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Motivation

1. Increasing awareness of the role of interactions in
economic behaviour

Q: How do such networks form?
Q: What are effecient networks?
Q: What determines/controls human decision-making

in these problems?

2. But analytical models are difficult (|G(n) ∼
2n(n−1)/2)

3. Examples of approaches:

Network structure −→ agent behaviour Anderlini
and Ianni (1996, 1997): games on a torus Chwe
(2000): network as coordination device

Agents −→ network structure Goyal and Joshi
(2003): firm-firm committments,

(Both) Agents ←→ Network structure Goyal and
Vega-Redondo (1999): coordination games and
network formation (complete, or stars), Ely (2002):
choice of neighbourhood/strategy Jackson and
Watts (2002) (e.g.): link costs non-trivial, network
effects context dependant.
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Motivation (cont.)

4. We focus on the Non-cooperative Communication
Network Formation model of Bala and Goyal (2000)1

• One of first ‘pure’ network formation papers (no
strategic interaction thereafter);
• Experimental evidence is available;
• General setting, well known.

5. Rise of artificial adaptive approaches to ‘difficult
modelling’ settings.

Refer to Bala and Goyal (2000) as BG from here.

1Bala, V. and Goyal, S. (2000), ‘A Noncooperative Model of Network

Formation’, Econometrica, 68(5), 1181–1229.
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The BG model

{1, 2, 3} : 1

{2, 3} : 2 3 : {3}

4 : {4}

(c) one-way

{1, 2, 3} : 1

{1, 2, 3} : 2 3 : {1, 2, 3}

4 : {4}

(d) two-way

1. One-, and two- way flows of information allowed
(indirect observation);

2. Payoffs: total-information - total costs;

πi(G) =
n(obs)

µi(G)V −
n(links)

δi(G)C .

3. Agents update sponsorships according to (myopic)
Best Response play at all times:

my link vector this period

max
gi ∈ g

[
πi(gi ∩ gt−1

j )
]
∀ j ∈ N/{i}

my opp.’s links last period

4. Convergence obtained in analytical model by applying
inertia (don’t update)
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BG predictions

Flow Edge Costsa Structure

m1c wheel empty m2c cs-star

One-way
Low △ N

∗

High △ N
∗

N

Two-way
Low △∗

N

High N △∗

Notes: a Low C ≤ V , High C > V ; (△) non-empty nash, (N) strict nash, (*)

indicates that the structure is also efficient (following FK2003).

(e) empty (f) min-con 1-way (g) wheel

(h) cs-star (i) min-con 2-way
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In the Lab: Falk & Kosfeld (2003)

1. Exact replication of BG communication network
formation set-up (4-player games, 160 subjects in
total, five treatment groups, 5 round games, over 3
‘stages’);

N

M1

N1 N2 · · ·

M2

N1 N2 · · ·

· · ·

Population (160)

Treatment groups (5×32)

Game-playing (8 × 4)

2. Using Swiss-Francs as incentives (avg. take-home
∼ AUS$49.36);

3. Findings:

(a) One-way flow predictions hold (generally);
(b) But Two-way predictions not realised (not a single

cs-star formed during experiments);
(c) Clear evidence of intra-stage improvement

(learning?) observed both between rounds and
stages;

(d) Likelihood of Nash structures increased with link-
cost (C) for one-way flows, but decreased with
two-way flows;
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FK2003 Subject Trials

1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

Stage

f(
N

as
h

)

(j) One-way

1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

Stage

f(
N

as
h

)

(k) Two-way

:: S. Angus :: Economics (monash) :: simon.angus@buseco.monash.edu.au :: 6/28



Theory & Reality: frequency of occurence

BG2000 Theory

Flow Edge Costsa Structure

m1c wheel empty m2c cs-star

One-way
Low △ N

∗

High △ N
∗

N

Two-way
Low △∗

N

High N △∗

Notes: a Low C ≤ V , High C > V ; (△) non-empty nash, (N) strict nash, (*)
indicates that the structure is also efficient (following FK2003).

FK2003 Human Trials

Flow Edge Costs
Structure

m1c wheel empty m2c cs-star

One-way
Low (5) 0.48 0.41

High (25) 0.59 0.49 0.10

Two-way
Low (5) 0.31 0.00

High (15) (nr) 0.09
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One-way, Two-way: what’s the difference?

Main Differences

Stability of Nash networks in one-way case, around
82% likelihood to stay (if realised previous period); in
two-way, only 11% (!);

Distribution of links one-way cases, very narrow
distribution around n links; in two-way case, much
broader (indecision?)

Suggested Explanations

1. Symmetry:

(a) wheel – symmetric in payoffs & strategies;
(b) cs-star – asymmetric in payoffs & strategies;

(l) wheel (m) cs-star
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FK2003: Further Analysis

1. Ran regression models over the decision-making of
each subject between rounds – did they revise their
strategy? (did they exhibit inertia?);

2. (Probit) regression on BRprevious, and PayoffInEquality :

qi(G) =
∑

j∈N/i

∣
∣πj − πi

∣
∣

3. Found, both strongly significant and positive – more
likely not to revise if played BR in previous period, or
experienced high relative payoff inequality;

π1 = 30, q1 = 15 : 1

π2 = 35, q2 = 5 : 2 3 : π3 = 35, q3 = 5

4 : π4 = 35, q4 = 5
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A New Model(ling Approach)

Aim

To construct a richer non-cooperative communication
model that explains as much of the observed behaviour
as possible.

An Artificial ‘Adaptive Agent’ Model

Action & Strategy Implement diverse agent decision-
processes with a range of abilities;

Learning allow some agent plays to be rewarded, others
to be punished and evolve the agent heuristics;

Testing Add various assumptions into behavior (such
as BR-inertia, or inequality-inertia, or ...?);
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A Complex Environment ...

1. Graph count: #[G(4)] = 4096 (one-way flows)

• Cognitively feasible??

2. Simplification 1 : Retain ’response’ nature of strategy
decisions ⇒consider absentee graph G/{i};

• now .. #[G(4− 1)] = 64 ?

3. Simplification 2 : Not all graphs are actually distinct
...

A

B

C

A

B

C

A

B

C

4. Therefore – consider minimal absentee graphs, call
them the fundamental (or ‘canonical’) types,

T(n) = {T1,T2, . . . ,Tk}

• now .. #[T (4− 1)] = 16 .. OK!

5. And... define strategy decisions over T, that is, define
a strategy for player i, to be Si ∈ S such that

S : T→ g
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Full set of T (3)
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Cognitive Assumptions

1. A. 1. [Type Recognition] Given k un-identical
graphs

{
G1(N

n
1 , g), . . . , Gk(N

n
k , g)

}

differing only in the ordering of elements in Nn (e.g.
N4

1 = {1, 2, 3, 4} and N4
2 = {2, 3, 1, 4}), then any

agent i ∈ N will recognise {G1, . . . , Gk} ≡ Tj, where
Tj ∈ T(n).

• (Agents can tell which ‘T ’ they are looking at)

2. A. 2. [Context Invariance] Given any instance of
an information network G which corresponds to a
minimal graph T , any agent i ∈ N is able to apply
the resultant edge sponsorship decision s(T ) to the
context, and thus arrive at gi that accords to the
instance G before her.

• (Agents can apply their response to a given T in
the actual situation they have infront of them)
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Decision-Making Process Examples

1. Example 1:

1

2 3

4

(r) G

1

2 3

4

(s) G/{4} ≡ T ∗

1

2 3

4

(t) S4(T
∗)

2. Example 2:

1

2 3

4

(u) G

1

2 3

4

(v) G/{4} ≡ T +

1

2 3

4

(w) S4(T
+)
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Learning

1. Record public plays of each agent;

2. Determine best performing agents(s) at the end of
a stage, assign to ‘teacher’ status, the rest, to
‘students’;

3. Students learn from teachers via imitation and
innovation (mistakes):

• NB: a one-way form of transfer (cultural
transmission)

St =
(

s(T1), . . . ,

section to be
imitated

︷ ︸︸ ︷
000, 110, 001, 101, . . . , s(Tk)

)

Ss =
(

s(T1), . . . , 011, 010, 011, 001, . . . , s(Tk)
)

⇓

S∗s =
(

s(T1), . . . , 000, 111, 001, 101, . . . , s(Tk)
)

4. Assumptions 1 & 2 guarantee successful application;
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Who should be the teacher(s)? Objective

function trials

1. Payoffs:

π̄i =
1

R

R∑

r=1

• Simple, orthodox, but relatively low information

a a

2. ‘Value’:

fi(µi, δi) =
µiV + C

C(δi + 1)
,

re-written,

fi(µi, δi) =

(
1

δ + 1

)[(
V

C

)

µ + 1

]

,

• Value of information and cost of links weights
measure;

3. ‘Nieve’: Same as ‘Value’ (frequency etc.) but choose
teacher at random. (just immitation only?)
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First cut: Objective functions
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Figure 1. Nash (non-empty) structures under one-way information

flows: (left) C = 5; and (right) C = 25, under different objective

measures: payoffs (π), benefit/cost ratio (f) and naive (random)

learning.
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First cut: Link sponsoring
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Figure 2. Average agent degree under one-way information flows:

(left) C = 5; and (right) C = 25, objective measures as for

Fig. 1.

• .. Under-sponsoring compared to humans.
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Increase Link Sponsoring by Reciprocity

Measure

1. Simple Reciprocity Measure:

In-d Out-d R Measure
0 0 0
≥1 0 0
≥1 ≥1 1
0 ≥1 2

2. Combine objective measure and reciprocity:

Ωi = α〈ri〉+ (1− α){〈πi〉, 〈fi〉}
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Figure 3. Combined (altruism,benefit/cost ratio) objective measure

calibration results at different α values.
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Long(er)-run study with Reciprocity
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Figure 4. Results of long-run study under combined altruism –

benefit/cost ratio measure at different costs. Naive learning included

as a control. Nash structures (non-empty) are predominantly

comprised of the Strict Nash (one-way) circle structure.
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More is better?
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Figure 5. Within- and between- stage learning as evidenced by

improving (non-empty) Nash structure probability. Average agent

degree also shown (right), showing little within-stage variation,

despite large equivalent performance variance (left). Data shown is

average over all mixing groups and repeats.

• Strong improvements within ‘stages’;

• Improvements between ‘stages’;

• More is better? .. no.. strategic learning!
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Humans vs. Artificial Agents

One-way (Nash)
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The Rise of Inductive Reasoning

Question: Are agents able to predict the next round
of play?

• Simple measure of ‘prediction’

• Strategy this period versus:

1. Realised graph last period
2. Realised graph this period

Mr
i = sign

[

f(gr
i ∩ gr

−i)− f(gr
i ∩ gr−1

−i )
]
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Figure 6. Prediction measure results for within- and between-

stages for combined and naive learning rules for comparison. A

strong correlation with performance is clear.
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Concluding Comments

1. AAs replicate many stylized facts of experimental
work

(a) Nash structures (predominantly circles) in one-way
case;

(b) Very few cs-stars, Nash outcomes in two-way case;
(c) Within stage, and between stage improvement

(learning?) in one-way, but not two way;
(d) Stategic improvement rather than just link-based;
(e) Emergence of inductive/predictive reasoning

despite single-period backward-looking play.

2. Why don’t the AAs achieve same magnitude of
performance?

(a) No focal structure – model completely agnostic
with respect to each (of 4096) possible structure;

(b) Only 1 period of memory (role of signalling etc.)
(c) Relatively limited cognition – ‘value’ measure, with

reciprocity only.

3. What else would one want to know?

(a) The misses: if they aren’t playing Nash, what are
they playing? (measure for ‘off-play’)

(b) What coordination mechanisms could be used to
induce cs-star play? (predictions for the lab?)

(c) How complex are the strategies of individuals?
Does diversity have something to say, especially in
the initial group (predictions for the lab?)
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Strategic Inertia & Emergence

• Strategic inertia: st = st−1 not part of model process;

• Emergent phenomenon – correlated with ‘good’ play
(one-way) or ‘sponsor-none’ (two-way).
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