
Endogenous Cooperation Networks A Complex Systems Approach

Simon Angus

School of Economics, University of NSW, Sydney, Australia

Supported by the Commonwealth Government's APA scheme; Research initiated at the SFI Computational Grad Workshop, 2004

Econophysics Colloqium ANU, Nov 2005

University of NSW, Sydney, Australia.

Two General Questions

Question How do popluations decide between behaviours?

Question

When might 'risky' (but helpful) behaviours become stable in a population?

Context of inquiry:

- Coordination (economic: technology adoption, cultural: 'norms')
- 2. Cooperation (e.g. trust, corruption sans institutions)

A Pathway into Complexity

UNIFORM

- 'Trembling towards equilibrium' (best-response with mistake-making)
- Risk-dominant eq.
- ▶ e.g. KMR (1993)

CIRCLE, LINE, GRID

- Best-response, with local interactions
- Risk-dominant with acceleration
- e.g. Ellison et. al (1993–2000)

Dynamic

- Best-response graph-formation
- Inefficient and non-risk-dominant eq. possible
- e.g. Jackson & Watts (2002)

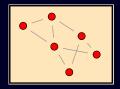
University of NSW, Sydney, Australia.

Modelling Motivation

Limitations of Analytic Work:

- Strategies other than the Best-response (utility maximizing) hard to model analytically;
- Non-uniform (and non-regular) interaction spaces very challenging;
- Dynamic, interaction spaces, with diverse boundedly rational agents (seemingly) impossible to incorporate analytically...
- But, computational, agent-based approaches well suited!

Desirable Computational Model Qualities:

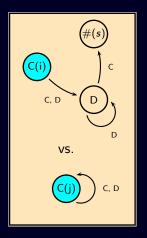

- 'Simple' set-up relationship to previous literature
- Endogenous (strategy-based, rather than observer based) interaction-space dynamics;
- Allowance for realistic behaviours (inc. irrational play)

The Mode

Model Overview

- 1. *Game*: Reward for cooperative, but risky play (modified IPD)
- 2. *Agents*: Finite State Automata (FSA), GA updating
- Mixing: Uniform initially, but updated based on interactions/strategies (unknown, 'strengthen', 'weaken')

C #(s)
DD


		#w	С	D	#s
	#w	(0,0)			(0,0)
$\pi[\partial^*] =$	С		(3,3)	(0,5)	
	D	:	(5,0)	(1,1)	:
	$\#_s$	(0,0)			(0,0)

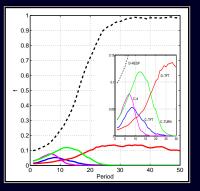
Example Interaction

- Agent *i* interaction probabilities determine *m* opponents in one period;
- 2. Here, drawn to play agent *j*;
- IPD: interaction stopped if #(x) played, or κ iterations reached;

Iteration	Pi	P_{j}	π_i	π_j
1	С	С	3	3
2	D	С	5	0
3	#(s)	С	0	0
$\sum \pi_{x}$			8	3

- 4. $\sum \pi_x$ added to period payoffs;
- **5**. Interaction structure updated (here, $i \nleftrightarrow j$).

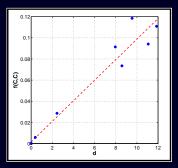
Model Validation: Uniform Interactions


Network 'strength': $\eta \in [0, 1]$

Set $\eta = 0$

Remark

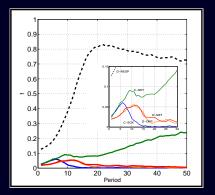
For all initial distributions of three-state FSA playing the game \Im^* under $\kappa = 2$, the strategy triplet $s_D : \{P, R(C, D)\} = \{D, (\{C, D\}, D)\}$ is the only evolutionary stable strategy.


 Computationally, this result is confirmed (20 trials; 100 agents; m = 20).

$\eta > 0$: Network formation & Cooperation

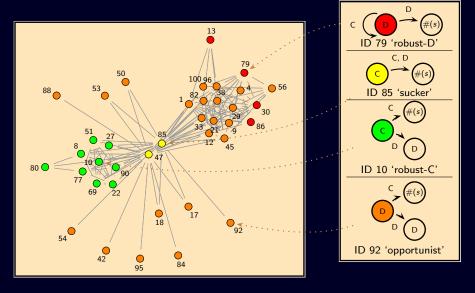
'Frequency' & 'Choice'

- Cooperation and average degree strongly related;
- Frequency of interaction AND 'impact' of edges necessary for sustainable cooperation-networks.



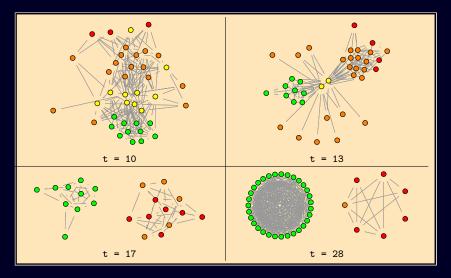
	ā			f(C, C)		
$m \searrow^{\eta}$	0.80	0.90	0.95	0.80	0.90	0.95
10	0.000	0.000	0.000	0.000	0.000	0.000
14	0.004	0.001	0.391	0.000	0.000	0.006
18	2.441	11.859	8.587	0.029	0.111	0.074
20	7.959	11.073	9.548	0.091	0.094	0.119

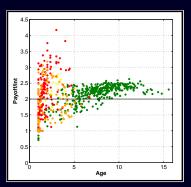
$\eta > 0$: Mean Population Behaviours


Establishing the Network $(m = 20, \eta = 0.8)$

- Periodic behaviours observed: 'sucker' types; 'opportunists'; cooperation network builders; and defection network builders;
- 'Shake-out' period as before, but cooperation network resiliant;
- In network forming trials, cooperative network grows to encompass ~ 60% of population

Results & Discussion

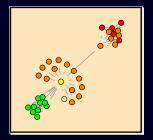

Unmasking the Dynamics


University of NSW, Sydney, Australia.

Results & Discussion

A Dynamic Tour ...

Results Summary


Payoff per interaction vs. Connected component average agent 'age' Important Factors in Robust Network Formation

- Richness of recognition strategy selects assortatively; protects against exploiting behaviours;
- Strength of edge formation link creation must have sufficient impact on mixing probabilities;
- Frequencies of interaction beneficial relationships must be sufficiently revisited;
- ► Topological effects (Logit) L(G) significant (⊖) in connected component survival (rôle of hubs?)

Current/Future

- Longer-run effects behavioural epoch formation?
- Extension of agent 'intelligence' (↑ states) stable heterogenous behavioural network creation?
- Network breaking in a dynamic behavioural and network responding environment – law-enforcement implications for corruption?

Simon Angus, UNSW s.angus@student.unsw.edu.au

