
Cooperation Networks Endogeneity & Complexity

Simon Angus

School of Economics, University of NSW, Sydney, Australia

Supported by the Commonwealth Government's APA scheme; Research initiated at the SFI Computational Grad Workshop, 2004

ICCS, Boston, June 2006

Agenda

- 1. The problem of endogeniety;
- 2. A simple modification: properties and results;
- 3. Endogenous networks and complexity;
- 4. Areas for future interaction/work.

Cooperation: how does it work?

- Maynard Smith & Price: The logic of animal conflict (Nature, 1973);
- Axelrod & Hamilton: The evolution of cooperation (Science, 1981);
- ▶ Nowak & May: Evolutionary games and spatial chaos (*Nature*, 1992);
- ▶ Nowak & Sigmund: Evolution of indirect reciprocity by image scoring (Nature, 1998);
- Riolo, Cohen & Axelrod: Evolution of cooperation without reciprocity (Nature, 2001);
- Burtsev & Turchin: Evolution of cooperative strategies from first principles (Nature, 2006);

Analytical approaches

Uniform

- 'Trembling towards equilibrium' (best-response with mistake-making)
- ► Risk-dominant eq.
- ▶ e.g. KMR (1993)

Analytical approaches

Uniform

- 'Trembling towards equilibrium' (best-response with mistake-making)
- Risk-dominant eq.
- ▶ e.g. KMR (1993)

Circle, Line, Grid

- Best-response, with **local** interactions
- Risk-dominant with acceleration
- ▶ e.g. Ellison et. al (1993-2000)

Analytical approaches

Uniform

- 'Trembling towards equilibrium' (best-response with mistake-making)
- Risk-dominant eq.
- ▶ e.g. KMR (1993)

Circle, Line, Grid

- Best-response, with **local** interactions
- Risk-dominant with acceleration
- e.g. Ellison et. al (1993-2000)

Dynamic

- Best-response graph-formation
- Inefficient and non-risk-dominant eq. possible
- e.g. Jackson & Watts (2002)

Limitations of Analytic Framework

- Strategies other than the Best-response (utility maximizing) hard to model analytically;
- Non-uniform (and non-regular) interaction spaces very challenging;
- ► Problem of *agency* very difficult especially with strategic network formation;

Limitations of Analytic Framework

- Strategies other than the Best-response (utility maximizing) hard to model analytically;
- ▶ Non-uniform (and non-regular) interaction spaces very challenging;
- ▶ Problem of agency very difficult especially with strategic network formation:
- boundedly rational behaviour + strategic network formation + dynamic interaction space = limits of analysis!

Limitations of Analytic Framework

- Strategies other than the Best-response (utility maximizing) hard to model analytically;
- ▶ Non-uniform (and non-regular) interaction spaces very challenging;
- ▶ Problem of agency very difficult especially with strategic network formation;
- boundedly rational behaviour + strategic network formation + dynamic interaction space = limits of analysis!
- But, computational, agent-based approaches well suited!

Computational Approaches

Many models of boundedly rational play, but endogeneity of interaction?

- ▶ Ising models (incl. social-influence on small-world, random);
- Computation on a grid (e.g. 2D);
- Diffusion of technologies (again, structure-defined);
- ▶ IPD/CR (choice-refusal), endogenous, but network not strategic;

Computational Approaches

Many models of boundedly rational play, but endogeneity of interaction?

- Ising models (incl. social-influence on small-world, random);
- Computation on a grid (e.g. 2D);
- Diffusion of technologies (again, structure-defined);
- IPD/CR (choice-refusal), endogenous, but network not strategic;

Desirable Computational Model Qualities:

- 'Simple' set-up relationship to previous literature;
- Truly endogenous (strategy-based, rather than observer based) interaction-space dynamics;
- Equilibria? Dynamics? Complexity?

Game

- Reward for cooperative, but risky play (modified IPD);
- Signal (#) play: fore-go payoff, establish link;
- Re-establishment each interaction.

$$\begin{array}{c|ccccc}
 & \#_w & C & D & \#_s \\
\hline
\#_w & (0,0) & \cdots & (0,0) \\
C & . & (3,3) & (0,5) & . \\
D & . & (5,0) & (1,1) & . \\
\#_s & (0,0) & \cdots & (0,0)
\end{array}$$

Game

- Reward for cooperative, but risky play (modified IPD);
- Signal (#) play: fore-go payoff, establish link;
- Re-establishment each interaction.

Agents

Finite State
Automata (FSA),
GA updating

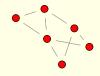
Control: length of interactions τ ; number of ints/prd m

Game

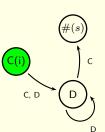
- Reward for cooperative, but risky play (modified IPD);
- ▶ Signal (#) play: fore-go payoff, establish link;
- Re-establishment each interaction.

	#w	C	D	$\#_s$
$\#_w$	(0,0)			(0,0)
C		(3,3)	(0,5)	
D	:	(5,0)	(1,1)	:
$\#_s$	(0,0)	`	. ,	(0,0)

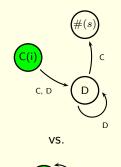
Agents


Finite State Automata (FSA), GA updating

Control: length of interactions τ ; number of ints/prd m


Mixing

Uniform initially; then endogenous \sim like, dislike, untried

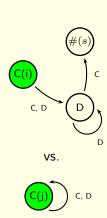


Control: impact of 'like' η

1. Agent *i* addressed;


- 1. Agent *i* addressed;
- 2. Interaction probabilities determined from contact listing (like, dislike, untried) - meets j;

- 1. Agent i addressed;
- 2. Interaction probabilities determined from contact listing (like, dislike, untried) - meets j;
- 3. IPD: interaction stops if # played, or τ iterations reached;


Iteration	s_i	s_{j}	π_i	π_j
1	C	C	3	3
2	D	C	5	0
3	#(s)	C	0	0
$\sum \pi_x$			8	3

- 1. Agent *i* addressed;
- 2. Interaction probabilities determined from contact listing (like, dislike, untried) - meets j;
- 3. IPD: interaction stops if # played, or τ iterations reached;

Iteration	s_i	s_{j}	π_i	π_j
1	C	C	3	3
2	D	C	5	0
3	#(s)	C	0	0
$\sum \pi_x$			8	3

- 4. $\sum \pi_x$ added to period payoffs;
- 5. Update interaction structure (here, $i \leftrightarrow j$).

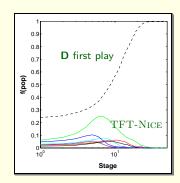
▶ Due to enhanced *agency*, network that arise are due to strategic play of individuals (not externally applied);

Benefits of Approach

- Due to enhanced agency, network that arise are due to strategic play of individuals (not externally applied);
- ▶ Networks can be 'good' and 'bad' for agents (not just arbitary decision of inquirer);
- Capacity to deal with multiple networks at same time (not single component or list);

Benefits of Approach

- Due to enhanced agency, network that arise are due to strategic play of individuals (not externally applied);
- ▶ Networks can be 'good' and 'bad' for agents (not just arbitary decision of inquirer);
- Capacity to deal with multiple networks at same time (not single component or list);
- ▶ FSA allows for large strategic space (e.g. for $\tau = 3 \longrightarrow 34$ distinct strategies;
- ► FSA encoding provides facile method of *learning* and innovation/mistake-making for agents;

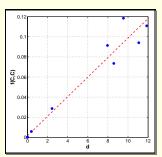

Without network formation, $\eta = 0$

- Is system still similar to standard IPD set-up?
- ... does the playing of # affect things?

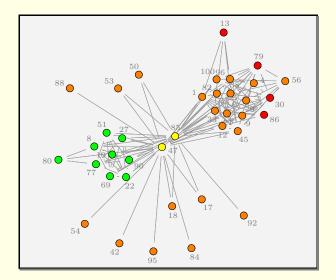

Cooperation Networks Results

Without network formation, $\eta = 0$

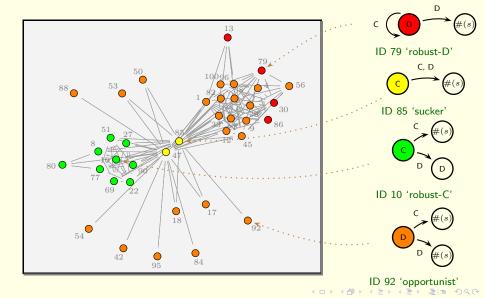
- Is system still similar to standard IPD set-up?
- ... does the playing of # affect things?
- Can show analytically that **D** play inevitable;
- Seen computationally (20 trials; 100 agents; m = 20).


10

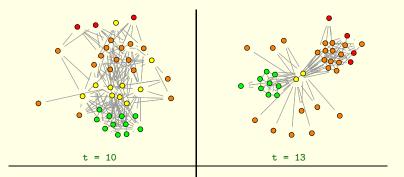
$\eta > 0$: Network formation & Cooperation

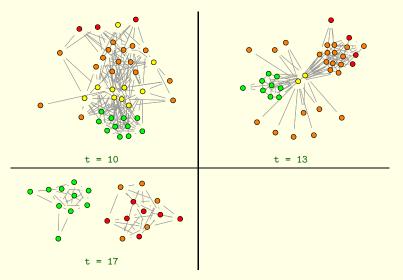

'Frequency' & 'Choice'

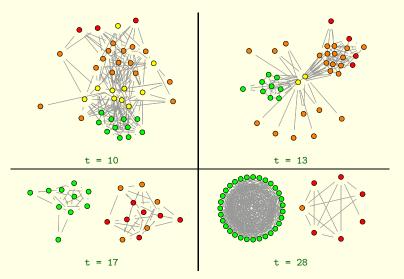
- Cooperation and average degree strongly related;
- Frequency of interaction AND 'impact' of edges necessary for sustainable cooperation-networks.

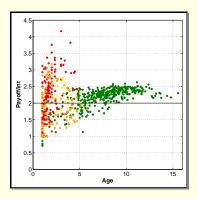

	$ar{d}$			f(C,C)		
$m \setminus^{\eta}$	0.80	0.90	0.95	0.80	0.90	0.95
10	0.000	0.000 0.001 11.859	0.000	0.000	0.000	0.000
14	0.004	0.001	0.391	0.000	0.000	0.006
18	2.441	11.859	8.587	0.029	0.111	0.074
20	7.959	11.073	9.548	0.091	0.094	0.119

Network formation I: usual suspects




Cooperation Networks Results

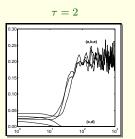

Network formation I: usual suspects

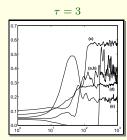


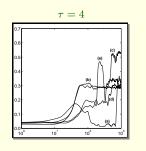
Cooperation Networks

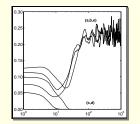
Network Purity & Stability

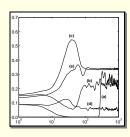
- High payoffs in mixed networks visible;
- Assortative (preferential) mixing leads to long-gevity;
- All-D payoff cut-point.

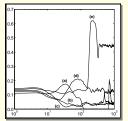

Network payoffs vs. mean age by dominant (> 50%) type

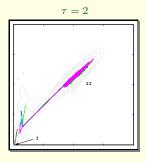

What about dynamics?

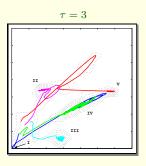

What is a state?

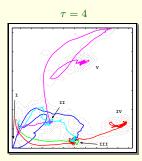

- State description is enormous (network + automata);
- Alternative, capture descriptive statistics that give aggregate description of state:
 - **Strategy measure** fraction of mutual cooperative plays, out of all plays (f(C,C));
 - **Network measure** average agent link sponsorships $(\langle d \rangle)$;


From simplicity to complexity...



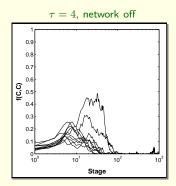



f(C,C)


 $\langle d \rangle$

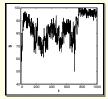
(Ē) (Ē) Ē|= 9Q@

In 'Network:Strategy' space



Sources of complexity?

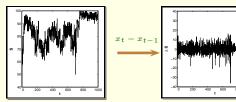
- ► Interactions?
- ► Strategies?
- ► Network dynamics?



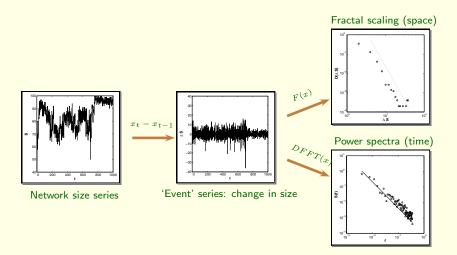
Endogeneity & self-organized criticality

- Network changes could be source of complexity;
- Does the network show scaling over time and space?
- What is an event?
 - Space Frequency distribution of changes in network size (nodes, principle component);
 - ▶ **Time** Power spectra of size changes over time;
- Power-law scaling would indicate system criticality.

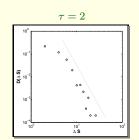
Cooperation Networks

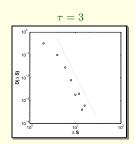

Analysing self-organized criticality on networks

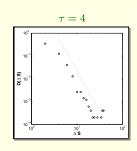
Network size series

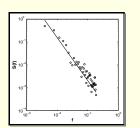

20

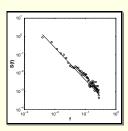
Analysing self-organized criticality on networks

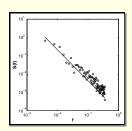

Network size series


'Event' series: change in size




 $D(\Delta S)$


Power-law scaling (again...)

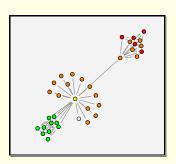


S(f)

What does it mean?

- ▶ White noise would give slope of 0, here, slope: -1.8 ± 0.1 ;
- ► The system (analysed in these measures) displays critical behaviour (i.e. at/near a phase change);
- Impact of events propogate through spatial and temporal dimensions
 connectivity;

What does it mean?

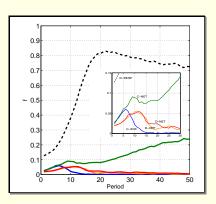

- ▶ White noise would give slope of 0, here, slope: -1.8 ± 0.1 ;
- ▶ The system (analysed in these measures) displays critical behaviour (i.e. at/near a phase change);
- Impact of events propagate through spatial and temporal dimensions connectivity;
- Not surprising, although...
- Implies the SOC outcomes:
 - ► Tracking 'equilibrium' (resting) points becomes a statistical task (rather than by explicit prediction);
 - Seemingly small events can cause system-wide effects (although rarely) .. don't expect proportionality;
 - 'Simple' modification can upset canonical behaviour.

Future questions

- Coordination games on networks?
- Biological: self-replication with fitness?
- Economic: communication? reputation? signalling in network?
- ▶ Implications of SOC/complexity in these models are we comfortable with disequilibrium? Long-run data on these effects?
- ▶ Social/government policy: dynamic control? What are the instruments? How costly are they? Where do they apply?

Thanks

Simon Angus, UNSW s.angus@unsw.edu.au



Cooperation Networks Appendix

$\eta > 0$: Mean Population Behaviours

Establishing the Network $(m = 20, \eta = 0.8)$

- Periodic behaviours observed: 'sucker' types; 'opportunists'; cooperation network builders; and defection network builders;
- 'Shake-out' period as before, but cooperation network resiliant;
- ▶ In network forming trials, cooperative network grows to encompass ~ 60% of population

