Learning to Communicate: Communication Networks \& Inductive Reasoning

Simon Angus*

Behavioural Economics Workshop, Monash University June 2008

[^0]
Motivation

1. Increasing awareness of the role of interactions in economic behaviour

Q: How do such networks form?
Q: What are effecient networks?
Q: What determines/controls human decision-making in these problems?
2. But analytical models are difficult $(\mid \mathcal{G}(n) \sim$ $\left.2^{n(n-1) / 2}\right)$
3. Examples of approaches:

Network structure \longrightarrow agent behaviour Anderlini and lanni (1996, 1997): games on a torus Chwe (2000): network as coordination device

Agents \longrightarrow network structure Goyal and Joshi (2003): firm-firm committments,
(Both) Agents \longleftrightarrow Network structure Goyal and Vega-Redondo (1999): coordination games and network formation (complete, or stars), Ely (2002): choice of neighbourhood/strategy Jackson and Watts (2002) (e.g.): link costs non-trivial, network effects context dependant.

Motivation (cont.)

4. We focus on the Non-cooperative Communication Network Formation model of Bala and Goyal (2000) ${ }^{1}$

- One of first 'pure' network formation papers (no strategic interaction thereafter);
- Experimental evidence is available;
- General setting, well known.

5. Rise of artificial adaptive approaches to 'difficult modelling' settings.

Refer to Bala and Goyal (2000) as BG from here.

[^1]
The BG model

(c) one-way

(d) two-way

1. One-, and two- way flows of information allowed (indirect observation);
2. Payoffs: total-information - total costs;

$$
\pi_{i}(G)=\begin{gathered}
\mathrm{n}(\mathrm{obs}) \\
\mu_{i}(G) V \\
-\mathrm{n}^{\mathrm{n}(\text { links })} \\
\delta_{i}(G) C
\end{gathered} .
$$

3. Agents update sponsorships according to (myopic) Best Response play at all times:
my link vector this period

my opp.'s links last period
4. Convergence obtained in analytical model by applying inertia (don't update)

BG predictions

Flow	Edge Costs a	Structure				
		m1c	wheel	empty	m2c	cs-star
One-way	Low	\triangle	$\mathbf{\Delta}^{*}$			
	High	\triangle	$\mathbf{\Delta}^{*}$	$\mathbf{\Delta}$		
Two-way	Low				Δ^{*}	$\mathbf{\Delta}$
	High			$\mathbf{\Delta}$	Δ^{*}	

Notes: ${ }^{a}$ Low $C \leq V$, High $C>V ;(\triangle)$ non-empty nash, $(\mathbf{\Delta})$ strict nash, $\left({ }^{*}\right)$ indicates that the structure is also efficient (following FK2003).
O
O
0
0

(f) min-con 1-way

(e) empty

(h) cs-star

(i) min-con 2-way

In the Lab: Falk \& Kosfeld (2003)

1. Exact replication of BG communication network formation set-up (4-player games, 160 subjects in total, five treatment groups, 5 round games, over 3 'stages');

Population (160)

Treatment groups (5×32)

Game-playing (8×4)
2. Using Swiss-Francs as incentives (avg. take-home $\sim A U S \$ 49.36$);
3. Findings:
(a) One-way flow predictions hold (generally);
(b) But Two-way predictions not realised (not a single cs-star formed during experiments);
(c) Clear evidence of intra-stage improvement (learning?) observed both between rounds and stages;
(d) Likelihood of Nash structures increased with linkcost (C) for one-way flows, but decreased with two-way flows;

FK2003 Subject Trials

Theory \& Reality: frequency of occurence

BG2000 Theory

Flow	Edge Costs ${ }^{a}$	Structure				
		m1c	wheel	empty	m2c	cs-star
One-way	Low	\triangle	\mathbf{A}^{*}			
	High	\triangle	4*	Δ		
Two-way	Low				\triangle^{*}	-
	High			Δ	\triangle^{*}	

FK2003 Human Trials

Flow	Edge Costs	Structure				
		m1c	wheel	empty	m2c	cs-star
One-way	Low (5)	0.48	0.41			
	High (25)	0.59	0.49	0.10		
Two-way	Low (5)				0.31	0.00
	High (15)			(nr)	0.09	

One-way, Two-way: what's the difference?

Main Differences

Stability of Nash networks in one-way case, around 82% likelihood to stay (if realised previous period); in two-way, only 11% (!);

Distribution of links one-way cases, very narrow distribution around n links; in two-way case, much broader (indecision?)

Suggested Explanations

1. Symmetry:
(a) wheel - symmetric in payoffs \& strategies;
(b) cs-star - asymmetric in payoffs \& strategies;

(I) wheel

(m) cs-star

FK2003: Further Analysis

1. Ran regression models over the decision-making of each subject between rounds - did they revise their strategy? (did they exhibit inertia?);
2. (Probit) regression on BRprevious, and PayofflnEquality:

$$
q_{i}(G)=\sum_{j \in N / i}\left|\pi_{j}-\pi_{i}\right|
$$

3. Found, both strongly significant and positive - more likely not to revise if played BR in previous period, or experienced high relative payoff inequality;

$$
\pi_{1}=30, q_{1}=15: 1
$$

A New Model(ling Approach)

Aim

To construct a richer non-cooperative communication model that explains as much of the observed behaviour as possible.

An Artificial 'Adaptive Agent’ Model

Action \& Strategy Implement diverse agent decisionprocesses with a range of abilities;

Learning allow some agent plays to be rewarded, others to be punished and evolve the agent heuristics;

Testing Add various assumptions into behavior (such as BR-inertia, or inequality-inertia, or ...?);

A Complex Environment ...

1. Graph count: $\#[G(4)]=4096$ (one-way flows)

- Cognitively feasible??

2. Simplification 1: Retain 'response' nature of strategy decisions \Rightarrow consider absentee graph $\mathbf{G} /\{i\}$;

- now .. $\#[G(4-1)]=64$?

3. Simplification 2: Not all graphs are actually distinct

4. Therefore - consider minimal absentee graphs, call them the fundamental (or 'canonical') types,

$$
\mathbf{T}(n)=\left\{\mathcal{T}_{1}, \mathcal{T}_{2}, \ldots, \mathcal{T}_{k}\right\}
$$

- now .. $\#[T(4-1)]=16$.. OK!

5. And... define strategy decisions over \mathbf{T}, that is, define a strategy for player i, to be $\mathcal{S}_{i} \in \mathbf{S}$ such that

$$
\mathcal{S}: \mathbf{T} \rightarrow \mathbf{g}
$$

Full set of $T(3)$

Cognitive Assumptions

1. A. 1. [Type Recognition] Given k un-identical graphs

$$
\left\{G_{1}\left(N_{1}^{n}, g\right), \ldots, G_{k}\left(N_{k}^{n}, g\right)\right\}
$$

differing only in the ordering of elements in N^{n} (e.g. $N_{1}^{4}=\{1,2,3,4\}$ and $N_{2}^{4}=\{2,3,1,4\}$), then any agent $i \in N$ will recognise $\left\{G_{1}, \ldots, G_{k}\right\} \equiv \mathcal{T}_{j}$, where $\mathcal{T}_{j} \in \mathbf{T}(n)$.

- (Agents can tell which ' \mathcal{T} ' they are looking at)

2. A. 2. [Context Invariance] Given any instance of an information network G which corresponds to a minimal graph \mathcal{T}, any agent $i \in N$ is able to apply the resultant edge sponsorship decision $s(\mathcal{T})$ to the context, and thus arrive at g_{i} that accords to the instance G before her.

- (Agents can apply their response to a given \mathcal{T} in the actual situation they have infront of them)

Decision-Making Process Examples

1. Example 1:

(r) G
res

(s) $G /\{4\} \equiv \mathcal{T}^{*}$
(t) $\mathcal{S}_{4}\left(\mathcal{T}^{*}\right)$
2. Example 2:

(u) G
(v) $G /\{4\} \equiv \mathcal{T}^{+}$
(w) $\mathcal{S}_{4}\left(\mathcal{T}^{+}\right)$

Learning

1. Record public plays of each agent;
2. Determine best performing agents(s) at the end of a stage, assign to 'teacher' status, the rest, to 'students';
3. Students learn from teachers via imitation and innovation (mistakes):

- NB: a one-way form of transfer (cultural transmission)

$$
\begin{array}{rc}
\mathcal{S}_{t}= & (s\left(\mathcal{T}_{1}\right), \ldots, \overbrace{000,110,001}^{\begin{array}{c}
\text { section to be } \\
\text { imitated }
\end{array}}, 101, \ldots, s\left(\mathcal{T}_{k}\right)) \\
\mathcal{S}_{s}= & \left(s\left(\mathcal{T}_{1}\right), \ldots, 011,010,011,001, \ldots, s\left(\mathcal{T}_{k}\right)\right) \\
\Downarrow \\
\mathcal{S}_{s}^{*}=\left(s\left(\mathcal{T}_{1}\right), \ldots, 000,11 \underline{1}, 001,101, \ldots, s\left(\mathcal{T}_{k}\right)\right)
\end{array}
$$

4. Assumptions $1 \& 2$ guarantee successful application;

Who should be the teacher(s)? Objective function trials

1. Payoffs:

$$
\bar{\pi}_{i}=\frac{1}{R} \sum_{r=1}^{R}
$$

- Simple, orthodox, but relatively low information

2. 'Value':

$$
f_{i}\left(\mu_{i}, \delta_{i}\right)=\frac{\mu_{i} V+C}{C\left(\delta_{i}+1\right)}
$$

re-written,

$$
f_{i}\left(\mu_{i}, \delta_{i}\right)=\left(\frac{1}{\delta+1}\right)\left[\left(\frac{V}{C}\right) \mu+1\right]
$$

- Value of information and cost of links weights measure;

3. 'Nieve’: Same as 'Value’ (frequency etc.) but choose teacher at random. (just immitation only?)

First cut: Objective functions

Figure 1. Nash (non-empty) structures under one-way information flows: (left) $C=5$; and (right) $C=25$, under different objective measures: payoffs (π), benefit/cost ratio (f) and naive (random) learning.

First cut: Link sponsoring

Figure 2. Average agent degree under one-way information flows: (left) $C=5$; and (right) $C=25$, objective measures as for Fig. 1.

- .. Under-sponsoring compared to humans.

Increase Link Sponsoring by Reciprocity Measure

1. Simple Reciprocity Measure:

In-d	Out-d	R Measure
0	0	0
≥ 1	0	0
≥ 1	≥ 1	1
0	≥ 1	2

2. Combine objective measure and reciprocity:

$$
\Omega_{i}=\alpha\left\langle r_{i}\right\rangle+(1-\alpha)\left\{\left\langle\pi_{i}\right\rangle,\left\langle f_{i}\right\rangle\right\}
$$

Figure 3. Combined (altruism, benefit/cost ratio) objective measure calibration results at different α values.

Long(er)-run study with Reciprocity

Figure 4. Results of long-run study under combined altruism benefit/cost ratio measure at different costs. Naive learning included as a control. Nash structures (non-empty) are predominantly comprised of the Strict Nash (one-way) circle structure.

More is better?

Figure 5. Within- and between- stage learning as evidenced by improving (non-empty) Nash structure probability. Average agent degree also shown (right), showing little within-stage variation, despite large equivalent performance variance (left). Data shown is average over all mixing groups and repeats.

- Strong improvements within 'stages';
- Improvements between 'stages';
- More is better? .. no.. strategic learning!

Humans vs. Artificial Agents

The Rise of Inductive Reasoning

Question: Are agents able to predict the next round of play?

- Simple measure of 'prediction'
- Strategy this period versus:

1. Realised graph last period
2. Realised graph this period

$$
M_{i}^{r}=\operatorname{sign}\left[f\left(g_{i}^{r} \cap g_{-i}^{r}\right)-f\left(g_{i}^{r} \cap g_{-i}^{r-1}\right)\right]
$$

Stage

Stage

Figure 6. Prediction measure results for within- and betweenstages for combined and naive learning rules for comparison. A strong correlation with performance is clear.

Concluding Comments

1. AAs replicate many stylized facts of experimental work
(a) Nash structures (predominantly circles) in one-way case;
(b) Very few cs-stars, Nash outcomes in two-way case;
(c) Within stage, and between stage improvement (learning?) in one-way, but not two way;
(d) Stategic improvement rather than just link-based;
(e) Emergence of inductive/predictive reasoning despite single-period backward-looking play.
2. Why don't the AAs achieve same magnitude of performance?
(a) No focal structure - model completely agnostic with respect to each (of 4096) possible structure;
(b) Only 1 period of memory (role of signalling etc.)
(c) Relatively limited cognition - 'value' measure, with reciprocity only.
3. What else would one want to know?
(a) The misses: if they aren't playing Nash, what are they playing? (measure for 'off-play')
(b) What coordination mechanisms could be used to induce cs-star play? (predictions for the lab?)
(c) How complex are the strategies of individuals? Does diversity have something to say, especially in the initial group (predictions for the lab?)

Strategic Inertia \& Emergence

- Strategic inertia: $s_{t}=s_{t-1}$ not part of model process;
- Emergent phenomenon - correlated with 'good' play (one-way) or 'sponsor-none' (two-way).

References

Anderlini, L. and Ianni, A. (1996). Path dependence and learning from neighbors. Games and Economic Behavior, 13:141-177.

Anderlini, L. and lanni, A. (1997). Learning on a torus. In Bicchieri, C., Jeffrey, R., and Skyrms, B., editors, The Dynamics of Norms, chapter 5, pages 87-107. Cambridge University Press, New York.

Bala, V. and Goyal, S. (2000). A noncooperative model of network formation. Econometrica, 68(5):11811229.

Chwe, M. S.-Y. (2000). Communication and coordination in social networks. Review of Economic Studies, 67:1-16.

Ely, J. C. (2002). Local conventions. Advances in Theoretical Economics, 2(1):Article 1.

Falk, A. and Kosfeld, M. (2003). It's all about connections: Evidence on network formation. Discussion Paper 777, Institute for the Study of Labor (IZA). available at http://ideas.repec.org/p/iza/izadps/dp777.html.

Goyal, S. and Joshi, S. (2003). Networks of collaborations in oligopoly. Games and Economic Behavior, 43:57-85.

Goyal, S. and Vega-Redondo, F. (1999). Learning, network formation and coordination. Mimeo.

Jackson, M. O. and Watts, A. (2002). On the formation of interaction networks in social coordination games. Games and Economic Behavior, 41(2):265-291.

[^0]: * Department of Economics, Monash University, Clayton 3800, VIC, Australia.; email: simon. angus@buseco. monash.edu. au.

[^1]: ${ }^{1}$ Bala, V. and Goyal, S. (2000), 'A Noncooperative Model of Network Formation', Econometrica, 68(5), 1181-1229.

