3}
The Overlay

- Often we want to reveal text (or maths, or diagrams) in a piece-wise manner;
- This is achieved through overlays:
 \item<2-> This text on the second overlay, and following..
- Or,
 \visible<1-3>{Know where this is, but only show on 1, 2 and 3}
- Or,
 \only<4>{Only know about this and show it on}
Sending your content to the sausage machines: mode

- Perhaps, rather than having the answers come up on the article mode, you’d prefer to have them only appear for the presentation....
Sending your content to the sausage machines: mode

- Perhaps, rather than having the answers come up on the article mode, you’d prefer to have them only appear for the presentation....

- **Solution:** write the answers with \texttt{\mode<presentation>}

```
\begin{itemize}
\item Question: What is the derivative of $x^3$?
\item Answer: the derivative is given by the \texttt{sf power-rule} as follows, \[ \frac{d}{dx} x^3 = (3)x^{3-2} = 3x^2 \]
\end{itemize}
```
Sending your content to the sausage machines: \texttt{mode}

- Perhaps, rather than having the answers come up on the article mode, you’d prefer to have them only appear for the presentation....

- **Solution:** write the answers with \texttt{\mode<presentation>}

\begin{verbatim}
\item Question: What is the derivative of x^3?
\mode<presentation>\%
\item Answer: the derivative is given by the \backslashsf power–rule as follows,
\%
\[
\frac{d}{dx} x^3 = (3)x^{3-2} = 3x^2
\]
\%
\end{verbatim}

- **Question:** What is the derivative of x^3?
Sending your content to the sausage machines: \texttt{mode}

- Perhaps, rather than having the answers come up on the article mode, you’d prefer to have them only appear for the presentation....

- **Solution:** write the answers with \texttt{\textbackslash mode\langle presentation\rangle}

```latex
\begin{itemize}
  \item Question: What is the derivative of $x^3$?
  \item Answer: the derivative is given by the \texttt{\textbackslash sf power-rule} as follows, \[ \frac{d}{dx} x^3 = (3)x^{3-2} = 3x^2 \]
\end{itemize}
```

- **Question:** What is the derivative of x^3?
- **Answer:** the derivative is given by the power-rule as follows,

\[
\frac{d}{dx} x^3 = (3)x^{3-1} = 3x^2
\]
A change is ...

- Suppose you are a bit tired of the way things are looking... you would like to get the presentation to look more formal/relaxed/bright/structured etc. etc.
A change is ...

- Suppose you are a bit tired of the way things are looking... you would like to get the presentation to look more formal/relaxed/bright/structured etc. etc.
- There are lots of ready-made themes to use.
- The current one is called Frankfurt.
A change is ...

- Suppose you are a bit tired of the way things are looking... you would like to get the presentation to look more formal/relaxed/bright/structured etc. etc.
- There are lots of ready-made themes to use.
- The current one is called Frankfurt.
- See it in Ann Arbor, Cambridge US, Marburg ...

\usetheme{AnnArbor}
\defit{<title>}{<definition>}

Definition: The Definite Integral

To find the numerical value of an integral \(\int f(x) \, dx \) over the interval \(x = (a, b) \), where \(b > a \), we calculate the definite integral written,

\[
\int_{a}^{b} f(x) \, dx = \left[F(x) \right]_{a}^{b} = F(b) - F(a)
\] \hspace{1cm} (1)

where \(b \) and \(a \) are the upper limit of integration and lower limit of integration respectively.
Example (Definite Integrals)

Suppose $f(x) = k(1 - e^x)$, find $\int_a^b f(x) \, dx$ (k is a constant).

\begin{verbatim}
\solveit{\text{Definite Integrals}}{\text{problem}}{\text{solution}}
\% problem
Suppose $f(x) = k(1-e^x)$, find $\int_a^b f(x) \, dx$ (k is a constant).
\% solution
We solve as normal, but being careful of the constant,
\% vis
\% sol
\end{verbatim}
The example class

\solveit{<title>}{<problem>}{<solution>}

Example (Definite Integrals)

Suppose \(f(x) = k(1 - e^x) \), find \(\int_a^b f(x) \, dx \)
\((k\) is a constant). We solve as normal, but being careful of the constant,

\[
\int_a^b k(1 - e^x) \, dx = k (x - e^x) \bigg|_a^b \\
= k(b - e^b) - k(a - e^a) \\
= k(e^a - e^b + b - a)
\]

\[
\begin{align*}
% problem \\
% \text{Suppose } f(x) = k(1 - e^x), \text{ find } \int_a^b f(x) \, dx \text{ (k is a constant).} \\
% \text{We solve as normal, but being careful of the constant,} \\
% \text{\begin{verbatim}
int^b_a k(1-e^x) \, dx \\
&\& k(left(x - e^x\right)_{over^b_a} \\
&\& k(b - e^b) - k(a - e^a) \\
&\& \text{sol}{k(e^a - e^b + b - a)}
\end{verbatim}}
% vis<2->{% \\
\text{\texttt{\textbackslash eea}}} \\
% \text{sol}
\end{align*}
\]
Don’t go there...!

\alertit{\{<title>\}{<content>}}

Caution!

The definite integral, calculating the area between the function and the x-axis,

\[\int_a^b f(x) \, dx \]

will give a positive area for regions above the x-axis, but a negative area for regions below the x-axis.
Other useful tools

Extra-Lecture Notes Can be added with
\noteit{<title>}{<note>}
which is a good way to add explanations or descriptions in greater detail (e.g. that may not be adequately covered by the text);

Chapter References Directing a student to the relevant part of the text seems a good way to encourage effective studying habits:
\chap{4.2}

Highlighting Keywords One of the nice things about tag-based writing is that you can collect key terms for an index:
Now this \key{key concept} will be added to the index.
Since the document is written with a **consistent** tagging throughout, it is then possible to grab text that has a specific type:

- Creation of Definition pages (`\def{}{}`);
- And then, formula pages;
- Or Worked solution pages (`\solveit{}{}`)

Or any other regularly used typing.
Since the document is written with a **consistent** tagging throughout, it is then possible to grab text that has a specific type:

- Creation of Definition pages (\def{}{});
- And then, formula pages;
- Or Worked solution pages (\solveit{}{}{}{});

Or any other regularly used typing.

Even books of lectures (e.g. QMA).
Graphics the precise way

- Use of very nice graphical software such as ps-tricks, allows the generation of exact functional pictures (in \LaTeX)
Graphics the precise way

- Use of very nice graphical software such as ps-tricks, allows the generation of exact functional pictures (in \LaTeX).
Some reflections from the field

- New systems take time;
Some reflections from the field

- New systems take time;
- Rewards over a lifetime of teaching/presenting are huge;
- Student response was very positive last session 48/237 put ‘good overheads/notes’ as one of the qualitative ‘The best features of this lecturer’s teaching was...’ (S1 QMA);
Some reflections from the field

- New systems take time;
- Rewards over a life-time of teaching/presenting are huge;
- Student response was very positive last session 48/237 put ‘good overheads/notes’ as one of the qualitative ‘The best features of this lecturer’s teaching was...’ (S1 QMA);
- The last 10min...!
Some reflections from the field

- New systems take time;
- Rewards over a life-time of teaching/presenting are huge;
- Student response was very positive last session 48/237 put ‘good overheads/notes’ as one of the qualitative ‘The best features of this lecturer’s teaching was...’ (S1 QMA);
- The last 10min...!
- Relies on a relatively good knowledge of \LaTeX, but there are many aids to learning
Some reflections from the field

- New systems take time;
- Rewards over a life-time of teaching/presenting are huge;
- Student response was very positive last session 48/237 put ‘good overheads/notes’ as one of the qualitiative ‘The best features of this lecturer’s teaching was...’ (S1 QMA);
- The last 10min...!
- Relies on a relatively good knowledge of \LaTeX, but there are many aids to learning
- Teaching style – presentations, board, notes (multimedia?)??
Where to from here?

- Self-starters .. go to the net (package manager in MikTeX for ex)
- Others, get the latest .pdf user-guide and make small steps;
Where to from here?

- Self-starters .. go to the net (package manager in MikTeX for ex)
- Others, get the latest .pdf user-guide and make small steps;
- If lecture notes are already written, then putting them into presentations shouldn’t be too hard (if you would like);
Where to from here?

- Self-starters .. go to the net (package manager in MikTeX for ex)
- Others, get the latest .pdf user-guide and make small steps;
- If lecture notes are already written, then putting them into presentations shouldn’t be too hard (if you would like);
- For presentations, the situation is much easier, but possibly not better .. depends on material and background.
Where to from here?

- Self-starters .. go to the net (package manager in MikTeX for ex)
- Others, get the latest .pdf user-guide and make small steps;
- If lecture notes are already written, then putting them into presentations shouldn’t be too hard (if you would like);
- For presentations, the situation is much easier, but possibly not better .. depends on material and background.
- What we haven’t covered.. (dir struct. etc.)
Where to from here?

- Self-starters .. go to the net (package manager in MikTeX for ex)
- Others, get the latest .pdf user-guide and make small steps;
- If lecture notes are already written, then putting them into presentations shouldn’t be too hard (if you would like);
- For presentations, the situation is much easier, but possibly not better .. depends on material and background.
- What we haven’t covered.. (dir struct. etc.)
- I’m here.