Challenges and Opportunities for *Computational Oncology* in Cellular Automata

The Challenge

From Spheroids to Models (and back again)

Yu et al., 2007

complex.upf.es/ ~ricard/spheroid.png

Nutrient (and waste)

Diffusion

State contingent metabolism

Central Necrosis

Cell Density Changes

Adhesion, migration, metastasis

Genetic Pathways and Evolutionary Dynamics

Consequences of the one-to-one assumption

The Many-to-One Assumption

Division

Do CAs Grow as Peripheral Growth Theory (PGT) predicts?

Division

Do Real Spheroids Grow as PGT predicts?

Nutrient Transport Discrete Diffusion Transport in CAs

Topology/Qualitative Considerations

Scaling/Quantitative Considerations

Drasdo, D., 2005. Coarse graining in simulated cell populations. Adv. Comput. Syst. 8, 319–363.

Metabolism Metabolism in a CHO, O2, H+ world

Piotrowska & Angus, J. Th. Biol. (2009)

Necrosis Using CAs to Probe Theory

The Challenge

From Spheroids to Models (and back again)

Yu et al., 2007

complex.upf.es/ ~ricard/spheroid.png

Nutrient (and waste)

Diffusion

State contingent metabolism

Central Necrosis

Cell Density Changes

Adhesion, migration, metastasis

Genetic Pathways and Evolutionary Dynamics

Looking Ahead Still on the 'wish-list'

Freyer & Sutherland, J. Cell. Phys. (1986)

Freyer & Sutherland, J. Cell. Phys. (1986)

Updating Metabolism

Incorporating the mitotic development cycle

Summing Up

CAs: Opportunities & (ongoing) Challenges

Opportunities

1// CAs are not the perfect model, but are a reasonable choice for tumour dynamics;

2// The dynamics of CAs are a good representation of real Spheroid dynamics (in vivo?)

3// CAs allow investigation of non-experimentally accessible data;

4// CAs show good promise for investigation of theory (qualitative & quantitative)

Challenges

1// Contingent metabolism needs to be handled carefully (where do you stop?)

2// Mapping from continuous to numerical diffusion not straight-forward (scaled?)

3// Migration & metastasis?;

4// Cell volume considerations?