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Agenda

1. The problem of endogeniety;

2. A simple modification: properties and results;

3. Endogenous networks and complexity;

4. Areas for future interaction/work.
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Cooperation: how does it work?

I Maynard Smith & Price: The logic of animal conflict (Nature, 1973);

I Axelrod & Hamilton: The evolution of cooperation (Science, 1981);

I Nowak & May: Evolutionary games and spatial chaos (Nature, 1992);

I Nowak & Sigmund: Evolution of indirect reciprocity by image scoring
(Nature, 1998);

I Riolo, Cohen & Axelrod: Evolution of cooperation without reciprocity
(Nature, 2001);

I Burtsev & Turchin: Evolution of cooperative strategies from first principles
(Nature, 2006);
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Analytical approaches

Uniform

I ‘Trembling towards
equilibrium’
(best-response with
mistake-making)

I Risk-dominant eq.

I e.g. KMR (1993)
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Analytical approaches

Uniform

I ‘Trembling towards
equilibrium’
(best-response with
mistake-making)

I Risk-dominant eq.

I e.g. KMR (1993)

Circle, Line, Grid

I Best-response, with
local interactions

I Risk-dominant with
acceleration

I e.g. Ellison et. al
(1993–2000)
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Analytical approaches

Uniform

I ‘Trembling towards
equilibrium’
(best-response with
mistake-making)

I Risk-dominant eq.

I e.g. KMR (1993)

Circle, Line, Grid

I Best-response, with
local interactions

I Risk-dominant with
acceleration

I e.g. Ellison et. al
(1993–2000)

Dynamic

I Best-response
graph-formation

I Inefficient and
non-risk-dominant
eq. possible

I e.g. Jackson &
Watts (2002)
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Limitations of Analytic Framework

I Strategies other than the Best-response (utility maximizing) hard to
model analytically;

I Non-uniform (and non-regular) interaction spaces very challenging;

I Problem of agency very difficult – especially with strategic network
formation;
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Limitations of Analytic Framework

I Strategies other than the Best-response (utility maximizing) hard to
model analytically;

I Non-uniform (and non-regular) interaction spaces very challenging;

I Problem of agency very difficult – especially with strategic network
formation;

I
boundedly rational behaviour + strategic network formation

+ dynamic interaction space = limits of analysis!

I But, computational, agent-based approaches well suited!
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Computational Approaches

Many models of boundedly rational play, but endogeneity of interaction?

I Ising models (incl. social-influence on small-world, random);

I Computation on a grid (e.g. 2D);

I Diffusion of technologies (again, structure-defined);

I IPD/CR (choice-refusal), endogenous, but network not strategic;

Simon Angus School of Economics, unsw, s.angus@unsw.edu.au

s.angus@unsw.edu.au


Cooperation Networks Introduction 6

Computational Approaches

Many models of boundedly rational play, but endogeneity of interaction?

I Ising models (incl. social-influence on small-world, random);

I Computation on a grid (e.g. 2D);

I Diffusion of technologies (again, structure-defined);

I IPD/CR (choice-refusal), endogenous, but network not strategic;

Desirable Computational Model Qualities:

I ‘Simple’ set-up – relationship to previous literature;

I Truly endogenous (strategy-based, rather than observer based)
interaction-space dynamics;

I Equilibria? Dynamics? Complexity?
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Model Overview

Game

I Reward for cooperative,
but risky play (modified
IPD);

I Signal (#) play: fore-go
payoff, establish link;

I Re-establishment each
interaction.

#w C D #s

#w (0,0) · · · (0,0)
C ...

(3,3) (0,5) ...D (5,0) (1,1)
#s (0,0) · · · (0,0)
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Model Overview
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I Reward for cooperative,
but risky play (modified
IPD);

I Signal (#) play: fore-go
payoff, establish link;

I Re-establishment each
interaction.

#w C D #s

#w (0,0) · · · (0,0)
C ...

(3,3) (0,5) ...D (5,0) (1,1)
#s (0,0) · · · (0,0)

Agents
Finite State
Automata (FSA),
GA updating

C

D

#(s)

D

C

Control: length of
interactions τ ;
number of
ints/prd m
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Model Overview

Game

I Reward for cooperative,
but risky play (modified
IPD);

I Signal (#) play: fore-go
payoff, establish link;

I Re-establishment each
interaction.

#w C D #s

#w (0,0) · · · (0,0)
C ...

(3,3) (0,5) ...D (5,0) (1,1)
#s (0,0) · · · (0,0)

Agents
Finite State
Automata (FSA),
GA updating

C

D

#(s)

D

C

Control: length of
interactions τ ;
number of
ints/prd m

Mixing
Uniform initially;
then endogenous
∼ like, dislike,
untried

Control: impact of
‘like’ η
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Example Interaction

1. Agent i addressed;

C(i)

D

#(s)

C, D

D

C

Simon Angus School of Economics, unsw, s.angus@unsw.edu.au

s.angus@unsw.edu.au


Cooperation Networks The Model 8

Example Interaction

1. Agent i addressed;

2. Interaction probabilities determined from
contact listing (like, dislike, untried) – meets
j; C(i)

D

#(s)

C, D

D

C

vs.

C(j) C, D
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Example Interaction

1. Agent i addressed;

2. Interaction probabilities determined from
contact listing (like, dislike, untried) – meets
j;

3. IPD: interaction stops if # played, or τ

iterations reached;

Iteration si sj πi πj

1 C C 3 3
2 D C 5 0
3 #(s) C 0 0∑
πx 8 3

C(i)

D

#(s)

C, D

D

C

vs.

C(j) C, D
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Example Interaction

1. Agent i addressed;

2. Interaction probabilities determined from
contact listing (like, dislike, untried) – meets
j;

3. IPD: interaction stops if # played, or τ

iterations reached;

Iteration si sj πi πj

1 C C 3 3
2 D C 5 0
3 #(s) C 0 0∑
πx 8 3

4.
∑

πx added to period payoffs;

5. Update interaction structure (here, i = j).

C(i)

D

#(s)

C, D

D

C

vs.

C(j) C, D
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Benefits of Approach

I Due to enhanced agency, network that arise are due to strategic play
of individuals (not externally applied);
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Benefits of Approach

I Due to enhanced agency, network that arise are due to strategic play
of individuals (not externally applied);

I Networks can be ‘good’ and ‘bad’ for agents (not just arbitary
decision of inquirer);

I Capacity to deal with multiple networks at same time (not single
component or list);
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Benefits of Approach

I Due to enhanced agency, network that arise are due to strategic play
of individuals (not externally applied);

I Networks can be ‘good’ and ‘bad’ for agents (not just arbitary
decision of inquirer);

I Capacity to deal with multiple networks at same time (not single
component or list);

I FSA allows for large strategic space (e.g. for τ = 3 −→ 34 distinct
strategies;

I FSA encoding provides facile method of learning and
innovation/mistake-making for agents;
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Without network formation, η = 0

I Is system still similar to standard
IPD set-up?

I ... does the playing of # affect
things?
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Without network formation, η = 0

I Is system still similar to standard
IPD set-up?

I ... does the playing of # affect
things?

I Can show analytically that D play
inevitable;

I Seen computationally (20 trials;
100 agents; m = 20).
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η > 0: Network formation & Cooperation

‘Frequency’ & ‘Choice’

I Cooperation and average degree
strongly related;

I Frequency of interaction AND
‘impact’ of edges necessary for
sustainable cooperation-networks. 0 2 4 6 8 10 12

0

0.02

0.04

0.06

0.08

0.1

0.12

d

f(
C

,C
)

d̄ f(C, C)

m�η 0.80 0.90 0.95 0.80 0.90 0.95

10 0.000 0.000 0.000 0.000 0.000 0.000

14 0.004 0.001 0.391 0.000 0.000 0.006

18 2.441 11.859 8.587 0.029 0.111 0.074

20 7.959 11.073 9.548 0.091 0.094 0.119
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Network formation I: usual suspects
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Network formation I: usual suspects
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Network formation II: a character tour ...

t = 10
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Network formation II: a character tour ...
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Network formation II: a character tour ...

t = 10 t = 13

t = 17
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Network formation II: a character tour ...

t = 10 t = 13

t = 17 t = 28

Simon Angus School of Economics, unsw, s.angus@unsw.edu.au

s.angus@unsw.edu.au


Cooperation Networks Results 14

Network Purity & Stability

I High payoffs in mixed
networks visible;

I Assortative (preferential)
mixing leads to
long-gevity;

I All-D payoff cut-point. 0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Age

P
ay

o
ff

/in
t
Network payoffs vs. mean age by domi-
nant (> 50%) type
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What about dynamics?

What is a state?

I State description is enormous (network + automata);

I Alternative, capture descriptive statistics that give aggregate
description of state:

I Strategy measure fraction of mutual cooperative plays, out of all
plays (f(C, C));

I Network measure average agent link sponsorships (〈d〉);
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From simplicity to complexity...

τ = 2 τ = 3 τ = 4
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In ‘Network:Strategy’ space

τ = 2 τ = 3 τ = 4
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Sources of complexity?

I Interactions?

I Strategies?

I Network dynamics?

τ = 4, network off
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Endogeneity & self-organized criticality

I Network changes could be source of complexity;

I Does the network show scaling over time and space?

I What is an event?
I Space Frequency distribution of changes in network size (nodes,

principle component);
I Time Power spectra of size changes over time;

I Power-law scaling would indicate system criticality.

Simon Angus School of Economics, unsw, s.angus@unsw.edu.au

s.angus@unsw.edu.au


Cooperation Networks Analysis 20

Analysing self-organized criticality on networks
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Analysing self-organized criticality on networks
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Analysing self-organized criticality on networks
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Power-law scaling (again...)

τ = 2 τ = 3 τ = 4

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

∆ S

D
(∆

 S
)

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

∆ S

D
(∆

 S
)

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

∆ S

D
(∆

 S
)

D(∆S)

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

f

S
(f

)

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

f

S
(f

)

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

f

S
(f

)

S(f)

Simon Angus School of Economics, unsw, s.angus@unsw.edu.au

s.angus@unsw.edu.au


Cooperation Networks Discussion 22

What does it mean?

I White noise would give slope of 0, here, slope: −1.8 ± 0.1;

I The system (analysed in these measures) displays critical behaviour
(i.e. at/near a phase change);

I Impact of events propogate through spatial and temporal dimensions
– connectivity;
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What does it mean?

I White noise would give slope of 0, here, slope: −1.8 ± 0.1;

I The system (analysed in these measures) displays critical behaviour
(i.e. at/near a phase change);

I Impact of events propogate through spatial and temporal dimensions
– connectivity;

I Not surprising, although...

I Implies the SOC outcomes:
I Tracking ‘equilibrium’ (resting) points becomes a statistical task

(rather than by explicit prediction);
I Seemingly small events can cause system-wide effects (although

rarely) .. don’t expect proportionality;
I ‘Simple’ modification can upset canonical behaviour.
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Future questions

I Coordination games on networks?

I Biological: self-replication with fitness?

I Economic: communication? reputation? signalling in network?

I Implications of SOC/complexity in these models – are we
comfortable with disequilibrium? Long-run data on these effects?

I Social/government policy: dynamic control? What are the
instruments? How costly are they? Where do they apply?
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Thanks

Simon Angus, UNSW
s.angus@unsw.edu.au
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η > 0: Mean Population Behaviours

Establishing the Network
(m = 20, η = 0.8)

I Periodic behaviours observed:
‘sucker’ types; ‘opportunists’;
cooperation network builders;
and defection network builders;

I ‘Shake-out’ period as before,
but cooperation network
resiliant;

I In network forming trials,
cooperative network grows to
encompass ∼ 60% of population
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