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The Challenge
From Spheroids to Models (and back again)
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Figure 1. Geometry of the 3D space, showing radius, r
and surface reactivity interpretation of the site side-length,
u (left); Implementation of many-to-one assumption in 3D
lattice (right).

a single cell, namely, around 10µm. Or in other terms, it is assumed by the

one-to-one assumption that a cell/site at just two sites (or about 20µm)

inside the surface of the growing tumour mass would be unable to produce

a daughter cell nearby due to contact inhibition.

In contrast, our approach relaxes the one-to-one assumption by assuming

a many-to-one approach where any number N of cells can be considered to

reside in one CA site. Not only does this approach allow for the peripheral

mitotic region to expand to realistic widths (on the order of 100µm, [15, 3])

but also, it allows the effective study of very much larger tumour masses

(up to the scale of 1×106 cells) whilst keeping the number of computa-

tional elements within implementable margins (e.g. on the order of 1×104).

Clearly, one loses a degree of detail in the results as a consequence of this

approach, since all cells inhabiting a single site are effectively treated as an

homogeneous packet.

We can progress this discussion by formalising the implications of the

many-to-one assumption on bulk tumour properties. Thus, we consider a

proliferating boundary of thickness equivalent to the side-length of one CA

site (refer Fig. 1, left), i.e. thickness u in the figure. Under this assumption,

we may consider the following master equation

(2.1)
dC(t)

dt
= kNε(t),

for the rate of tumour cell count (C(t)) progression with at time t, where k

is the rate constant (units t−1), N is the fixed number of cells per CA site

as defined above (units cells per site) and ε(t) is the number of CA sites at

the proliferation boundary of the tumour mass at time t (units sites).

constrained to treating the proliferating rim as a one cell width
layer around the tumour mass. Furthermore, the ‘many-to-one’
assumption allows the implementation of a fully calibrated
in silico tumour mass that can successfully grow to cell-count
sizes on the order of 1! 106 but with several orders of magnitude
less numerical objects to handle. In this way, the implementable
model produces realistic, experimentally comparable data on the
onset and progression of necrosis. A theoretical interpretation of
this assumption is also provided to encourage further investiga-
tion by the field.

After full calibration and scaling of all experimentally available
input data on cellular metabolism, diffusion, mitosis and cell
death, we find that necrosis appears in our model due to sub-
viable nutrient concentrations in the centre of the tumour and
not, as has been suggested by some authors (e.g. Freyer and
Sutherland, 1986), due to rising toxicity in the tumour mass.
Indeed, we show that by including the diffusion of waste
materials out of the tumour mass, central waste (Hþ in our
model) concentrations are only sufficient to switch cells to
quiescence rather than unprogrammed cell death (Casciari et al.,
1992). Further results on the progression of the necrotic volume
are included and compared to experimental results. Given that
recent experimental data on nutrient concentrations prior to the
onset of necrosis contradict these results (Walenta et al., 2000),
the paper thus concludes that additional mechanisms for necrosis
are required to be identified by the literature.

The paper is organised as follows: in Section 2 we outline the
description of the MCS growth model, Section 3 contains the
parameter estimation, while in Section 4 the results of our
computational simulations were compared with experimental
data for the MCS of the EMT6/Ro tumour line cultivated
in vitro. Finally, Section 5 contains the comparison of our model
with other (discrete and continuous) models known from the
literature. In this section the current limitations and potential
applications of the present model for future research are
discussed.

2. Model definition

2.1. The 2D CA

We consider a 2D CA model comparable to those of, for
instance, Patel et al. (2001) and Gerlee and Anderson (2007). Since
it has been established that cells cultivated in the in vitro three-
dimension (3D) like fashion behave differently to those that are
kept as monolayers (Weaver et al., 1997), we approach the 2D
automaton as a representative planar slice through a 3D spheroid-
like tumour mass. For instance, nutrients are supplied to the
growing tumour seed from CA sites beyond the boundary of
occupied sites, mimicking the spheroid approach in the laboratory
(as opposed to the planar substrate support approach as utilised
in monolayer experiments). Subsequently, we use experimental
data taken from in vitro spheroid studies as inputs to, and
comparison with, our model, adjusting for the planar approach as
necessary (e.g. calculation of saturated volume).

However, we differ significantly with all known previous CA
tumour approaches by relaxing the perceived ‘enforced’ constraint
of a ‘one-to-one correspondence between automaton elements
and physical cells’ (Patel et al., 2001, p. 319). Instead, in our
approach, each automaton site is filled with a chosen packet of
homogeneous cells (count N) (see Fig. 2), such that subsequent
automaton updates occur at the level of the site, rather than at the
cellular level. Indeed, this approach is of wide interested in
statistical mechanics where it is often called coarse-graining
(Kardar, 2007).

The reasons for this approach are twofold. First, although it has
been argued that the CA approach is perhaps the pre-eminent
simulation approach for many-object biological systems such as
tumour growth due to its significantly smaller computational
time compared to (say) apparently more realistic continuous
interaction models (Drasdo, 2005), the fact remains that under a
one-to-one assumption between cells and automaton sites, to
model a biological system such as (even) pre-angiogenic tumours,
one needs to implement a complex system with up to 106 objects
(cells). At this scale, even the CA approach is prohibitively time-
consuming to carry out meaningful in silico experiments. Hence, a
reduction in system objects is desirable purely due to implemen-
tation considerations.

However, the second reason for our approach is very
important, and to our knowledge, has been overlooked in the
biological simulation literature. Namely, by using the CA
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Fig. 1. A 1mm section of a tumour spheroid showing the inner necrotic region and
the outer living region (rat osteogenic sarcoma, reproduced with permission from
Yu et al., 2007).

Fig. 2. The 2D lattice structure assumed in the model. Each site is assumed to be
occupied by b1 individual cells as described in the text. The lattice size is
calculated directly from the packing density of tumour cells and the key control
parameter—the number of cells per lattice site.
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constrained to treating the proliferating rim as a one cell width
layer around the tumour mass. Furthermore, the ‘many-to-one’
assumption allows the implementation of a fully calibrated
in silico tumour mass that can successfully grow to cell-count
sizes on the order of 1! 106 but with several orders of magnitude
less numerical objects to handle. In this way, the implementable
model produces realistic, experimentally comparable data on the
onset and progression of necrosis. A theoretical interpretation of
this assumption is also provided to encourage further investiga-
tion by the field.

After full calibration and scaling of all experimentally available
input data on cellular metabolism, diffusion, mitosis and cell
death, we find that necrosis appears in our model due to sub-
viable nutrient concentrations in the centre of the tumour and
not, as has been suggested by some authors (e.g. Freyer and
Sutherland, 1986), due to rising toxicity in the tumour mass.
Indeed, we show that by including the diffusion of waste
materials out of the tumour mass, central waste (Hþ in our
model) concentrations are only sufficient to switch cells to
quiescence rather than unprogrammed cell death (Casciari et al.,
1992). Further results on the progression of the necrotic volume
are included and compared to experimental results. Given that
recent experimental data on nutrient concentrations prior to the
onset of necrosis contradict these results (Walenta et al., 2000),
the paper thus concludes that additional mechanisms for necrosis
are required to be identified by the literature.

The paper is organised as follows: in Section 2 we outline the
description of the MCS growth model, Section 3 contains the
parameter estimation, while in Section 4 the results of our
computational simulations were compared with experimental
data for the MCS of the EMT6/Ro tumour line cultivated
in vitro. Finally, Section 5 contains the comparison of our model
with other (discrete and continuous) models known from the
literature. In this section the current limitations and potential
applications of the present model for future research are
discussed.
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2.1. The 2D CA

We consider a 2D CA model comparable to those of, for
instance, Patel et al. (2001) and Gerlee and Anderson (2007). Since
it has been established that cells cultivated in the in vitro three-
dimension (3D) like fashion behave differently to those that are
kept as monolayers (Weaver et al., 1997), we approach the 2D
automaton as a representative planar slice through a 3D spheroid-
like tumour mass. For instance, nutrients are supplied to the
growing tumour seed from CA sites beyond the boundary of
occupied sites, mimicking the spheroid approach in the laboratory
(as opposed to the planar substrate support approach as utilised
in monolayer experiments). Subsequently, we use experimental
data taken from in vitro spheroid studies as inputs to, and
comparison with, our model, adjusting for the planar approach as
necessary (e.g. calculation of saturated volume).

However, we differ significantly with all known previous CA
tumour approaches by relaxing the perceived ‘enforced’ constraint
of a ‘one-to-one correspondence between automaton elements
and physical cells’ (Patel et al., 2001, p. 319). Instead, in our
approach, each automaton site is filled with a chosen packet of
homogeneous cells (count N) (see Fig. 2), such that subsequent
automaton updates occur at the level of the site, rather than at the
cellular level. Indeed, this approach is of wide interested in
statistical mechanics where it is often called coarse-graining
(Kardar, 2007).

The reasons for this approach are twofold. First, although it has
been argued that the CA approach is perhaps the pre-eminent
simulation approach for many-object biological systems such as
tumour growth due to its significantly smaller computational
time compared to (say) apparently more realistic continuous
interaction models (Drasdo, 2005), the fact remains that under a
one-to-one assumption between cells and automaton sites, to
model a biological system such as (even) pre-angiogenic tumours,
one needs to implement a complex system with up to 106 objects
(cells). At this scale, even the CA approach is prohibitively time-
consuming to carry out meaningful in silico experiments. Hence, a
reduction in system objects is desirable purely due to implemen-
tation considerations.

However, the second reason for our approach is very
important, and to our knowledge, has been overlooked in the
biological simulation literature. Namely, by using the CA
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constrained to treating the proliferating rim as a one cell width
layer around the tumour mass. Furthermore, the ‘many-to-one’
assumption allows the implementation of a fully calibrated
in silico tumour mass that can successfully grow to cell-count
sizes on the order of 1! 106 but with several orders of magnitude
less numerical objects to handle. In this way, the implementable
model produces realistic, experimentally comparable data on the
onset and progression of necrosis. A theoretical interpretation of
this assumption is also provided to encourage further investiga-
tion by the field.

After full calibration and scaling of all experimentally available
input data on cellular metabolism, diffusion, mitosis and cell
death, we find that necrosis appears in our model due to sub-
viable nutrient concentrations in the centre of the tumour and
not, as has been suggested by some authors (e.g. Freyer and
Sutherland, 1986), due to rising toxicity in the tumour mass.
Indeed, we show that by including the diffusion of waste
materials out of the tumour mass, central waste (Hþ in our
model) concentrations are only sufficient to switch cells to
quiescence rather than unprogrammed cell death (Casciari et al.,
1992). Further results on the progression of the necrotic volume
are included and compared to experimental results. Given that
recent experimental data on nutrient concentrations prior to the
onset of necrosis contradict these results (Walenta et al., 2000),
the paper thus concludes that additional mechanisms for necrosis
are required to be identified by the literature.

The paper is organised as follows: in Section 2 we outline the
description of the MCS growth model, Section 3 contains the
parameter estimation, while in Section 4 the results of our
computational simulations were compared with experimental
data for the MCS of the EMT6/Ro tumour line cultivated
in vitro. Finally, Section 5 contains the comparison of our model
with other (discrete and continuous) models known from the
literature. In this section the current limitations and potential
applications of the present model for future research are
discussed.
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2.1. The 2D CA

We consider a 2D CA model comparable to those of, for
instance, Patel et al. (2001) and Gerlee and Anderson (2007). Since
it has been established that cells cultivated in the in vitro three-
dimension (3D) like fashion behave differently to those that are
kept as monolayers (Weaver et al., 1997), we approach the 2D
automaton as a representative planar slice through a 3D spheroid-
like tumour mass. For instance, nutrients are supplied to the
growing tumour seed from CA sites beyond the boundary of
occupied sites, mimicking the spheroid approach in the laboratory
(as opposed to the planar substrate support approach as utilised
in monolayer experiments). Subsequently, we use experimental
data taken from in vitro spheroid studies as inputs to, and
comparison with, our model, adjusting for the planar approach as
necessary (e.g. calculation of saturated volume).

However, we differ significantly with all known previous CA
tumour approaches by relaxing the perceived ‘enforced’ constraint
of a ‘one-to-one correspondence between automaton elements
and physical cells’ (Patel et al., 2001, p. 319). Instead, in our
approach, each automaton site is filled with a chosen packet of
homogeneous cells (count N) (see Fig. 2), such that subsequent
automaton updates occur at the level of the site, rather than at the
cellular level. Indeed, this approach is of wide interested in
statistical mechanics where it is often called coarse-graining
(Kardar, 2007).

The reasons for this approach are twofold. First, although it has
been argued that the CA approach is perhaps the pre-eminent
simulation approach for many-object biological systems such as
tumour growth due to its significantly smaller computational
time compared to (say) apparently more realistic continuous
interaction models (Drasdo, 2005), the fact remains that under a
one-to-one assumption between cells and automaton sites, to
model a biological system such as (even) pre-angiogenic tumours,
one needs to implement a complex system with up to 106 objects
(cells). At this scale, even the CA approach is prohibitively time-
consuming to carry out meaningful in silico experiments. Hence, a
reduction in system objects is desirable purely due to implemen-
tation considerations.

However, the second reason for our approach is very
important, and to our knowledge, has been overlooked in the
biological simulation literature. Namely, by using the CA
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constrained to treating the proliferating rim as a one cell width
layer around the tumour mass. Furthermore, the ‘many-to-one’
assumption allows the implementation of a fully calibrated
in silico tumour mass that can successfully grow to cell-count
sizes on the order of 1! 106 but with several orders of magnitude
less numerical objects to handle. In this way, the implementable
model produces realistic, experimentally comparable data on the
onset and progression of necrosis. A theoretical interpretation of
this assumption is also provided to encourage further investiga-
tion by the field.

After full calibration and scaling of all experimentally available
input data on cellular metabolism, diffusion, mitosis and cell
death, we find that necrosis appears in our model due to sub-
viable nutrient concentrations in the centre of the tumour and
not, as has been suggested by some authors (e.g. Freyer and
Sutherland, 1986), due to rising toxicity in the tumour mass.
Indeed, we show that by including the diffusion of waste
materials out of the tumour mass, central waste (Hþ in our
model) concentrations are only sufficient to switch cells to
quiescence rather than unprogrammed cell death (Casciari et al.,
1992). Further results on the progression of the necrotic volume
are included and compared to experimental results. Given that
recent experimental data on nutrient concentrations prior to the
onset of necrosis contradict these results (Walenta et al., 2000),
the paper thus concludes that additional mechanisms for necrosis
are required to be identified by the literature.

The paper is organised as follows: in Section 2 we outline the
description of the MCS growth model, Section 3 contains the
parameter estimation, while in Section 4 the results of our
computational simulations were compared with experimental
data for the MCS of the EMT6/Ro tumour line cultivated
in vitro. Finally, Section 5 contains the comparison of our model
with other (discrete and continuous) models known from the
literature. In this section the current limitations and potential
applications of the present model for future research are
discussed.

2. Model definition

2.1. The 2D CA

We consider a 2D CA model comparable to those of, for
instance, Patel et al. (2001) and Gerlee and Anderson (2007). Since
it has been established that cells cultivated in the in vitro three-
dimension (3D) like fashion behave differently to those that are
kept as monolayers (Weaver et al., 1997), we approach the 2D
automaton as a representative planar slice through a 3D spheroid-
like tumour mass. For instance, nutrients are supplied to the
growing tumour seed from CA sites beyond the boundary of
occupied sites, mimicking the spheroid approach in the laboratory
(as opposed to the planar substrate support approach as utilised
in monolayer experiments). Subsequently, we use experimental
data taken from in vitro spheroid studies as inputs to, and
comparison with, our model, adjusting for the planar approach as
necessary (e.g. calculation of saturated volume).

However, we differ significantly with all known previous CA
tumour approaches by relaxing the perceived ‘enforced’ constraint
of a ‘one-to-one correspondence between automaton elements
and physical cells’ (Patel et al., 2001, p. 319). Instead, in our
approach, each automaton site is filled with a chosen packet of
homogeneous cells (count N) (see Fig. 2), such that subsequent
automaton updates occur at the level of the site, rather than at the
cellular level. Indeed, this approach is of wide interested in
statistical mechanics where it is often called coarse-graining
(Kardar, 2007).

The reasons for this approach are twofold. First, although it has
been argued that the CA approach is perhaps the pre-eminent
simulation approach for many-object biological systems such as
tumour growth due to its significantly smaller computational
time compared to (say) apparently more realistic continuous
interaction models (Drasdo, 2005), the fact remains that under a
one-to-one assumption between cells and automaton sites, to
model a biological system such as (even) pre-angiogenic tumours,
one needs to implement a complex system with up to 106 objects
(cells). At this scale, even the CA approach is prohibitively time-
consuming to carry out meaningful in silico experiments. Hence, a
reduction in system objects is desirable purely due to implemen-
tation considerations.

However, the second reason for our approach is very
important, and to our knowledge, has been overlooked in the
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Consequences of the one-to-one assumption
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Figure 1. Geometry of the 3D space, showing radius, r
and surface reactivity interpretation of the site side-length,
u (left); Implementation of many-to-one assumption in 3D
lattice (right).

a single cell, namely, around 10µm. Or in other terms, it is assumed by the

one-to-one assumption that a cell/site at just two sites (or about 20µm)

inside the surface of the growing tumour mass would be unable to produce

a daughter cell nearby due to contact inhibition.

In contrast, our approach relaxes the one-to-one assumption by assuming

a many-to-one approach where any number N of cells can be considered to

reside in one CA site. Not only does this approach allow for the peripheral

mitotic region to expand to realistic widths (on the order of 100µm, [15, 3])

but also, it allows the effective study of very much larger tumour masses

(up to the scale of 1×106 cells) whilst keeping the number of computa-

tional elements within implementable margins (e.g. on the order of 1×104).

Clearly, one loses a degree of detail in the results as a consequence of this

approach, since all cells inhabiting a single site are effectively treated as an

homogeneous packet.

We can progress this discussion by formalising the implications of the

many-to-one assumption on bulk tumour properties. Thus, we consider a

proliferating boundary of thickness equivalent to the side-length of one CA

site (refer Fig. 1, left), i.e. thickness u in the figure. Under this assumption,

we may consider the following master equation

(2.1)
dC(t)

dt
= kNε(t),

for the rate of tumour cell count (C(t)) progression with at time t, where k

is the rate constant (units t−1), N is the fixed number of cells per CA site

as defined above (units cells per site) and ε(t) is the number of CA sites at

the proliferation boundary of the tumour mass at time t (units sites).
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Figure 1. Geometry of the 3D space, showing radius, r
and surface reactivity interpretation of the site side-length,
u (left); Implementation of many-to-one assumption in 3D
lattice (right).

a single cell, namely, around 10µm. Or in other terms, it is assumed by the

one-to-one assumption that a cell/site at just two sites (or about 20µm)

inside the surface of the growing tumour mass would be unable to produce

a daughter cell nearby due to contact inhibition.

In contrast, our approach relaxes the one-to-one assumption by assuming

a many-to-one approach where any number N of cells can be considered to

reside in one CA site. Not only does this approach allow for the peripheral

mitotic region to expand to realistic widths (on the order of 100µm, [15, 3])

but also, it allows the effective study of very much larger tumour masses

(up to the scale of 1×106 cells) whilst keeping the number of computa-

tional elements within implementable margins (e.g. on the order of 1×104).

Clearly, one loses a degree of detail in the results as a consequence of this

approach, since all cells inhabiting a single site are effectively treated as an

homogeneous packet.

We can progress this discussion by formalising the implications of the

many-to-one assumption on bulk tumour properties. Thus, we consider a

proliferating boundary of thickness equivalent to the side-length of one CA

site (refer Fig. 1, left), i.e. thickness u in the figure. Under this assumption,

we may consider the following master equation

(2.1)
dC(t)

dt
= kNε(t),

for the rate of tumour cell count (C(t)) progression with at time t, where k

is the rate constant (units t−1), N is the fixed number of cells per CA site

as defined above (units cells per site) and ε(t) is the number of CA sites at

the proliferation boundary of the tumour mass at time t (units sites).
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Do CAs Grow as Peripheral Growth Theory (PGT) predicts?
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Figure 1. Geometry of the 3D space, showing radius, r
and surface reactivity interpretation of the site side-length,
u (left); Implementation of many-to-one assumption in 3D
lattice (right).

a single cell, namely, around 10µm. Or in other terms, it is assumed by the

one-to-one assumption that a cell/site at just two sites (or about 20µm)

inside the surface of the growing tumour mass would be unable to produce

a daughter cell nearby due to contact inhibition.

In contrast, our approach relaxes the one-to-one assumption by assuming

a many-to-one approach where any number N of cells can be considered to

reside in one CA site. Not only does this approach allow for the peripheral

mitotic region to expand to realistic widths (on the order of 100µm, [15, 3])

but also, it allows the effective study of very much larger tumour masses

(up to the scale of 1×106 cells) whilst keeping the number of computa-

tional elements within implementable margins (e.g. on the order of 1×104).

Clearly, one loses a degree of detail in the results as a consequence of this

approach, since all cells inhabiting a single site are effectively treated as an

homogeneous packet.

We can progress this discussion by formalising the implications of the

many-to-one assumption on bulk tumour properties. Thus, we consider a

proliferating boundary of thickness equivalent to the side-length of one CA

site (refer Fig. 1, left), i.e. thickness u in the figure. Under this assumption,

we may consider the following master equation

(2.1)
dC(t)

dt
= kNε(t),

for the rate of tumour cell count (C(t)) progression with at time t, where k

is the rate constant (units t−1), N is the fixed number of cells per CA site

as defined above (units cells per site) and ε(t) is the number of CA sites at

the proliferation boundary of the tumour mass at time t (units sites).
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approach, the modeller must unavoidably assume a free-near-
neighbour division restriction. That is, for an occupied parent site
to successfully divide, a free neighbouring site (one of the
orthogonal four, or Moore neighbourhood eight sites, depending
on assumptions) must be available to place the daughter cell. The
reason for this is that in the CA setup, one assumes a binary
‘occupied’ or ‘unoccupied’ discretised world, such that occupancy
by more than one object (cell) at any given site is illegal.

Whilst this ‘legality’ aspect of the CA approach has been
acknowledged previously and has promoted a range of different
approaches to cell mobility, what has not been acknowledged are
the boundary conditions that this assumption entails. If one
considers the boundary of a non-necrotic growing CA tumour
(i.e. any boundary between occupied and unoccupied sites),
the restriction implies that only sites at the interface can divide.
An occupied site (i.e. a cell) just one site in from the tumour
interface cannot divide because of the CA legality restriction just
mentioned. Put in other words, the proliferative rim of such a
one-to-one cell-to-site CA approach will be one cell wide, i.e.
approximately 10mm, by construction. It is known from the
experimental literature that the proliferative rim (i.e. cells capable
of dividing) is more likely at least on the order of 100mm (see
Freyer and Sutherland, 1985; Walenta et al., 2000) and possibly
even thicker than this. It is our contention that such a considera-
tion is non-trivial and therefore that CA models must make
allowances for such considerations if the approaches of computa-
tional oncology are to approach experimental accuracy.

Of course, the cost in applying (as we do) the ‘many-to-one’
assumption of cells per site, is that we increase the aggregation-
level of the results of the model. In our approach, since we only
study the tumour at the level of a site (rather than a cell), we must
acknowledge that all cells in a given site are being effectively
treated as an homogeneous population. However, as will be
shown below, the implications of this assumption do not appear
to adversely affect the outcomes of the model, and indeed, allow
the very realistic computational study of larger tumours.

2.2. CA scaling: the many-to-one assumption

To implement the many-to-one assumption as introduced
above, each lattice site is taken to be of unit-cube dimension with
side-length u and containing N cells (Fig. 2). The value of u can be
calculated from N by utilising the cell packing density (r) which
has been reported to be equal to 325! 108 cell per cm3 through
the growth period (Freyer and Sutherland, 1985). Based on this
result and taking r ¼ 4! 10#4 cellmm#3, the volume occupied by
N cells Vcells ¼ Nr#1 mm3 is first calculated, and then by assuming
that a single lattice site is occupied by a filled cube of cells with
volume Vsite ¼ u3, one obtains an estimate for the site side-length
u ¼ ðVsiteÞ1=3 ¼ 2ðN=rÞ1=3 in mm. In this way, the key determinant
of lattice geometry and subsequent model scaling is the decision
of N. As explained above, we have chosen a value for N ¼ 400
which results in a corresponding value for u of 100mm.

Indeed, a more detailed analysis of CA scaling can be made
theoretically. If one assumes (as it is argued above when using the
CA approach) that the mitotic region of the tumour is concen-
trated at the periphery of the tumour mass then we may consider
the following master equation for the rate of tumour cell count (C)
with time:

dC=dt ¼ kN!, (1)

where k is the rate constant (units t#1), N is the constant number
of cells per CA site as defined above and ! is the number of CA sites
at the proliferation boundary of the tumour mass. Now for a 2D CA
model, the proliferation boundary constitutes a circular loop of

width and depth u, with radius r, and so, ! ¼ 2pr=u. Given that
C ¼ Nðpr2=u2Þ an expression for r in terms of C can be obtained,
which leads to the differential equation

dCdt ¼ 2kðpNCÞ1=2, (2)

which yields the expression (with the constant portion captured
in C0),

CðtÞ ¼ pNðktÞ2 þ C0. (3)

Similarly the evolution of the diameter with time is obtained
immediately to be,

dðtÞ ¼ 2kðN=rÞ1=3t þ d0. (4)

We see that the well known linear relationship between
diameter and time is recovered in this model, and that a quadratic
relationship appears in the total cell count with time evolution.
Furthermore, it can be seen that the scaling assumption appears
as a constant which can be used to re-scale any data into single
cell per site, or many cell per site scenarios. Of course, this
procedure is limited by the region over which the peripheral
mitotic dynamics are expected. Thus, at very early time periods
(where the CA model may not be well approximated by a circle/
sphere) or in later periods (e.g. when the necrotic volume fraction
is much larger than zero) this model may not apply. Similarly, the
above analysis assumes that cells are stationary during one time
step (or at least that the mean free path radius is zero) and so
whilst appropriate for the present CA setup, it remains for the
analysis of real spheroid growth dynamics to shed light on the
validity of this assumption. Nevertheless, one should expect that
CA models of tumour growth will yield these relationships and
thus provide a basis for comparison of results of different
scale. Furthermore, this simple theory provides a test of whether
growth is constrained to the periphery in the mitotic dynamics of
real spheroids (similar calculations can be made for the 3D
environment).

2.3. Cellular metabolism

The model implements a more mature cellular metabolism
module than has been previously explored in comparable CA
approaches. For instance, the model of Patel et al. (2001) which
focuses on acid production does not include oxygen, whilst Gerlee
and Anderson’s (2007) elegant neural network model abstracts
away from specific anaerobic and aerobic waste production in
order to study early growth tumour morphology and genetic
inheritance. Instead, we have attempted to implement a similar
metabolism to the mean-field simulation approach of Venkatasu-
bramanian et al. (2006) although with some simplifying assump-
tions. We implement five different cell states—proliferation and
quiescence, in either aerobic or anaerobic forms, labelled p, q and
pan, qan, respectively, and cell-death as the final state. Whilst the
mean-field model of Venkatasubramanian et al. (2006) allowed
for the consumption of lactate (as a source of carbon) under low
glucose, high oxygen conditions, we only consider acid production
during times of hypoxic metabolism and do not permit its
subsequent consumption. Additionally, we have relied more on
the experimental evidence for glucose and oxygen consumption
rates and acid production (as reported in Freyer and Sutherland,
1985; Patel et al., 2001) rather than the stoichiometric approach of
Venkatasubramanian et al. (2006) (or the site-specific parameter
method of Gerlee and Anderson, 2007).

Transitions between states for a given site are managed by a
state transition algorithm as elaborated in Fig. 3 and follow as
close as possible to experimentally reported phenomena. Speci-
fically, each site responds to the local concentration of glucose
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approach, the modeller must unavoidably assume a free-near-
neighbour division restriction. That is, for an occupied parent site
to successfully divide, a free neighbouring site (one of the
orthogonal four, or Moore neighbourhood eight sites, depending
on assumptions) must be available to place the daughter cell. The
reason for this is that in the CA setup, one assumes a binary
‘occupied’ or ‘unoccupied’ discretised world, such that occupancy
by more than one object (cell) at any given site is illegal.

Whilst this ‘legality’ aspect of the CA approach has been
acknowledged previously and has promoted a range of different
approaches to cell mobility, what has not been acknowledged are
the boundary conditions that this assumption entails. If one
considers the boundary of a non-necrotic growing CA tumour
(i.e. any boundary between occupied and unoccupied sites),
the restriction implies that only sites at the interface can divide.
An occupied site (i.e. a cell) just one site in from the tumour
interface cannot divide because of the CA legality restriction just
mentioned. Put in other words, the proliferative rim of such a
one-to-one cell-to-site CA approach will be one cell wide, i.e.
approximately 10mm, by construction. It is known from the
experimental literature that the proliferative rim (i.e. cells capable
of dividing) is more likely at least on the order of 100mm (see
Freyer and Sutherland, 1985; Walenta et al., 2000) and possibly
even thicker than this. It is our contention that such a considera-
tion is non-trivial and therefore that CA models must make
allowances for such considerations if the approaches of computa-
tional oncology are to approach experimental accuracy.

Of course, the cost in applying (as we do) the ‘many-to-one’
assumption of cells per site, is that we increase the aggregation-
level of the results of the model. In our approach, since we only
study the tumour at the level of a site (rather than a cell), we must
acknowledge that all cells in a given site are being effectively
treated as an homogeneous population. However, as will be
shown below, the implications of this assumption do not appear
to adversely affect the outcomes of the model, and indeed, allow
the very realistic computational study of larger tumours.

2.2. CA scaling: the many-to-one assumption

To implement the many-to-one assumption as introduced
above, each lattice site is taken to be of unit-cube dimension with
side-length u and containing N cells (Fig. 2). The value of u can be
calculated from N by utilising the cell packing density (r) which
has been reported to be equal to 325! 108 cell per cm3 through
the growth period (Freyer and Sutherland, 1985). Based on this
result and taking r ¼ 4! 10#4 cellmm#3, the volume occupied by
N cells Vcells ¼ Nr#1 mm3 is first calculated, and then by assuming
that a single lattice site is occupied by a filled cube of cells with
volume Vsite ¼ u3, one obtains an estimate for the site side-length
u ¼ ðVsiteÞ1=3 ¼ 2ðN=rÞ1=3 in mm. In this way, the key determinant
of lattice geometry and subsequent model scaling is the decision
of N. As explained above, we have chosen a value for N ¼ 400
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with time:

dC=dt ¼ kN!, (1)

where k is the rate constant (units t#1), N is the constant number
of cells per CA site as defined above and ! is the number of CA sites
at the proliferation boundary of the tumour mass. Now for a 2D CA
model, the proliferation boundary constitutes a circular loop of
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C ¼ Nðpr2=u2Þ an expression for r in terms of C can be obtained,
which leads to the differential equation
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which yields the expression (with the constant portion captured
in C0),
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Similarly the evolution of the diameter with time is obtained
immediately to be,

dðtÞ ¼ 2kðN=rÞ1=3t þ d0. (4)

We see that the well known linear relationship between
diameter and time is recovered in this model, and that a quadratic
relationship appears in the total cell count with time evolution.
Furthermore, it can be seen that the scaling assumption appears
as a constant which can be used to re-scale any data into single
cell per site, or many cell per site scenarios. Of course, this
procedure is limited by the region over which the peripheral
mitotic dynamics are expected. Thus, at very early time periods
(where the CA model may not be well approximated by a circle/
sphere) or in later periods (e.g. when the necrotic volume fraction
is much larger than zero) this model may not apply. Similarly, the
above analysis assumes that cells are stationary during one time
step (or at least that the mean free path radius is zero) and so
whilst appropriate for the present CA setup, it remains for the
analysis of real spheroid growth dynamics to shed light on the
validity of this assumption. Nevertheless, one should expect that
CA models of tumour growth will yield these relationships and
thus provide a basis for comparison of results of different
scale. Furthermore, this simple theory provides a test of whether
growth is constrained to the periphery in the mitotic dynamics of
real spheroids (similar calculations can be made for the 3D
environment).

2.3. Cellular metabolism

The model implements a more mature cellular metabolism
module than has been previously explored in comparable CA
approaches. For instance, the model of Patel et al. (2001) which
focuses on acid production does not include oxygen, whilst Gerlee
and Anderson’s (2007) elegant neural network model abstracts
away from specific anaerobic and aerobic waste production in
order to study early growth tumour morphology and genetic
inheritance. Instead, we have attempted to implement a similar
metabolism to the mean-field simulation approach of Venkatasu-
bramanian et al. (2006) although with some simplifying assump-
tions. We implement five different cell states—proliferation and
quiescence, in either aerobic or anaerobic forms, labelled p, q and
pan, qan, respectively, and cell-death as the final state. Whilst the
mean-field model of Venkatasubramanian et al. (2006) allowed
for the consumption of lactate (as a source of carbon) under low
glucose, high oxygen conditions, we only consider acid production
during times of hypoxic metabolism and do not permit its
subsequent consumption. Additionally, we have relied more on
the experimental evidence for glucose and oxygen consumption
rates and acid production (as reported in Freyer and Sutherland,
1985; Patel et al., 2001) rather than the stoichiometric approach of
Venkatasubramanian et al. (2006) (or the site-specific parameter
method of Gerlee and Anderson, 2007).

Transitions between states for a given site are managed by a
state transition algorithm as elaborated in Fig. 3 and follow as
close as possible to experimentally reported phenomena. Speci-
fically, each site responds to the local concentration of glucose
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constrained to treating the proliferating rim as a one cell width
layer around the tumour mass. Furthermore, the ‘many-to-one’
assumption allows the implementation of a fully calibrated
in silico tumour mass that can successfully grow to cell-count
sizes on the order of 1! 106 but with several orders of magnitude
less numerical objects to handle. In this way, the implementable
model produces realistic, experimentally comparable data on the
onset and progression of necrosis. A theoretical interpretation of
this assumption is also provided to encourage further investiga-
tion by the field.

After full calibration and scaling of all experimentally available
input data on cellular metabolism, diffusion, mitosis and cell
death, we find that necrosis appears in our model due to sub-
viable nutrient concentrations in the centre of the tumour and
not, as has been suggested by some authors (e.g. Freyer and
Sutherland, 1986), due to rising toxicity in the tumour mass.
Indeed, we show that by including the diffusion of waste
materials out of the tumour mass, central waste (Hþ in our
model) concentrations are only sufficient to switch cells to
quiescence rather than unprogrammed cell death (Casciari et al.,
1992). Further results on the progression of the necrotic volume
are included and compared to experimental results. Given that
recent experimental data on nutrient concentrations prior to the
onset of necrosis contradict these results (Walenta et al., 2000),
the paper thus concludes that additional mechanisms for necrosis
are required to be identified by the literature.

The paper is organised as follows: in Section 2 we outline the
description of the MCS growth model, Section 3 contains the
parameter estimation, while in Section 4 the results of our
computational simulations were compared with experimental
data for the MCS of the EMT6/Ro tumour line cultivated
in vitro. Finally, Section 5 contains the comparison of our model
with other (discrete and continuous) models known from the
literature. In this section the current limitations and potential
applications of the present model for future research are
discussed.

2. Model definition

2.1. The 2D CA

We consider a 2D CA model comparable to those of, for
instance, Patel et al. (2001) and Gerlee and Anderson (2007). Since
it has been established that cells cultivated in the in vitro three-
dimension (3D) like fashion behave differently to those that are
kept as monolayers (Weaver et al., 1997), we approach the 2D
automaton as a representative planar slice through a 3D spheroid-
like tumour mass. For instance, nutrients are supplied to the
growing tumour seed from CA sites beyond the boundary of
occupied sites, mimicking the spheroid approach in the laboratory
(as opposed to the planar substrate support approach as utilised
in monolayer experiments). Subsequently, we use experimental
data taken from in vitro spheroid studies as inputs to, and
comparison with, our model, adjusting for the planar approach as
necessary (e.g. calculation of saturated volume).

However, we differ significantly with all known previous CA
tumour approaches by relaxing the perceived ‘enforced’ constraint
of a ‘one-to-one correspondence between automaton elements
and physical cells’ (Patel et al., 2001, p. 319). Instead, in our
approach, each automaton site is filled with a chosen packet of
homogeneous cells (count N) (see Fig. 2), such that subsequent
automaton updates occur at the level of the site, rather than at the
cellular level. Indeed, this approach is of wide interested in
statistical mechanics where it is often called coarse-graining
(Kardar, 2007).

The reasons for this approach are twofold. First, although it has
been argued that the CA approach is perhaps the pre-eminent
simulation approach for many-object biological systems such as
tumour growth due to its significantly smaller computational
time compared to (say) apparently more realistic continuous
interaction models (Drasdo, 2005), the fact remains that under a
one-to-one assumption between cells and automaton sites, to
model a biological system such as (even) pre-angiogenic tumours,
one needs to implement a complex system with up to 106 objects
(cells). At this scale, even the CA approach is prohibitively time-
consuming to carry out meaningful in silico experiments. Hence, a
reduction in system objects is desirable purely due to implemen-
tation considerations.

However, the second reason for our approach is very
important, and to our knowledge, has been overlooked in the
biological simulation literature. Namely, by using the CA
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Necrotic region

Healthy region

Fig. 1. A 1mm section of a tumour spheroid showing the inner necrotic region and
the outer living region (rat osteogenic sarcoma, reproduced with permission from
Yu et al., 2007).

Fig. 2. The 2D lattice structure assumed in the model. Each site is assumed to be
occupied by b1 individual cells as described in the text. The lattice size is
calculated directly from the packing density of tumour cells and the key control
parameter—the number of cells per lattice site.
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deduced from the experimental literature. Likewise, we have
assumed that necrotic (dead) sites consume neither O2 nor CHO.

In our approach we assume that cells produce different
amounts of toxic waste depending on the cell state.
Namely, following Patel et al. (2001) we assume that proliferat-
ing cells performing the aerobic metabolism produce
wp ¼ 1:0" 10#5 mMs#1 while, due to the fact that quiescent cells
are essentially metabolically inactive, the quiescent calls produce
are assumed to produce wq ¼ 5:0" 10#7 mMs#1 of hydrogen ions.
Cells that proliferate but use the anaerobic metabolism
produce much more metabolic waste. Since, during the anaerobic
metabolism from one glucose molecule, 2 molecules of lactic acid
is produced and for each lactate molecule, one hydrogen ion is
formed we assume that wpl ¼ 2Cpl and wql ¼ 2Cql mol ðcell sÞ#1 for
low oxygen proliferation and quiescence, respectively. In our
model we assume that the necrosis process takes about
30min and causes a site’s cell material to be released directly
into the extracellular space. Consequently, we estimate that
wn ¼ 180wpl mol cell#1.

Naturally, after calculation of the lattice site side length u
(e.g. by settingN ¼ 400) units of all consumption/production rates
used in our model were converted frommol ðcell sÞ#1 or mMs#1 to
mol (siteDt)#1. Similarly the medium concentrations given in mM
were changed to mol ðsiteÞ#1.

4. Results

4.1. Model validation

To investigate the model, results were prepared for conditions
as close as possible to that of the study of EMT6/Ro 3D cultivated
spheroids reported in Freyer and Sutherland (1985) (see Table 1).
An example visualisation of a typical tumour progression over 16
days (nex ¼ 16:5mM, oex ¼ 0:28mM and pHex ¼ 7:4) is given in
Fig. 5 showing the progression from initial seed to a grown

tumour mass undergoing central necrosis (white areas in middle
of tumour). As expected, after a short time, most sites exist in a
quiescent state, with only peripheral sites capable of a prolif-
erative metabolism. The later stage tumour morphology displays a
familiar, roughly circular geometry with scattered regions of
necrosis evident in low densities throughout the tumour mass in
addition to the larger necrotic region at the centre. These features
are similar to the morphologies reported in comparable CA
simulation models (Gerlee and Anderson, 2007, see Fig. 7,
p. 594) and (Dormann and Deutsch, 2002, see Fig. 8), mean-field
numerical approaches (Venkatasubramanian et al., 2006, see
Fig. 7, p. 447) and experimental histologies (Walenta et al., 2000;
Yu et al., 2007).

To validate the expected behaviour of the many-to-one scaling
approach as described in Section 2.2 a series of experiments was
conducted under the same conditions as reported above (with
nex ¼ 16:5mM, oex ¼ 2:8mM and pHex ¼ 7:4) except for the value
of N which were varied in the set f10;100;400g. Results from this
study (mean of two trials at each condition) are presented in Fig. 6
and show a good agreement with the predictions of the theory
with all rescaled cell counts falling on top of each other in a linear
manner as predicted by Eq. (3) despite the value of N differing
over more than two orders of magnitude.

Next, a series of experiments was conducted at a range of CHO
and O2 medium concentrations as indicated in Table 2 to compare
the model outputs with those of Freyer and Sutherland (1985,
1986). To obtain quantitative results, five distinct trials were run
for 2:736" 105 (6 s equivalent) updates, representing the study
time of 19 days. A single 19 day trial took approximately 35 min of
CPU time to complete.2

Data were taken on various aspects of the tumour’s progres-
sion including viable tumour diameter, necrotic core diameter
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Fig. 5. Example growth sequence for typical model run at the end of days as
indicated. Medium [CHO], [O2] and pH level were set to 16.5, 0.28mM and 7.4,
respectively. Colours correspond to site states: aerobic proliferation (black);
anaerobic proliferation (red); aerobic quiescence (orange); and anaerobic quiescence
(yellow). Unfilled sites are coloured white. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. A linear relationship (after the early transient phase) between CðtÞ=N and t2

as predicted by the peripheral mitotic CA model. Data presented are the mean for
two model runs at cell-per-site values N 2 f10;100;400g (nex ¼ 16:5mM,
oex ¼ 0:28mM). Broken line added as a guide to the eye.

2 Data obtained in the MATLAB mathematical programming language on an
Apple MacPro (2" Quad-Core Intel Xenon chipset, 8MB RAM) running Mac OS X
10.5.6.
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deduced from the experimental literature. Likewise, we have
assumed that necrotic (dead) sites consume neither O2 nor CHO.

In our approach we assume that cells produce different
amounts of toxic waste depending on the cell state.
Namely, following Patel et al. (2001) we assume that proliferat-
ing cells performing the aerobic metabolism produce
wp ¼ 1:0" 10#5 mMs#1 while, due to the fact that quiescent cells
are essentially metabolically inactive, the quiescent calls produce
are assumed to produce wq ¼ 5:0" 10#7 mMs#1 of hydrogen ions.
Cells that proliferate but use the anaerobic metabolism
produce much more metabolic waste. Since, during the anaerobic
metabolism from one glucose molecule, 2 molecules of lactic acid
is produced and for each lactate molecule, one hydrogen ion is
formed we assume that wpl ¼ 2Cpl and wql ¼ 2Cql mol ðcell sÞ#1 for
low oxygen proliferation and quiescence, respectively. In our
model we assume that the necrosis process takes about
30min and causes a site’s cell material to be released directly
into the extracellular space. Consequently, we estimate that
wn ¼ 180wpl mol cell#1.

Naturally, after calculation of the lattice site side length u
(e.g. by settingN ¼ 400) units of all consumption/production rates
used in our model were converted frommol ðcell sÞ#1 or mMs#1 to
mol (siteDt)#1. Similarly the medium concentrations given in mM
were changed to mol ðsiteÞ#1.

4. Results

4.1. Model validation

To investigate the model, results were prepared for conditions
as close as possible to that of the study of EMT6/Ro 3D cultivated
spheroids reported in Freyer and Sutherland (1985) (see Table 1).
An example visualisation of a typical tumour progression over 16
days (nex ¼ 16:5mM, oex ¼ 0:28mM and pHex ¼ 7:4) is given in
Fig. 5 showing the progression from initial seed to a grown

tumour mass undergoing central necrosis (white areas in middle
of tumour). As expected, after a short time, most sites exist in a
quiescent state, with only peripheral sites capable of a prolif-
erative metabolism. The later stage tumour morphology displays a
familiar, roughly circular geometry with scattered regions of
necrosis evident in low densities throughout the tumour mass in
addition to the larger necrotic region at the centre. These features
are similar to the morphologies reported in comparable CA
simulation models (Gerlee and Anderson, 2007, see Fig. 7,
p. 594) and (Dormann and Deutsch, 2002, see Fig. 8), mean-field
numerical approaches (Venkatasubramanian et al., 2006, see
Fig. 7, p. 447) and experimental histologies (Walenta et al., 2000;
Yu et al., 2007).

To validate the expected behaviour of the many-to-one scaling
approach as described in Section 2.2 a series of experiments was
conducted under the same conditions as reported above (with
nex ¼ 16:5mM, oex ¼ 2:8mM and pHex ¼ 7:4) except for the value
of N which were varied in the set f10;100;400g. Results from this
study (mean of two trials at each condition) are presented in Fig. 6
and show a good agreement with the predictions of the theory
with all rescaled cell counts falling on top of each other in a linear
manner as predicted by Eq. (3) despite the value of N differing
over more than two orders of magnitude.

Next, a series of experiments was conducted at a range of CHO
and O2 medium concentrations as indicated in Table 2 to compare
the model outputs with those of Freyer and Sutherland (1985,
1986). To obtain quantitative results, five distinct trials were run
for 2:736" 105 (6 s equivalent) updates, representing the study
time of 19 days. A single 19 day trial took approximately 35 min of
CPU time to complete.2

Data were taken on various aspects of the tumour’s progres-
sion including viable tumour diameter, necrotic core diameter
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Fig. 5. Example growth sequence for typical model run at the end of days as
indicated. Medium [CHO], [O2] and pH level were set to 16.5, 0.28mM and 7.4,
respectively. Colours correspond to site states: aerobic proliferation (black);
anaerobic proliferation (red); aerobic quiescence (orange); and anaerobic quiescence
(yellow). Unfilled sites are coloured white. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 1. Growth rates of two independent groups of spheroids. A) Sphe- 
roid geometric mean diameter as a function of the time of growth; each 
point represents 50 spheroids; the line is a linear least squares best fit 
to all data points. B) Total number of cells per spheroid versus the time 
of growth; each point represents the cell yield from 50-2000 spheroids; 
the line is a nonlinear least squares best fit of all points to the Gom- 
pertz growth model. 
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Fig. 2. Rates of oxygen (A) and glucose (B) consumption per cell for 
cells in situ in spheroids as a function of spheroid diameter. Values are 
single determinations from the two populations of spheroids; lines are 
linear least squares best fits to all data points. 

two independent groups of spheroids in terms of the 
spheroid diameter and the total number of cells per 
spheroid. Throughout the growth period assayed, the 
spheroid diameter increased linearly (r2 = 0.995) at a 
rate of 75 pm per day (Fig. 1A). A plot of the spheroid 
vol as a function of the time of growth was fit by the 
Gompertz growth model (Brunton and Wheldon, 1980); 
these data (not shown) indicated that the initial vol 
doubling time was 17 hr, and predicted a saturation of 
growth at a vol of 6.3 x lo9 pm3, or 2300 pm in diame- 
ter. This growth saturation is also seen in the spheroid 
cell content data (Fig. 1B). A non-linear least squares 
best fit of these data to the Gompertz model yielded an 
initial cell doubling time of 15 hr, which is slightly 
longer than the monolayer doubling time of 12.5 hr. The 
maximal cell number which would be attained at growth 
saturation was estimated to be 7 x lo5 cells per sphe- 
roid. These data demonstrate that the oxygen and glu- 
cose consumption measurements to follow were made on 
spheroids in a wide range of growth states, from expo- 
nential to near saturation (see also Figs. 4 and 6). 

Rates of consumption in situ 

The rates of oxygen and glucose consumption per cell 
for spheroid-associated cells are shown in Figure 2 as a 
function of the soheroid diameter. Although there is 
some scatter in t6e data due to the fact thateach point 
represents a single determination, these data show a 
good correlation with the spheroid diameter. Using a 
linear least-squares best fit, the slope of the oxygen 
consumption rate curve was -0.47 x moles/cell/ pm of spheroid growth, similar to the results seen in 

- 

sec for each 100 pm of growth (r2 = 0.901, and -0.98 x 
moles/cell/sec per 100 pm of growth for glucose 

consumption (r2 = 0.94). In terms of the initial consump- 
tion rates, these decreases are the same: a 5.6% decrease 
per 100 pm of growth for oxygen consumption versus a 
5.7% reduction per 100 pm for glucose. Calculations 
using the data of Figures 1 and 2 show that there is also 
a good correlation between the log total spheroid cell 
number and the rates of consumption and oxygen (r2 = 

0.86) and glucose (r2 = 0.91). There is a decrease of 6.5- 
7% in the rate of consumption of both of these nutrients 
per cell doubling time. The intercepts of the fit curves in 
Figure 2 at 0 pm diameter (8.7 x 
moles/cell/sec for oxygen and glucose consumption, re- 
spectively) are only slightly higher than the measured 
single cell consumption rates (see Tables 1, 2, and 5). 

The values of oxygen and glucose consumption in tis- 
sues and tumors in vivo are often reported in terms of 
moles consumed per unit tissue vol per unit time; this 
quantity is useful for mathematical modeling of concen- 
tration gradients in tissues and spheroids. Dividing the 
consumption per spheroid per second by the spheroid 
nonnecrotic vol yields a consumption rate in terms of 
moles consumed per cm3 of viable spheroid vol per sec- 
ond (Fig. 3). The same trend is seen here as in Figure 2 

moles/cm3/sec (3 = 0.88) and -0.28 x lo-' moles/cm3/ 
sec (9 = 0.89) per 100 pm of spheroid growth for oxygen 
and glucose consumption, respectively. These values 
represent a decrease of 6-7% of the initial rate per 100 

and 19 x 

with the slopes of the best fit lines being -0.20 x 10- d 
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Figure 1. Geometry of the 3D space, showing radius, r
and surface reactivity interpretation of the site side-length,
u (left); Implementation of many-to-one assumption in 3D
lattice (right).

a single cell, namely, around 10µm. Or in other terms, it is assumed by the

one-to-one assumption that a cell/site at just two sites (or about 20µm)

inside the surface of the growing tumour mass would be unable to produce

a daughter cell nearby due to contact inhibition.

In contrast, our approach relaxes the one-to-one assumption by assuming

a many-to-one approach where any number N of cells can be considered to

reside in one CA site. Not only does this approach allow for the peripheral

mitotic region to expand to realistic widths (on the order of 100µm, [15, 3])

but also, it allows the effective study of very much larger tumour masses

(up to the scale of 1×106 cells) whilst keeping the number of computa-

tional elements within implementable margins (e.g. on the order of 1×104).

Clearly, one loses a degree of detail in the results as a consequence of this

approach, since all cells inhabiting a single site are effectively treated as an

homogeneous packet.

We can progress this discussion by formalising the implications of the

many-to-one assumption on bulk tumour properties. Thus, we consider a

proliferating boundary of thickness equivalent to the side-length of one CA

site (refer Fig. 1, left), i.e. thickness u in the figure. Under this assumption,

we may consider the following master equation

(2.1)
dC(t)

dt
= kNε(t),

for the rate of tumour cell count (C(t)) progression with at time t, where k

is the rate constant (units t−1), N is the fixed number of cells per CA site

as defined above (units cells per site) and ε(t) is the number of CA sites at

the proliferation boundary of the tumour mass at time t (units sites).

4

We note that the sites of proliferation now sit on the entire surface of

the sphere, and hence, we obtain

(2.2) ε(t) = 4π

(

r(t)

u

)2

,

for the expected number of sites at the surface (of course, assuming the

CA tumour mass can be approximated by a smooth sphere of radius r at

time t). Similarly, assuming that the total number of CA sites is equal to

the ratio of total idealised sphere volume to the volume of one CA site we

obtain for the total cell count in the developing tumor,

(2.3) C(t) =
4

3
πN

(

r(t)

u

)3

.

After re-arrangement, and substitution we can re-write Eq. (2.1) as the

following separable dynamic equation,

(2.4)
dC

dt
= k(4πN)

1

3 (3C(t))
2

3 .

The general solution to this system is easily found to be

(2.5) C(t) = [(
4

3
πN)

1

3 kt + C
1

3 (0)]3.

Hence, taking into account fact that u3 = N
ρ
, where ρ is the cells packing

density, one obtains the following formula for the diameter progression with

in time

(2.6) d(t) = 2k(N/ρ)
1

3 t + d(0),

where d(0) = 2 (3C(0)/4πρ)
1

3 is the initial MCS diameter. This scheme re-

covers the familiar linear relationship between diameter and time of growth

(2.6), and suggests a 1/3 cubic relationship between cell count and time

(2.5). Importantly, this theory indicates that the scaling assumption made

concerning the number of cells per site in the CA setup (recall, N) can

be used to re-scale any particular data into a regime of a different scale.

This suggests that the scaling assumption does not interfere with the bulk

tumour properties in any meaningful way. Simulation results are presented

below to verify this assumption.

3. The MCS Model

The present 3D approach is a natural extension to a previously reported

2D model (see [13]), regarding model geometry, cellular metabolism and

division algorithms. However, some modifications and extensions to these

elements have been made. Importantly, the key many-to-one assumption of
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Figure 1. Geometry of the 3D space, showing radius, r
and surface reactivity interpretation of the site side-length,
u (left); Implementation of many-to-one assumption in 3D
lattice (right).

a single cell, namely, around 10µm. Or in other terms, it is assumed by the

one-to-one assumption that a cell/site at just two sites (or about 20µm)

inside the surface of the growing tumour mass would be unable to produce

a daughter cell nearby due to contact inhibition.

In contrast, our approach relaxes the one-to-one assumption by assuming

a many-to-one approach where any number N of cells can be considered to

reside in one CA site. Not only does this approach allow for the peripheral

mitotic region to expand to realistic widths (on the order of 100µm, [15, 3])

but also, it allows the effective study of very much larger tumour masses

(up to the scale of 1×106 cells) whilst keeping the number of computa-

tional elements within implementable margins (e.g. on the order of 1×104).

Clearly, one loses a degree of detail in the results as a consequence of this

approach, since all cells inhabiting a single site are effectively treated as an

homogeneous packet.

We can progress this discussion by formalising the implications of the

many-to-one assumption on bulk tumour properties. Thus, we consider a

proliferating boundary of thickness equivalent to the side-length of one CA

site (refer Fig. 1, left), i.e. thickness u in the figure. Under this assumption,

we may consider the following master equation

(2.1)
dC(t)

dt
= kNε(t),

for the rate of tumour cell count (C(t)) progression with at time t, where k

is the rate constant (units t−1), N is the fixed number of cells per CA site

as defined above (units cells per site) and ε(t) is the number of CA sites at

the proliferation boundary of the tumour mass at time t (units sites).
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(ni), oxygen (oi) and metabolic waste (wi), implemented directly
as hydrogen ions in our model. It is known cellular metabolism is
significantly affected by local pH (Casciari et al., 1992) and so, the
algorithm begins by checking the site pH level, and in accordance
with Dairkee et al. (1995), if the pH is lower than pHdeath ¼ 6:0 the
cells at the site undergo death. For our purposes, this is equivalent
to necrosis (i.e. unprogrammed cell death) since we have left the
inclusion of programmed cell death for further model refinement.
Furthermore, as reported in Casciari et al. (1992) if the environ-
mental pH is smaller than pHcrit ¼ 6:4 yet higher than the cell
death threshold, the site enters the quiescent state. This leaves all
sites with a site pH greater than 6.4 able to enter one of the
proliferative states.

We assume that the most preferred form of proliferation
for a site is aerobic proliferation, and thus, at the next decision
point, a check of the environmental oxygen concentration ([O2]) is
made. High values of oxygen concentration will lead to either
aerobic proliferation or quiescence, depending on the environ-
mental glucose concentration ([CHO]), whereas hypoxic
conditions lead to either anaerobic proliferation or entry into
the anaerobic quiescence section of the algorithm for high and
low levels of glucose, respectively. It is possible that a site
could have high oxygen concentration yet low glucose concentra-
tion and subsequently will arrive at the aerobic quiescence
state, whereas sites with low environmental oxygen concentration
and low glucose concentration will move to either the anaerobic
quiescent state (the lowest level of metabolism in our model) or
site death (if minimal glucose requirements are not met).
The parameters and references for all state transition points,
and consumption (production) levels within each state are
summarised in Table 1. Note that some of presented data were
not reported in the experimental literature (to our knowledge)
and hence some assumptions had to be made, for details see
Section 3.

2.4. Nutrient transport and replenishment

Since we are investigating the in vitro world of tumour
spheroids, we assume that the tumour mass grows within a
vessel much larger than the volume of tumour under study.
External sites to the tumour mass are assumed to be replenished
with a virtual medium consisting of dissolved concentrations of
glucose, oxygen and acid, labelled nex, oex and wex, respectively.
Experiments conducted by Freyer et al. on spheroids (for details
see Freyer, 1988 or Freyer and Sutherland, 1980) have shown that
concentrations of glucose, oxygen and Hþ ions in the medium
never decreased by more than 5% of the initial value in fresh
medium over the growth period. Hence, we update all sites
outside of the tumour mass (those outside of a minimal radius
that encompasses all occupied sites) to initial (fresh) medium
concentrations each time step.

To account for the diffusion of nutrients (CHO, O2) into the
tumour mass and waste products (Hþ) out of the tumour mass, at
each time-step a numerical diffusion algorithm is applied to an
idealised circular area encompassing the tumour completely.
Boundary conditions are maintained at the medium concentra-
tions throughout this update procedure. This approach has the
added computational benefit of only applying the time-consum-
ing numerical diffusion calculations to a subset of the CA ‘world’.

Each diffusion step is achieved by repeated applications of a
numerical diffusion calculation over all sites in the circular
subset:

xtþ1
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where Oi is the set of four sites orthogonally adjacent to site i
whilst Di is the remaining four sites diagonally adjacent to site i,
and f ¼ 4þ 2

ffiffiffi
2

p
is the normalising term. The composition of (5)
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constrained to treating the proliferating rim as a one cell width
layer around the tumour mass. Furthermore, the ‘many-to-one’
assumption allows the implementation of a fully calibrated
in silico tumour mass that can successfully grow to cell-count
sizes on the order of 1! 106 but with several orders of magnitude
less numerical objects to handle. In this way, the implementable
model produces realistic, experimentally comparable data on the
onset and progression of necrosis. A theoretical interpretation of
this assumption is also provided to encourage further investiga-
tion by the field.

After full calibration and scaling of all experimentally available
input data on cellular metabolism, diffusion, mitosis and cell
death, we find that necrosis appears in our model due to sub-
viable nutrient concentrations in the centre of the tumour and
not, as has been suggested by some authors (e.g. Freyer and
Sutherland, 1986), due to rising toxicity in the tumour mass.
Indeed, we show that by including the diffusion of waste
materials out of the tumour mass, central waste (Hþ in our
model) concentrations are only sufficient to switch cells to
quiescence rather than unprogrammed cell death (Casciari et al.,
1992). Further results on the progression of the necrotic volume
are included and compared to experimental results. Given that
recent experimental data on nutrient concentrations prior to the
onset of necrosis contradict these results (Walenta et al., 2000),
the paper thus concludes that additional mechanisms for necrosis
are required to be identified by the literature.

The paper is organised as follows: in Section 2 we outline the
description of the MCS growth model, Section 3 contains the
parameter estimation, while in Section 4 the results of our
computational simulations were compared with experimental
data for the MCS of the EMT6/Ro tumour line cultivated
in vitro. Finally, Section 5 contains the comparison of our model
with other (discrete and continuous) models known from the
literature. In this section the current limitations and potential
applications of the present model for future research are
discussed.

2. Model definition

2.1. The 2D CA

We consider a 2D CA model comparable to those of, for
instance, Patel et al. (2001) and Gerlee and Anderson (2007). Since
it has been established that cells cultivated in the in vitro three-
dimension (3D) like fashion behave differently to those that are
kept as monolayers (Weaver et al., 1997), we approach the 2D
automaton as a representative planar slice through a 3D spheroid-
like tumour mass. For instance, nutrients are supplied to the
growing tumour seed from CA sites beyond the boundary of
occupied sites, mimicking the spheroid approach in the laboratory
(as opposed to the planar substrate support approach as utilised
in monolayer experiments). Subsequently, we use experimental
data taken from in vitro spheroid studies as inputs to, and
comparison with, our model, adjusting for the planar approach as
necessary (e.g. calculation of saturated volume).

However, we differ significantly with all known previous CA
tumour approaches by relaxing the perceived ‘enforced’ constraint
of a ‘one-to-one correspondence between automaton elements
and physical cells’ (Patel et al., 2001, p. 319). Instead, in our
approach, each automaton site is filled with a chosen packet of
homogeneous cells (count N) (see Fig. 2), such that subsequent
automaton updates occur at the level of the site, rather than at the
cellular level. Indeed, this approach is of wide interested in
statistical mechanics where it is often called coarse-graining
(Kardar, 2007).

The reasons for this approach are twofold. First, although it has
been argued that the CA approach is perhaps the pre-eminent
simulation approach for many-object biological systems such as
tumour growth due to its significantly smaller computational
time compared to (say) apparently more realistic continuous
interaction models (Drasdo, 2005), the fact remains that under a
one-to-one assumption between cells and automaton sites, to
model a biological system such as (even) pre-angiogenic tumours,
one needs to implement a complex system with up to 106 objects
(cells). At this scale, even the CA approach is prohibitively time-
consuming to carry out meaningful in silico experiments. Hence, a
reduction in system objects is desirable purely due to implemen-
tation considerations.

However, the second reason for our approach is very
important, and to our knowledge, has been overlooked in the
biological simulation literature. Namely, by using the CA
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algorithm begins by checking the site pH level, and in accordance
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Furthermore, as reported in Casciari et al. (1992) if the environ-
mental pH is smaller than pHcrit ¼ 6:4 yet higher than the cell
death threshold, the site enters the quiescent state. This leaves all
sites with a site pH greater than 6.4 able to enter one of the
proliferative states.

We assume that the most preferred form of proliferation
for a site is aerobic proliferation, and thus, at the next decision
point, a check of the environmental oxygen concentration ([O2]) is
made. High values of oxygen concentration will lead to either
aerobic proliferation or quiescence, depending on the environ-
mental glucose concentration ([CHO]), whereas hypoxic
conditions lead to either anaerobic proliferation or entry into
the anaerobic quiescence section of the algorithm for high and
low levels of glucose, respectively. It is possible that a site
could have high oxygen concentration yet low glucose concentra-
tion and subsequently will arrive at the aerobic quiescence
state, whereas sites with low environmental oxygen concentration
and low glucose concentration will move to either the anaerobic
quiescent state (the lowest level of metabolism in our model) or
site death (if minimal glucose requirements are not met).
The parameters and references for all state transition points,
and consumption (production) levels within each state are
summarised in Table 1. Note that some of presented data were
not reported in the experimental literature (to our knowledge)
and hence some assumptions had to be made, for details see
Section 3.

2.4. Nutrient transport and replenishment

Since we are investigating the in vitro world of tumour
spheroids, we assume that the tumour mass grows within a
vessel much larger than the volume of tumour under study.
External sites to the tumour mass are assumed to be replenished
with a virtual medium consisting of dissolved concentrations of
glucose, oxygen and acid, labelled nex, oex and wex, respectively.
Experiments conducted by Freyer et al. on spheroids (for details
see Freyer, 1988 or Freyer and Sutherland, 1980) have shown that
concentrations of glucose, oxygen and Hþ ions in the medium
never decreased by more than 5% of the initial value in fresh
medium over the growth period. Hence, we update all sites
outside of the tumour mass (those outside of a minimal radius
that encompasses all occupied sites) to initial (fresh) medium
concentrations each time step.

To account for the diffusion of nutrients (CHO, O2) into the
tumour mass and waste products (Hþ) out of the tumour mass, at
each time-step a numerical diffusion algorithm is applied to an
idealised circular area encompassing the tumour completely.
Boundary conditions are maintained at the medium concentra-
tions throughout this update procedure. This approach has the
added computational benefit of only applying the time-consum-
ing numerical diffusion calculations to a subset of the CA ‘world’.

Each diffusion step is achieved by repeated applications of a
numerical diffusion calculation over all sites in the circular
subset:
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and f ¼ 4þ 2

ffiffiffi
2

p
is the normalising term. The composition of (5)
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candidate lattice site must have an empty lattice site within its
eight near-neighbours to put the new daughter cells. This is a
more preferable approach to that of Mansury et al. (2002) and
Mansury and Deisboeck (2004, 2003) who allow the new
daughter cell to be placed in the same location as the parent
cell (which effectively assumes that cells could be of arbitrarily
small size).

Furthermore, in our model, cells cannot move in an active way
as it was assumed in Mansury et al. (2002), Mansury and
Deisboeck (2004, 2003) and Dormann and Deutsch (2002).
Instead our approach is similar to that of earlier proposed
concepts such as Kansal et al. (2000a, b). In this methodology, a
candidate division site goes through a search process beginning
with adjacent sites and expanding outwards until an unoccupied
lattice site was found. Whilst we restrict the search space to only
adjacent sites, we retain the implicit contact-inhibition assumption
since a site with no free adjacent sites (in the Moore neighbour-
hood) is not permitted to divide and must wait until a free site
becomes available. Such a limited ‘search’ process is particularly
relevant in our many-to-one model since allowing a ‘packet’ of
daughter cells to be transported further than near-neighbour sites
would be questionable.

Unfortunately, the simple CA, grid-like setup can produce
morphological artifacts due to the repeated application of the
division/update rules (see discussion in Drasdo, 2005). We adjust
for this phenomenon by applying a novel probabilistic overlay to
the placement of daughter sites relative to their parent. Specifi-
cally, define by p and q the probabilities of placing a daughter site
at one of the orthogonal (i.e. vertical or horizontal) or diagonal
positions in the grid, respectively. One can then write the
expected speed of advance in the vertical (or horizontal) direction
as ex ¼ pþ 2q whilst in the diagonal direction we have
exy¼

ffiffiffi
2
p

ðpþ qÞ. By introducing the relationships q¼lp and pþq¼1
we obtain the ratio of the advance speeds in the following form:

exy
ex

¼ y ¼
ffiffiffi
2
p

ð1þ lÞ
2lþ 1

.

It is clear that the advance speeds in the diagonal and the
vertical (horizontal) directions are equal if the condition

l% ¼
1&

ffiffiffi
2
p

ffiffiffi
2
p

& 2
,

holds. Hence, we set the exact ratio of probabilities l ¼ l% to
ensure that the advance speeds are balanced. Note that within this
general framework l ¼ 0 corresponds to a strict Von Neumann
(vertical, horizontal only) regime, whilst for lbl% the diagonal
direction is emphasised, creating a square-like limit propagation
boundary. This approach is preferable to others mentioned in
references such as Drasdo (2005) (e.g. random lattices) since it
adjusts for the numerical artifact without detracting from the
general grid-like (i.e. matrix) underpinnings of the CA model. The
latter is retained in our approach to exploit various native array-
based computational functions.

2.6. Timing

Model timing in the CA setup follows a discrete set of steps as
indicated in Algorithm 1. After scaling (due to the user choice of
N), the world is initialised and then the main update loop runs
until the end of the specified time. Each update is equivalent to
one time step Dt, and as such, all consumption and production
(and diffusion) operations are scaled to occur in per Dt time units.

The choice of actual time-step used in the simulations to
follow was guided by two principles. First, it is clearly desirable, if
at all possible, to use a time-step greater than 1 s such that the
model requires less updates per total experiment duration
(usually set to 19 days). Second, an upper bound is placed on
this choice due to the fact that nutrient demands due to occupied
sites in the tumour mass must be met by the numerical diffusion
algorithm. If the chosen value for Dt is too high, nutrients (recall,
scaled to per Dt amounts) will be consumed by the tumour above
the rate of nutrient supply at the site. Calculations can be made
after scaling for a given choice of N that yield this cross-over point.
In our setup this point occurred at approximately 12 s. After a little
experimentation (not shown) a Dt value of 6 s was chosen to be
well within this upper limit.

Algorithm 1. Main simulation loop (pseudo-code)

1: Scale parameters
2: Initialise world
3: while tpT do
4: t t þDt
5: Replenish boundary conditions
6: Apply diffusion
7: Update site states
8: Metabolise nutrients
9: Site death
10: Site division
11: end while

3. Model parameters

As can be seen from Table 1, the model utilises 26 input
parameters. However, in almost all cases, owing to the exact
scaling relationship due to the choice of N and Dt, these are not
variables as such, but rather represent real data inputs to the
modelling environment. For the present work, the EMT6/Ro
(mammary sarcoma) cell line was chosen since it has been
extensively studied in vitro and thus, data covering nearly the
complete set of inputs was found. The reader is referred to the
references of Table 1 for further reading.

Note that some data were not found in the literature and in
these cases, reasonable estimates were calculated and are shown
in Table 1. For instance, the CHO consumption rates for quiescent
anaerobic sites was estimated by assuming the same ratio of CHO
consumption for proliferative anaerobic to aerobic cells as
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candidate lattice site must have an empty lattice site within its
eight near-neighbours to put the new daughter cells. This is a
more preferable approach to that of Mansury et al. (2002) and
Mansury and Deisboeck (2004, 2003) who allow the new
daughter cell to be placed in the same location as the parent
cell (which effectively assumes that cells could be of arbitrarily
small size).

Furthermore, in our model, cells cannot move in an active way
as it was assumed in Mansury et al. (2002), Mansury and
Deisboeck (2004, 2003) and Dormann and Deutsch (2002).
Instead our approach is similar to that of earlier proposed
concepts such as Kansal et al. (2000a, b). In this methodology, a
candidate division site goes through a search process beginning
with adjacent sites and expanding outwards until an unoccupied
lattice site was found. Whilst we restrict the search space to only
adjacent sites, we retain the implicit contact-inhibition assumption
since a site with no free adjacent sites (in the Moore neighbour-
hood) is not permitted to divide and must wait until a free site
becomes available. Such a limited ‘search’ process is particularly
relevant in our many-to-one model since allowing a ‘packet’ of
daughter cells to be transported further than near-neighbour sites
would be questionable.

Unfortunately, the simple CA, grid-like setup can produce
morphological artifacts due to the repeated application of the
division/update rules (see discussion in Drasdo, 2005). We adjust
for this phenomenon by applying a novel probabilistic overlay to
the placement of daughter sites relative to their parent. Specifi-
cally, define by p and q the probabilities of placing a daughter site
at one of the orthogonal (i.e. vertical or horizontal) or diagonal
positions in the grid, respectively. One can then write the
expected speed of advance in the vertical (or horizontal) direction
as ex ¼ pþ 2q whilst in the diagonal direction we have
exy¼
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ðpþ qÞ. By introducing the relationships q¼lp and pþq¼1
we obtain the ratio of the advance speeds in the following form:
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.

It is clear that the advance speeds in the diagonal and the
vertical (horizontal) directions are equal if the condition

l% ¼
1&

ffiffiffi
2
p

ffiffiffi
2
p

& 2
,

holds. Hence, we set the exact ratio of probabilities l ¼ l% to
ensure that the advance speeds are balanced. Note that within this
general framework l ¼ 0 corresponds to a strict Von Neumann
(vertical, horizontal only) regime, whilst for lbl% the diagonal
direction is emphasised, creating a square-like limit propagation
boundary. This approach is preferable to others mentioned in
references such as Drasdo (2005) (e.g. random lattices) since it
adjusts for the numerical artifact without detracting from the
general grid-like (i.e. matrix) underpinnings of the CA model. The
latter is retained in our approach to exploit various native array-
based computational functions.

2.6. Timing

Model timing in the CA setup follows a discrete set of steps as
indicated in Algorithm 1. After scaling (due to the user choice of
N), the world is initialised and then the main update loop runs
until the end of the specified time. Each update is equivalent to
one time step Dt, and as such, all consumption and production
(and diffusion) operations are scaled to occur in per Dt time units.

The choice of actual time-step used in the simulations to
follow was guided by two principles. First, it is clearly desirable, if
at all possible, to use a time-step greater than 1 s such that the
model requires less updates per total experiment duration
(usually set to 19 days). Second, an upper bound is placed on
this choice due to the fact that nutrient demands due to occupied
sites in the tumour mass must be met by the numerical diffusion
algorithm. If the chosen value for Dt is too high, nutrients (recall,
scaled to per Dt amounts) will be consumed by the tumour above
the rate of nutrient supply at the site. Calculations can be made
after scaling for a given choice of N that yield this cross-over point.
In our setup this point occurred at approximately 12 s. After a little
experimentation (not shown) a Dt value of 6 s was chosen to be
well within this upper limit.

Algorithm 1. Main simulation loop (pseudo-code)

1: Scale parameters
2: Initialise world
3: while tpT do
4: t t þDt
5: Replenish boundary conditions
6: Apply diffusion
7: Update site states
8: Metabolise nutrients
9: Site death
10: Site division
11: end while

3. Model parameters

As can be seen from Table 1, the model utilises 26 input
parameters. However, in almost all cases, owing to the exact
scaling relationship due to the choice of N and Dt, these are not
variables as such, but rather represent real data inputs to the
modelling environment. For the present work, the EMT6/Ro
(mammary sarcoma) cell line was chosen since it has been
extensively studied in vitro and thus, data covering nearly the
complete set of inputs was found. The reader is referred to the
references of Table 1 for further reading.

Note that some data were not found in the literature and in
these cases, reasonable estimates were calculated and are shown
in Table 1. For instance, the CHO consumption rates for quiescent
anaerobic sites was estimated by assuming the same ratio of CHO
consumption for proliferative anaerobic to aerobic cells as
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candidate lattice site must have an empty lattice site within its
eight near-neighbours to put the new daughter cells. This is a
more preferable approach to that of Mansury et al. (2002) and
Mansury and Deisboeck (2004, 2003) who allow the new
daughter cell to be placed in the same location as the parent
cell (which effectively assumes that cells could be of arbitrarily
small size).

Furthermore, in our model, cells cannot move in an active way
as it was assumed in Mansury et al. (2002), Mansury and
Deisboeck (2004, 2003) and Dormann and Deutsch (2002).
Instead our approach is similar to that of earlier proposed
concepts such as Kansal et al. (2000a, b). In this methodology, a
candidate division site goes through a search process beginning
with adjacent sites and expanding outwards until an unoccupied
lattice site was found. Whilst we restrict the search space to only
adjacent sites, we retain the implicit contact-inhibition assumption
since a site with no free adjacent sites (in the Moore neighbour-
hood) is not permitted to divide and must wait until a free site
becomes available. Such a limited ‘search’ process is particularly
relevant in our many-to-one model since allowing a ‘packet’ of
daughter cells to be transported further than near-neighbour sites
would be questionable.

Unfortunately, the simple CA, grid-like setup can produce
morphological artifacts due to the repeated application of the
division/update rules (see discussion in Drasdo, 2005). We adjust
for this phenomenon by applying a novel probabilistic overlay to
the placement of daughter sites relative to their parent. Specifi-
cally, define by p and q the probabilities of placing a daughter site
at one of the orthogonal (i.e. vertical or horizontal) or diagonal
positions in the grid, respectively. One can then write the
expected speed of advance in the vertical (or horizontal) direction
as ex ¼ pþ 2q whilst in the diagonal direction we have
exy¼
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holds. Hence, we set the exact ratio of probabilities l ¼ l% to
ensure that the advance speeds are balanced. Note that within this
general framework l ¼ 0 corresponds to a strict Von Neumann
(vertical, horizontal only) regime, whilst for lbl% the diagonal
direction is emphasised, creating a square-like limit propagation
boundary. This approach is preferable to others mentioned in
references such as Drasdo (2005) (e.g. random lattices) since it
adjusts for the numerical artifact without detracting from the
general grid-like (i.e. matrix) underpinnings of the CA model. The
latter is retained in our approach to exploit various native array-
based computational functions.

2.6. Timing

Model timing in the CA setup follows a discrete set of steps as
indicated in Algorithm 1. After scaling (due to the user choice of
N), the world is initialised and then the main update loop runs
until the end of the specified time. Each update is equivalent to
one time step Dt, and as such, all consumption and production
(and diffusion) operations are scaled to occur in per Dt time units.

The choice of actual time-step used in the simulations to
follow was guided by two principles. First, it is clearly desirable, if
at all possible, to use a time-step greater than 1 s such that the
model requires less updates per total experiment duration
(usually set to 19 days). Second, an upper bound is placed on
this choice due to the fact that nutrient demands due to occupied
sites in the tumour mass must be met by the numerical diffusion
algorithm. If the chosen value for Dt is too high, nutrients (recall,
scaled to per Dt amounts) will be consumed by the tumour above
the rate of nutrient supply at the site. Calculations can be made
after scaling for a given choice of N that yield this cross-over point.
In our setup this point occurred at approximately 12 s. After a little
experimentation (not shown) a Dt value of 6 s was chosen to be
well within this upper limit.

Algorithm 1. Main simulation loop (pseudo-code)

1: Scale parameters
2: Initialise world
3: while tpT do
4: t t þDt
5: Replenish boundary conditions
6: Apply diffusion
7: Update site states
8: Metabolise nutrients
9: Site death
10: Site division
11: end while

3. Model parameters

As can be seen from Table 1, the model utilises 26 input
parameters. However, in almost all cases, owing to the exact
scaling relationship due to the choice of N and Dt, these are not
variables as such, but rather represent real data inputs to the
modelling environment. For the present work, the EMT6/Ro
(mammary sarcoma) cell line was chosen since it has been
extensively studied in vitro and thus, data covering nearly the
complete set of inputs was found. The reader is referred to the
references of Table 1 for further reading.

Note that some data were not found in the literature and in
these cases, reasonable estimates were calculated and are shown
in Table 1. For instance, the CHO consumption rates for quiescent
anaerobic sites was estimated by assuming the same ratio of CHO
consumption for proliferative anaerobic to aerobic cells as
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2 s-1 ?

(if any), cell nutrient consumption and cell state (either
proliferating or quiescent) and position. The diameter was
calculated in an analogous way to that reported in Freyer and
Sutherland (1980, p. 3957) by taking the geometric mean of two
orthogonal measurements from the position of occupied sites.
Similarly, cell count (i.e. number of filled sites multiplied by N)
and tumour volume (V tumour ¼ upR2) of the spreading tumour
mass was calculated after scaling conversion.

Fig. 7 shows the bulk tumour growth dynamics for a selection
of these experiments. Plot (a) shows the linear relationship
obtained under nex ¼ 16:5mM and oex ¼ 0:28mM (other plots
were also linear up to the point where the necrotic portions of the
model tumours disrupted the measurement of tumour diameter),
and plot (b) indicates the total cell count for fixed oex ¼ 0:28mM
and varying medium concentration of CHO. Gompertz model
(CðtÞ ¼ C0 expðA=BÞð1$ expð$BtÞÞ) lines of best fit were fitted by
the standard MATLAB non-linear fminsearch procedure to yield
standard saturation counts and initial doubling time data.
Complete summary results from these experiments are reported
in Table 2.

The results from these experiments indicate that the model has
reasonable to very good agreement with the experimental values
as reported in the target study of Freyer and Sutherland (1985).
The reference focuses on medium conditions of nex ¼ 5:5mM,
oex ¼ 0:28mM and pH level equal 7.4 and the results of this study
(where reported) are reproduced in the last column of numbers in
the summary table for ease of comparison. One can see that for
similar medium concentrations (the central column of model
values under medium [O2]¼ 0:28mM) many model outputs are
on par with the reference. All comparable values are found to be
within the same order of magnitude as the reference and in some
cases (e.g. diameter at onset of necrosis) the model returns a
remarkably similar absolute value to the reference. There are
some discrepancies with the reference, for example, the
consumption data taken from the model are somewhat different
to those reported in Freyer and Sutherland (1985, Tables 1 and 2,

p. 520), however, it is to be noted that the reference reports on
separate experiments conducted on single exponential cells
exposed to the various conditions, rather than taking data
(as we do) from the actual spheroids themselves. Indeed, it
remains for the updated approaches such as those used with
alternate cell lines (Rat1-T1, MR1) (Walenta et al., 2000) to yield
spheroid-applicable data of this nature.

4.2. The onset of necrosis

In addition to the 1985 study of Freyer and Sutherland (1985),
the EMT6/Ro cell line was the subject of another report by the
authors which specifically considered the onset and progression
of necrosis in tumour spheroids cultivated at a variety of medium
nex and oex values and thus provides an important set of
comparisons for the present work. As in Freyer and Sutherland
(1985), our model produces little variation in tumour (growth,
necrosis) characteristics when the value of oex is varied at a given
value of nex (see Table 2). Hence, we focus our comments on
comparisons of behaviour due to variations in nex at a given value
of oex ¼ 0:28mM.

Typical morphologies at the onset of necrosis for the three nex

conditions are presented in Fig. 8. As expected, and in line with
the data presented in Table 3 of Freyer and Sutherland (1986,
p. 3508) the diameter of the tumour mass at the onset of necrosis
is proportional to the value of nex. In other respects, the tumours
show similar morphological characteristics such as a large area of
anaerobic necrotic material in the centre of the tumour,
surrounded by a thin proliferative boundary.

Confirmation of these final characteristics is provided in Fig. 9
which shows the proportion of sites/cells in each of the four
possible states for the largest of the tumours ‘grown’ at
nex ¼ 16:5mM. It is clear that after an initial induction period
that exists up to approximately 500mm where proliferative sites
far outnumber quiescent sites, these sites switch very rapidly into
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Table 2
Results of the numerical experiments (each result represents the sample mean from five independent trials).

Medium nutrients FS1985 Units

nex oex oex
16.5 0.28 0.28 mM

oex nex nex

0.035 0.07 0.28 2.8 5.5 16.5 5.5

Saturation size (disc)a 1.21 1.25 1.08 0.241 0.468 1.18 na %105 cells
Saturation size (spheroid, est.)a 15.9 16.5 13.4 1.41 3.81 15.2 7 %105 cells
Initial doubling time 15.0 14.5 13.4 9.3 9.6 14.0 15 h
Viable thicknessb 703 795 707 171 298 674 187 mm
Diam at onset of necrosisc 558 815 818 361 499 861 413 mm
Avg. CHO consumptiond 44.3 44.4 43.5 44.9 43.8 43.6 18g %10$17mol ðcell sÞ$1

Avg. O2 consumptiond nd nd 0.201 0.677 0.395 0.159 8.4g %10$17 mol ðcell sÞ$1

Avg. acid productiond 0.315 0.342 0.284 1.22 0.600 0.289 – %10$20mol ðcell sÞ$1

Central [CHO]e 0.950 1.337 0.900 1.114 1.176 1.101 – mM
Central [O2]

e 0.035 0.070 0.158 0.158 0.157 0.158 – mM
Avg. occupied [CHO]f 4.40 5.01 4.092 0.355 0.924 4.383 – mM
Avg. occupied [O2]

f 0.035 0.070 0.153 0.142 0.146 0.153 – mM

na, not analysed; nd, not detected; FS1985, Freyer and Sutherland (1985).
a Gompertz calculated, Nsat ¼ N0 expA=B based on cell count versus time plots; spheroid obtained by scaling up from disc value.
b Average value after necrotic volume fraction 410%.
c Diam at time of necrotic volume fraction X10%.
d Data average for last 10% of time (e.g. last 1.9 days for 19 day trial).
e Central 3% 3 area (i.e. about 300% 300mm square in middle), average at final time.
f Avg. value for all occupied sites at final time.
g Data from Tables 1 and 2 in Freyer and Sutherland (1985) are for single exponential cells grown in the given media.
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(ni), oxygen (oi) and metabolic waste (wi), implemented directly
as hydrogen ions in our model. It is known cellular metabolism is
significantly affected by local pH (Casciari et al., 1992) and so, the
algorithm begins by checking the site pH level, and in accordance
with Dairkee et al. (1995), if the pH is lower than pHdeath ¼ 6:0 the
cells at the site undergo death. For our purposes, this is equivalent
to necrosis (i.e. unprogrammed cell death) since we have left the
inclusion of programmed cell death for further model refinement.
Furthermore, as reported in Casciari et al. (1992) if the environ-
mental pH is smaller than pHcrit ¼ 6:4 yet higher than the cell
death threshold, the site enters the quiescent state. This leaves all
sites with a site pH greater than 6.4 able to enter one of the
proliferative states.

We assume that the most preferred form of proliferation
for a site is aerobic proliferation, and thus, at the next decision
point, a check of the environmental oxygen concentration ([O2]) is
made. High values of oxygen concentration will lead to either
aerobic proliferation or quiescence, depending on the environ-
mental glucose concentration ([CHO]), whereas hypoxic
conditions lead to either anaerobic proliferation or entry into
the anaerobic quiescence section of the algorithm for high and
low levels of glucose, respectively. It is possible that a site
could have high oxygen concentration yet low glucose concentra-
tion and subsequently will arrive at the aerobic quiescence
state, whereas sites with low environmental oxygen concentration
and low glucose concentration will move to either the anaerobic
quiescent state (the lowest level of metabolism in our model) or
site death (if minimal glucose requirements are not met).
The parameters and references for all state transition points,
and consumption (production) levels within each state are
summarised in Table 1. Note that some of presented data were
not reported in the experimental literature (to our knowledge)
and hence some assumptions had to be made, for details see
Section 3.

2.4. Nutrient transport and replenishment

Since we are investigating the in vitro world of tumour
spheroids, we assume that the tumour mass grows within a
vessel much larger than the volume of tumour under study.
External sites to the tumour mass are assumed to be replenished
with a virtual medium consisting of dissolved concentrations of
glucose, oxygen and acid, labelled nex, oex and wex, respectively.
Experiments conducted by Freyer et al. on spheroids (for details
see Freyer, 1988 or Freyer and Sutherland, 1980) have shown that
concentrations of glucose, oxygen and Hþ ions in the medium
never decreased by more than 5% of the initial value in fresh
medium over the growth period. Hence, we update all sites
outside of the tumour mass (those outside of a minimal radius
that encompasses all occupied sites) to initial (fresh) medium
concentrations each time step.

To account for the diffusion of nutrients (CHO, O2) into the
tumour mass and waste products (Hþ) out of the tumour mass, at
each time-step a numerical diffusion algorithm is applied to an
idealised circular area encompassing the tumour completely.
Boundary conditions are maintained at the medium concentra-
tions throughout this update procedure. This approach has the
added computational benefit of only applying the time-consum-
ing numerical diffusion calculations to a subset of the CA ‘world’.

Each diffusion step is achieved by repeated applications of a
numerical diffusion calculation over all sites in the circular
subset:

xtþ1
i ¼

a
f

X

j2Oi

xtj þ
1ffiffiffi
2

p
X

j2Di

xtj # fxti

0

@

1

Aþ xti , (5)

where Oi is the set of four sites orthogonally adjacent to site i
whilst Di is the remaining four sites diagonally adjacent to site i,
and f ¼ 4þ 2

ffiffiffi
2

p
is the normalising term. The composition of (5)
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Fig. 3. Metabolism decision flow chart. ni, oi and pHi stand for the environmental [CHO], [O2] and pH level at lattice site i, respectively. Description of all parameters given
in Table 1.
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OXYGEN/GLUCOSE REGULATION OF SPHEROID GROWTH AND NECROSIS

tenance of cell viability (43, 44), perhaps mediated through the
requirement for energy in order to maintain the functional
integrity of the cell membrane (45). This concept is supported
by a recent report demonstrating that cells near the necrotic
center of spheroids, although appearing morphologically intact,
were unable to maintain Ca2++ or K+ gradients across their

membranes (46). The steps leading up to the death of cells by
apoptosis as a result of nutrient deprivation (17,47) could also
be explained by a declining energy production and a progressive
loss of membrane integrity. These changes seem to correlate
well with observations of cell death in tumors (48). More
biophysical and biochemical analysis of the cells undergoing
necrosis in spheroids will be necessary before the mechanism
behind the regulation of viability is understood.
The data presented here also indicate that the separate proc

esses of growth and viability regulation are, in fact, closely
related. Fig. 5 demonstrates that the onset of necrosis was very
well correlated with the onset of growth saturation. As discussed
above, under certain conditions it may be possible that the
oxygen or glucose concentrations in the spheroid were low
enough that cellular growth was directly affected. The excellent
correlation shown in Fig. 5 suggests the alternative hypothesis
that oxygen and glucose are directly involved only in the onset
of necrosis, and that the development and expansion of central
necrosis then regulate the growth rates of the spheroids. It has
been previously suggested that toxic products diffusing out of
the necrotic core of spheroids are responsible for growth satu
ration (2, 8). Our data make a strong case for such a regulatory
phenomenon, especially in view of the fact that the correlation
between necrosis and growth saturation holds under all of the
culture conditions tested. Recent work by our group has dem
onstrated that a similar relationship exists for spheroids grown
from several other cell lines (49). There have been reports of
the cytotoxic and cytostatic effects of extracts from necrotic
areas in tumors on cultured cells (50, 51), and the same effects
have been proposed to occur in situ in tumors (52). We have
shown that an extract from spheroids with extensive necrosis
can reduce the proliferation and the clonogenicity of monolayer
tumor cells (49). Interestingly, in the present study the sphe
roids grew to a larger saturation size in the higher oxygen
concentration, even though necrosis was initiated at the same
spheroid diameter (Fig. 5). This suggests that oxygen may be
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Fig. 5. Spheroid saturation size, in terms of total spheroid volume or total
spheroid cell number, as a function of the diameter at which necrosis first
develops. Different symbols indicate culture in 0.28 HIM (â!¢)or 0.07 HIM(O)
oxygen. Values are individual estimates from the data in Tables 1 and 2 and Fig.
3; lint-\ are linear least-squares best fits.

involved in the relative cytostatic effectiveness of toxic products
produced by necrosis.
The data presented in this paper have led us to the develop

ment of a model to explain the regulation of growth and viability
in spheroids; this model is schematically represented in Fig. 6.
During the initial processes of cell aggregation and growth (7.),
both GP and VP factors reach all of the cells in the spheroid.
After growing to a certain size, the penetration of GP factors
becomes limited, and a quiescent cell subpopulation develops
(2.). Growth of the spheroid continues to a size at which the

penetration of VP factors becomes restricted, and central ne
crosis then develops (3.). There is the possibilty that one sub
stance could be both a GP and a VP factor, but be effective in
promoting these different processes at different concentrations.
Expansion of the outer cell layer and of the necrotic core
continues, with increasing production of GI factors by the
process of cell lysis. A transition phase (4.) is attained when GI
substances reach a concentration at the proliferating cell layer
such that cell growth is inhibited. The control of spheroid
growth is then transferred from externally supplied GP factors
to internally generated GI products. The spheroid will continue
to grow during this phase, but as the necrotic core expands and
the point at which a critical concentration of GI factors is
attained moves further from the spheroid center, the number
of proliferating cells decreases and the growth rate slows. Even
tually, the thickness of the proliferating cell zone is reduced to
the point at which all new cells are lost by cell shedding and
movement toward the spheroid center, and a saturation of
spheroid growth is attained (5.). It is also possible that when
the necrotic core becomes very extensive, VI factors produced
by cell lysis may affect the viability of cells near the necrotic
core and thus reduce the size of the cell rim.
This model illustrates how the processes of cell death and

growth saturation are related, and it can explain the growth
kinetics shown in Figs. 1 and 2. It has recently been suggested
that a similar competition between stimulatory and inhibitory
factors may be involved in the growth regulation of monolayer
cell cultures (52). We would conclude that neither oxygen nor
glucose is directly involved as GP substances in the early growth
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Fig. 6. A representation of the model for the interaction of growth promoters
(HI'), viability promoters (YP), growth inhibitors (<>7).and viability inhibitors

(17) at different stages in the growth of a spheroid. Arrows indicate the direction
and extent of penetration into or cut out of the spheroid; shading indicates the
presence of proliferating cells, nonproliferating cells, and acellular necrosis.
Details of the model are given in the text.
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critical levels for viable metabolism, and this drop arrives almost
simultaneously across a large portion of the central tumour mass.
Alternatively, as is advanced by Freyer and Sutherland (1986), the
progression of necrosis could be due to a two-step process where
first, a combination of factors (e.g. environmental concentrations,
site-pressure) causes a dense region at the centre of the tumour to
undergo necrosis, and then, these necrotic events cause the
release of a large quantity of waste materials which immediately
cause the death of surrounding cells, already under stress due to
unfavourable environmental conditions.

The evidence presented would appear to find in favour
of the former (sub-minimal metabolism requirements), and
against the latter (death via indirect toxicity). Although necrosis

advances rapidly in our model immediately following the onset of
necrosis (Fig. 14) as was similarly reported in Freyer and Suther-
land (1985), like Walenta et al. (2000), we do not observe a
coincident spike in waste (Hþ) concentrations (refer Fig. 11)
despite allowing for a one-off production of 30min worth of Hþ at
any given necrotic site. Furthermore, both leading up to the onset
of necrosis, and afterwards (refer Tables 2 and 3) the central pH
never appears to fall below 6.0, our effective pH floor to any viable
metabolism.

Furthermore, the present setup is able to produce a necrotic
core in identical environments to those studied above, but
without the waste (Hþ) module present in the model (data not
shown). Hence, at present, the model appears to suggest a purely
sub-minimal nutrient environment rationale for the onset and
spread of necrosis. This finding stands in contrast to that of both
Walenta et al. (2000) and Freyer and Sutherland (1986) who both
(for different reasons) rule out the nutrient deficiency argument.
Nevertheless, the model is in agreement with the detailed data of
Walenta et al. (2000) in that it shows that central Hþ concentra-
tions are not high enough (under the present specification) to
cause necrosis. Indeed, it can be seen in Table 2 that the onset of
necrosis under each medium condition occurs at a diameter some
25–60% in excess of that reported by equivalent studies in Freyer
and Sutherland (1986). This further supports the theory that
normal tumours do not reach this level of nutrient depletion
before necrosis, and instead, another process causes unpro-
grammed cell death in advance of this nutrient-depletion point.

ARTICLE IN PRESS

Fig. 10. Normalised central CHO, O2 concentrations and pH versus tumour diameter (pHex ¼ 7:4, nex ¼ 16:5mM, oex ¼ 0:28mM). Average data from five trials. Vertical line
indicates the mean onset of necrosis. Compare Fig. 8 in Walenta et al. (2000, p. 519). Values of 1 indicate medium concentrations, whilst values of 0 indicate final
concentrations, approximately 1.101, 0.158mM, and 6.37 for central [CHO], [O2] and pH, respectively.

Table 3
Average central concentrations of CHO and O2, and pH, at the onset of necrosis
compared to critical values for minimal metabolism.

oex ¼ 0:28 (mM) Critical value

nex (mM)

2.8 5.5 16.5

Central [CHO] (mM) 0.680 0.539 0.713 1.04
Central [O2] (mM) 0.152 0.150 0.156 0.00
Central pH level 6.389 6.385 6.364 6.00
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Further evidence is presented in Fig. 13 which compares the
average thickness of the viable cell rim after the onset of necrosis
for different levels of nex. For ease of comparison, the approxima-
tions to the data reported in Fig. 4 of Freyer and Sutherland (1986)
are also presented in the figure (filled markers). Whilst the model
generates very good approximations to the experimental data for
the lower concentrations (2.8 and 5.5mM), the 16.5mM case
departs somewhat. Nevertheless, it is clear that as in Freyer and
Sutherland (1986) the viable sites in our model are likewise
sensitive to the external glucose concentration, if not more
sensitive, all else being equal. Finally, Fig. 14 completes this
line of inquiry, showing comparable data to that reported for

nex ¼ 5:5mM in Table 3 of Freyer and Sutherland (1985, p. 520),
again filled markers are presented for the data from Freyer and
Sutherland (1985) for comparison. Here, as in Freyer and Suther-
land (1985) the necrotic volume fraction progresses with a
positive, linear gradient following the onset of necrosis.

5. Discussion

There are two possible explanations in our model for the
evidence on necrosis presented above. One explanation could be
that after a certain time, the concentration of glucose drops below
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Fig. 8. Typical tumour forms at onset of necrosis under pHex ¼ 7:4, oex ¼ 0:28mM and nex as indicated. Colours indicate state of each site as in Fig. 5.

Fig. 9. Percent of cells in each state versus tumour diameter (pHex ¼ 7:4, nex ¼ 16:5mM, oex ¼ 0:28mM), mean of five trials: p, aerobic proliferation; pan, anaerobic
proliferation; q, aerobic quiescence; and qan, anaerobic quiescence. Compare Fig. 6 in Freyer and Sutherland (1985, p. 522).
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components may diffuse out of the tumour mass and thus be lost
through leakage. Numerical data and surrounding text presented
in Ward and King (1999, Figs. 1 and 6) provide interesting
intuition for observed viable tumour thickness as tabulated
in Freyer and Sutherland (1985) and shown in Fig. 12 in the
present work.

Ward and King (1999) find that after an initial transientphase of
exponential expansion in spheroid radius, S, growth stabilises to a
linear regime due to quiescence of the core. After a time, the
necrotic core develops which grows at a faster rate than the linear

spheroid radius, thus causing the thickness of the viable rim to
quickly reduce initially, before stabilising at a relatively constant
thickness. It is also found that under certain parametrisations (high
mitotic consumption of cell death components, and high diffusion
of the same), a realistic three-layer structure is observed, and that
the tumour may obtain the experimentally observed growth
saturation limit rather than the travelling-wave (unbounded) limit.
Both of these observations (three-layer structure, growth satura-
tion) are replicated in the present model as endogenous outcomes
of the modelling setup, although these occur without the addition
of growth inhibition (data not shown). Clearly further work is
needed to probe the competing theories of growth inhibition or
mitotic provision due to cellular death in the tumour core.
Nevertheless, we find agreement with the authors who state in
the Discussion section of Ward and King (1999) that whilst there
has been much study of the diffusion of components into the
tumour mass, there has been relatively little study of the reverse
process: that of components diffusing out of the tumour mass.

There are many attributes of the present setup that could be
improved in future versions, and it remains to be seen if such
advances bring the in silico results more into line with the in vitro
approaches. As mentioned above, the production rates of Hþ are
an obvious point of criticism. Second, it is possible that the
abstraction away from formal buffering models for the Hþ clear-
ance are not adequate. Although our assumption was motivated
by similar approaches (e.g. Patel et al., 2001), since it appears that
the production and clearance of Hþ is critical to the findings of the
model, this aspect may need to be revisited. Finally, the model
makes no delineation between programmed cell death (apoptosis)
and necrosis. Since it is known that ATP is required for successful
apoptosis, the prior programmed death of some cells may change
both the acidic and glucose environment for those that remain.
Although, intuition would suggest that such a complication would
further deplete the available glucose and similarly reduce the
number of one-off Hþ producing necrotic events, hence encoura-
ging similar results to that of the present setup.

Another aspect of the model that requires further investigation
is the cross-sectional nutrient profile. It was observed during all
simulations that up until the onset of necrosis (figures not
shown), the central nutrient concentration declined roughly
linearly with tumour diameter. This is in accordance with results
obtained by Walenta et al. (2000) who used bioluminescence
imaging to identify central oxygen and ATP concentrations with
spheroid diameter. However, this work showed that after the
onset of necrosis, central nutrient concentrations stay very low
throughout further spheroid growth. This result was also found in
Ward and King’s (1997) PDE model mentioned above (see Fig. 12).
In contrast, an analysis of the same in our model showed that the
central nutrient concentration began to increase post necrosis
onset, causing a tri-modal cross-sectional nutrient profile to be
observed after time. Whilst the central peak was never enough to
sustain a viable cell, it does indicate that some unmodelled
phenomena is present in vitro that either prevents nutrients
diffusing into the necrotic core, or causes their consumption.

Nevertheless, the approach analysed above offers exciting
possibilities for future advances in computational oncology. It is
our contention that the many-to-one scaling assumption used as
the core of this paper allows for a much wider range of tumour
development scenarios to be studied with relatively accurate
outputs on many experimental dimensions.
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Fig. 13. Thickness of viable cell rim versus medium glucose concentration. Each
open circle represents mean of data presented in Fig. 12 with standard deviation
represented by error bars. Data for the analogous in vitro study as reported in (top
of) Fig. 4, Freyer and Sutherland (1986) is shown by filled circles.

Fig. 14. Necrotic volume versus tumour diameter, conditions and labels as in
Fig. 12. Filled diamonds represent equivalent in vitro data for the analogous study
reported in Table 3 of Freyer and Sutherland (1985, p. 520).
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The Challenge
From Spheroids to Models (and back again)

3

Figure 1. Geometry of the 3D space, showing radius, r
and surface reactivity interpretation of the site side-length,
u (left); Implementation of many-to-one assumption in 3D
lattice (right).

a single cell, namely, around 10µm. Or in other terms, it is assumed by the

one-to-one assumption that a cell/site at just two sites (or about 20µm)

inside the surface of the growing tumour mass would be unable to produce

a daughter cell nearby due to contact inhibition.

In contrast, our approach relaxes the one-to-one assumption by assuming

a many-to-one approach where any number N of cells can be considered to

reside in one CA site. Not only does this approach allow for the peripheral

mitotic region to expand to realistic widths (on the order of 100µm, [15, 3])

but also, it allows the effective study of very much larger tumour masses

(up to the scale of 1×106 cells) whilst keeping the number of computa-

tional elements within implementable margins (e.g. on the order of 1×104).

Clearly, one loses a degree of detail in the results as a consequence of this

approach, since all cells inhabiting a single site are effectively treated as an

homogeneous packet.

We can progress this discussion by formalising the implications of the

many-to-one assumption on bulk tumour properties. Thus, we consider a

proliferating boundary of thickness equivalent to the side-length of one CA

site (refer Fig. 1, left), i.e. thickness u in the figure. Under this assumption,

we may consider the following master equation

(2.1)
dC(t)

dt
= kNε(t),

for the rate of tumour cell count (C(t)) progression with at time t, where k

is the rate constant (units t−1), N is the fixed number of cells per CA site

as defined above (units cells per site) and ε(t) is the number of CA sites at

the proliferation boundary of the tumour mass at time t (units sites).

constrained to treating the proliferating rim as a one cell width
layer around the tumour mass. Furthermore, the ‘many-to-one’
assumption allows the implementation of a fully calibrated
in silico tumour mass that can successfully grow to cell-count
sizes on the order of 1! 106 but with several orders of magnitude
less numerical objects to handle. In this way, the implementable
model produces realistic, experimentally comparable data on the
onset and progression of necrosis. A theoretical interpretation of
this assumption is also provided to encourage further investiga-
tion by the field.

After full calibration and scaling of all experimentally available
input data on cellular metabolism, diffusion, mitosis and cell
death, we find that necrosis appears in our model due to sub-
viable nutrient concentrations in the centre of the tumour and
not, as has been suggested by some authors (e.g. Freyer and
Sutherland, 1986), due to rising toxicity in the tumour mass.
Indeed, we show that by including the diffusion of waste
materials out of the tumour mass, central waste (Hþ in our
model) concentrations are only sufficient to switch cells to
quiescence rather than unprogrammed cell death (Casciari et al.,
1992). Further results on the progression of the necrotic volume
are included and compared to experimental results. Given that
recent experimental data on nutrient concentrations prior to the
onset of necrosis contradict these results (Walenta et al., 2000),
the paper thus concludes that additional mechanisms for necrosis
are required to be identified by the literature.

The paper is organised as follows: in Section 2 we outline the
description of the MCS growth model, Section 3 contains the
parameter estimation, while in Section 4 the results of our
computational simulations were compared with experimental
data for the MCS of the EMT6/Ro tumour line cultivated
in vitro. Finally, Section 5 contains the comparison of our model
with other (discrete and continuous) models known from the
literature. In this section the current limitations and potential
applications of the present model for future research are
discussed.

2. Model definition

2.1. The 2D CA

We consider a 2D CA model comparable to those of, for
instance, Patel et al. (2001) and Gerlee and Anderson (2007). Since
it has been established that cells cultivated in the in vitro three-
dimension (3D) like fashion behave differently to those that are
kept as monolayers (Weaver et al., 1997), we approach the 2D
automaton as a representative planar slice through a 3D spheroid-
like tumour mass. For instance, nutrients are supplied to the
growing tumour seed from CA sites beyond the boundary of
occupied sites, mimicking the spheroid approach in the laboratory
(as opposed to the planar substrate support approach as utilised
in monolayer experiments). Subsequently, we use experimental
data taken from in vitro spheroid studies as inputs to, and
comparison with, our model, adjusting for the planar approach as
necessary (e.g. calculation of saturated volume).

However, we differ significantly with all known previous CA
tumour approaches by relaxing the perceived ‘enforced’ constraint
of a ‘one-to-one correspondence between automaton elements
and physical cells’ (Patel et al., 2001, p. 319). Instead, in our
approach, each automaton site is filled with a chosen packet of
homogeneous cells (count N) (see Fig. 2), such that subsequent
automaton updates occur at the level of the site, rather than at the
cellular level. Indeed, this approach is of wide interested in
statistical mechanics where it is often called coarse-graining
(Kardar, 2007).

The reasons for this approach are twofold. First, although it has
been argued that the CA approach is perhaps the pre-eminent
simulation approach for many-object biological systems such as
tumour growth due to its significantly smaller computational
time compared to (say) apparently more realistic continuous
interaction models (Drasdo, 2005), the fact remains that under a
one-to-one assumption between cells and automaton sites, to
model a biological system such as (even) pre-angiogenic tumours,
one needs to implement a complex system with up to 106 objects
(cells). At this scale, even the CA approach is prohibitively time-
consuming to carry out meaningful in silico experiments. Hence, a
reduction in system objects is desirable purely due to implemen-
tation considerations.

However, the second reason for our approach is very
important, and to our knowledge, has been overlooked in the
biological simulation literature. Namely, by using the CA
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Necrotic region

Healthy region

Fig. 1. A 1mm section of a tumour spheroid showing the inner necrotic region and
the outer living region (rat osteogenic sarcoma, reproduced with permission from
Yu et al., 2007).

Fig. 2. The 2D lattice structure assumed in the model. Each site is assumed to be
occupied by b1 individual cells as described in the text. The lattice size is
calculated directly from the packing density of tumour cells and the key control
parameter—the number of cells per lattice site.
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constrained to treating the proliferating rim as a one cell width
layer around the tumour mass. Furthermore, the ‘many-to-one’
assumption allows the implementation of a fully calibrated
in silico tumour mass that can successfully grow to cell-count
sizes on the order of 1! 106 but with several orders of magnitude
less numerical objects to handle. In this way, the implementable
model produces realistic, experimentally comparable data on the
onset and progression of necrosis. A theoretical interpretation of
this assumption is also provided to encourage further investiga-
tion by the field.

After full calibration and scaling of all experimentally available
input data on cellular metabolism, diffusion, mitosis and cell
death, we find that necrosis appears in our model due to sub-
viable nutrient concentrations in the centre of the tumour and
not, as has been suggested by some authors (e.g. Freyer and
Sutherland, 1986), due to rising toxicity in the tumour mass.
Indeed, we show that by including the diffusion of waste
materials out of the tumour mass, central waste (Hþ in our
model) concentrations are only sufficient to switch cells to
quiescence rather than unprogrammed cell death (Casciari et al.,
1992). Further results on the progression of the necrotic volume
are included and compared to experimental results. Given that
recent experimental data on nutrient concentrations prior to the
onset of necrosis contradict these results (Walenta et al., 2000),
the paper thus concludes that additional mechanisms for necrosis
are required to be identified by the literature.

The paper is organised as follows: in Section 2 we outline the
description of the MCS growth model, Section 3 contains the
parameter estimation, while in Section 4 the results of our
computational simulations were compared with experimental
data for the MCS of the EMT6/Ro tumour line cultivated
in vitro. Finally, Section 5 contains the comparison of our model
with other (discrete and continuous) models known from the
literature. In this section the current limitations and potential
applications of the present model for future research are
discussed.

2. Model definition

2.1. The 2D CA

We consider a 2D CA model comparable to those of, for
instance, Patel et al. (2001) and Gerlee and Anderson (2007). Since
it has been established that cells cultivated in the in vitro three-
dimension (3D) like fashion behave differently to those that are
kept as monolayers (Weaver et al., 1997), we approach the 2D
automaton as a representative planar slice through a 3D spheroid-
like tumour mass. For instance, nutrients are supplied to the
growing tumour seed from CA sites beyond the boundary of
occupied sites, mimicking the spheroid approach in the laboratory
(as opposed to the planar substrate support approach as utilised
in monolayer experiments). Subsequently, we use experimental
data taken from in vitro spheroid studies as inputs to, and
comparison with, our model, adjusting for the planar approach as
necessary (e.g. calculation of saturated volume).

However, we differ significantly with all known previous CA
tumour approaches by relaxing the perceived ‘enforced’ constraint
of a ‘one-to-one correspondence between automaton elements
and physical cells’ (Patel et al., 2001, p. 319). Instead, in our
approach, each automaton site is filled with a chosen packet of
homogeneous cells (count N) (see Fig. 2), such that subsequent
automaton updates occur at the level of the site, rather than at the
cellular level. Indeed, this approach is of wide interested in
statistical mechanics where it is often called coarse-graining
(Kardar, 2007).

The reasons for this approach are twofold. First, although it has
been argued that the CA approach is perhaps the pre-eminent
simulation approach for many-object biological systems such as
tumour growth due to its significantly smaller computational
time compared to (say) apparently more realistic continuous
interaction models (Drasdo, 2005), the fact remains that under a
one-to-one assumption between cells and automaton sites, to
model a biological system such as (even) pre-angiogenic tumours,
one needs to implement a complex system with up to 106 objects
(cells). At this scale, even the CA approach is prohibitively time-
consuming to carry out meaningful in silico experiments. Hence, a
reduction in system objects is desirable purely due to implemen-
tation considerations.

However, the second reason for our approach is very
important, and to our knowledge, has been overlooked in the
biological simulation literature. Namely, by using the CA
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constrained to treating the proliferating rim as a one cell width
layer around the tumour mass. Furthermore, the ‘many-to-one’
assumption allows the implementation of a fully calibrated
in silico tumour mass that can successfully grow to cell-count
sizes on the order of 1! 106 but with several orders of magnitude
less numerical objects to handle. In this way, the implementable
model produces realistic, experimentally comparable data on the
onset and progression of necrosis. A theoretical interpretation of
this assumption is also provided to encourage further investiga-
tion by the field.

After full calibration and scaling of all experimentally available
input data on cellular metabolism, diffusion, mitosis and cell
death, we find that necrosis appears in our model due to sub-
viable nutrient concentrations in the centre of the tumour and
not, as has been suggested by some authors (e.g. Freyer and
Sutherland, 1986), due to rising toxicity in the tumour mass.
Indeed, we show that by including the diffusion of waste
materials out of the tumour mass, central waste (Hþ in our
model) concentrations are only sufficient to switch cells to
quiescence rather than unprogrammed cell death (Casciari et al.,
1992). Further results on the progression of the necrotic volume
are included and compared to experimental results. Given that
recent experimental data on nutrient concentrations prior to the
onset of necrosis contradict these results (Walenta et al., 2000),
the paper thus concludes that additional mechanisms for necrosis
are required to be identified by the literature.

The paper is organised as follows: in Section 2 we outline the
description of the MCS growth model, Section 3 contains the
parameter estimation, while in Section 4 the results of our
computational simulations were compared with experimental
data for the MCS of the EMT6/Ro tumour line cultivated
in vitro. Finally, Section 5 contains the comparison of our model
with other (discrete and continuous) models known from the
literature. In this section the current limitations and potential
applications of the present model for future research are
discussed.

2. Model definition

2.1. The 2D CA

We consider a 2D CA model comparable to those of, for
instance, Patel et al. (2001) and Gerlee and Anderson (2007). Since
it has been established that cells cultivated in the in vitro three-
dimension (3D) like fashion behave differently to those that are
kept as monolayers (Weaver et al., 1997), we approach the 2D
automaton as a representative planar slice through a 3D spheroid-
like tumour mass. For instance, nutrients are supplied to the
growing tumour seed from CA sites beyond the boundary of
occupied sites, mimicking the spheroid approach in the laboratory
(as opposed to the planar substrate support approach as utilised
in monolayer experiments). Subsequently, we use experimental
data taken from in vitro spheroid studies as inputs to, and
comparison with, our model, adjusting for the planar approach as
necessary (e.g. calculation of saturated volume).

However, we differ significantly with all known previous CA
tumour approaches by relaxing the perceived ‘enforced’ constraint
of a ‘one-to-one correspondence between automaton elements
and physical cells’ (Patel et al., 2001, p. 319). Instead, in our
approach, each automaton site is filled with a chosen packet of
homogeneous cells (count N) (see Fig. 2), such that subsequent
automaton updates occur at the level of the site, rather than at the
cellular level. Indeed, this approach is of wide interested in
statistical mechanics where it is often called coarse-graining
(Kardar, 2007).

The reasons for this approach are twofold. First, although it has
been argued that the CA approach is perhaps the pre-eminent
simulation approach for many-object biological systems such as
tumour growth due to its significantly smaller computational
time compared to (say) apparently more realistic continuous
interaction models (Drasdo, 2005), the fact remains that under a
one-to-one assumption between cells and automaton sites, to
model a biological system such as (even) pre-angiogenic tumours,
one needs to implement a complex system with up to 106 objects
(cells). At this scale, even the CA approach is prohibitively time-
consuming to carry out meaningful in silico experiments. Hence, a
reduction in system objects is desirable purely due to implemen-
tation considerations.

However, the second reason for our approach is very
important, and to our knowledge, has been overlooked in the
biological simulation literature. Namely, by using the CA
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Necrotic region

Healthy region

Fig. 1. A 1mm section of a tumour spheroid showing the inner necrotic region and
the outer living region (rat osteogenic sarcoma, reproduced with permission from
Yu et al., 2007).

Fig. 2. The 2D lattice structure assumed in the model. Each site is assumed to be
occupied by b1 individual cells as described in the text. The lattice size is
calculated directly from the packing density of tumour cells and the key control
parameter—the number of cells per lattice site.
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constrained to treating the proliferating rim as a one cell width
layer around the tumour mass. Furthermore, the ‘many-to-one’
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(Kardar, 2007).

The reasons for this approach are twofold. First, although it has
been argued that the CA approach is perhaps the pre-eminent
simulation approach for many-object biological systems such as
tumour growth due to its significantly smaller computational
time compared to (say) apparently more realistic continuous
interaction models (Drasdo, 2005), the fact remains that under a
one-to-one assumption between cells and automaton sites, to
model a biological system such as (even) pre-angiogenic tumours,
one needs to implement a complex system with up to 106 objects
(cells). At this scale, even the CA approach is prohibitively time-
consuming to carry out meaningful in silico experiments. Hence, a
reduction in system objects is desirable purely due to implemen-
tation considerations.

However, the second reason for our approach is very
important, and to our knowledge, has been overlooked in the
biological simulation literature. Namely, by using the CA
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Fig. 2. The 2D lattice structure assumed in the model. Each site is assumed to be
occupied by b1 individual cells as described in the text. The lattice size is
calculated directly from the packing density of tumour cells and the key control
parameter—the number of cells per lattice site.
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TABLE 4. Comparison of oxygen and glucose consumption rates of 
EMT6/Ro cells while associated in the spheroid structure (Intact) or 
after disaggregation into a single-cell susoension (Dissociated) 

Spheroid Oxygen consumption Glucose consumption 

diameter ( x loL7 moIes/celI/sec) ( x 1017 molesiceWsec) 

(pm) Intact Dissociated Intact Dissociated 

306 7.3 7.9 16 18 
483 6.3 7.5 14 17 
710 5.1 6.0 11 15 
830 4.2 4.6 9.4 12 
1020 4.1 4.4 9.1 10 

Values are single determinations as described in the text 

oped at  a size of = 400 pm, the amount of necrotic 
material present did not constitute a significant portion 
of the total spheroid vol until the spheroids reached a 
size of = 1000 pm. Further growth beyond this size 
results in a large increase in the relative amount of 
necrotic material. Comparison of these data with those 
in Figures 1 and 2 indicate that, a t  a size a t  which 
central necrosis constitutes < 5% of the spheroid mass, 
the rates of oxygen and glucose consumption have al- 
ready been reduced. The further rapid development of 
necrosis also did not appear to induce any change in the 
rate of cellular consumption. For example, as the sphe- 
roids grew from 1000 to 1300 pm, the extent of necrosis 
increased threefold, but the rates of oxygen and glucose 
consumption continued to decrease identically to those 
observed for much smaller spheroids. 

In order to more directly test the effect of the spheroid 
microenvironment on the in situ consumption rates, we 
measured the rates of consumption of spheroid-derived 
cells both before and after dissociation into a single-cell 
suspension. In Table 4, the results are given for a range 
of spheroid sizes. In each case, there was a small in- 
crease in the mean rate of consumption after dissociat- 
ing the cells from the spheroid microenvironment. 
However, the consumption rates measured for spheroid- 
derived cells are lower than those measured for cells 
derived from exponentially-growing monolayers, even 
though both cell suspensions were measured under the 
same nutrient conditions. The larger the size of the 
spheroid from which the cells are derived, the less effect 
dissociation has on the rate of consumption of either 
metabolite. At the largest size of spheroid measured, the 
fact of association in the spheroid structure accounts for 
< 10% of the total observed reduction in consumption 
rates. 

Alterations in spheroid cell population 

A second general explanation for the decrease in nu- 
trient consumption of spheroid-associated cells during 
growth is that culture in the spheroid structure induces 
changes in the cells themselves, which then alter the 
cellular consumption parameters. Figure 4 shows the 
median cell vol of the cells dissociated from spheroids of 
various sizes. The cell vol showed a good correlation 
with the spheroid diameter, with a linear least squares 
best fit giving a slope of -124 pm3 per 100 pm of sphe- 
roid growth (2 = 0.82). Comparison of these data with 
Figures 1 and 2 and with Table 4 suggests that this 
reduction in cell size as cells are cultured in spheroids 
can account for a large proportion of the observed de- 
crease in cellular utilization of nutrients, assuming that 
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Fig. 4. Volume of cells dissociated from spheroids measured with an 
electronic particle size distribution analyzer, as a function of the sphe- 
roid diameter. Values are individual determinations from two indepen- 
dent spheroid growth experiments; the line is a linear least squares 
best tit to all the data points. 

the rate of consumption of oxygen and glucose by EMT6/ 
Ro cells is proportional to the vol of the cell. 

To determine if such a relationship existed, exponen- 
tially-growing EMTG/Ro cells were separated by centrif- 
ugal elutriation, as explained in the Materials and 
Methods section, to obtain a large number of early GI- 
phase cells. These cells were then allowed to progress 
through the cell cycle under normal culture conditions, 
and, periodically, samples were assayed for their median 
vol and their rates of oxygen and glucose consumption. 
Figure 5 shows these data as a function of the median 
cell vol. There is, indeed, a good correlation between the 
cell vol and the rates of consumption of both oxygen and 
glucose. The rates of increase as determined by linear 
least squares best fits to the data were 0.45 moles/cell/ 
sec per 100 pm3 of growth for oxygen (r2 = 0.95) and 
0.82 moles/cell/sec per 100 pm3 of growth for glucose (r2 
= 0.98). Note that there was no large effect of position 
in the cell cycle on the nutrient utilization of these cells, 
other than that attributable to the concurrent increase 
in cell vol. These data would indicate that the reduction 
in median cell vol could explain a large part of the 
decrease in oxygen and glucose consumption of cells in 
spheroids during growth. However, a careful comparison 
of the magnitude of the vol change of spheroid-associ- 
ated cells with the degree of reduction in cellular con- 
sumption rates shows that cells derived from large 
spheroids reduce their utilization of oxygen and glucose 
to a greater extent than can be accounted for by the 
change in cell vol alone. 

A possibility to account for this discrepancy is the 
change in the proliferative status of cells in spheroids. 
Figure 6 shows the percentage of cells with GI-, S- and 
Gz + M-phase DNA contents, determined by flow cyto- 
metric analysis of the dissociated cell populations, as a 
function of the spheroid diameter. There was an increase 
in the number of cells with a G1-phase DNA content, 
with a concurrent decrease in the S- and Gz + M-phase 

Looking Ahead
Still on the 'wish-list'
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MEDIAN CEU VOWME km”) 
Fig. 5. Rates of oxygen (A) and glucose 03) consumption of exponen- 
tially growing cells as a function of median cell vol. Values are single 
determinations from a population of G1-phase cells as they progressed 
through the cell cycle; lines are linear least squares best fits to all data 
points. 

compartments. The observed decrease in cell vol (Fig. 4) 
was due, therefore, to a progressive accumulation of 
cells in a quiescent state characterized by a G1-phase 
DNA content (a “Go” state). Indeed, > 80% of the cells 
in spheroids of 1300-pm diameter are in this quiescent 
state. Although we were not able to directly measure 
the oxygen and glucose consumption of these noncycling 
cells, an experiment was carried out to determine if 
cessation of cell division had any effects on oxygen and 
glucose consumption. Table 5 shows the rates of oxygen 
and glucose consumption of exponentially-growing cells, 
fed plateau cells and unfed plateau cells. Analysis of the 
DNA contents of these cell populations showed that the 
exponentially-growing cells were composed of 35% GI, 
50% S and 15% G2 + M cells, whereas both the fed and 
the unfed plateau cells had > 90% GI cells, with < 5% 
of the cells having S- or G2 + M-phase DNA contents. 
As would be expected, the plateau-phase cells have both 
a smaller cell vol and reduced rates of oxygen and glu- 
cose consumption. In each case, the decrease in either 
oxygen or glucose consumption is greater than can be 
accounted for by the decrease in cell vol alone. For the 
unfed cultures, some of this discrepancy may be due to 
the decreased viability as measured by membrane 
permeability. 

DISCUSSION 

The decrease in the oxygen consumption of cells as a 
function of growth as spheroids which was previously 
reported for V-79 cells (Freyer et al., 1984) has also been 
shown to occur for the consumption of oxygen and glu- 

0 1  I 1 

0 500 loo0 1 

SPHEROID DIAMETER fpd 

Fig. 6. Percent of cells with DNA contents corresponding to different 
cell-cycle phases as a function of spheroid diameter. Values are deter- 
mined from individual DNA content histograms measured for the cells 
dissociated from spheroids: G1-phase (U, H); S-phase (0, 0); Gz-phase 
( A ,  A). Lines are handdrawn fits to the data. 

TABLE 5. Comparison of rates of oxygen and glucose consumption, 
median cell volume, and cell viability of EMT6IRo single cells as a 
function of growth status 

Oxygen Glucose Cell Cell 
consumption consumption vol viability 
(x  1017 MMS) ( x  1017 ~ l c i s )  ( X  lo9 cm3) (Dercentt 

Exponential 8.3 f 0.51 18 f 0.71 3.0 f 0.17 98 i- 1 

Fed plateau 5.5 + 0.83 15 f 1.2 2.2 f 0.29 97 f 3 

Unfed plateau 4.2 f 0.65 11 f 0.65 1.9 f 0.31 86 f 4 

cells 

cells 

cells 

Values are means + standard deviations of three determinations 

cose in EMT6Ro tumor cell spheroids. Interestingly, the 
rates of change appear to be quite different; comparison 
of the consumption rates for these two cell lines shows 
that while EMTG/Ro cells have an approximately two- 
fold higher overall rate of oxygen consumption, the de- 
crease in rate due to growth as spheroids is much greater 
for the V-79 “normal” cell line (4.5 fold) than for the 
EMT6/Ro tumor cell line (2.5 fold). Similar observations 
have been reported for the EMT6 cell line by Mueller- 
Klieser et al. (in press), based on oxygen microelectrode 
data. Further work will need to be done to determine if 
this is an  intrinsic difference in the respiratory regula- 
tion of these two cell lines or a variation in their adap- 
tion to spheroid growth. 

The effect of the spheroid microenvironment on the 
average oxygen and glucose utilization was small. The 
data in Tables 1 and 2 demonstrate that the glucose 
concentration can affect the rate of oxygen consumption 
of EMTG/Ro single cells, and vice versa. In a general 
sense, these observations correlate with those of Crab- 
tree (19291, Warburg (1930), and other, more recent in- 
vestigators (Erecinska and Wilson, 1978; Gullino et al., 
1978; Racker and Spector, 1981); there is even recent 
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Further evidence is presented in Fig. 13 which compares the
average thickness of the viable cell rim after the onset of necrosis
for different levels of nex. For ease of comparison, the approxima-
tions to the data reported in Fig. 4 of Freyer and Sutherland (1986)
are also presented in the figure (filled markers). Whilst the model
generates very good approximations to the experimental data for
the lower concentrations (2.8 and 5.5mM), the 16.5mM case
departs somewhat. Nevertheless, it is clear that as in Freyer and
Sutherland (1986) the viable sites in our model are likewise
sensitive to the external glucose concentration, if not more
sensitive, all else being equal. Finally, Fig. 14 completes this
line of inquiry, showing comparable data to that reported for

nex ¼ 5:5mM in Table 3 of Freyer and Sutherland (1985, p. 520),
again filled markers are presented for the data from Freyer and
Sutherland (1985) for comparison. Here, as in Freyer and Suther-
land (1985) the necrotic volume fraction progresses with a
positive, linear gradient following the onset of necrosis.

5. Discussion

There are two possible explanations in our model for the
evidence on necrosis presented above. One explanation could be
that after a certain time, the concentration of glucose drops below
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Fig. 8. Typical tumour forms at onset of necrosis under pHex ¼ 7:4, oex ¼ 0:28mM and nex as indicated. Colours indicate state of each site as in Fig. 5.

Fig. 9. Percent of cells in each state versus tumour diameter (pHex ¼ 7:4, nex ¼ 16:5mM, oex ¼ 0:28mM), mean of five trials: p, aerobic proliferation; pan, anaerobic
proliferation; q, aerobic quiescence; and qan, anaerobic quiescence. Compare Fig. 6 in Freyer and Sutherland (1985, p. 522).

M.J. Piotrowska, S.D. Angus / Journal of Theoretical Biology 258 (2009) 165–178174



Opportunities
1// CAs are not the perfect 
model, but are a reasonable 
choice for tumour dynamics;
2// The dynamics of CAs are 
a good representation of real 
Spheroid dynamics (in vivo?) 
3// CAs allow investigation of 
non-experimentally 
accessible data;
4// CAs show good promise 
for investigation of theory 
(qualitative & quantitative)

Summing Up
CAs: Opportunities & (ongoing) Challenges

Challenges
1// Contingent metabolism 
needs to be handled 
carefully (where do you 
stop?)
2// Mapping from continuous 
to numerical diffusion not 
straight-forward (scaled?)
3// Migration & metastasis?;
4// Cell volume 
considerations?


