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Abstract

This paper concentrates on non-cooperative communication net-
work formation processes as introduced analytically by Bala and Goyal
(BG, 2000), and subsequently investigated experimentally by Falk and
Kosfeld’s (FK, 2003) faithful human implementation. Key to BG’s
model was the rationality of agents, whereas FK’s work emphasised
the break-down of this assumption in certain cases. In the present
work, the perfect rationality assumption of BG is relaxed, and instead,
agents are implemented who possess a variety of ‘abilities’ at the out-
set, but who are also able to learn from each other over time. Further-
more, since each agent’s decision calculus is completely transparent
to the inquirer, the present framework provides the ability to test the
FK hypthotheses, whilst also permitting the observation of extended
concepts such as ‘complexity’, ‘diversity’ and ‘cooperation’.

I find that traditional learning of payoff optimization is a poor
proxy for human decisions-making, with an alternate heuristic based
on a combined strategic efficiency and agent-to-agent reciprocity mea-
sure providing a more realistic rendering of human decision outcomes.
Moreover, the supposed desire for payoff equality and strategic inertia
does not appear causally related to improved agent performance, but
rather seems to be an emergent property of the learning system.
JEL codes: C72, C73, D82, D83, D85

1 Introduction

Communication networks are an apparently ubiquitous feature of many busi-
ness and inter-personal contexts. In each, depending on the costs of in-
formation access and benefits of information content, entities (e.g. firms,
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1 INTRODUCTION

Figure 1. Example Strict Nash equilibrium networks, as in BG2000: (left) Circle (or
‘wheel’); (middle) Empty; and (right) Centre-sponsored Star (two-way information flow;

smaller dots near centre node indicate sponsorship cost of centre node).

individuals) face a strategic problem of who to engage in mutual or unilat-
eral information sharing partnerships given the actions of other entities that
together comprise the information ‘landscape’. Although several commu-
nication network models have been reported under varying specifications1

one influential model of non-cooperative communication network formation
is that of Bala and Goyal (2000)2 who identified equilibrium information
network structures under various treatments, including cost of edge spon-
sorship and direction of subsequent information content flows. Namely, they
identify minimally connected Nash equilibrium structures in both one- and
two- way specifications and using the Strict Nash equilibrium refinement3

obtained specific equilibrium structures, namely: empty, circle4 and centre-
sponsored star, under given treatments (see Fig. 1).

In their model, agents are assumed to be able to observe all previous pe-
riod network sponsorship decisions of their opponents, i.e. they observe
Gt−1, and when given the opportunity to update their strategy, choose
the (myopic) best-response to Gt−1. Convergence is guaranteed by in-built
strategic inertia, at least one agent plays the sponsorship strategy of period
t−1 in period t, a process that searches the space in an incremental fashion,
eventually arriving at one of the Nash structures.

Whilst promising, subsequent human trials of the BG2000 noncoopera-
tive network formation set-up (n = 4), conducted by (Falk and Kosfeld,
2003)5 find that the BG2000 results receive mixed support in the field.
Specifically, in the one-way information flow case, under both low and high
costs of edge sponsorship, agents do discover Nash outcomes a majority of
the time; especially so towards the end of each treatment where order ef-

1See for example, Chwe (1995, 2000); Comellas et al. (2000); Jackson and Watts (2002);
Slikker and van den Nouweland (2000).

2To be referred to as BG2000 hereafter.
3In this case, the Strict Nash refinement implies that not only will each player play a

utility maximising strategy in response to each other player’s utility maximizing strategy,
but each player will only have one such strategy.

4That is, arrange all nodes on a circle, connect one to another in a ‘daisy-chain’ pro-
cedure such that each agent’s in- and out- degree is unity. NB: BG2000 actually refer to
this case as the ‘wheel’, we shall use the terms interchangeably.

5Subsequently referred to as FK2003.
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1 INTRODUCTION

fects are clearly evident. However, in the two-way information case, subjects
performed remarkably poorly with respect to finding minimally-connected
networks (Nash), barely finding the Strict Nash (centre-sponsored star) out-
come at all. Such evidence demands further explanation.

In their discussion, FK2003 point to various problems for subjects with
the two-way Strict Nash equilibrium structure including the serious assym-
metry in both a strategic and a payoff sense, conjecturing that agents dislike
such conformations. Further, by use of regression analysis, FK2003 show a
strong explanatory correlation between inertia (as explained above) and ex-
perienced payoff equality in the previous period (controlling for previous
best-response play) to support their claim. That is, if other agent payoffs
are roughly similar (either low or high) in the previous period, then a subject
is more likely to exhibit strategic inertia in the present period.

Such considerations will clearly require a review of the Best Response
decision rule to model these contexts. Indeed any form of boundedly rational
behaviour due to irrational preferences or other, is not well catered for by the
standard best-response decision making rule. It is quite likely that agents
are employing (consciously or not) a diverse set of heuristics to determine
their strategic play. The problem, of course, is to determine which rules to
include in the model. Whilst, for instance, the insightful work of Matros
(2004) finds that for generic n-player games, so long as all players are using
decision rules from within the union-set of weakly rational rules6 and the
best-response rule, then in the short-run the outcomes are ‘identical’ to that
if individuals were constrained to just the best-response rule, giving implicit
support to the BG2000 frame-work, it is not clear from FK2003 that such
conditions do prevail in reality. We may conclude that individuals draw their
decision-making rules from outside of such ‘minimal curb sets’,7 at least in
the present example.

Moreover, the FK2003 results show that agents undergo clear learning
processes as they play the game, with performances in the one-way informa-
tion case improving appreciably between mixing stages (see below). Hence,
the challenge of such economic modelling is two-fold: first, to model a di-
verse range of feasible decision-making heuristics for each agent, allowing for
varying apparent ‘abilities’ and initial insights; and second, to model some
kind of learning process, such that selection between such heuristics occurs
in a realistic manner.

In the present paper, such considerations are dealt with in a novel way.
First, the enormous complexity of decision-making in the network formation

6Informally, a set of simple rules is weakly rational if the application of these rules on
a sub-set of states (a minimal curb configuration) will return one of the member states of
this sub-set; the rules are then “consistent with an equilibrium”.

7Compare the suggested decision-making influences above – those of symmetry and
equity.
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2 BACKGROUND

game described by BG2000,8 is reduced to a tractable (and implementable)
human-decision making process by allowing individuals to recognise and re-
spond to equivalent structures (under relabelling). Second, agent cognition
is dealt with by constructing a managable series of response-rules to each
structure under a common reference frame-work but without biasing the rel-
ative ‘intelligence’ of any individual agent. And third, in consequence and
in the spirit of Arthur’s (1994) artifical bar attendees, since agent cognition
architecture is common to all agents, between-agent learning and experi-
mentation or mistake-making is afforded and directly observable.

The results of the current approach can be summarised as follows: first,
pure payoffs (e.g. monetary, as in FK2003) appears to be an unsuccessful
candidate for the objective criterion used by agents to judge ‘good’ plays
by their opponents; second, and in the place of payoffs, a combination of a
kind of ‘efficiency’ measure (to be explained below), and a strategic coopera-
tion or reciprocity measure gives rise to comparable outcomes to that of the
experimental data; and third, although equality and best response consider-
ations are found to be significantly associated with strategic inertia as found
by FK2003, these effects appear to be emergent in nature, rather than being
the driving dynamic in the learning environment as they suppose. Indeed,
by explicitly incorporating either into the objective learning measure as may
be thought reasonable, agents perform worse over time than without them.

The rest the paper includes a summary of the pertinent results from
both BG2000 and FK2003 (§2), a description of the model (§3) and its
implementation (§4), which is followed by computational modelling results
and analysis (§5), before several concluding comments are drawn (§6).

2 Background

2.1 BG2000 Model Predictions

The key predictions from the BG2000 model are summarised in Table 1.
The circle, wheel and centre-sponsored star have already been introduced,
leaving the so-called ‘minimally-connected’ networks to explain. In each, all
agents obtain full information, in the sense that they can observe the infor-
mation of each other agent. However, for the one-way case the minimally-
connected property implies that each edge is necessary, that is, the removal
of any edge will cause some agent(s) to lose their access to the other (n− 1)
agents’ information. In the two-way case, such a criterion results in cycles
being ruled out (one edge would be unnecessary), plus any case where two
agents mutually sponsor a direct link to each other (again, one would be
unnecessary). Such is the nature of two-way information flows. Examples
of each type of minimally-connected structure can be seen in Fig. 2.

8For example, consider the n − 4 case under one-way information flows. The number
of distinct feasible graphs is given by 2n(n−1), which is more than 4000 for this case.
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2.2 FK2003 Experimental Findings 2 BACKGROUND

Table 1. Predicted structures by BG2000 under each treatment.

Flow Edge Costsa Structureb

m1c circle empty m2c cs-star

One-way
Low 4 N∗

High 4 N∗ N

Two-way
Low 4∗ N

High N 4∗

Notes: a Low C ≤ V , High C > V ; b structure m1c and m2c are
minimally-connected non-empty graphs in one- and two- way informa-
tion flow cases respectively. (4) non-empty nash, (N) strict nash, (*)
indicates that the structure is also efficient (following FK2003).

(a) m1c (b) m2c

Figure 2. Examples of minimally-connected structures (following FK2003): (a) the
one-way information flow case; and (b) the two-way case (periphery-sponsored star).

2.2 FK2003 Experimental Findings

The authors of the FK2003 study reproduced the BG2000 network formation
context in an extremely faithful manner. For a full description of their study,
the reader is referred to the reference. However, to summarise the procedural
details, a total of 160 subjects, 32 in each of 5 treatments – 3 under one-way
information flows (costs 5, 15 and 25) and 2 under two-way flows (costs 5 and
15) – were randomly grouped into 8 mixing groups of 4 to play 5 rounds of
the network formation game (we shall refer to this process as a ‘stage’). After
a stage, the 32 subjects would be shuffled and re-assigned to 8 groups of 4
for a further five rounds. In all, 3 stages were conducted for each treatment.
Subjects interacted with a computer screen (after familiarisation) to both
observe the sponsorship decisions of their opponents in the preceding round,
and to enter their own sponsorship decisions in the current round. Subjects
received 10 Swiss Francs for showing-up, and received monetary reward for
theiry play; information observation of one node gained 10 points with all
costs (as just mentioned) measured in points with 10 points representing 0.9
Swiss Francs (subjects received around 50 SF on average).

Several FK2003 results are relevant. First, under the four treatments
over information flow direction and edge sponsorship costs, the proportions
of each graph-type as predicted by the BG2000 results are striking (see

S. Angus: Endogenous Communication Networks 5



2.2 FK2003 Experimental Findings 2 BACKGROUND

Table 2). Under one-way information flow, aggregated accross all (three)
learning stages and all (five) rounds within each stage, a strong tendency
for playing Nash is revealed. Moreover, in a large proportion of cases where
a Nash structure was played, the Strict Nash structure (either just the circle-
graph, or the circle and the empty graph type) were played. This result is
dashed however in the case of two-way flows, where Ntrict Nash play was
non-existent and the Nash structures that did result were played in a signif-
icantly lower number of rounds relative to the one-way case, with low edge
costs yielding a Nash frequency of around 30% (as opposed to around 50%
for one-way), reducing to less than 10% when edge costs were high. Inter-
estingly, average agent degree reveals a roughly constant pattern between
information flow regimes, indicating that strategic, rather than purely edge
sponsorship propensity is the likely cause of failure when flows are two-way.

Table 2. Summary of selected FK2003 experimental results under
relevant treatments. (Compare Table 1.)

Flow Edge Costsa Structure
〈di〉m1cb circle empty m2cb cs-star

One-way
Low (5) 0.48 0.41 1.19

High (25) 0.59 0.49 0.10 0.76

Two-way
Low (5) 0.31 0.00 0.91

High (15) (nr) 0.09 0.75

Notes: a figures indicated in parenthesise are in ‘experimental points’ – 10
points equated to 0.9 Swiss Francs (about $US 0.59) and value of one agent’s
information constant at 10 points; b minimally connected values include other
structures (such as Strict Nash as appropriate); (nr) indicates ‘not reported’.

Proportions of Nash play both between and within each learning stage
further reveals the problems that subjects had with the two-way information
regime (see Fig. 3).

As can be seen, in the one-way case subjects underwent a strong learn-
ing dynamic between learning stages, and within stages achieved a similar
improvement. Within stage improvements, or alternatively, low frequencies
in the early rounds of each stage, are attributed to mis-coordinations due to
the mixing of subject grouops that occurs between learning stages. In the
two-way case, the lack of Nash structures in comparison is stark with both
the between-stage and within stage improvements not nearly as evident.

S. Angus: Endogenous Communication Networks 6
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Figure 3. FK2003 frequency of Nash graph structures under each information flow
regime. Bars represent average frequency over edge costs 5, 15 and 25 in the one-way
case, and over edge costs 5 and 15 in the two-way case. NB: refer to Table 1 for graph

structures that are ‘Nash’ under each information and cost scenario.

3 Model

3.1 The Network Formation Game

Suppose a group of agents N = {1, . . . , n} are selected to play a com-
munication network formation game.9Let the communication network be
comprised of vertices as given by N , and let there be edges as given by
the set of edge-sponsorship actions10g ∈ gn, g = {g1, . . . , gn}, where gi =
(gi,1, . . . , gi,i−1, gi,i+1, . . . , gi,n−1) is an ordered (row) vector of pair-wise spon-
sorship decisions, and gi,j ∈ {0, 1}, ∀ j ∈ N/{i}. Correspondingly, let the
communication network be represented by the graph G(N, g) ∈ G.

For example, suppose N = {1, . . . , 4}, and g′ has the form,

g′1 = {1, 0, 0} ,

g′2 = {0, 1, 0} ,

g′3 = {0, 0, 1} ,

g′4 = {1, 0, 0} ,

then, under one-way information flows, the corresponding graph G′(N, g′)
would be a cycle, as given in Fig. 4.

9Nomenclature in this section largely follows that of BG2000 where possible for con-
sistency.

10NB: we differ here to the description of BG2000 since gi gives the outcome of an
agent’s strategy (that is, an action to be taken), rather than comprising the strategy
itself, as described by BG2000.

S. Angus: Endogenous Communication Networks 7



3.1 The Network Formation Game 3 MODEL

1

2 3

4

Figure 4. Example graph G′.

The communication network confers benefits on agents by gaining them
access to the information of other agents. In the terminology of BG2000,
each agent is able to ‘observe’ the information of an agent they sponsor a
link to. Importantly, however, indirect ‘flows’ of information are allowed.
Hence, if (i → j) ≡ (gi,j = 1) then the graph where (a → b) and (b→ c) is
true implies that a can not only observe herself (by convention), they can
also observe b (by direct sponsorship) and c (by indirect information flow).
In the linear benefits specification of BG2000, followed in both FK2003 and
in the present paper, let each agent’s information be of value V ∈ R

+, and
let {µi(G) ∈ N | µi > 0} be the number of agents i observes, and further let
C ∈ R

+ be the cost associated with sponsoring one edge, and {δi(G) ∈ Z
+}

be the count of edges that i sponsors (that is, the degree of vertex i). Then
define each agent’s payoff function π : G 7→ R as

πi(G) = µi(G)V − δi(G)C . (1)

Further, let a strategy (decision-making rule) for an agent i in some
stage t ∈ {1, . . . , T} be a mapping St

i : G 7→ g, and denote the set of all
such rules S. Within such a stage, each agent will take part in a number
of rounds, enumerated by r ∈ {1, . . . , R}. And hence, an agent’s strategy
St

i will be current for all R rounds of some stage t. Indeed, we can define
a communication graph in period r as Gr(N, {gr

1 , . . . , g
r
n}), since it will be

constructed from each agent’s link sponsorship decisions, gr.
The timing of the game is simple in nature. In the first stage, each agent

simultaneously reveals their initial sponsorship decisions to form the first
round graph G1(N, g1). Given the resultant communication network, pay-
offs are awarded to each agent as in (1). After observing the structure of the
graph, each agent then applies their decision-making rule, S1

i : G1 7→ g2
i and

then reveals their new sponsorship decisions which forms the new round two
communication graph G2(N, g2), with payoffs again being awarded accord-
ingly, and so on. This process continues until R rounds have been played, at
which point, agents enter a new stage (stage 2) and the process is repeated
in full until stage T has been completed. Importantly, however, whilst the
retention of an edge sponsorship between rounds is costly (incurring C), the
severring of an edge between rounds is not (apart from the potential loss of
any information value that will result from the break).

S. Angus: Endogenous Communication Networks 8
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Figure 5. A 3-member graph equivalence set.

3.2 The Decision-making Rule S

In the present work,11 S is implemented so as to permit full inspection of
all decision-making processes at any time, and to model possible learning,
and/or, decision-making hypotheses. Hence, let S be of the form (for some
agent i), Si = {s(T1), . . . , s(Tk)} where T(n) = {T1, . . . ,Tk} is the set of all
minimal absentee graphs (types) for given n (to be explained below), and
s(·) : T 7→ g – the engine room of the decision-making process.

Suppose G is the set of all n-person graphs, then T ⊂ G is the set of all
non-equivalent graphs in G. Infact, all n-person graphs can be constructed
from T under a simple re-labelling of nodes. That is, T represents the
minimal set of non-equivalent structures, such that if we define a relabelling
operator R : G(N, g) 7→ G′′(N ′′, g) where N ′′ is simply a re-ordering of the
elements of N , then

{T | R : T 7→ T} , (3)

or in other terms,
{Rx(Ga) = Gb, ∀ Ga ∈ T} , (4)

where T indicates the compliment of T, Gb ∈ T, and R
x implies an applica-

tion of R(·) a finite number x ∈ N times. Taken together, (3) means that any
relabelling operation applied to some T ∈ T must result in an equivalent,
and therefore, un-represented graph in T, whilst (4) implies that any graph
in T can be reached (exactly) via a finite series of re-labelling operations to
some graph in G (but not already in T).

For example, Fig. 5 is the complete set of equivalent (under-relabelling)
3-node graphs of the form

{
G(N3, g̃) | g̃ = {(0, 1), (0, 1), (0, 0)}

}
. Conse-

quently, the set T (n = 3) must contain exactly one of these (the choice is
arbitary).

The importance of the minimal graph set T to the present work is the
following. First, we shall assume that each agent is able to recognise when

11It is to be noted that for BG2000, S has a single member, being the best-response
decision making rule, such that gr+1

i (for all i ∈ N) solves the profit maximisation problem,

max
gi ∈ g

ˆ

πi(gi ∩ gr
j )

˜

∀ j ∈ N/{i} (2)

Or, in the case of FK2003, S is none other than the decision-making rules that reside in
each subject’s mind (the locus of our inquiry).

S. Angus: Endogenous Communication Networks 9



3.2 The Decision-making Rule S 3 MODEL

two graphs are equivalent under re-labelling, as formulated in A. 1,

A. 1 (Type Recognition) Given k un-identical graphs

{
G1(N

n
1 , g), . . . , Gk(Nn

k , g)
}

differing only in the ordering of elements in Nn (e.g. N4
1 = {1, 2, 3, 4} and

N4
2 = {2, 3, 1, 4}), then any agent i ∈ N will recognise {G1, . . . , Gk} ≡ Tj,

where Tj ∈ T(n).

Such an assumption means that given any graph G(n), an agent will be able
to recognise which minimal graph type T she has infront of her.

Second, as S has been defined above, the agent must be able to decide
on an edge-sponsorship decision g that applies to the instance, that is, to the
graph G. For this reason, we shall make the second cognitive assumption as
below,

A. 2 (Context Invariance) Given any instance of an information net-
work G which corresponds to a minimal graph T , any agent i ∈ N is able to
apply the resultant edge sponsorship decision s(T ) to the context, and thus
arrive at gi that accords to the instance G before her.

The two assumptions given above may seem obvious since they accord
with what appears intuitive to any human faced with the network formation
game as described above. However, their adoption has important ramifica-
tion for the modelling of such network formation environments – principally
by resulting in a vastly reduced parameter space that an agent must cogni-
tively face, and thus, providing a tractible (an intuitive) method of modelling
such complicated decisions.

Finally, we can observe that for some agent i ∈ N , her decision mak-
ing process will only ever need to consider the graph G(N/{i}, g/{i}) since
first, adjacent edges – sponsored by another agent to i – do not increase
i’s observation set, and second, for any decision on some edge gi,j(j 6= i),
whether to set gi,j = (1 or 0), the state of the link in the previous period is
unimportant.12Hence, for the n-player game, each agent’s strategy vector S
need only prepare responses for the set T(n − 1). For example, if n = 4,
then the full set of graphs they need to respond to will be comprised of the
agents |N/{i}| = 3, and be drawn from the canonical set T(3) as shown in
Fig. 6.

12Consider, if gr
i,j = 0, then establishing a link will incur cost C, which is the same as if

gr
i,j = 1, whilst leaving the link un-sponsored has neutral cost impact, which is the same

as if gr
i,j = 1, as before, since under this specification, there is no added cost for severring

a link.

S. Angus: Endogenous Communication Networks 10
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Figure 6. Full set of minimal absentee graph types, T(3).

S. Angus: Endogenous Communication Networks 11
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Figure 7. Example decision process: (a) The original graph Gr; (b) the absentee graph,
or type graph Gr/{4} ≡ T7; and (c) the resultant graph, with 4’s decision incorporated

Gr/{4} ∪ gr+1

4 (assuming gr+1

j = gr
j ∀ j ∈ N/{i}).

3.2.1 Example Application of S

Consider a 4-player network formation game, and suppose that in some stage
and round, the current network is of the form Gr(N, gr), where gr

1 = (1, 0, 0),
gr
2 = (1, 0, 0), and gr

3 = (1, 0, 0), whilst gr
4 = (1, 0, 0) (Fig. 7(a)). Consider

agent 4 (currently sponsoring one link), they must form a decision response
to the absentee graph G/{4} (Fig. 7(b)). Now according to A.1, suppose
G/{i} is recognised as a member of type T7, and thus, suppose that she
considers her response to such a type (say, g∗4), and then by A. 2 judges that
this response implies the sponsorship decision g2

4 = (0, 0, 1) in the given
context (sponsor a link to 3, as in Fig. 7(c)).

We might summarise this process as,

Gr −→ Gr/4

A. 1
︸︷︷︸

−→ T7 −→ s(T7) −→ g∗4

A. 2
︸︷︷︸

−→ gr+1
4 . (5)

3.3 Properties of the Decision-making Rule S

Although formal in nature, such a process is directly equivalent to the in-
formal, ‘recognise the graph type, and make a response that fits the given
instance of that type.’ In this way, the process is intuitive and somewhat
obvious, but the reader will realise that such a decision-making process has
some pleasing properties.

First, as has been mentioned, the present implementation of S greatly
reduces the cognitive expectation on the model agents. It is trivial to show
that the total number of graphs that are possible for a given number of

agents is 2n(n−1) and 2
n(n−1)

2 for directed (one-way) and undirected graphs
respectively. Which, for example, under one-way information flow equates
to a total of 64 and 4096 directed graphs for n = 3, and n = 4 respectively.
However, in the present formulation, since we focus on the absentee graphs,
and then on equivalent classes of such graphs only, the total number of
distinct structures |T(n)| is 3 and 16 (the count of structures in Fig. 6) ac-
cordingly; a dramatic reduction in the complexity of the modelling problem.

S. Angus: Endogenous Communication Networks 12
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Figure 8. Count of distinct graphs in possible response sets: the full graph set G(n),
the absentee full set G(n− 1), and the minimal absentee set T(n− 1).

Thus, we have a strong reason to suppose that the present formulation
accords with what an average person could cognitively manage. Obviously,
some people will be able to recognise more structures than others, and the
numbers given should be treated as the upper-bound of what is required.
By way of example, if the full graph set were considered for n = 5, a total
of |G(5)| = 220 ' 1 × 106 graphs would feature, or reducing this to just the
absentee set, |G(n−1)| = |G(4)| = 212 = 4096, whilst by constraining this set
to just the minimal absentee graphs, that is |T(n−1)| = |T(4)| = 218, a four
order of magnitude reduction is achieved. Figure 8 shows these counts for
n = {2, . . . , 5}. Second, as is the intention of this model, the specification
of S in this way clearly allows for all manner of updating strategies. It
should be pointed out that the ‘best response’ function (see footnote above)
is accomodated in this framework – the best response is none other than the
solution to a profit maximization problem contingent on the absentee graph
as described above. However, in the present specification, by constructing S
in the current way, we allow for all kinds of response functions. For example,
strategies ‘always sponsor-none’,

s(Tk) = (0, . . . , 0) ∀ Tk ∈ T(n) ;

‘always sponsor-all’,

s(Tk) = (1, . . . , 1) ∀ Tk ∈ T(n) ;

and various strategies in between (e.g. ‘uniform random’:

s(Tk) = (a, . . . , a) ∀ Tk ∈ T(n) ,

S. Angus: Endogenous Communication Networks 13
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where E[a] = 1
2) are all possible. Thus we have a truly rich environment,

whereby via inoculation, or some other process (e.g. learning, see below),
diverse agents can be modelled and interact.

3.4 Learning & the Decision-rule S

It is clear from the experimental work of FK2003 that subjects engaged in
this non-cooperative decision problem undergo a process of learning through-
out the stages of the game (as indicated by the positive gradient to Nash
networks as reported in their paper, see Fig. 3). This kind of activity is
natural in such a complicated setting since it employs largely foreign terms
of reference (subjects would rarely play, or be aware that they are playing,
such a game) and so, the game itself provides a forum whereby ‘good’ plays
are revealed to agents over time.

Whilst it is noted that BG2000 (for example) were largely interested in
the equilibrium (long-run) outcome of the non-cooperative network forma-
tion process, the interest of this paper is on how networks that are realised
by human decision making come about. Hence, it is incumbent on the mod-
eller that some attempt at learning is made.13 Therefore, in the present
framework we allow agents to learn from other agents in the following man-
ner.

In the first stage (phase, t = 1), agents are endowed with some decision
rule (e.g. random allocation as described in the foregoing paragraph), which
they employ for all rounds (for all r = {1, . . . , R}) in that stage. At the
end of this stage, a measure of the successfulness of each agent strategy is
applied (e.g. π = 1

R

∑R
r=1 πr) and used to rank each agent’s performance.

The highest ranked agent (or agents, if more than one agent shares the
highest rank) shall then be called ‘teachers’, and the remainder of the agents
(assuming a non-empty remainder set) the ‘students’. The learning phase
then ensues, with each student taking on a public part of a teacher’s strategy
(chosen equiprobably if more than one). That is, since not all graph types
will necessarily be observed during a stage, each student has access to only
those responses actually employed in the stage. This process occurs (with
replacement of the teacher) until all students have been considered.

It is to be noted that so far, although agents might enter the model
with a diversity of decision-making rules, if the model only ever allows for
imitation within those rules, then long-run behaviour will be drawn only
form the support of the initial rule distribution. Clearly, subjects are prone
to discover new ways of solving the network formation problem that are

13It is to be noted that BG2000’s solution process (best-response updating with inertia)
might be construed as a type of ‘learning’ process, but infact, the device employed provides
an excellent search method for finding the Nash outcome (as it does in each information
flow case), but does not, as explained earlier mimic the way that real agents come to terms
with the network formation problem.
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(a) (b)

Figure 9. Learning example graphs: (a) T1; and (b) T5

drawn from outside of their counterparts’ rules. Therefore (and as is natural
in modelling such artificial adaptive agents for precisely this reason), during
the learning phase, let m(S, e) where m : S × [0, 1] 7→ S be a mistake-
making or ‘innovation’ filter which is applied such that each agents’ graph-
type response decisions are reversed with vanishing probability (e ' 0.01)
(e.g. from ‘sponsor this link’, to ‘do not sponsor this link’). In the present
model, m() is applied to any student’s learnt behaviours.14

3.4.1 Example of the Learning Process

Suppose two agents a and b with strategies Sa and Sb respectively have
played the 4-player network formation game for R periods, and a ranking
measure

πi =
1

R

R∑

r=1

πr
i , i = {a, b} (6)

has been applied with outcome πa > πb .Then further suppose that a has
responded to just two minimal absentee graphs in the previous stage (her
public or observable plays), T1 and T5 (as shown in Fig 9) and in each
case, her strategy response has been sa(T1) = (1, 1, 1) and sa(T5) = (0, 0, 1)
respectively. Learning then proceeds as follows: first, as a result of the
imitative part of the learning process,

‖sb(T1) sb(T5)‖ = ‖sa(T1) sa(T5)‖

where ‖ . . . ‖ indicates that a contiguous sub-vector of the horizontally con-
catenated public/observed plays is learnt; and second, the innovation filter
is applied to the learning agent’s decision-making rule, m(Sb, 0.01).

For example, this might have the outcome for b that

Sb =
{
(1, 1,

↓

0), . . . , sb(T4), (0, 0, 1), sb(T6), . . . , sb(Tk)
}

;

14The qualitatitive naming given to such a filter is somewhat arbitary. Importantly,
what m() brings is the capacity for a broader solution-space than was present initially
to be searched by the agents, and thus, they are able to realise solutions not previously
known to them, or even known in-part to a member of their playing group.
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a a

(a)

b b

(b)

Figure 10. Outcome of learning process ([—] absentee graph edges, [· · · ] agent re-
sponses): agent b (b,left) learns a’s (a,left) response to the graph T0 imperfectly; but

agent b (b,right) successfully imitates a’s (a,right) response to graph type T5.

in this example, b has learnt from a by imitation, but has made a single
mistake in this imitation which has caused the generation of an altogether
new decision-making rule over the two structures (summarised in Fig. 10).

3.5 Summary of Model

The present model aims to incorporate reasonable assumptions of human
decision-making to investigate and explain the analytic claims and experi-
mental observations of agents in a particular non-cooperative network for-
mation problem. To do this, agents are given a strategy of action S that
equips them to respond to the network-formation decisions of others through
the assumead ability to recognise the type of network before them (T ). As
the game progresses, agents who are initially endowed with a mixture of
‘good’ and ‘poor’ plays, as measured in action by some objective function,
will observe the plays of their counterparts and mimic successful strategies
at least in part. Further, between rounds, agents are able to update their
own decision-making rules unilaterally through a process of low-level search
of the decision space (S).

4 Implementation

4.1 The Main Procedure

In order that the results from the present model could be compared effec-
tively with those of FK2003, the subject-oriented experimental design was
matched as closely as possible.15 The total population of ‘subjects’ was spilt
into a number of mixing groups (count Mgrps), so-called since over the sub-
sequent phases, the experimental group (count Xgrps)that an agent will be
allocated to (to play the n-player network formation game) will be drawn
only from members of her mixing group. Hence, the mixing group will share
‘playing information’ over time with other members within the group, but
not, therefore, with members outside of this group.

15Refer to Algorithm 1.
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At the beginning of a modelling run, each sponsorship decision in the
decision-making rule S is set (via rand) to an equiprobably (sponsor)/(not-
sponsor) element for all players,

s(Tk) = (a, . . . , a) ∀ Tk ∈ T(n) ,

where

E[a] =
1

2
,

and at the beginning of each network-formation game (r = 0), the graph is
formed from each agent’s first sponsorship action vector s(T0). Thereafter,
the network is defined by the round-wise application of each agent’s decision
making rule as described above.

Additionally, a sub-routine (Gtypes) is invoked to find the identity,
and total number, of minimal type graphs that are possible for a given
n. The outcome of this procedure defines the number of distinct graphs
that an agent will have to respond to (in their decision-making rule S) and
also provides the necessary information to carry out the recognition- and
application- steps in the subsequent round-based play.

After allocation of agents first, into their mixing groups, and then at the
beginning of a stage into their actual experimental groups (count n), each
experimental group is addressed in turn, with a total of R rounds being
played. Here, as described in the model above, agents respond to the current
minimal absentee graph (T ) as it appears to them from the present full
graph (G), subsequently receiving some measure of succesffulness (via obj).
Additionally, the sponsorship decisions played by each agent are recorded as
‘public’ (since they are now revealed) and can then be imitated in the later
learning phase, and various graph-properties are also recorded (via Gstats).

After all rounds for an experimental group have been played, summary
objective measures are compiled (here, via mean), and agents are desig-
nated to be either students or teachers (via rank), with the students copy-
ing something of the public plays of the teachers as revealed through the
fore-going rounds (via Learn). This process continues for all experimental
groups, and all stages, ending the modelling procedure.

4.2 Sub-Procedures

4.2.1 Identifying Minimal Types, Gtypes(.)

A procedure for identifying unique graph types, equivalent under re-labelling,
was constructed in a two part process.16 In the first case, each agent’s feasi-
ble sponsorship strategies were counted and encoded, with all possible n−1
combinations with repeats enumerated. However, due to the presence of
symmetries in the strategic plays, a second process was required to find

16Refer to Algorithm 2.
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which of these graphs were actually equivalent under relabelling. To do
this, a relabelling matrix was constructed and sequentially applied to each
possible basic graph, with the outcome structures (aliases) being encoded
and stored. A simple comparison could then be made of the alias ‘finger-
prints’ for each of the possible type structures, with duplicates subsequently
removed.

This two-step process, although somewhat exhaustive, does not give rise
to large time-delays in modelling since it need only be carried out once.

4.2.2 Agent Performance, Obj(.)

Measuring agent performance has a two-fold interpretation in the implemen-
tation of the network formation game.17 First, it provides the mechanism of
incentives for agents to play (and solve) the network formation game, and
thus gives rise to efficient or Nash play. However, secondly, since we are
attempting to also model a method of agent learning, this measure will de-
termine what strategy decisions are imitated by others in subsequent phases
of play. Here, we shall consider two methods of agent performance measure-
ment.

The first and most obvious choice is the net payoff to each agent, as
conferred by the communication network itself and is simply calculated for
a round by (1) and for a whole stage by (6).

However, it is possible that subjects do not rely on payoffs alone in de-
termining outcomes. For example, consider the graphs presented in Fig. 11.
For agent a, it is trivial to calculate πa under (1) (denoting graph (a) L, and
(b) R),

πa(L) = 4V − 3C;

πa(R) = 3V − C;

which are equal for V = 2C (a specific case studied in FK2003). It is rea-
sonable to assume that the situation on the right (b) displays a better use of
existing edge sponsorships for a out of the two, and would thus be more likely
to receive imitative behaviour. It is relatively straight forward to note that
infact, the non-cooperative network formation game actually gives rise to
an externality generating environment. Principally due to the assumption
of information flows (sharing) between agents, each agent’s edge sponsor-
ships do not just have an effect on their own information observations, but
actually provide an information gathering structure for other agents.

Thus, we develop a measure of agent efficiency as an alternative objective
measure. In line with the above observations, the measure should capture
the degree to which an agent has been able to exploit any externalities
in the graph structure. Intuitively, a simple ratio of obervations (µ) and

17Refer to Algorithm 3.
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a

(a)

a

(b)

Figure 11. Graphs L (a) and R (b) giving rise to equal net payoffs for agent a.

a

(a)

a

(b)

a

(c)

Figure 12. Efficiency measure example networks (n = 4): (a) minimum; (b) maxi-
mum (one-way flows); and (c) maximum (two-way flows). Agent sponorship strategy
represented by dotted lines. NB: in (c), (following BG2000), sponsorship is indicated

by small dot on edge sponsored by closest agent.

agent-degree (δ) ought provide such a measure. However, the convention of
self-observation (µ = 1) with zero link-sponsorship (δ = 0) must be taken
into account, thus we form the following measure,

fi(µi, δi) =
µiV + C

C(δi + 1)
, (7)

which has several pleasing properties. First, as desired, fµ > 0 and fδ < 0,
but moreover, by rearranging, we have,

fi(µi, δi) =

(
1

δ + 1

)[(
V

C

)

µ + 1

]

,

which indicates that the ratio of observation benefits and edge sponsorship
costs V/C weights the relative importance of the number of observations,
versus the number of sponsorships. Hence, when V/C is large (i.e. low cost-
regime), information observed is favoured, and numbers of edges sponsored
is not, whereas in the alternate cast when V/C is small (i.e. high cost-
regime), edge-sponsorships become more ‘costly’, having a greater relative
effect on efficiency. Hence, although the measure captures the main interest
by rewarding externality exploiting strategies, it also retains a connection
to the actual cost of edge-sponsorship.

By way of example, and to normalize f on [0, 1] the maximum and
minimum strategies can be identified by considering the best- and worst-
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case externality scenario in each of the one- and two- way conditions. In the
one-way case, the worst-case scenario is any strategy in which µi = n and
δi = (n − 1) (sponsor-all); such a case can be seen in Fig. 12(a). The best-
case efficiency for an agent in the one-way case with low edge sponsorship
costs is when they get the highest externality for their strategy, which can
be easily verified to be where µi = n and µi = 1; this situation is shown
in Fig. 12(b). However, it can be shown18 that in the one-way case, the
optimal efficiency depends on the relation C ≷ V (n − 2) and that in fact,
if C > V (n − 2), then the maximal efficiency for an agent is obtained by
sponsoring no links at all. That is, the return to sponsoring one link, even
if it returns full information, is lower than the cost of sponsoring that link.
Clearly, this is a natural phenomena and will have important ramifications
in modelling.

Table 3. Efficiency measure f(µi, δi) for all feasible combinations of
µi and δi with n = 4. One- and two- way information flows indicated

by → and ↔ respectively.

C = 5 C = 25
µi δi → ↔ → ↔

1 0 0.33 0.11 1.00 0.38
2 0 - 0.41 - 0.59
3 0 - 0.74 - 0.80
4 0 - 1.00 - 1.00

2 1 0.11 0.04 0.33 0.13
3 1 0.56 0.19 0.60 0.23
4 1 1.00 0.33 0.87 0.33

3 2 0.04 0.01 0.11 0.04
4 2 0.33 0.11 0.29 0.11

4 3 0.00 0.00 0.00 0.00

In the two-way case, although the minimum is unchanged, the best-case
strategy becomes ‘sponsor-none’ (as shown in Fig. 12(c)), since it is possible
to obtain full-information and yet provide no support for the information
network. This is akin to a truly non-cooperative (‘defect’) strategy since
all benefits are retained, with costs born by others. The full results for

18We ask, is it possible that sponsoring no links, i.e. gaining f(1, 0), could ever be
greater than the externality exploiting strategy that yields f(n, 1),

f(1, 0) ≥ f(n, 1) ,

V + C

C
≥

nV + C

2C
,

C∗ ≥ V (n − 2) .
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normalized efficiencies calculated by (7) under n = 4 and information flow
of both types is given in Table 3 for comparison. It can be seen that subtle
changes in preference ordering do occuring within columns due to the cost
of link sponsorship; ultimately these will be reflected in learning outcomes
when f(µ, δ) is the objective measure.

4.2.3 Graph Analysis, Gstats(.)

Of interest in the network formation game is the type of structure that
the agents construct (calculated by Gstats in Alg. 4, line 15). Table 1
summarises the graph qualities that are of interest under each formulation
of the network formation game, as given by BG2000.19 Tests for these
structures were implemented with the following criteria:

m1c(.) In FK2003, one-way minimally connected graphs are defined to be
where, ‘all individuals are connected with each other and the removal
of any direct link destroys this property.’ (p.6) The following criteria
was therefore used:

1. µi = n, ∀ i ∈ N ; and

2. Define the in-degree and out-degree of a node i to be di
in and

di
out respectively, then for all {gi,j = 1} ∈ G either (di

out = 1) or

(dj
in = 1).

wheel(.) Here, the criteria for m1c is true, and in addition, there does
not exist two edges gi,j = 1 and gj,i = 1 for (i 6= j) ∈ N (no two edges
directly link the same nodes).

empty(.) Trivially, the cardinality of the set {gi,j : gi,j = 1, ∀ (i 6= j) ∈
N} must be zero.

m2c(.) Three criteria apply:

1. µi = n, ∀ i ∈ N ;

2. There exists no sequence a → b → . . . → a for information flows
(that is, no cycles of at least 3 members);20 and

3. There does not exist two sponsorships gi,j = 1 and gj,i = 1 for
(i 6= j) ∈ N (no two agents sponsor a direct link to each other).

cs star(.) The center-sponsored star requires that there be exactly one
central agent (sponsoring exactly n− 1 edges),

∣
∣{i : δi = n− 1, ∀ i ∈ N}

∣
∣ = 1 ,

19For proofs of these structures under each condition, the reader is referred to BG2000.
20To test for cycles, the fast algorithm of Tiernan (1970) was utilised.
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St =
(

s(T1), . . . ,

section to be
imitated

︷ ︸︸ ︷

000, 110, 001, 101, . . . , s(Tk)
)

Ss =
(

s(T1), . . . , 011, 010, 011, 001, . . . , s(Tk)
)

⇓

S∗s =
(

s(T1), . . . , 000, 111, 001, 001, . . . , s(Tk)
)

Figure 13. Example of a teacher-student learning process where n = 4 (thus each
s(T ) comprises a sponsor-decision over n− 1 = 3 edges; {0, 1} represent ‘not-sponsor’

and ‘sponsor’ respectively; 1 indicates a mistake.

and that this agent (say, i∗) is the only agent with a non-zero sponsor-
set:

δj = 0 ∀ j ∈ N/{i∗} .

4.2.4 Agent Learning, Learn(.)

The present modelling prescription allows for simple treatment of learning.21

Each agent retains a vector of sponsorship-decisions towards the n−1 other
agents for the total number of minimal absentee graph types they might face
(as enumerated by gtypes). Futher, since we assume that agents are able to
both recognise graph types (from the current instance) and then apply (via
manipulation) their chosen response to the instance, inter-agent imitation
is quite easily handled by simply reading a teacher’s response vector and
writing it to the appropriate section of the student’s response vector (see
Fig. 13).

The only additional treatment is given by a mistake-making process,
applied with vanishing probability to each learnt decision, allowing agents
to innovate, or mistake-make, their way to possible ways of playing not
present in the original strategy space.22

21Refer to Algorithm 5.
22The present methodology might be recognised as a modifid genetic algorithm process,

however, in this case, the traditional crossover operator is not a bi-genetic operation, but
rather a single-direction transfer from teacher to student.
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Figure 14. One-way information flows: (left) frequency of the ‘wheel’ (cycle) graph;
and (right) mean agent degree. Cost of link sponsorship as indicated by C; and lines

(C, objective measure): — (5,π); · · · (5,f); −− (25,π); and − · − (25,f).

5 Results & Discussion

5.1 Objective Measures & Learning

Initially, the one-way information flow case was analysed over a range of
parameterisations.23 Specifically, both high- and low- edge sponsorship costs
were considered together with the two objective measures as given above in
(1) and (7). Results for these experiments are given in Fig. 14.

As can be seen, both objective measures gave apparently good learning
dynamics across stages in low-cost conditions, but the opposite is true of
the high-cost regime. The average agent degree plot is revealing, indicating
that as expected, in the high cost regime agents quickly chose to sponsor
few, if any edges, whereas in the low cost regime, a distinction is apparent.
The payoff objective (top) gave far more stable edge sponsorship strategies,
whereas the efficiency measure, although producing mean agent degree of
around 1 for much of the middle section, continues to fall, and finishes below
0.7; a trend reflected in the late dip in the f(cycle) trace.

Although promising – agents are able to learn from each other towards
realistic outcomes in some cases as observed in the laboratory – the model
fails for the high-cost regime, and at least one objective measure is appar-
ently brittle under even the better performing low-cost regime. Clearly the
human trials indicate that despite the inherent risks to agents sponsoring
links at high cost, this is exactly what happens, and more-over, is the learnt

23Results given for 10 independant trials, each comprising of 40 agents, split into 10
mixing groups of 4 for each stage play, over 100 stages, playing a 20 round network
formation game. Experiment parameters as follows: V = 10, mi = 0.050, mf = 0.005,
others given in caption to Fig. 14.
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Figure 15. Combined (reciprocity,efficiency) objective measure used to determine learn-
ing outcomes. NB: line at δ = 1.0 given to guide the eye only.

outcome across phases (in FK2003, average agent degree for one-way flows
and C = 25 was 0.76).

5.2 Reciprocity & Cooperation

To address this problem, a further learning measure was introduced that
gave part- or whole- priority to agents who showed a kind of ‘cooperative’
behaviour (network building despite risks). Specifically we suppose that for
each revealed sponsorship decision within a round, agents are assigned a
kind of ‘reciprocity’ measure ri as follows,

ri =







0 for δin = {0, 1}, δout = 0 ,

1 for δin = 1, δout = 1 ,

2 for δin = 0, δout = 1 ,

(8)

where δin and δout are an agent’s in- and out- degree respectively. For each
agent over R rounds, the mean value of r is calculated and contributes to
the overall success measure used to determine ‘teachers’ and ‘students’ by
simple convex combination,

Ωi = α〈ri〉+ (1− α){〈πi〉, 〈fi〉} (9)

where α ∈ [0, 1], and 〈·〉 indicates arithmetic mean.
Figure 15 gives f(cycle) for a 50 stage run of the high-cost regime (C =

25) using (9) with the efficiency measure (since it provided more stable
results in the first experiment) and α ∈ {0.00, 0.35, 0.65, 1.00}.24 Values for
α of 0.00 and 0.35 appear to do little to change the overall down-ward trend

24Experiment parameters as per previous experiment, with T = 50.
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Figure 16. One-way information flows under combined objective measure conditions:
(left) frequency of the ‘wheel’ (cycle) graph; and (right) mean agent degree. Cost of
link sponsorship as indicated by C; and lines (C, objective measure): — (5,π); · · ·

(5,f); −− (25,π); and − · − (25,f).

in edge sponsorship, however, a non-linear movement for α ≥ 0.65 yields the
desired result. Taking this new combination objective measure (α = 0.7) to
a longer study gives rise to more realistic learning and behavioural outcomes
(see Fig. 16). In three of the four cases (both measures under C = 5, and for
efficiencies under C = 25), agents reduce average edge-sponsorship numbers
towards 1.0 or above, with resultant strategic outcomes also displayed in
relatively good f(cycle) growth over time.

5.3 Learning Dynamics

To study the dynamics of the learning process for comparison with the
subject data, two long-run experiments were conducted. In the first, the
conditions as determined above were implemented as is: one-way flow, low-
and high- costs of edge sponsorship. In the second, the two-way information
flow condition is introduced for the first time, to see if the seemingly realistic
conditions chosen above are applicable to replicate the poor subject results
of the two-way flow game.

For ease of comparison with FK2003, the long-run studies are split into
meta-stages so that both play within and between learning junctions can be
compared.25 To this end, in each bar-chart that follows, the 200 explicit
model stages were grouped under 5 meta-stages,

t = (1, . . . , 50), . . . , (151, . . . , 200)

and within each of these, average data for play within specific rounds were

25Experiment parameters as given in footnote 23, with T = 200, combined (reciprocity–
efficiency) objective measure used (α = 0.70).
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Figure 17. Meta-stage bar-charts showing learning dynamic within and between learn-
ing blocks (explained in text). Top: C = 5; bottom: C = 25.

also split into 5 groups (that is, r = (1, . . . , 5), . . . , (16, 20)). The outcome
for the one-way case is very interesting (see Fig. 17), with improvements
clearly visible both within and between phases. This phenomena is exactly
as observed in the FK2003 subject trials; the authors hypothesised that in
the early rounds of a stage (recall: groups are re-formed between stages),
mis-coordination occurs due to the unfamiliarity with the playing partners,
but this goes away over time.

Given the seemingly strong correlation between average degree and propen-
sity of groups to find Nash structures, it could be hypothesised that the
strong learning results between stages and improvement dynamic within
stages are simply the result of random occurence aided by players lessening
the number of edges that they sponsor. To test this hypothesis, the same
data treatment is performed on mean agent degree for the one-way case (see
right of Fig. 17). As can be seen, although there is a slight reduction of
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Figure 18. Learning within and between meta-stages in the two-way information case,
C = 5; frequency of centre-sponsored star (left) and average agent degree (right).

average edge sponsorships over the 5 meta-stages which may indeed account
for some of the overall learning dynamic between stages, within each stage,
there appears to be a vanishingly small difference in agent edge sponsorship
numbers, whereas the probability of finding the Strict Nash structure (in
this case, the cycle-graph) grows markedly. Hence, we can conclude that
the apparent improvement dynamic within stages of the artificial agents is
not by chance alone under lower edge sponsorships, and is very likely due
to strategic learning as modelled.

Interestingly, the higher edge-sponsorship regime (bottom charts Fig 17)
do not reveal a similar improvement to Strict Nash play as was evident with
human subjects. However, it is quite possible that a stronger form (higher
α) of learning esteem for playing partners who play cooperatively (support
edges even if others aren’t) is needed in the C = 25 case to replicate human
decision-making under these conditions. From the previous discussion and
analysis above, it is clear that use of the efficiency measure (as opposed to
straight payoffs) and the reciprocity component are necessary conditions to
prevent the kind of mean edge sponsorship decline that can occur.

Turning to the two-way information flow case, it is interesting to see
if the present specification of learning modelled on the one-way outcomes
gives rise to problematic play in the two-way case, as was the result in human
trials. Figure 18 certainly seems to suggest this. The figure gives results for
the low-cost regime, showing the difficulty that agents had with finding the
efficient outcome which is likely a reflection of the efficiency measures given
to each strategy outcome as presented previously in Table 3; the ‘sponsor-
none’ regime is simply far too attractive, although it is self-defeating for
all concerned. Indeed, for the high-cost regime, not a single efficient graph
(centre-sponsored star) was arrived at, as was found in the human trials.
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Hence, we find that the present results with artificial agents are very close
to that of the human subjects.

5.4 Graph Outcomes, a Closer Look

Given the findings above, that the artificial agents behave in a similar man-
ner to human subjects when they jointly learn efficient and quasi-cooperative
play, it is of interest to study what strategies are being played the rest of the
time; that is, during the rounds were efficient play is not observed. To this
end, all network outcomes for every playing group in every round were first
Gray-coded26 and then a frequency distribution of the resultant Graph IDs
was generated, grouping the graphs of the last (r = R) round in each case
within 10 distinct ’meta-stages’ – representing a grouping of 20 individual
stages together (there were 200 individual stages in each trial). Recall that
learning occurs between stages, hence, by grouping in this way, the relative
abundance of different graph types throughout aggregate learning stages can
be determined.

Figure 19 shows the outcome of this analysis for the one-way information
flow cases, with the low- and high- cost regime represented at the top and
bottom of the figure respectively. In both cases, the narrowing in on just
a few graph types (or close to these types) can be seen, with the Strict
Nash outcomes – the cycle case, for one-way flow) – represented by vertical
white lines giving a very good prediction of learning outcomes. (Recall, that
by the Gray-coding procedure, graphs that differ by just one bit, i.e. one
sponsorship decision between two nodes, will lie next to each other in the
encoded Graph ID space.) It is to be noted that in the high-cost regime, for
one-way flow, an additional Strict Nash outcome – that of the empty graph
(Graph ID = 0) – becomes prevalent (indicated by the arrow in the bottom
plot).

In the top plot, three prominent and persistent peaks are identified by
markers (a-c) with arrows. A closer inspection of these areas indicate that
just three graph IDs are responsible, namely, IDs 924, 1820 and 3614. These
structures are represented in Fig. 20). Interestingly, whilst the third case
(ID 3814) appears to be a pre-curser to the cycle graph, requiring just D
to correct their play (sponsoring the link D → A, the first two graphs (IDs
924 and 1820), which are actually analogs of one another (under relabelling)
have the potential for cyclic behaviour. Taking case ID 1820 for example,
notice that the present information sets for each of A and D are {A,B,C}
and {D,B,C} respectively, and so, if B and C were to play a best-response
with the restriction that they only sponsor one link, they would sponsor links

26So named after Frank Gray, patenter of the encoding technique. From Press et al.
(2002), ‘A Gray code is a function G(i) of the integers i, that for each integer N ≥ 0
is one-to-one for 0 ≤ i ≤ 2N − 1, and that has the following remarkable property: The
binary representation of G(i) and G(i + 1) differ in exactly one bit.’ (emphasis retained)
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Figure 19. Relative frequencies of Gray-coded graph IDs in the one-way information
flow case. Each Meta-stage represents the aggregate data taken from the last round
in each of 20 grouped stages (e.g. the first meta-stage comprises t = {1, . . . , 20}.
Lighter shading indicates higher relative frequency. Vertical lines represent Strict Nash

outcomes in each case. Other features explained in text.
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Figure 20. Alternate persistent graph IDs (Gray-coded) observed during one-way in-
formation flow at both high- and low- edge sponsorship costs (see Fig. 19.

to A and D respectively. Whilst on A and D would sponsor links to each
other, and thus expect to gain full-information. However, the graph that
would result would be exactly the same conformation as ID 1820 under re-
labelling. Hence, if each player plays without inertia27 then an infinite cycle
would result. Indeed, upon closer inspection of the relative frequency plot
at ID 520 (the resultant Gray-coded graph ID), a small peak is discernable,
though not with nearly the same intensity as the former structure.

In the case of two-way information flows and low the outcome is stark,
with the vertical lines falling in areas associated without spectrum mass.
Even in the detailed section (IDs 0-100) shown in the bottom plot, where
relative frequencies are amplified, the strict-nash structures are not arrived
at, with the first structure (at ID 4) the only one with some interest. In
the top plot, three prominent and persistent structures are identified and
marked by arrows (a-c). Upon closer inspection of these areas, it was found
that 5 graphs contributed to the peaks: 511, (1008,1009), and (2032,2033).
These structures are shown in Fig. 22.

As before, the propensity for cyclic behaviour is again visible, with graph
ID 511 a possible pair with IDs 1008 and 1009 (although in these cases, not
in terms of best-response play). Recall that in the two-way case, information
can be gained ‘passively’, that is, by simply receiving the information flows
that arrive as a result of a partner agent’s edge sponsorship. On the whole
however, the collection of prominent graphs, other than displaying low edge-
sponsorship, do not appear to yield to similar intuitive explanation as in the
one-way case. This is consistent with the lack of strong learning behaviour
in this case however, and it is quite likely that these graphs are prominent
purely as low-edge sponsorship cases alone, rather than representing clear
strategic play.

27i.e. gt+1
i 6= gt

i ∀ i ∈ N .

S. Angus: Endogenous Communication Networks 30



5.4 Graph Outcomes, a Closer Look 5 RESULTS & DISCUSSION

500 1000 1500 2000 2500 3000 3500 4000
1

2

3

4

5

6

7

8

9

10

Graph ID (gray−coded)

M
et

a−
st

ag
e

(a) (b) (c)

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

10

Graph ID (gray−coded)

M
et

a−
st

ag
e

Figure 21. Relative frequencies of Gray-coded graph IDs in the two-way information
flow case: (top) the full spectrum; and (bottom) detail from graph ID region 0-100,
note that relative frequencies are greatly amplified in the lower plot due to the smaller
sample range. In both plots, C = 5; vertical white lines indicate the position of strict-
Nash structures (centre-sponsored star type). Other features and notes to construction

explained in caption to Fig. 19.
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Figure 22. Alternate persistent graph IDs (Gray-coded) observed during two-way in-
formation flow at low edge sponsorship costs (see Fig. 21).

5.5 Inertia: Best Response, Equality & Emergence

FK2003 found that where an agent played the same strategy in the present
round as in the previous round, i.e. displaying strategic inertia, there was
a significant explanatory effect of payoff equality in the preceeding round
(controlling for the previous play being a best-response play). In other
words, an agent who found their payoff different to other player’s payoffs
in the previous period would be more likely to change their strategy in the
current period.28 For the purposes of the present study, agent inequality
(following Fehr and Schmidt (1999), in FK2003) is defined as follows,

ei =
∑

j

|πi − πj| , (10)

for all j 6= i; the sum of absolute differences between an agent and all other
players in the game.

To investigate this correlation, a plot of strategic inertia frequency versus
learning stage was prepared (see left of Fig. 23), together with a plot of the
same versus measured agent inequality (see right of Fig. 23).29

Taken together, in the one-way information case, there does appear to
be a good correlation between inertia and inequality, with both experiments
finishing towards the top-left quadrant of the plot (low inequality, high in-
ertia). However, from the plot on the left, it is clear that this correlation
is an emergent property of the system, being significantly affected by the

28Note that this is not the same as asking whether or not an agent chose to update their
strategy or not since they could possibly playing the same strategy as the previous round,
and hence would not display strategic inertia.

29Data represents mean measures over all trials and rounds {2, . . . , R}, NB: lines are
smoothed (10 points) for clarity.
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Figure 23. Strategic inertia frequency. (Left) for each learning stage, one-way infor-
mation flows; and (right) for mean agent inequality measures, (N) indicates the final
experiment stage; both one- (solid) and two- (dashed) way information flow cases are

plotted.

successive learning stages, rather than seeming to be foundational for the
rise of Nash play (compare Fig. 17). In the two-way case the results are
similar, whilst it is clear that the connection between inertia and inequality
is more complicated, with the low cost case showing severe non-linearities in
its system trajectory, however, it can be seen that from the initial condition
through to the end of the experiment (in each cost-scenario), the level of
inertia moves positively with time, and is not necessarily connected to in-
equality in all cases. Hence we might conclude that the present experiments
urge caution in attributing human subject solution techniques to social pref-
erences such as equality of payoffs, and instead note that such preferences
are a feasible emergent property of the learning environment, in this case
through the accumulation of efficient and/or cooperative/reciprocal plays.

6 Conclusions

Whilst much is still to be understood in terms of how individuals go about
solving complex problems such as the communication network formation
problem studied in this contribution, the present analysis offers several in-
sights. First, by applying a novel graph-equivalence criterion and mapping
technique, we have shown that the apparently vast and seemingly unfeasible
strategy space can be modelled with artificial adaptive agents in an intu-
itive manner. Whilst this approach is likely useful for n . 10, it is in this
region that the problem retains strategic interest given the limits of human
functionality.

Second, we have observed that simple payoff learning optimization does
not give rise to realistic behaviour since agents are apparently more willing

S. Angus: Endogenous Communication Networks 33



REFERENCES REFERENCES

to venture edge sponsorships than ‘good’ strategy would dictate. Instead,
a mixture of a kind of strategic efficiency and agent-to-agent reciprocity
appears a reasonable fit to observeed experimental behaviour. However, as
is apparent with human subjects, such activity does very poorly in the two-
way information environment with not only the payoff optimal play, but
also the seemingly efficient play being to severely limit the number of edges
sponsored, resulting in poor Nash or Stric Nash equilibria statistics.

Finally, the link between previous payoff equality and strategic inertia
was investigated, appearing to be less of a causal relationship, than an emer-
gent phenomena due to the learning process as previously above. Although,
the FK2003 considerations concerning social-preferences could well be ex-
pressed through the learning dynamic (via the reciprocity measure) rather
than at the point of round-based play itself.
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Algorithm 1 Pseudo-code for the main program.
1: procedure main

2: Xgrps←Mgrps×XperM ; . Total experiment groups

3: N ← Xgrps× n; . Total agents in model

4: T, nT ← Gtypes(n);

5: S[0]← rand(N, (n− 1)× nT );

6: allocate agents into Mgrps mixing groups;

7: for t← 1 . . . T do . For all stages

8: form experimental groups (exp groups);

9: for ex← 1 . . .Xgrps do . For all exp. groups

10: G← empty; P [ex]← [ ];

11: for r← 1 . . . R do . For all rounds

12: G← g∗ ← S(T (G)); . Apply strategy rules S

13: P [ex]← P [ex] ∩ g∗ . Record public strats

14: O[r] ← Obj(G);

15: st[r]← Gstats(G, C, V, dirF );

16: end for

17: calculate and store summary graph stats;

18: O∗ ← mean(O); . Summary objectives

19: rnk ← rank(O∗) . Rank agents in exp. group

20: S[t]← Learn(ex, S[t− 1], rnk, P );

21: end for

22: end for

23: end procedure

S. Angus: Endogenous Communication Networks 36



REFERENCES REFERENCES

Algorithm 2 Procedure for enumerating T

1: procedure Gtypes(n)

... First get all distinct sponsorship graphs

2: a← n− 2; . Agents to link to

3: n sp← 2a; . No. of distinct strategies

4: T ← (1, . . . , nsp); . The first agent

5: for c← 1, . . . , a do . For subsequent agents

6: t← [ ];

7: r ← 0;

8: l ← rows(T);

9: for i← 1, . . . , l do . For each previous situation

10: for j ← max(s(i,:)), . . . , n sp do . For each distinct strategy

11: r ← r + 1;

12: t(r, .)← [s(i, :) j];

13: T ← t;

14: nT ← rows(T );

... Now purge the list of equivalent graphs due to symmetry

15: R← perms(n− 1); . Node relabelling options

16: for i← 1, . . . , nT do

17: g id← [ ];

18: for all lbl ∈ R do . For each labelling

19: g id← [g id relabel(T (i, :), lbl)];

20: G(i, :)← g id; . Store the alias graphs

21: Gvec←row2integer(G); . Convert each set to unique identifier

22: u i←unique(Gvec);

23: T ← T (u i) . Take only unique types

24: nT ← rows(T );

25: return T, nT

26: end procedure
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Algorithm 3 Pseudo-code for Objective measure procedure

1: procedure Obj(G, C, V, pF )

2: D[1 . . . n][1 . . . n]← min path(G)

3: for all i← 1 . . . n do

4: µ[i]← 1 +
∣
∣{j : D[i][j] 6=∞, ∀ j 6= i}

∣
∣; . Count(nodes observed)

5: δ[i]← sum(GT ) . Node degree

6: end for

7: if pF = 1 then . Payoffs

8: π ← µ ∗ V − δ ∗ C;

9: return π

10: else if pF = 2 then . Efficiencies

11: φ← (µ ∗ V + C)/(C ∗ (δ + 1));

12: return φ

13: end if

14: end procedure

Algorithm 4 Pseudocode for graph statistics procedure

1: procedure Gstats(G, C, V, dirF ) . (NB: end statements omitted)

2: c, e, m, w← 0;

3: if C ≤ V then . Low cost case

4: if isempty(G) then

5: e← 1;

6: else

7: switch dirF

8: case 1

9: w ← wheel(G);

10: m← m1c(G);

11: case 2

12: c← cs star(G);

13: m← m2c(G);

14: else if C > V then . High cost case

15: if isempty(G) then

16: e← 1;

17: else

18: switch dirF

19: case 1

20: m← m1c(G);

21: w ← wheel(G);

22: case 2

23: m← m2c(G);

24: return c, e, m, w

25: end procedure
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Algorithm 5 Pseudocode for Learning procedure

1: procedure Learn(ex, S[t− 1], rnk, P )

2: T ← {i ∈ ex : rnk[i] = 1}

3: L← {i ∈ ex : rnk[i] 6= 1} . Identify teachers (T) & students (L)

4: for all i ∈ L do

5: j ← choose(T ) . Choose (equiprob.) teacher

6: k ← P [j] . Ids of public strats

7: S[i][k]← mistake(S[j][k])

8: end for

9: S ← mistake(S) . Apply innovation to all strats

10: end procedure
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