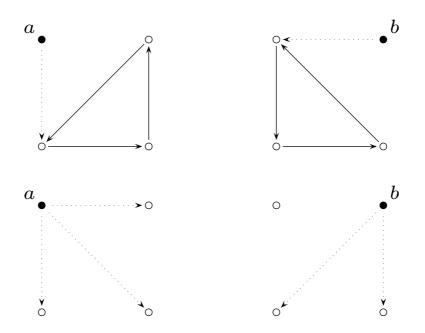
LEARNING TO COMMUNICATE: Communication Networks & Inductive Reasoning

Simon Angus^*

Behavioural Economics Workshop, Monash University June 2008



^{*}Department of Economics, Monash University, Clayton 3800, VIC, Australia.; email: simon.angus@buseco.monash.edu.au.

^{::} S. ANGUS :: ECONOMICS (MONASH) :: simon.angus@buseco.monash.edu.au ::

Motivation

- 1. Increasing awareness of the role of *interactions* in economic behaviour
 - Q: How do such networks form?
 - Q: What are effecient networks?
 - Q: What determines/controls human decision-making in these problems?
- 2. But analytical models are difficult ($|G(n) \sim 2^{n(n-1)/2}$)
- 3. Examples of approaches:
 - Network structure → agent behaviour Anderlini and Ianni (1996, 1997): games on a torus Chwe (2000): network as coordination device
 - Agents → network structure Goyal and Joshi (2003): firm-firm committments,
 - (Both) Agents ↔ Network structure Goyal and Vega-Redondo (1999): coordination games and network formation (complete, or stars), Ely (2002): choice of neighbourhood/strategy Jackson and Watts (2002) (e.g.): link costs non-trivial, network effects context dependant.

Motivation (cont.)

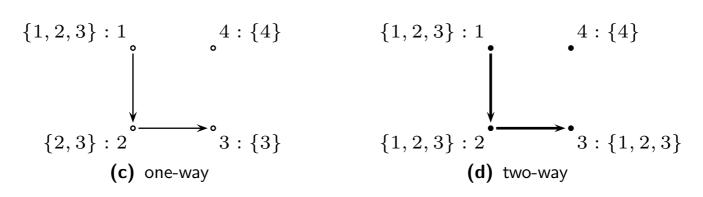
- 4. We focus on the *Non-cooperative Communication Network Formation* model of Bala and Goyal (2000)¹
 - One of first 'pure' network formation papers (no strategic interaction thereafter);
 - Experimental evidence is available;
 - General setting, well known.
- 5. Rise of *artificial adaptive approaches* to 'difficult modelling' settings.

Refer to Bala and Goyal (2000) as **BG** from here.

¹Bala, V. and Goyal, S. (2000), 'A Noncooperative Model of Network Formation', *Econometrica*, **68**(5), 1181–1229.

^{::} S. ANGUS :: ECONOMICS (MONASH) :: simon.angus@buseco.monash.edu.au :: 2/28

The BG model



- 1. One-, and two- way flows of information allowed (indirect observation);
- 2. Payoffs: total-information total costs;

n(obs) n(links)
$$\pi_i(G) = \mu_i(G)V - \delta_i(G)C$$

3. Agents update sponsorships according to (myopic) Best Response play at all times:

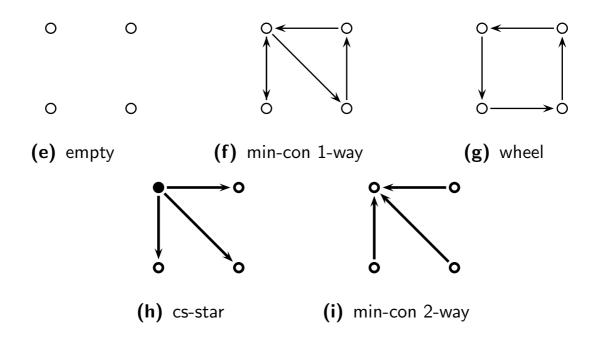
$$\max_{g_i \in \mathbf{g}} \begin{bmatrix} \pi_i(g_i \cap g_j^{t-1}) \end{bmatrix} \quad \forall \quad j \in N/\{i\}$$
$$\max_{my \ opp. \ 's \ links \ last \ period$$

4. Convergence obtained in analytical model by applying *inertia* (don't update)

BG predictions

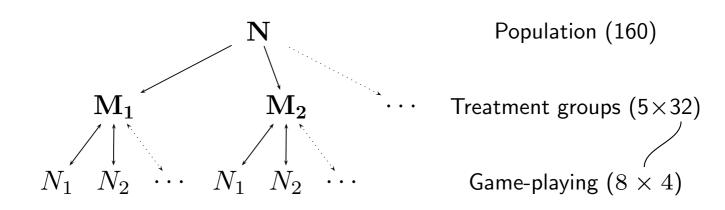
Flow	$Edge\ Costs^a$	Structure				
		m1c	wheel	empty	m2c	cs-star
One-way	Low	\bigtriangleup	▲ *			
	High	\bigtriangleup	▲*			
Two-way	Low				\triangle^*	
	High				\triangle^*	

Notes: ^{*a*} Low $C \leq V$, High C > V; (\triangle) non-empty nash, (\blacktriangle) strict nash, (*) indicates that the structure is also *efficient* (following FK2003).



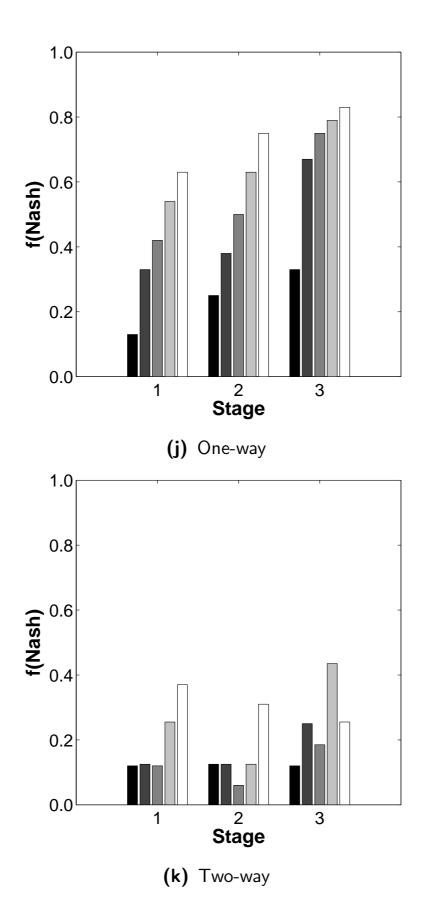
In the Lab: Falk & Kosfeld (2003)

 Exact replication of BG communication network formation set-up (4-player games, 160 subjects in total, five treatment groups, 5 round games, over 3 'stages');



- 2. Using Swiss-Francs as incentives (avg. take-home $\sim AUS$ \$49.36);
- 3. Findings:
 - (a) One-way flow predictions *hold* (generally);
 - (b) **But** Two-way predictions *not* realised (not a single *cs-star* formed during experiments);
 - (c) Clear evidence of *intra-stage improvement* (learning?) observed both between rounds and stages;
 - (d) Likelihood of Nash structures increased with linkcost (C) for one-way flows, but *decreased* with two-way flows;

FK2003 Subject Trials



Theory & Reality: frequency of occurence

Flow	$Edge\ Costs^a$	Structure				
11000	Luge Costs	m1c	wheel	empty	m2c	cs-star
	Low	\bigtriangleup	▲ *			
One-way	High	\bigtriangleup	▲*			
	Low				\triangle^*	
Two-way	High				\triangle^*	

BG2000 Theory

Notes: ^a Low $C \leq V$, High C > V; (\triangle) non-empty nash, (\blacktriangle) strict nash, (*) indicates that the structure is also *efficient* (following FK2003).

<i>FK2003</i>	Human	Trials
---------------	-------	--------

Flow	Edge Costs	Structure				
		m1c	wheel	empty	m2c	cs-star
	Low (5)	0.48	0.41			
One-way	High (25)	0.59	0.49	0.10		
T	Low (5)				0.31	0.00
Two-way	High (15)			(nr)	0.09	

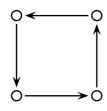
One-way, Two-way: what's the difference?

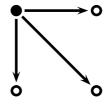
Main Differences

- **Stability of Nash networks** in one-way case, around 82% likelihood to stay (if realised previous period); in two-way, only 11% (!);
- **Distribution of links** one-way cases, very narrow distribution around n links; in two-way case, much broader (indecision?)

Suggested Explanations

- 1. Symmetry:
 - (a) wheel symmetric in payoffs & strategies;
 - (b) cs-star *asymmetric* in payoffs & strategies;





(I) wheel (m) cs-star

FK2003: Further Analysis

- Ran regression models over the decision-making of each subject between rounds – did they revise their strategy? (did they exhibit *inertia*?);
- 2. (Probit) regression on BRprevious, and PayoffInEquality:

$$q_i(G) = \sum_{j \in N/i} \left| \pi_j - \pi_i \right|$$

 Found, both strongly significant and positive – more likely not to revise if played BR in previous period, or experienced high relative payoff inequality;

$$\pi_1 = 30, q_1 = 15: \mathbf{1}$$

 $\pi_2 = 35, q_2 = 5: \mathbf{2}$
 $\mathbf{4}: \pi_4 = 35, q_4 = 5$
 $\mathbf{3}: \pi_3 = 35, q_3 = 5$

A New Model(ling Approach)

Aim

To construct a richer non-cooperative communication model that explains as much of the observed behaviour as possible.

An Artificial 'Adaptive Agent' Model

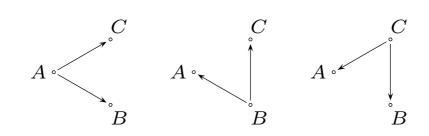
- Action & Strategy Implement diverse agent decisionprocesses with a range of abilities;
- **Learning** allow some agent plays to be rewarded, others to be punished and evolve the agent heuristics;
- **Testing** Add various assumptions into behavior (such as BR-inertia, or inequality-inertia, or ...?);

A Complex Environment ...

- 1. Graph count: #[G(4)] = 4096 (one-way flows)
 - Cognitively feasible??

. . .

- 2. Simplification 1: Retain 'response' nature of strategy decisions \Rightarrow consider absentee graph $\mathbf{G}/\{i\}$;
 - now .. #[G(4-1)] = 64 ?
- 3. Simplification 2: Not all graphs are actually distinct



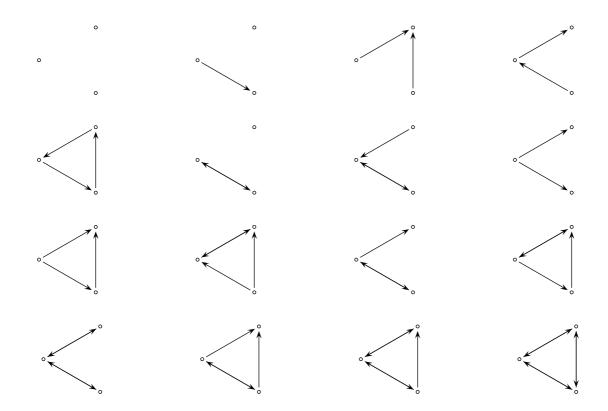
4. Therefore – consider *minimal absentee graphs*, call them the fundamental (or 'canonical') types,

$$\mathbf{T}(n) = \{\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_k\}$$

- now .. #[T(4-1)] = 16 .. OK!
- 5. And... define strategy decisions over \mathbf{T} , that is, define a *strategy* for player i, to be $S_i \in \mathbf{S}$ such that

$$\mathcal{S}:\mathbf{T}
ightarrow\mathbf{g}$$

Full set of T(3)



Cognitive Assumptions

1. A. 1. [Type Recognition] Given k un-identical graphs

 $\left\{G_1(N_1^n,g),\ldots,G_k(N_k^n,g)\right\}$

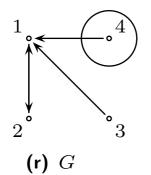
differing only in the ordering of elements in N^n (e.g. $N_1^4 = \{1, 2, 3, 4\}$ and $N_2^4 = \{2, 3, 1, 4\}$), then any agent $i \in N$ will recognise $\{G_1, \ldots, G_k\} \equiv \mathcal{T}_j$, where $\mathcal{T}_j \in \mathbf{T}(n)$.

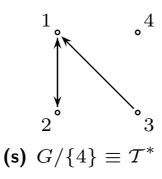
• (Agents can tell which ' \mathcal{T} ' they are looking at)

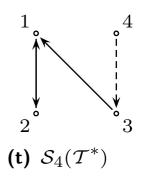
- 2. A. 2. [Context Invariance] Given any instance of an information network G which corresponds to a minimal graph T, any agent $i \in N$ is able to apply the resultant edge sponsorship decision s(T) to the context, and thus arrive at g_i that accords to the instance G before her.
 - (Agents can apply their response to a given T in the *actual* situation they have infront of them)

Decision-Making Process Examples

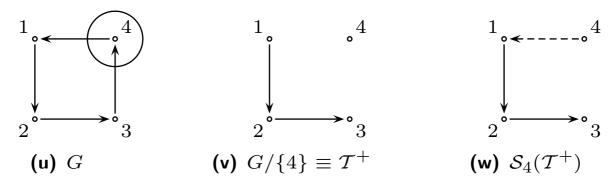
1. Example 1:







2. Example 2:



Learning

- 1. Record *public* plays of each agent;
- Determine best performing agents(s) at the end of a stage, assign to 'teacher' status, the rest, to 'students';
- 3. Students *learn* from teachers via *imitation* and *innovation* (mistakes):
 - NB: a *one-way* form of transfer (cultural transmission)

$$S_t = \left(s(\mathcal{T}_1), \dots, \overbrace{000, 110, 001}^{\text{section to be}}, 101, \dots, s(\mathcal{T}_k)\right)$$

$$S_s = \left(s(\mathcal{T}_1), \dots, 011, 010, 011, 001, \dots, s(\mathcal{T}_k)\right)$$

$$\Downarrow$$

$$S_s^* = \left(s(\mathcal{T}_1), \dots, 000, 11\underline{1}, 001, 101, \dots, s(\mathcal{T}_k)\right)$$

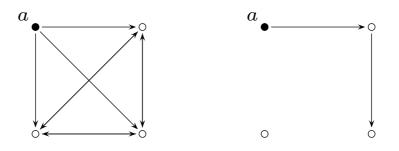
4. Assumptions 1 & 2 guarantee successful application;

Who should be the teacher(s)? Objective function trials

1. Payoffs:

$$\bar{\pi}_i = \frac{1}{R} \sum_{r=1}^R$$

• Simple, orthodox, but relatively low information



2. **'Value'**:

$$f_i(\mu_i, \delta_i) = \frac{\mu_i V + C}{C(\delta_i + 1)} ,$$

re-written,

$$f_i(\mu_i, \delta_i) = \left(\frac{1}{\delta+1}\right) \left[\left(\frac{V}{C}\right)\mu + 1\right] ,$$

- Value of information and cost of links weights measure;
- 3. **'Nieve'**: Same as 'Value' (frequency etc.) but *choose teacher at random*. (just immitation only?)

First cut: Objective functions

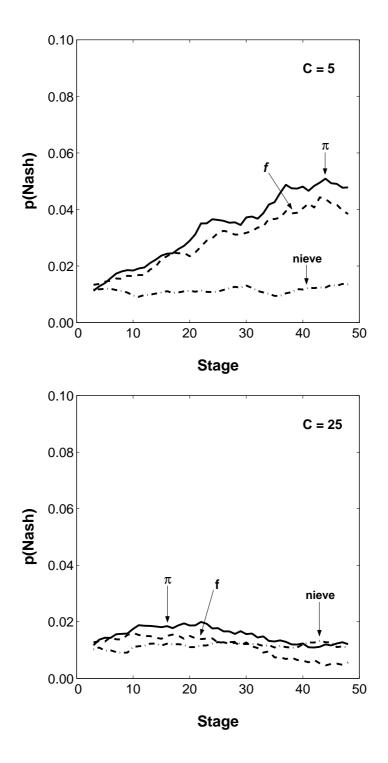


Figure 1. Nash (non-empty) structures under one-way information flows: (left) C = 5; and (right) C = 25, under different objective measures: payoffs (π), benefit/cost ratio (f) and naive (random) learning.

First cut: Link sponsoring

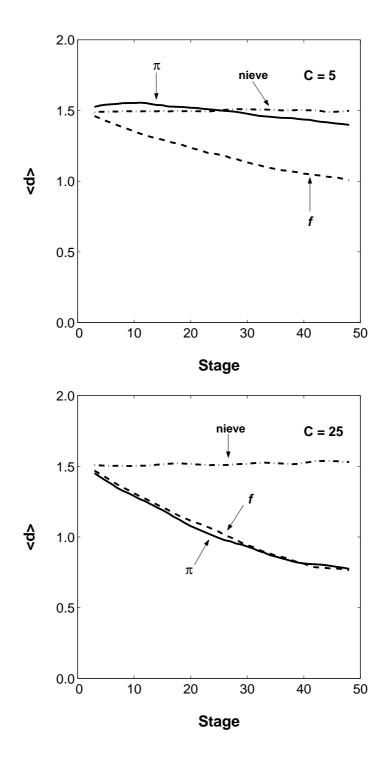


Figure 2. Average agent degree under one-way information flows: (left) C = 5; and (right) C = 25, objective measures as for Fig. 1.

• .. Under-sponsoring compared to humans.

Increase Link Sponsoring by Reciprocity Measure

1. Simple Reciprocity Measure:

In-d	Out-d	R Measure
0	0	0
≥ 1	0	0
≥ 1	≥ 1	1
0	≥ 1	2

2. Combine objective measure and reciprocity:

$$\Omega_i = \alpha \langle r_i \rangle + (1 - \alpha) \{ \langle \pi_i \rangle, \langle f_i \rangle \}$$

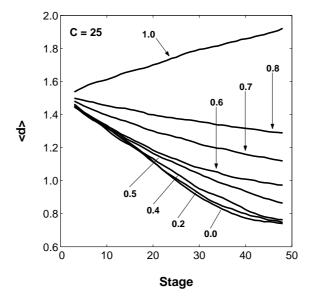


Figure 3. Combined (altruism, benefit/cost ratio) objective measure calibration results at different α values.

Long(er)-run study with Reciprocity

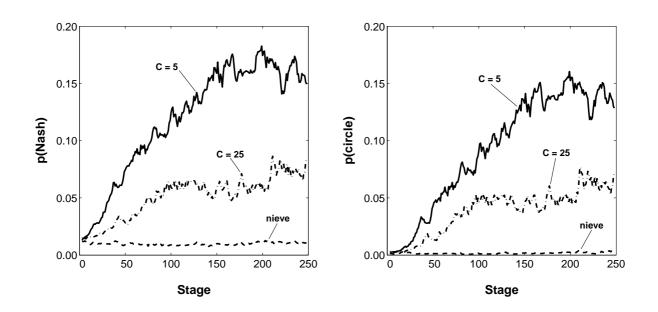


Figure 4. Results of long-run study under combined altruism – benefit/cost ratio measure at different costs. Naive learning included as a control. Nash structures (non-empty) are predominantly comprised of the Strict Nash (one-way) circle structure.

More is better?

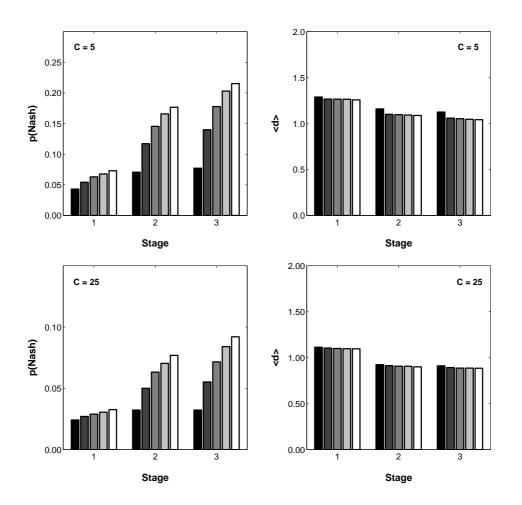
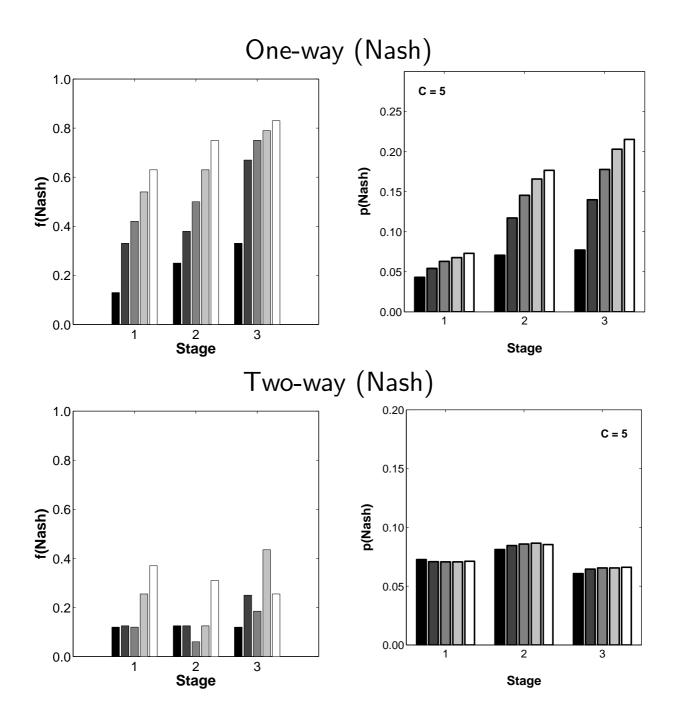


Figure 5. Within- and between- stage learning as evidenced by improving (non-empty) Nash structure probability. Average agent degree also shown (right), showing little within-stage variation, despite large equivalent performance variance (left). Data shown is average over all mixing groups and repeats.

- Strong improvements within 'stages';
- Improvements between 'stages';
- More is better? .. no.. strategic learning!

Humans vs. Artificial Agents



The Rise of Inductive Reasoning

Question: Are agents able to predict the next round of play?

- Simple measure of 'prediction'
- Strategy this period versus:
 - 1. Realised graph last period
 - 2. Realised graph this period

$$M_i^r = \operatorname{sign} \left[f(g_i^r \cap g_{-i}^r) - f(g_i^r \cap g_{-i}^{r-1}) \right]$$

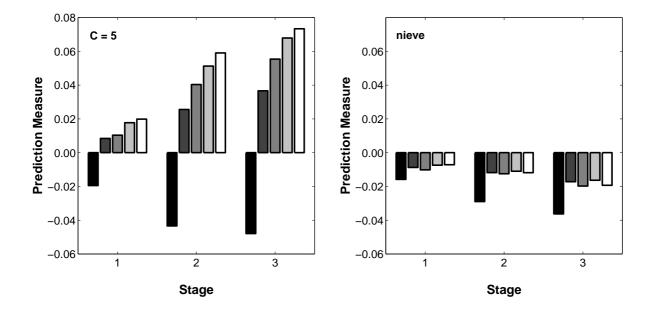


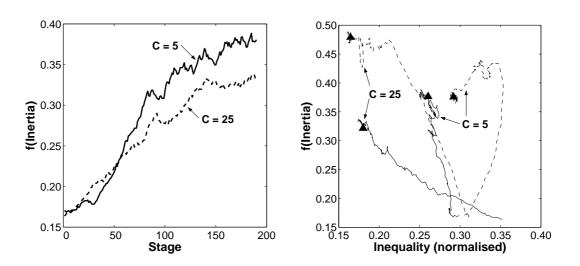
Figure 6. Prediction measure results for within- and betweenstages for combined and naive learning rules for comparison. A strong correlation with performance is clear.

Concluding Comments

- 1. AAs replicate many stylized facts of experimental work
 - (a) Nash structures (predominantly circles) in one-way case;
 - (b) Very few cs-stars, Nash outcomes in two-way case;
 - (c) Within stage, and between stage improvement (learning?) in one-way, but not two way;
 - (d) *Stategic* improvement rather than just link-based;
 - (e) Emergence of inductive/predictive reasoning despite single-period backward-looking play.
- 2. Why don't the AAs achieve same *magnitude* of performance?
 - (a) No focal structure model completely agnostic with respect to each (of 4096) possible structure;
 - (b) Only 1 period of memory (role of signalling etc.)
 - (c) Relatively limited cognition 'value' measure, with reciprocity only.
- 3. What else would one want to know?
 - (a) The misses: if they aren't playing Nash, what are they playing? (measure for 'off-play')
 - (b) What coordination mechanisms could be used to induce cs-star play? (predictions for the lab?)
 - (c) How complex are the strategies of individuals? Does *diversity* have something to say, especially in the initial group (predictions for the lab?)

Strategic Inertia & Emergence

- Strategic inertia: $s_t = s_{t-1}$ not part of model process;
- Emergent phenomenon correlated with 'good' play (one-way) or 'sponsor-none' (two-way).



References

- Anderlini, L. and Ianni, A. (1996). Path dependence and learning from neighbors. *Games and Economic Behavior*, 13:141–177.
- Anderlini, L. and Ianni, A. (1997). Learning on a torus.
 In Bicchieri, C., Jeffrey, R., and Skyrms, B., editors, *The Dynamics of Norms*, chapter 5, pages 87–107.
 Cambridge University Press, New York.
- Bala, V. and Goyal, S. (2000). A noncooperative model of network formation. *Econometrica*, 68(5):1181– 1229.
- Chwe, M. S.-Y. (2000). Communication and coordination in social networks. *Review of Economic Studies*, 67:1–16.
- Ely, J. C. (2002). Local conventions. *Advances in Theoretical Economics*, 2(1):Article 1.
- Falk, A. and Kosfeld, M. (2003). It's all about connections: Evidence on network formation. Discussion Paper 777, Institute for the Study of Labor (IZA). available at http://ideas.repec.org/p/iza/izadps/dp777.html.
- Goyal, S. and Joshi, S. (2003). Networks of collaborations in oligopoly. *Games and Economic Behavior*, 43:57–85.

^{::} S. ANGUS :: ECONOMICS (MONASH) :: simon.angus@buseco.monash.edu.au :: 26/28

- Goyal, S. and Vega-Redondo, F. (1999). Learning, network formation and coordination. Mimeo.
- Jackson, M. O. and Watts, A. (2002). On the formation of interaction networks in social coordination games. *Games and Economic Behavior*, 41(2):265–291.