Introduction	Beamer Features 00000	A Lecture Toolbox 0000	Extensions and Tricks	Conclusions

Freedom from Powerpoint

An introduction to creating clear, structured, & efficient presentations & notes for conferences and lectures with $\mbox{PTEX} 2_{\ensuremath{\mathcal{E}}}$ and \mbox{Beamer}

Simon Angus

School of Economics

11 October, 2006

	Beamer Features 00000	A Lecture Toolbox 0000	Extensions and Tricks	Conclusions
Agenda				

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

- The problem;
- Introduction to A Better Way;
- The Beamer system;
- Fancy stuff;
- Some considerations 'from the field'.

Content must be laboriously created for each instance of the communication!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Content must be laboriously created for each instance of the communication!

Content must be laboriously created for each instance of the communication!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Content must be laboriously created for each instance of the communication!

Content must be laboriously created for each instance of the communication!

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Content must be laboriously created for each instance of the communication!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

 Changes to the idea must be replicated in *every* communication medium;

- Changes to the idea must be replicated in *every* communication medium;
- Changes to the aethsetics (unless very strictly following 'styles') must be done in *every instance*;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Changes to the idea must be replicated in *every* communication medium;
- Changes to the aethsetics (unless very strictly following 'styles') must be done in *every instance*;
- Solution Mathematics not easily dealt with (is that x_{ij} or x_{ij} ?);

- Changes to the idea must be replicated in *every* communication medium;
- Changes to the aethsetics (unless very strictly following 'styles') must be done in *every instance*;
- Solution Mathematics not easily dealt with (is that x_{ij} or x_{ij} ?);

File sizes become enormous due to poor memory management...

The POWERPOINT/WORD philosophy in practice

- Changes to the idea must be replicated in *every communication medium*;
- Changes to the aethsetics (unless very strictly following 'styles') must be done in *every instance*;
- Solution Mathematics not easily dealt with (is that x_{ij} or x_{ij} ?);
- File sizes become enormous due to poor memory management...
- Leading to system crashes, difficult in moving/backing-up files;

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

The POWERPOINT/WORD philosophy in practice

- Changes to the idea must be replicated in *every communication medium*;
- Changes to the aethsetics (unless very strictly following 'styles') must be done in *every instance*;
- Solution Mathematics not easily dealt with (is that x_{ij} or x_{ij} ?);
- File sizes become enormous due to poor memory management...
- Leading to system crashes, difficult in moving/backing-up files;

Fonts can go 'weird' .. not standard libraries between computers.

Content created once (one file), with multiple outputs ...

Idea

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Content created once (one file), with multiple outputs ...

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Content created once (one file), with multiple outputs ...

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Content reuse at the heart of the process: write ONCE!

Content reuse at the heart of the process: write ONCE!

Using tags in the text mean that aethsetic changes can be made once, and flow through the document

- Content *reuse* at the heart of the process: write ONCE!
- Using tags in the text mean that aethsetic changes can be made once, and flow through the document
- Can also extract specific sections of the content, based on tags for special documents (worked solutions, definitions etc.)

- Content reuse at the heart of the process: write ONCE!
- Using tags in the text mean that aethsetic changes can be made once, and flow through the document
- Can also extract specific sections of the content, based on tags for special documents (worked solutions, definitions etc.)

All files are text-based hence sizes much smaller;

- Content reuse at the heart of the process: write ONCE!
- Using tags in the text mean that aethsetic changes can be made once, and flow through the document
- Can also extract specific sections of the content, based on tags for special documents (worked solutions, definitions etc.)

- All files are text-based hence sizes much smaller;
- OPDF format is native output, giving far less font problems;

- Ocontent *reuse* at the heart of the process: write ONCE!
- Using tags in the text mean that aethsetic changes can be made once, and flow through the document
- Can also extract specific sections of the content, based on tags for special documents (worked solutions, definitions etc.)
- All files are text-based hence sizes much smaller;
- OPDF format is native output, giving far less font problems;
- That *shmick* appeal (!) at conferences, and with students ...

	Beamer Features 00000	A Lecture Toolbox 0000	Extensions and Tricks	Conclusions
Additiona	l features			

• Professional quality mathematics, diagrams;

	Beamer Features 00000	A Lecture Toolbox 0000	Extensions and Tricks	Conclusions
Additional	features			-

- Professional quality mathematics, diagrams;
- LATEX encourages good structure to the presentation;

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

	Beamer Features 00000	A Lecture Toolbox 0000	Extensions and Tricks	Conclusions
Additional	features			-

- Professional quality mathematics, diagrams;
- LATEXencourages good structure to the presentation;
- Automatic generation of features that are impossible with Powerpoint/Word:

- Table of Contents
- Index
- In-presentation navigation tools

	Beamer Features 00000	A Lecture Toolbox 0000	Extensions and Tricks	Conclusions
Additiona	features			

- Professional quality mathematics, diagrams;
- LATEXencourages good structure to the presentation;
- Automatic generation of features that are impossible with Powerpoint/Word:

- Table of Contents
- Index
- In-presentation navigation tools
- Fancy extensions: ps-tricks, books etc.

Introduction	Beamer Features	A Lecture Toolbox 0000	Extensions and Tricks	Conclusions
Write on	ce			

- By far the greatest advantage of the LATEX 2_€ approach combined with Beamer is that you only have to write the material **ONCE**...
- This one document is then used to produce all the other kinds of output...

Introduction	Beamer Features	A Lecture Toolbox 0000	Extensions and Tricks	Conclusions
Write on	ce			

- By far the greatest advantage of the LATEX 2_€ approach combined with Beamer is that you only have to write the material **ONCE**...
- This one document is then used to produce all the other kinds of output...

• How is this achieved?

Introduction	Beamer Features ○●○○○	A Lecture Toolbox 0000	Extensions and Tricks	Conclusions
Then				

• Once the basic content is written, then the real muscle begins!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

• This basic format will produce the 'beamer' version for presentations (as a .pdf doc, like what I'm showing now);

Introduction	Beamer Features	A Lecture Toolbox 0000	Extensions and Tricks	Conclusions
Then				

- Once the basic content is written, then the real muscle begins!
- This basic format will produce the 'beamer' version for presentations (as a .pdf doc, like what I'm showing now);
- In the declaration at the top, we can simply write:

```
1 \documentclass[<options>]{article}
```

```
2 \usepackage { beamerarticle }
```

• ... and the document is made into an article format instantly.

Introduction	Beamer Features ○●○○○	A Lecture Toolbox 0000	Extensions and Tricks	Conclusions
Then				

- Once the basic content is written, then the real muscle begins!
- This basic format will produce the 'beamer' version for presentations (as a .pdf doc, like what I'm showing now);
- In the declaration at the top, we can simply write:

```
documentclass[<options >]{article}
2
```

```
usepackage { beamerarticle }
```

- ... and the document is made into an article format instantly.
- What about slide-handouts, or transparencies??

```
\documentclass[handout]{beamer}
```

```
2
```

3 documentclass[trans]{beamer}

Introduction	Beamer Features	A Lecture Toolbox 0000	Extensions and Tricks	Conclusions
The Ove	erlay			

- Often we want to reveal text (or maths, or diagrams) in a piece-wise manner;
- This is achived through overlays:

 $\times < 2->$ This text on the second overlay, and following..

Introduction	Beamer Features 00●00	A Lecture Toolbox 0000	Extensions and Tricks	Conclusions		
The Overlay						

- Often we want to reveal text (or maths, or diagrams) in a piece-wise manner;
- This is achived through overlays:

\item<2-> This text on the second overlay, and following..

Or,

 $\label{eq:l-3} $$ $$ Know where this is, but only show on 1, 2 and 3$$ $$$

Introduction	Beamer Features 00●00	A Lecture Toolbox 0000	Extensions and Tricks	Conclusions		
The Overlay						

- Often we want to reveal text (or maths, or diagrams) in a piece-wise manner;
- This is achived through overlays:

\item<2-> This text on the second overlay, and following..

Or,

 $\label{eq:l-3} $$ $$ Know where this is, but only show on 1, 2 and 3$$ $$$

Or,

 $only < 4 > \{ Only know about this and show it on \}$

• Perhaps, rather than having the answers come up on the article mode, you'd prefer to have them only appear for the presentation....

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Sending your content to the sausage machines: mode

- Perhaps, rather than having the answers come up on the article mode, you'd prefer to have them only appear for the presentation....
- Solution: write the answers with \mode<presentation>

```
1 \item<3-> Question: What is the derivative of $x^3$?
2 \mode<presentation>{%
3 \item<4-> Answer: the derivative is given by the {\sf power-rule} as
        follows,
4 \[
5 \[
6 \]
7 }% mode
```


Sending your content to the sausage machines: mode

- Perhaps, rather than having the answers come up on the article mode, you'd prefer to have them only appear for the presentation....
- Solution: write the answers with \mode<presentation>

```
1 \item<3-> Question: What is the derivative of $x^3$?
2 \mode<presentation>{%
3 \item<4-> Answer: the derivative is given by the {\sf power-rule} as
        follows,
4 \[
5 \\frac{d}{dx} x^3 = (3)x^{3-2} = 3x^2
6 \]
7 }% mode
```

▲日▼▲□▼▲□▼▲□▼ □ シタの

• Question: What is the derivative of x^3 ?

Sending your content to the sausage machines: mode

- Perhaps, rather than having the answers come up on the article mode, you'd prefer to have them only appear for the presentation....
- Solution: write the answers with \mode<presentation>

```
1 \item<3-> Question: What is the derivative of $x^3$?
2 \mode<presentation>{%
3 \item<4-> Answer: the derivative is given by the {\sf power-rule} as
        follows,
4 \[
5 \\frac{d}{dx} x^3 = (3)x^{3-2} = 3x^2
6 \]
7 }% mode
```

- Question: What is the derivative of x^3 ?
- Answer: the derivative is given by the power-rule as follows,

$$\frac{d}{dx}x^3 = (3)x^{3-1} = 3x^2$$

Introduction		A Lecture Toolbox	Extensions and Tricks	Conclusions
	00000			
A chang	e is			

• Suppose you are a bit tired of the way things are looking... you would like to get the presentation to look more formal/relaxed/bright/structured etc. etc.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Introduction	Beamer Features	A Lecture Toolbox 0000	Extensions and Tricks	Conclusions
A chang	e is			

• Suppose you are a bit tired of the way things are looking... you would like to get the presentation to look more formal/relaxed/bright/structured etc. etc.

- There are lots of ready-made themes to use.
- The current one is called Frankfurt.

Introduction	Beamer Features	A Lecture Toolbox 0000	Extensions and Tricks	Conclusions
A chang	e is			

- Suppose you are a bit tired of the way things are looking... you would like to get the presentation to look more formal/relaxed/bright/structured etc. etc.
- There are lots of ready-made themes to use.
- The current one is called Frankfurt.
- See it in AnnArbor, CambridgeUS, Marburg ...

\usetheme{AnnArbor}

Introduction	Beamer Features 00000	A Lecture Toolbox	Extensions and Tricks	Conclusions
Reing cle	ear about def	initions		

\defit{<title>}{<definition>}

Definition: The Definite Integral

To find the numerical value of an integral $\int f(x) dx$ over the interval x = (a, b), where b > a, we calculate the definite integral written,

$$\int_{a}^{b} f(x) \, \mathrm{dx} = F(x) \bigg]_{a}^{b} = F(b) - F(a)$$
(1)

where b and a are the upper limit of integration and lower limit of integration respectively.

1	The Definite Integral
	} { %
2	To find the numerical
	value of an integral
	$\operatorname{int} f(x) \ dx$ over
	the interval \$x=(a,b)
	\$, where \$b>a\$, we
	calculate the
	definite integral}
	written ,
2	
3	\beq
4	$\ \ f(x) \ dx = F$
	(x)\over^b_a = F(b
) — F(a)
5	\eeq
6	where \$b\$ and \$a\$ are the
	upper limit of
	integration} and
	lower limit of
	integration }
_	respectively.
7	}% def

・ロト ・西ト ・ヨト ・ヨト

Introduction	Beamer Features 00000	A Lecture Toolbox 0●00	Extensions and Tricks	Conclusions
The exa	mple class			

\solveit{<title>}{<problem>}{<solution>}

Example (Definite Integrals)

Suppose
$$f(x) = k(1 - e^x)$$
, find $\int_a^b f(x) dx$
(k is a constant).

1	\solveit{Definite Integrals}{ % problem
2	Suppose $f(x) = k(1-e^x)$,
	find \$\int^b_a f(x) \dx\$
	(\$k\$ is a constant).
3	}{% solution
4	\ vis<2->{%
5	We solve as normal, but
	being careful of the
	constant,
6	\ bea
7	$\lambda = k(1-e^x) dx$
	& ==& k∖left (x – e^x∖
	right)\over^b_a \\
8	&==& k (b – e^b) – k(a –
-	e^a) \\
9	&=& k(e^a - e^b +
5	b - a)
10	\eea
11	}% vis
12	}% sol

Introduction	Beamer Features 00000	A Lecture Toolbox 0●00	Extensions and Tricks	Conclusions
The exa	mple class			

\solveit{<title>}{<problem>}{<solution>}

Example (Definite Integrals)

Suppose
$$f(x) = k(1 - e^x)$$
, find $\int_a^b f(x) dx$
(k is a constant).
We solve as normal, but being careful of the
constant,

$$\int_{a}^{b} k(1 - e^{x}) dx = k(x - e^{x}) \Big]_{a}^{b}$$

= $k(b - e^{b}) - k(a - e^{a})$
= $k(e^{a} - e^{b} + b - a)$

1	\solveit{Definite Integrals}{ % problem
~	
2	Suppose $f(x) = k(1-e^x)$,
	find \$\int^b_a f(x) \dx\$
	(\$k\$ is a constant).
3	}{% solution
4	\vis<2->{%
5	We solve as normal, but
	being careful of the
	constant,
6	\ bea
7	$\lambda int^b_a k(1-e^x) \ dx$
	&=& $k \mid \text{left}(x - e^x \mid$
	right)\over^b_a \\
8	
0	&=& k (b - e^b) - k(a -
	e^a) \\
9	&=& k(e^a − e^b +
	b — a)}
10	\eea
11	}% vis
12	}% sol

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Don't go there ...!

\alertit{<title>}{<content>}

Caution!

The definite integral, calculating the area between the function and the x-axis,

$$\int_a^b f(x) \, \mathrm{d} \mathsf{x}$$

will give a positive area for regions **above** the x-axis, but a negative area for regions below the x-axis.

1	${%}$
2	The definite integral,
	calculating the area
	between the function
	and the x-axis,
3	/[
4	$int^b_a f(x) \ dx$
5	
6	will give a {\color{blue}
-	positive} area for
	regions \bb{above} the
	x—axis, but a
	negative} area for
	regions below the x-
	0
_	axis.
7	}% alert

Extra-Lecture Notes Can be added with

```
\noteit{<title>}{<note>}
```

which is a good way to add explanations or descriptions in greater detail (e.g. that may not be adequately covered by the text);

Chapter References Directing a student to the relevant part of the text seems a good way to encourage effective studying habits:

 $\chap{4.2}$

Highlighting Keywords One of the nice things about tag-based writing is that you can collect key terms for an index: Now this \key{key concept} will be added to the index.

• Since the document is written with a **consistent** tagging throughout, it is then possible to grab text that has a specific *type*

- Creation of Definition pages (\def{}{});
- And then, formula pages;
- Or Worked solution pages (\solveit{}{})
- Or any other regularly used typing.

• Since the document is written with a **consistent** tagging throughout, it is then possible to grab text that has a specific *type*

- Creation of Definition pages (\def{}{);
- And then, formula pages;
- Or Worked solution pages (\solveit{}{})
- Or any other regularly used typing.
- Even books of lectures (e.g. QMA).

• Use of very nice graphical software such as ps-tricks, allows the generation of *exact* functional pictures (in LATEX)

• Use of very nice graphical software such as ps-tricks, allows the generation of *exact* functional pictures (in LATEX)

Introduction	Beamer Features 00000	A Lecture Toolbox 0000	Extensions and Tricks	Conclusions
Some ref	flections from	the field		

• New systems take time;

- New systems take time;
- Rewards over a life-time of teaching/presenting are huge;
- Student response was very positive last session 48/237 put 'good overheads/notes' as one of the qualitative 'The best features of this lecturer's teaching was...' (S1 QMA);

- New systems take time;
- Rewards over a life-time of teaching/presenting are huge;
- Student response was very positive last session 48/237 put 'good overheads/notes' as one of the qualitative 'The best features of this lecturer's teaching was...' (S1 QMA);

The last 10min...!

- New systems take time;
- Rewards over a life-time of teaching/presenting are huge;
- Student response was very positive last session 48/237 put 'good overheads/notes' as one of the qualitative 'The best features of this lecturer's teaching was...' (S1 QMA);
- The last 10min...!
- Relies on a relatively good knowledge of LATEX, but there are many aids to learning

- New systems take time;
- Rewards over a life-time of teaching/presenting are huge;
- Student response was very positive last session 48/237 put 'good overheads/notes' as one of the qualitative 'The best features of this lecturer's teaching was...' (S1 QMA);
- The last 10min...!
- Relies on a relatively good knowledge of LATEX, but there are many aids to learning
- Teaching style presentations, board, notes (multimedia?)??

Self-starters .. go to the net (package manager in MikTeX for ex)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Others, get the latest .pdf user-guide and make small steps;

- Self-starters .. go to the net (package manager in MikTeX for ex)
- Others, get the latest .pdf user-guide and make small steps;
- If lecture notes are already written, then putting them into presentations shouldn't be too hard (if you would like);

- Self-starters .. go to the net (package manager in MikTeX for ex)
- Others, get the latest .pdf user-guide and make small steps;
- If lecture notes are already written, then putting them into presentations shouldn't be too hard (if you would like);
- For presentations, the situation is much easier, but possibly not better .. depends on material and background.

- Self-starters .. go to the net (package manager in MikTeX for ex)
- Others, get the latest .pdf user-guide and make small steps;
- If lecture notes are already written, then putting them into presentations shouldn't be too hard (if you would like);
- For presentations, the situation is much easier, but possibly not better .. depends on material and background.

• What we haven't covered.. (dir struct. etc.)

- Self-starters .. go to the net (package manager in MikTeX for ex)
- Others, get the latest .pdf user-guide and make small steps;
- If lecture notes are already written, then putting them into presentations shouldn't be too hard (if you would like);
- For presentations, the situation is much easier, but possibly not better .. depends on material and background.

▲日▼▲□▼▲□▼▲□▼ □ ● ●

- What we haven't covered.. (dir struct. etc.)
- I'm here.