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Agenda

. The problem of endogeniety;
. A simple modification: properties and results;

. Endogenous networks and complexity;

A W =

. Areas for future interaction /work.
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Cooperation: how does it work?

v

Maynard Smith & Price: The logic of animal conflict (Nature, 1973);

v

Axelrod & Hamilton: The evolution of cooperation (Science, 1981);

v

Nowak & May: Evolutionary games and spatial chaos (Nature, 1992);

v

Nowak & Sigmund: Evolution of indirect reciprocity by image scoring
(Nature, 1998);

v

Riolo, Cohen & Axelrod: Evolution of cooperation without reciprocity
(Nature, 2001);

v

Burtsev & Turchin: Evolution of cooperative strategies from first principles
(Nature, 2006);
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Analytical approaches

» ‘Trembling towards
equilibrium’
(best-response with
mistake-making)

» Risk-dominant eq.

» e.g. KMR (1993)
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Analytical approaches

» ‘Trembling towards » Best-response, with

equilibrium’ local interactions
(best-response with . Risk-dominant with
mistake-making) acceleration

> Risk-dominant eq. » e.g. Ellison et. al

> e.g. KMR (1993) (1993-2000)
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Analytical approaches

» ‘Trembling towards » Best-response, with  » Best-response

equilibrium’ local interactions graph-formation
(b.est—responée with . Risk-dominant with > Inefficient and
mistake-making) acceleration non-risk-dominant
> Risk-dominant eq. » e.g. Ellison et. al eq. possible
» e.g. KMR (1993) (1993-2000) » e.g. Jackson &
Watts (2002)
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Limitations of Analytic Framework

> Strategies other than the Best-response (utility maximizing) hard to
model analytically;

» Non-uniform (and non-regular) interaction spaces very challenging;

» Problem of agency very difficult — especially with strategic network
formation;

Simon Angus

School of Economics, UNSW,


s.angus@unsw.edu.au

Cooperation Networks 5

Limitations of Analytic Framework

> Strategies other than the Best-response (utility maximizing) hard to
model analytically;

» Non-uniform (and non-regular) interaction spaces very challenging;

» Problem of agency very difficult — especially with strategic network
formation;

limits of analysis!
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Limitations of Analytic Framework

v

Strategies other than the Best-response (utility maximizing) hard to
model analytically;

v

Non-uniform (and non-regular) interaction spaces very challenging;

v

Problem of agency very difficult — especially with strategic network
formation;

limits of analysis!
But, computational, agent-based approaches well suited!

v
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Computational Approaches

Many models of boundedly rational play, but endogeneity of interaction?

v

Ising models (incl. social-influence on small-world, random);
Computation on a grid (e.g. 2D);

Diffusion of technologies (again, structure-defined);

vV v Yy

IPD/CR (choice-refusal), endogenous, but network not strategic;
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Computational Approaches

Many models of boundedly rational play, but endogeneity of interaction?

v

Ising models (incl. social-influence on small-world, random);

» Computation on a grid (e.g. 2D);

v

Diffusion of technologies (again, structure-defined);

v

IPD/CR (choice-refusal), endogenous, but network not strategic;
Desirable Computational Model Qualities:
> ‘Simple’ set-up — relationship to previous literature;

» Truly endogenous (strategy-based, rather than observer based)
interaction-space dynamics;

» Equilibria? Dynamics? Complexity?
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Model Overview

» Reward for cooperative,
but risky play (modified
IPD);

» Signal (#) play: fore-go
payoff, establish link;

» Re-establishment each
interaction.

| #0 C D #s

#.,| (00) - (0,0)
c | . (3,3) (0,5) .
D |: (5,0) (1,1) :
#s| (0,0) .- (0,0)
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Model Overview

» Reward for cooperative, Finite State

S ety el (oodhics) Lo (PR
IPD); GA updating

» Signal (#) play: fore-go C/r
payoff, establish link; @
™~

» Re-establishment each

D
interaction. @

| #w C D #s Control: length of
ﬁw _(0'0) (3"3')' (05) FO’O) interactions T;
D |: (50 (11): number of
#s| (00) - (00) ints/prd m
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Model Overview

» Reward for cooperative,
but risky play (modified
IPD);

» Signal (#) play: fore-go
payoff, establish link;

» Re-establishment each
interaction.

| #w C D #s
#w| (00) - (0,0)
C|. (33)(05).

D |  (50)(11):
#s| (00) - (0,0)

Simon Angus

Finite State
Automata (FSA),
GA updating

<9
@D\@
Control: length of
interactions T;

number of
ints/prd m

Uniform initially;
then endogenous
~ like, dislike,
untried

Control: impact of
‘like' n
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Example Interaction

1. Agent ¢ addressed;

o /g
(O—0O
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Example Interaction

1. Agent ¢ addressed;
2. Interaction probabilities determined from

contact listing (like, dislike, untried) — meets
i
s
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Example Interaction

1. Agent ¢ addressed;

2. Interaction probabilities determined from

contact listing (like, dislike, untried) — meets

p
3. IPD: interaction stops if # played, or 7 CD\;
iterations reached; '

lteration | s; 55 | ™ m; 3
1 ¢ C|3 3 VS.
2 D C|5 0
3 #(s) C|0 0
2 " @
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Example Interaction

1. Agent ¢ addressed;

2. Interaction probabilities determined from

contact listing (like, dislike, untried) — meets

I
\
C,.D

3. IPD: interaction stops if # played, or 7

iterations reached; ' @)

Iteration

S Sj T Uy D
1 c C|3 3 vs.
2 D c|5 0
3 #(s) C| o0 0
2 o @ -

4. > m, added to period payoffs;
5. Update interaction structure (here, i <> j).
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Benefits of Approach

» Due to enhanced agency, network that arise are due to strategic play
of individuals (not externally applied);
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Benefits of Approach

» Due to enhanced agency, network that arise are due to strategic play
of individuals (not externally applied);

» Networks can be ‘good’ and ‘bad’ for agents (not just arbitary
decision of inquirer);

» Capacity to deal with multiple networks at same time (not single
component or list);
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Benefits of Approach

» Due to enhanced agency, network that arise are due to strategic play
of individuals (not externally applied);

» Networks can be ‘good’ and ‘bad’ for agents (not just arbitary
decision of inquirer);

» Capacity to deal with multiple networks at same time (not single
component or list);

» FSA allows for large strategic space (e.g. for 7 = 3 — 34 distinct
strategies;

» FSA encoding provides facile method of learning and
innovation/mistake-making for agents;
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Without network formation, n =0

» |s system still similar to standard
IPD set-up?

» ... does the playing of # affect
things?
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Without network formation, n =0

0.9
08 /
07 D first play /
0.6 /

05

» |s system still similar to standard

f(pop)

IPD set-up? Zi

» ... does the playing of # affect off TFT-NICE
things? °’; -

» Can show analytically that D play ! magl:
inevitable;

» Seen computationally (20 trials; o
100 agents; m = 20). ‘ C‘ @
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n > 0: Network formation & Cooperation

0.1 v

0.1

‘Frequency’ & ‘Choice’ ‘ .

» Cooperation and average degree e
strongly related; ’

f(c.C)
5
8

0.04 b

» Frequency of interaction AND
‘impact’ of edges necessary for L
sustainable cooperation-networks. ER

d f(C.0)

m\" 0.80 0.90 0.95 0.80 0.90 0.95
10 0.000 0.000 0.000 | 0.000 0.000 0.000
14 0.004 0.001 0.391 | 0.000 0.000 0.006
18
20 7.959 11.073 9.548 | 0.091 0.094 0.119
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Network formation I: usual suspects
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Network formation I: usual suspects
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ID 92 ‘opportunist’
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Network formation Il: a character tour ...
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Network formation Il: a character tour ...
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Network formation Il: a character tour ...
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Network formation Il: a character tour ...
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Network Purity & Stability

» High payoffs in mixed
networks visible;
» Assortative (preferential)

Payofffint

mixing leads to 1 ' .
long-gevity; os
» All-D payoff cut-point. % s 1 s

Network payoffs vs. mean age by domi-
nant (> 50%) type
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What about dynamics?

What is a state?

» State description is enormous (network + automata);

» Alternative, capture descriptive statistics that give aggregate
description of state:

» Strategy measure fraction of mutual cooperative plays, out of all

plays (f(C, C));
» Network measure average agent link sponsorships ({d));
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From simplicity to complexity...

T=2

T=3

16
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In ‘Network:Strategy’ space

i~ ——in
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Sources of complexity?

7 = 4, network off

» Interactions?
> Strategies?

» Network dynamics?
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Endogeneity & self-organized criticality

» Network changes could be source of complexity;
» Does the network show scaling over time and space?

» What is an event?

» Space Frequency distribution of changes in network size (nodes,
principle component);
» Time Power spectra of size changes over time;

» Power-law scaling would indicate system criticality.
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Analysing self-organized criticality on networks

0 20 40 w0 B0 10w

Network size series
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Analysing self-organized criticality on networks
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Network size series

‘Event’

series: change in size
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Analysing self-organized criticality on networks

Network size series

Fractal scaling (space)

2
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pal
Power-law scaling (again...)
T=2 T=3 T=4
g 8 : 8 . D(AS)
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N
N

What does it mean?

» White noise would give slope of 0, here, slope: —1.8 +0.1;

» The system (analysed in these measures) displays critical behaviour
(i.e. at/near a phase change);

» Impact of events propogate through spatial and temporal dimensions
— connectivity;
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N
N

What does it mean?

» White noise would give slope of 0, here, slope: —1.8 +0.1;

» The system (analysed in these measures) displays critical behaviour
(i.e. at/near a phase change);

» Impact of events propogate through spatial and temporal dimensions
— connectivity;
» Not surprising, although...
» Implies the SOC outcomes:
» Tracking ‘equilibrium’ (resting) points becomes a statistical task
(rather than by explicit prediction);
» Seemingly small events can cause system-wide effects (although

rarely) .. don’t expect proportionality;
» ‘Simple’ modification can upset canonical behaviour.
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Future questions

Coordination games on networks?
Biological: self-replication with fitness?

Economic: communication? reputation? signalling in network?

vV v v Y

Implications of SOC/complexity in these models — are we
comfortable with disequilibrium? Long-run data on these effects?

» Social/government policy: dynamic control? What are the
instruments? How costly are they? Where do they apply?
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Thanks
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n > 0: Mean Population Behaviours

Establishing the Network
(m =20,7=0.8)

» Periodic behaviours observed:
‘sucker’ types; ‘opportunists’;
cooperation network builders;
and defection network builders;

» ‘Shake-out’ period as before,
but cooperation network
resiliant;

» In network forming trials, A N
cooperative network grows to
encompass ~ 60% of population
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