
Efficient Fuzzy Matching and Intersection on Private
Datasets

Qingsong Ye1, Ron Steinfeld1, Josef Pieprzyk1, and Huaxiong Wang1,2

1 Centre for Advanced Computing – Algorithms and Cryptography
Department of Computing, Macquarie University, NSW 2109, Australia

{qingsong,rons,josef}@ics.mq.edu.au
2 Division of Mathematical Sciences

School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

hxwang@ntu.edu.sg

Abstract. At Eurocrypt’04, Freedman, Nissim and Pinkas introduced a fuzzy
private matching problem. The problem is defined as follows. Given two parties,
each of them having a set of vectors where each vector has T integer components,
the fuzzy private matching is to securely test if each vector of one set matches
any vector of another set for at least t components where t < T . In the conclu-
sion of their paper, they asked whether it was possible to design a fuzzy private
matching protocol without incurring a communication complexity with the factor(

T
t

)
. We answer their question in the affirmative by presenting a protocol based

on homomorphic encryption, combined with the novel notion of a share-hiding
error-correcting secret sharing scheme, which we show how to implement with
efficient decoding using interleaved Reed-Solomon codes. This scheme may be of
independent interest. Our protocol is provably secure against passive adversaries,
and has better efficiency than previous protocols for certain parameter values.

Keywords: private matching, private set intersection, fuzzy private matching, homo-
morphic encryption, error correction, secret sharing

1 Introduction

In Eurocrypt’04, Freedman, Nissim and Pinkas (FNP) [4] introduced the private fuzzy
matching problem. The problem is defined for two parties. Each party holds a set of
vectors, where each vector has its length equal to T . The number of vectors in the two
sets are m and n, respectively. The fuzzy private matching of the two sets computes the
intersection of two sets by considering a match if any pair of vectors from both sets has
at least t out of T common components (t < T). The computation must preserve the
privacy of the sets, i.e. the other party learns no more than the result of the operation.

This error-tolerance property is useful in many applications. For example, database
entries are not always accurate or full (e.g. due to errors, omissions, or inconsistent
spellings), for example, in the case of biometric pattern matching. Due to the human
error and error-prone biometric systems, it would be useful to have an algorithm still
reporting a match if two datasets are similar within a threshold.

In [4], Freedman, Nissim and Pinkas gave a simple 2-out-of-3 fuzzy private match-
ing protocol. However, this protocol is not efficient as it requires O

(
m

(
T
t

))
communi-

cation complexity and O
(
mn

(
T
t

))
computation complexity. As an open problem, they

posed the question of how to construct the private fuzzy matching without incurring a
communication complexity with the exponential

(
T
t

)
factor.

Recently, Chmielewski and Hoepman [3] proposed two fuzzy matching protocols
with polynomial communication complexity, but at the expense of an exponential

(
T
t

)
factor in the computation complexity. We show how to further improve one of these
protocols (to be called CH1), making both communication and computation polynomial
in T . We also show that the second protocol in [3], to be called CH2 (which is claimed
to have even better communication complexity) is insecure.

Our solution is based on polynomial encoding and a share-hiding random error-
correcting threshold secret sharing scheme based on interleaved Reed-Solomon codes.

We first explain the notion of an error-correcting secret sharing scheme. In an or-
dinary t-of-T secret sharing scheme, the secret can be efficiently recovered from any
t shares. However, if one is given a ‘noisy’ vector of T shares, out of which only t
shares are correct and the rest are random values, one may have to try all

(
T
t

)
subsets

of t shares until the correct subset is found and the secret is recovered (assuming that
the correct secret can be identified). The idea of an error-correcting threshold t-of-T
secret sharing scheme is to add additional redundancy to the shares of the secret, such
that the correct secret can be efficiently recovered (in time polynomial in T) even in the
‘noisy’ setting above, where an unknown subset of t of T given shares are correct and
the rest are random. At the same time, we also require a share hiding privacy property:
when there are < t correct shares the above ‘noisy’ vector of T shares gives no infor-
mation on the position of the correct shares. This problem naturally leads to consider
error correcting codes to perform this decoding. As we explain, although the Shamir
t-of-T secret sharing scheme can also be viewed as a Reed Solomon error correcting
code, it does not quite achieve the goal (since it requires at least

√
Tt correct shares

for efficient decoding, which may be much larger than t). We show how to modify the
Shamir scheme into an error-correcting secret sharing scheme by using the concept of
interleaved Reed Solomon codes.

Given our share hiding error-correcting secret sharing scheme, the idea of our pro-
tocol (based on the CH1 protocol) is to let one party, Alice, send to the other party Bob
encryptions of her database elements using a homomorphic encryption scheme. Using
the homomorphic property, Bob can compute the ciphertext of the difference vector
between each pair of Alice’s and Bob’s database words. Bob then homomorphically
adds this difference vector to the shares vector of an encryption key, created using the
error-correcting secret sharing scheme, and sends the resulting ciphertexts to Alice. As
a result, Alice’s decryption consists of share vectors having correct shares of Bob’s key
in the positions where Alice’s word matched Bob’s word, and, if there are at least t
matches, Alice can use the error-correcting property to recover Bob’s key (which is
then used by Alice to decrypt a ciphertext of Bob’s matching word). In order to hide
the non-matching elements of Bob, we utilize the randomization technique used in the
original FNP private matching protocol (if the element of the Alice dataset is different

from the element of the Bob dataset, then this element will be multiplied by a random
number). Moreover the share hiding property also hides the location of the matching
elements when there are less than t matches. We remark that the original CH1 protocol
in [3] did not make use of an error correcting secret sharing scheme, which forced an
exponential search by Alice in decoding.

We prove the security of our protocol against passive attacks and explain its effi-
ciency advantages relative to previous protocols.

1.1 Private Matching and Set Intersection in FNP

We briefly review the (not fuzzy) private matching and set intersection in [4], since it is
the basis and the extension of the private fuzzy matching discussed in the same paper.

Polynomial Representation of Datasets and Private Matching. Let (K, E ,D) be a
semantically-secure public-key cryptosystem with additive homomorphic properties,
such as Paillier’s [9]. Recall that, given E(a), E(b) and a constant c, one can compute
E(a + b) = E(a)¯ E(b) and E(a · c) = E(a)c.

There are two parties in the protocol, namely, Alice and Bob. Bob owns a value b,
while Alice possesses a dataset A′ = {a1, . . . , am} and wants to test if b ∈ A′ or not.
Alice does not want to reveal A to Bob, and Bob is unwilling to disclose b to Alice.

The protocol runs as follows.

– Alice first presents her dataset A′ in the form of a polynomial

P(y) =
∏

ai∈A′
(y − ai) =

m∑

i=0

αiy
i, where αm = 1

– Applied in the homomorphic encryption. Alice encrypts her polynomial P with her
public-key. Note that the encrypted polynomial E(P) contains the encryptions of
all coefficients αi except αm. Next she sends E(P) to Bob.

– Using the homomorphic properties, Bob evaluates the polynomial for his input b
according to the following formula

E(P(b)) = E(α0)¯ E(α1)b ¯ E(α2)b2 ¯ . . .¯ E(αm−1)bm−1 ¯ E(1)bm

,

and sends the result E(γP(b) + b) to Alice, where γ is a random non-zero integer.
Note that b ∈ A′ if and only if P(b) = 0.

– When Alice receives the cryptogram, she decrypts it and checks if the decrypted
message belongs to the set A′. If it does she knows the value b, otherwise she
knows a random value.

Private Computation of Set Intersection. Suppose Alice and Bob, each has a dataset
A′ = {a1, . . . , am} and B′ = {b1, . . . , bn} respectively, where the set cardinalities m
and n are publicly known. Alice wishes to learn the intersection of two sets A ∩ B.
To compute the set intersection, we simply run the above private matching protocol m
times in parallel for each of bj ∈ B. In the end, Alice decrypts all the cryptograms and
checks if each one is in A, and then establishes A ∩B.

1.2 Related Work on Fuzzy Private Matching

A simple 2-out-of-3 fuzzy matching protocol is given in [4]. We are going to call it the
FNP protocol. Although it is flawed (for a detailed analysis refer to [3]), the approach
seems to be sound. Alice has m 3-tuples A1, . . . , Am, where Ai = (ai1, ai2, ai3) for
i = 1, . . . ,m. Let P1, P2, P3 be polynomials, such that P` is used to encode the `-
th elements (a1`, . . . , am`) of the 3-tuples. For each i = 1, . . . ,m, Alice chooses a
random value γi = P1(ai1) = P2(ai2) = P3(ai3). Note that for each polynomial P`;
` = 1, 2, 3, there are m equations so the degree of the polynomials P` is at most m− 1.

Next Alice sends (E(P1), E(P2), E(P3)) to Bob in the form of encrypted coeffi-
cients as in Section 1.1.

For every 3-tuple Bj in his dataset of size n, Bob responds to Alice in a manner
similar to the protocol in Section 1.1. He computes the encrypted values E(r·(P1(bj1)−
P2(bj2))+Bj), E(r′ · (P2(bj2)−P3(bj3))+Bj) and E(r′′ · (P1(bj1)−P3(bj3))+Bj)
by encoding Bj as bj1||bj2||bj3, where r, r′ and r′′ are random values. If two elements
in Ai are the same as those in Bj , Alice obtains Bj in one of the entries after decrypting
received ciphertexts.

The generalization of this approach for matching t our of T positions is possible but
the resulting protocol is not going to be efficient. Clearly, for each Bj ; j = 1, . . . , n,
Alice has to check all the combinations

(
T
t

)
so both communication and computation

complexities of the protocol have the factor
(
T
t

)
.

Chmielewski and Hoepman [3] extend the FNP protocol and propose two modified
protocols that we call CH1 and CH2, both avoiding the

(
T
t

)
factor in the communica-

tion complexity, but at the expense of a
(
T
t

)
factor in computation. The protocol CH1

has quadratic complexity, while CH2 has linear complexity. Unfortunately, the protocol
CH2 is insecure, as we explain below. Our work shows how to improve CH1 by fur-
ther removing the

(
T
t

)
factor from the computation. Both protocols CH1 and CH2, are

achieved by combining secret sharing [12] and homomorphic encryption. The idea of
the CH1 protocol (which forms the basis for our protocol) was already explained in the
Introduction. Here we explain the CH2 protocol and why it is insecure.

CH2 Protocol. For each secret vector Bj ∈ B, Bob constructs t-out-of-T secret
sharing that defines a collection of shares (sj1, . . . , sjT). Note that, Bj is encoded as
bj1||bj2|| . . . ||bjT for a convenience. If bj` = bj′`, then sj` = sj′` where j 6= j′. Bob
also constructs T polynomials of degree n, P1, . . . , PT such that

((P`(b1`) = s1`) and (P`(b2`) = s2`) and , . . . , and (P`(bn`) = sn`)).

Bob sends all E(P`) to Alice for ` = 1, . . . , T .
For i = 1, . . . , m and ` = 1, . . . , T , Alice computes E(P`(ai`)) using homomor-

phic properties. Note that P`(ai`) = sj` if ai` = bj`. To hide the information about ai`,
Alice random selects a integer ri` and sends E(P`(ai`)+ri`) to Bob for i ∈ {1, . . . , m}.

Assume that Bob does not want to reveal any information about sj`. Bob decrypts
E(P`(ai`) + ri`), and prepares t-out-of-T shares (ŝi1, . . . , ŝiT) of a value 0 for i =
1, . . . , m. Bob sends P`(ai`) + ri` + ŝi` to Alice. Note that P`(ai`) + ri` + ŝi` =
sj` + ri` + ŝi` if ai` = bj` for some j.

After receiving all the values from Bob, Alice computes vi` = (P`(ai`) + ri` +
ŝi`)− ri` for all i and `. For each i = 1, . . . , m, Alice tries to computes A′i from all

(
T
t

)

combinations of (vi1, . . . , viT) by using t-out-of-T secret sharing scheme. If A′i ∈f A,
then Alice adds A′i to her output set.

Attack on CH2 Protocol. We show that CH2 is insecure. Suppose that A1 and A2 are
two words in Alice’s dataset and B1, B2, B3 are three words in Bob’s dataset. Suppose
that A1 matches B1 on t−1 letters in positions 1, ..., (t−1), matches B2 on t−1 letters
in positions t, ..., 2t− 2, and matches B3 on t− 1 letters in positions 2t− 1, ..., 3t− 3.
Suppose further that A2 matches B2 on t− 1 letters in positions 1, ..., (t− 1), matches
B3 on t− 1 letters in positions t, ..., 2t− 2, and matches B1 on t− 1 letters in positions
2t− 1, ..., 3t− 3.

The above condition implies that the shares vi` obtained by Alice in CH2, are related
to Bob’s shares sj` and ŝj` as follows: v1` = s1` + ŝ1` for ` = 1, . . . , t − 1, v1` =
s2` + ŝ1` for ` = t, . . . , 2t − 2, v1` = s3` + ŝ1` for ` = 2t − 1, . . . , 3t − 3, v2` =
s2` + ŝ2` for ` = 1, . . . , t − 1, v2` = s3` + ŝ2` for ` = t, . . . , 2t − 2, v2` = s1` + ŝ2`

for ` = 2t − 1, . . . , 3t − 3. Assume we are using t-of-T Shamir sharing for the 5
secret sharing vectors {sj`}`, {ŝi`}` for j ∈ {1, 2, 3} and i ∈ {1, 2}. Each sharing has
a polynomial of degree ≤ t − 1 associated with it, so we have 5t random variables
(coefficients) involved. On the other hand, the above relations give us overall 6(t − 1)
known linear equations in these random variables. For sufficiently large t, we have
6(t− 1) > 5t, which means we can find a linear dependency among the equations. The
corresponding non-trivial linear combination of the vi`’s will be zero, and this can be
detected by Alice. On the other hand, for example, if the A1 and A2 don’t match the
B1, ...B3 in any position, the vi`’s will be independent and uniformly random, so the
tested non-trivial linear combination of them will be zero with negligible probability
1/p. Hence the attack allows Alice to tell when the prescribed condition holds, which
is a privacy leak (since the condition involves only t − 1 < t matches between any Ai

and Bj).

2 Preliminaries

2.1 Additively Homomorphic Encryption

We will utilize an additive homomorphic public key cryptosystem, such as Paillier [9].
Following Adida and Wikstrom [1], we use the following definition.

Definition 1 ([1]). A cryptosystem (K, E ,D) defined by the key generator, encryption
and decryption algorithms, respectively, is said to be homomorphic if for every key pair
(pk, sk) ∈ K(1l), the following conditions hold.

1. The message space M is a subset of an additive abelian group G(M).
2. The randomizer space R is an additive abelian group.
3. The ciphertext space is an multiplicative abelian group.
4. Given a public key pk, the group operations can be computed in polynomial time.

For every m,m′ ∈M and r, r′ ∈ R, the following relation holds

E(m, r)¯ E(m′, r′) = E(m + m′, r + r′).

5. The cryptosystem is said to be additive if the message space M is the additive
modular group Zn for some integer n > 1.

When such operations are performed, we require that the resulting ciphertexts be re-
randomized for security reasons. During such a process, the ciphertext e of the plaintext
m is transformed into e′ such that e′ is still a valid cryptogram for the same message m
but created with a different random string.

For simplicity, we use E(m) to represent E(r,m) in the rest of the presentation as
we assume that there is always a corresponding random string r.

2.2 Definitions

We use the usual asymptotic notation O, o, Ω, ω. We say that a function f(s) is neg-
ligible, denoted f(s) = neg(s), if f(s) = 1/sω(1). For two probability distribu-
tions D1, D2 parameterized by a security parameter s, we say that D1 and D2 are
computationally indistinguishable, denoted D1 =c D2, if any distinguisher A with
run-time O(poly(s)) has negligible distinguishing advantage |Prx←D1 [A(x) = 1] −
Prx←D2 [A(x) = 1]| = neg(s). We say that D1 and D2 are statistically indistinguish-
able, denoted D1 =s D2, if any distinguisher A with unbounded run-time has negligi-
ble distinguishing advantage.

Throughout this chapter, the computations are carried out over an arbitrary finite
field F . There are two parties Alice IC and Bob IS . Let A = {A1, . . . , Am} and
B = {B1, . . . , Bn} be Alice’s and Bob’s datasets respectively. We call the dataset
elements words, and assume that each word consists of an ordered list of T letters from
F , i.e. Ai = (ai1, . . . , aiT) ∈ FT , Bj = (bj1, . . . , bjT) ∈ FT .

Definition 2. Given two words Ai and Bj defined as above and integer t ≤ T , we say
that Ai and Bj are t-fuzzy equal, written as Ai ≈t Bj , if the words Ai and Bj agree
on at least t letters, i.e. if

|{` : ai` = bj`}| ≥ t.

Definition 3. Given two datasets A and B as defined above and integer t ≤ T , the
t-fuzzy set intersection of datasets A and B, denoted A ∩t B is defined as

A ∩t B = {(Ai, Bj)|Ai ∈ A,Bj ∈ B, Ai ≈t Bj}.
Now we formally define the private fuzzy matching protocol. Let client Alice IC and

server Bob IS be two probabilistic polynomial time interactive Turing machines. The
interaction of IC and IS yields a result to Alice IC only (server Bob outputs nothing).

We use the standard definitions for passive security of two-party computation, adapted
to the private fuzzy matching setting.

Definition 4. (Private Fuzzy Matching) A protocol Π for two probabilistic polyno-
mial time interactive Turing machines, Client IC and Server IS , is said to be a passive-
secure t-fuzzy matching protocol if it satisfies the following properties. The common
input to both IC and IS is a security parameter s (implicit below). The private input of
IC is dataset A and the private input of IS is dataset B.

Completeness. If both parties follow the protocol, then at the end of the protocol, with
probability ≥ 1 − neg(s) (over the random coins of IC and IS), IC learns the
t-fuzzy set intersection A ∩t B.

Security Against Passive Attacks. Let ViewC,Π(A,B) and ViewS,Π(A,B) denote the
protocol view of Client and Server, respectively, after a run of protocol Π with
private inputs (A,B) in which both parties follow the protocol. Then there exist
simulator algorithms SC and SS respectively, with run-time O(poly(s)), that, for
all A,B, can simulate the view of Client and Server, respectively, given only their
own private input and output, i.e.:

SC(A,A ∩t B) =c ViewC,Π(A,B) and SS(B) =c ViewS,Π(A,B).

3 Share-Hiding Error-Correcting Secret Sharing from Interleaved
Reed-Solomon Codes

For our protocol we introduce a primitive that we call a Share-Hiding Error-Correcting
Threshold Secret Sharing Scheme (SHEC-TSS). In this section, we give the relevant
coding background and our SHEC-TSS construction from Interleaved Reed-Solomon
codes. We start by formulating abstractly the properties we require from a SHEC-TSS
scheme.

Our first requirement is random error correction: the secret can be recovered with
high probability from a ‘noisy’ n share vector, in which a subset I of |I| ≥ t shares are
correct (the rest being uniformly random), even without knowing the positions of the
correct shares. It can be viewed as a strengthening of the usual correctness requirement
on a t-of-n threshold scheme, i.e. that any t shares can be used to recover the secret.
The formal definition follows.

Definition 5. Let δ > 0. A t-of-n secret sharing scheme SS with share space S is called
δ-random error correcting if it has the following property. Let C = (c1, . . . , cn) ∈ Sn

be the share vector for some secret s using scheme SS, and let I ⊆ [n] be a subset of
size |I| ≥ t. Let DC,I denote the the probability distribution of ‘noisy share vectors’
C̄ = (c̄1, . . . , c̄n) generated as follows: For i ∈ I , we set c̄i = ci (i.e. C̄ agrees with
C on shares with indices in I), and for i ∈ [n] − I , we choose c̄i independently and
uniformly at random from share space S. Then there exists an efficient (probabilistic
poly-time) decoding algorithm D that, given n, t and C̄ sampled from distribution DC,I ,
returns C with probability at least 1−δ over the random choice of c̄i for i ∈ [n]−I and
the random coins of D (note that D must succeed with probability ≥ 1 − δ for every
valid share vector C and every I ⊆ [n] with |I| ≥ t).

Our second requirement is share hiding: for any fixed secret, any collection I of
|I| < t shares is a uniformly random (t− 1)-tuple of elements from the share space. It
can be viewed as a strengthening of the usual security requirement for a t-of-n threshold
scheme, i.e. that any subset of < t shares gives no information on the secret. The formal
definition follows.

Definition 6. A t-of-n secret sharing scheme SS with share space S is called share
hiding if it has the following property. Fix a secret s and let C = (c1, . . . , cn) ∈ Sn

be the share vector for s generated with randomness ω. Then, for each s and subset
I ⊆ [n] of size |I| < t, the |I|-tuple of shares (si)i∈I is uniformly random in S|I| (over
the choice of randomness ω).

Remark 1. The name ‘share hiding’ comes from the following useful implication
that is used in our protocol: let I ⊆ [n] be a share subset and let DC,I denote the
distribution of noisy n-share vectors generated as in Def. 5, in which the |I| shares
indexed by I are correct, and the rest chosen uniformly at random. Then the share
hiding property implies that when |I| < t, DC,I is the uniform distribution of n-tuples
on the share space, independent of the subset I – hence the correct share subset I is
‘hidden’.

Remark 2. The share hiding requirement implies the standard perfect security for
t-of-n secret sharing, but the converse is not true in general (see next remark).

Remark 3. It is easy to satisfy the random error correcting property while violating
the share hiding property, e.g. share s with a standard t-of-n secret sharing scheme
and define the ith share for the new scheme to be the ith share si for the old scheme
concatanated with some redundancy information on si.

Finally, our third technical requirement is sparsity.

Definition 7. Let δ > 0. A t-of-n secret sharing scheme SS with share space S is
called δ-sparse if a uniformly random n-tuple from Sn has probability at most δ to
agree with a valid share vector of some secret s on ≥ t positions.

We can now formally define the notion of a SHEC-TSS.

Definition 8. A t-of-n secret sharing scheme SS is called Share-Hiding Error-Correcting
(SHEC-TSS) with error δ, if it is δ-random error correcting, share hiding, and δ-sparse.

Reed and Solomon [10] discovered the Reed-Solomon code, an important class of
error-correcting code. The key idea behind a Reed-Solomon code is that the original
data are encoded as a polynomial. The polynomial is then encoded by its evaluation at
various points, and these values are what is actually sent. During transmission, some
of these values may become corrupted. The Reed-Solomon decoding algorithm can
reconstruct the original polynomial as long as sufficient values are received correctly,
and hence decode the original data.

Definition 9. Let p be a prime number and let t ≤ n ≤ p and let z = (z1, . . . , zn) ∈
Zn

p be a vector of n distinct elements in Zp. The Reed-Solomon code RSn,t,p,z over
the field Zp with t message symbols and n code symbols is defined as follows. Given a
message vector m = [m0,m2, . . . ,mt−1] ∈ Zt

p, let P (x) be the polynomial

P (x) = mt−1x
t−1 + . . . + m1x + m0.

Then the codeword C(m) ∈ Zn
p for this message vector is the list of the first n

values of the polynomial P (x):

C(m) = [P (z1), P (z2), . . . , P (zn)].

Since any two distinct polynomials of degree t − 1 agree on at most t − 1 points, the
minimum Hamming distance between any two distinct codewords in the code RSn,t,p,z

is n− t+1. This allows deterministic unique error-correction of a noisy codeword if at
most (n−t+1)/2 coordinates are incorrect, i.e. at least t′ = t+(n−t−1)/2 coordinates

are correct. However, in our application, we wish to be able to recover the codeword
when t′ is as close to t as possible, where t defines a security threshold (so that t−1 cor-
rect coordinates give no information on the codeword), and the incorrect coordinates are
uniformly random and independent in Zp. The celebrated Reed-Solomon list-decoding
algorithm of Guruswami-Sudan [5] gives a unique solution with high probability in our
setting, when the number of correct coordinates t′ ≥ √

tn, but this is still not suffi-
ciently close to t for our application. To reduce t′ closer to t, we use the Interleaved
Reed-Solomon Code defined as follows.

Definition 10. Let p be a prime number, r ≥ 1 an integer, t ≤ n ≤ p, and let z =
(z1, . . . , zn) ∈ Zn

p be a vector of n distinct elements in Zp. The Interleaved Reed-
Solomon code IRSn,t,p,r,z over the field Zp with r · t message symbols and r · n code
symbols is defined as follows. Given a message vector m = (m1, . . . ,mr) with m` =
[m`,0, . . . ,m`,t−1] ∈ Zt

p for ` ∈ [r], let P`(x) be the polynomial

P`(x) = m`,t−1x
t−1 + . . . + m`,0.

Then the codeword C(m) ∈ (Zr
p)

n for this message is the vector

C(m) = [(P1(z1), . . . , Pr(z1)), . . . , (P1(zn), . . . , Pr(zn))].

For i ∈ [n], we refer to (P1(zi), . . . , Pr(zi)) ∈ Zr
p as the ith coordinate of the codeword

C(m).

Bleichenbacher, Kiayias and Yung [2] showed the following.

Theorem 1 ([2]). Fix integer parameters t ≤ n ≤ p with p prime and r ≥ n − t + 1,
and a vector z = (z1, . . . , zn) ∈ Zn

p with zi 6= zj for i 6= j. There exists an efficient
(run-time O(poly(n, log p))) decoding algorithm D for code IRSn,t,p,r,z that, given
n, t, p, r, z and a noisy codeword Y = C + E ∈ (Zr

p)
n with C ∈ IRSn,t,p,r,z and

E ∈ (Zr
p)n a noise vector with some subset I of t′ ≥ t + 1 coordinates fixed to 0r and

the remaining n− t′ coordinates chosen independently and uniformly at random in Zr
p,

returns C with probability at least 1− (n− t′)/q over the choice of E and the random
coins of D.

The above algorithm works when the number of correct coordinates in Y is t′ ≥
t + 1, but not for t′ = t: in that case it is easy to see that C cannot be uniquely decoded
from Y if we allow C to be an arbitrary codeword in code IRSn,t,p,r,z . To deal with
this problem, our secret sharing scheme introduces additional redundancy by restricting
C to a subset of codewords whose r polynomials all share the same constant coefficient
(the secret), i.e. we are using a modified interleaved Reed Solomon code IRS′n,t,p,r,z

in which the codewords satisfy P`(0) = P1(0) for all ` ∈ [r]. We also make sure
that zi 6= 0 for i ∈ [r]. Below, we show that a natural adaptation of the decoding
algorithm from Theorem 1 to the code IRS′n,t,p,r,z provides a unique solution with
high probability even for t′ = t, as required.

We formalize our construction of a random-error correcting secret sharing scheme
as follows.

Definition 11. Let p be a prime number, r ≥ 1 an integer, t < n < p, and let
z = (z1, . . . , zn) ∈ Zp be a vector of n distinct non-zero elements in Zp. The t-of-
n threshold secret sharing scheme IRS′n,t,p,z,r over the field Zp with threshold t and
n shares is defined as follows. Given a secret s ∈ Zp, the dealer chooses r random
polynomials P`(x) of degree ≤ t− 1 with P`(0) = s for ` ∈ [r]. The share vector C(s)
for secret s is

C(s) = [(P1(z1), . . . , Pr(z1)), . . . , (P1(zn), . . . , Pr(zn))],

where for i ∈ [n], the ith share is (P1(zi), . . . , Pr(zi)) ∈ Zr
p.

We now present our main result.

Theorem 2. Let IRS′n,t,p,z,r be the t-of-n secret sharing scheme defined above. If r ≥
n− t + 1, the scheme is a SHEC-TSS with error δ ≤ n/p.

Proof. The share hiding property follows from the fact that the collection of t′ < t valid
shares ci,` plus the secret s imposes t′ + 1 ≤ t constraints of the form P`(0) = s and
P`(zi) = ci,` for t′ distinct non-zero zi, on the degree ≤ t − 1 polynomials P`. Since
there is a unique solution for P` passing through any t given points, there are exactly
pt−t′−1 ≥ 1 possible choices for each polynomial P` satisfying the given constraints,
regardless of the values of the ci,`; the result follows by the uniformly random choice
of the P`.

We now establish the δ-sparse property. Fix a subset I ⊆ [n] with |I| = t. The
probability that a uniformly random vector Y ∈ (Zr

p)n matches any valid share vector
C of IRS′n,t,p,r,z on the shares with indices in I is 1/pr−1. This is because there is a
unique polynomial P1 of degree ≤ t− 1 satisfying P1(zi) = yi,1 for i ∈ I , and unique
polynomials P2, . . . , Pr of degree ≤ t− 1 satisfying P`(0) = P1(0) and P`(zi) = ci,`

for i ∈ I − {i∗}, where i∗ is one element of I . Hence, the random vector Y will match
the valid codeword C also on the i∗th share if and only if P`(zi∗) = ci∗,` for ` ≥ 2,
which holds with probability 1/pr−1. By taking a union bound over all subsets I of size
t we conclude that δ-sparsity holds with δ ≤ (

n
t

)
/pr−1 =

(
n

n−t

)
/pr−1 ≤ (n/p)n−t ≤

n/p, using r ≥ n− t + 1 and
(

n
n−t

) ≤ nn−t.
Now we prove the random error-correcting property by explaining the appropriate

modifications to the algorithm of Theorem 1 and its analysis in [2]. The decoding al-
gorithm accepts as input n, t, p, z, r and a noisy share vector Y = (y1, . . . , yn) with
yi = (yi,1, . . . , yi,r) ∈ Zr

p for i ∈ [n] sampled from the distribution DC,I as in Def-
inition 5, where C = (c1, . . . , cn) is the share vector for some secret s using scheme
IRS′n,t,p,z,r, and I is a subset of [n] with |I| ≥ t. The decoding algorithm does not
know |I|, and therefore tries to decode using a guess t′ for |I|, until it succeeds. The
algorithm works as follows.

– Repeat the following for t′ = t, t + 1, . . . , n:
• Randomize: Select r random polynomials Q1(x), . . . , Qr(x) of degree≤ t−1

with Q`(0) = Q1(0) = s′ for ` ∈ [r], and set yi,` := yi,` + Q`(zi) for i ∈ [n]
and ` ∈ [r].

• Solve: Find a polynomial E(x) of degree ≤ n− t′ with constant term 1, and r
polynomials m`(x) for ` ∈ [r] of degree≤ n−t′+t−1 such that the following
linear system of equations is satisfied:

m`(zi) = yi,`E(zi),m`(0) = m1(0), E(0) = 1, for i ∈ [n], ` ∈ [r]. (1)

• If the solution m1, . . . ,mr, E to (1) is unique and m`(x) is divisible by E(x)
for ` ∈ [r], then compute polynomials P`(x) = m`(x)/E(x) − Q`(x) for
` ∈ [r], and return share vector C determined by those polynomials (with
P1(0) = m1(0)− s′ being the corresponding secret), and terminate.

– If no solution is found for any t′ ∈ {t, . . . , n}, terminate and return failure.

We note that the algorithm in [2] works in essentially the same way, except that it
does not impose the constraints m`(0) = m1(0) for ` ∈ [r]. The run-time of each iter-
ation of the algorithm is dominated by the Gaussian elimination procedure for solving
the linear system of equations over Zp of dimension ≤ r · n, which can be done in time
O((rn)3 log2 p). Thus the overall run-time is O(n · (rn)3 log2 p), which is polynomial
in the input length, as required.

The randomization step randomizes the r solution polynomials P1, . . . , Pr corre-
sponding to the vector Y , i.e. after this step, we know that there exists a subset I ⊆ [n]
of size |I| ≥ t and r random polynomials P ′1, . . . , P

′
r of degree ≤ t − 1 such that

yi,` = P ′`(zi) for i ∈ I and ` ∈ [r], and yi,` uniformly random for i ∈ [n] − I and
` ∈ [r], and P ′`(0) = P ′1(0) = s + s′ for ` ∈ [r]. When t′ ≤ |I|, the polynomials P ′`
give rise to the following desired solution m∗

1, . . . , m
∗
r , E

∗ to system (1):

E∗(x) = (−1)n−|I| ∏

i∈[n]−I

(x/zi − 1), m∗
` (x) = P ′`(x) · E∗(x), ` ∈ [r].

However, note that when t′ < |I|, the system (1) will not have a unique solution, so
the algorithm will increment t′ until it reaches t′ = |I| (indeed, when t′ < |I|, one can
take any subset I ′ of I of size |I ′| = t′ and construct a distinct solution to (1) associated
with I ′ by replacing I with I ′ in the above definition of E∗).

Our goal is to show that when t′ = |I|, the above desired solution is indeed the
unique one. We note that (1) is a linear system with r · n equations and r · (n − t′ +
t)+ (n− t′)− (r− 1) variables. A necessary condition for the system to have a unique
solution is that it is not under determined; that is, the number of equations is at least
equal to the number of variables. It is easy to see that if r ≥ n− t′ + 1, the system (1)
is not under determined when t′ ≥ t (whereas the system in [2] has r − 1 additional
variables, and is not under determined only for t′ ≥ t + 1).

We now explain how to modify the argument in [2] to show that when the system (1)
is not under determined, it has a unique solution with probability at least 1− (n− t)/p
over the random choice of the P` for ` ∈ [r] and yi,` for i ∈ [n] − I and ` ∈ [r] - we
call those the random variables.

The argument works in three steps as follows. Starting from the matrix A of the
system (1), the first step removes some rows from A to obtain a square matrix Â. The
second step is a rearrangement of the rows of Â to give a matrix Â∗. The final step
is to show that the determinant of Â∗ is a non-zero polynomial of degree ≤ n − t in

the random variables, by showing that the determinant is non-zero for some choice of
values for the random variables. It then follows by the Schwartz Lemma [11] that the
determinant of Â∗ is non-zero (and hence the original system has a unique solution)
with probability at least 1− (n− t)/p over the uniform choice of the random variables.

First Step. The matrix A for our system (1) has the following form (where we ar-
range the variables with the n−t′+t coefficients of m1 first, followed by the n−t′+t−1
non-constant coefficients of m` for ` = 2, . . . , r, and finally the non-constant coeffi-
cients of E):

A =

M 0 0 · · · 0 −M1

K M̄ 0 · · · 0 −M2

K 0 M̄ · · · 0 −M3

...
...

... · · · ...
...

K · · · · · · · · · M̄ −Mr

,

where

M =

1 z1 z2
1 · · · zn−t′+t−1

1

1 z2 z2
2 · · · zn−t′+t−1

2
...

... · · · · · · ...
1 zn z2

n · · · zn−t′+t−1
n

 ,

M̄ is the n × n − t′ + t − 1 submatrix of M with the first of column of M (all ones)
removed, K is a n × (n − t′ + t) matrix whose elements are all zero except for the
leftmost column whose entries are all 1, and for ` ∈ [r], M` is a n × (n − t′) matrix
whose (i, j)th element M`[i, j] is related to the (i, j)th element of M̄ as follows:

M`[i, j] = yi,` · M̄ [i, j], i ∈ [n], j ∈ [n− t′]. (2)

Since the number of rows of A exceeds the number of columns by N = r · (t′− t+
1)−(n−t′+1), we need to remove N rows from A to make it square. The rows of A are
naturally divided into r blocks of n rows each, indexed from 1 to r from top to bottom.
Similarly to [2], we remove from A the bottom t′ − t + 1 ≥ 1 rows of the last c < r
blocks of A (note that this makes the c diagonal block matrices in the corresponding
blocks, square matrices of dimension n − t′ + t − 1), where c = bN/(t′ − t + 1)c.
This leaves N mod (t′− t+1) remaining rows to remove – they are removed from the
bottom of block r − c ≥ 1. This gives the square matrix Â.

Second Step. In this step, we make the diagonal block matrices of the top r − c
blocks square (and hence all block matrices along the diagonal square, thanks to Step
1) by swapping some rows from those blocks to the bottom of the matrix. As in [2],
we assume, without loss of generality, that I = {n− t′ + 1, . . . , n}, and we define the
surplus s` of block ` ∈ [r − c] of Â as the number of rows that should be swapped
from the `th block to the bottom of the matrix, in order to make the the corresponding
diagonal block matrix square, i.e. s1 = t′ − t − x1 and s` = t′ − t + 1 − x` for
` ≥ 2, where x` is the number of rows removed from block ` in Step 1. We observe
that, since matrix Â is square and the number of columns of the M` matrices on the
right is n− t′, we have

∑
`∈[r−c] s` = n− t′. We swap rows 1, . . . , s1 of block 1 to the

bottom, then rows s1 + 1, . . . , s1 + s2 of block 2 to the bottom, and so on until rows

∑
`<r−c s` + 1, . . . ,

∑
`≤r−c s` = n − t of block r − c. The resulting matrix Â∗ has

the form:

Â∗ =

N1 0 0 · · · 0 −M ′
1

K N̄2 0 · · · 0 −M ′
2

K 0 N̄3 · · · 0 −M ′
3

...
...

... · · · ...
...

K · · · · · · · · · N̄r −M ′
r

V1 V2 · · · · · · Vr −M̂

,

where N1 is a Vandermonde matrix relative to a subset of the zi’s, and for ` ≥ 2,
N ′

r is a scaled Vandermonde matrix relative to a subset of the zi’s (we recall that a
Vandermonde matrix of dimension k relative to (z1, . . . , zk) has (1, zi, z

2
i , . . . , zk−1

i) as
its ith row for i = 1, . . . , k. If the ith row is of the form (zi, z

2
i , . . . , zk

i) for i = 1, . . . , k,
we call the matrix a scaled Vandermonde matrix). Similarly, for ` ≥ 1, M ′

` is M` with
some rows removed. The matrices V1, . . . , Vr and M̂ consist of the rows of M , M̄ , and
M1, . . . , Mr swapped to the bottom in this step.

Step 3. We show that det(Â∗) is non-zero polynomial D in the random variables
of degree n − t′. The degree follows from the fact that only the last n − t′ columns
of Â∗ depend on the random variables, and each element in those columns is linear
in the random variables. To show that D is a non-zero polynomial, we show that it
evaluates to a non-zero value for certain values of the random variables. Namely, we
set the polynomials P` = 1 for ` ∈ [r] (note that this satisfies the constraint that all P`

have the same constant coefficient). This implies yi,` = 1 for all i ∈ {n− t′+1, . . . , n}
(since I = {n− t′ + t, . . . , b}) and ` ∈ [r]. We also set yi,` = 1 for all rows i, ` which
have not been moved to the bottom of the matrix in Step 2. On the other hand, we set
yi,` = 0 for all rows i, ` which have been moved to the bottom in Step 2 (note that these
rows have i ≤ n− t′ by construction, therefore the corresponding random variables yi,`

can take on arbitrary values, independent of the P`’s). For this setting of the random
variables, we have that M ′

1 is equal to the submatrix of N1 consisting of columns 2 to
n− t+1, and for ` ≥ 2, M ′

` is equal to the submatrix of N` consisting of the first n− t

columns. We also have that M̂ is the zero matrix.
We now perform elementary row operations on Â∗ (with the above setting of the

random variables) to zero out all elements below the square block matrices N1, . . . , Nr

along the diagonal. Since N` for ` ∈ [r] is a Vandermonde (or scaled Vandermonde)
matrix, and the zi’s are distinct and non-zero, then N` is full rank and has non-zero
determinant (it is well known that a Vandermonde matrix relative to z1, . . . , zk has a
non-zero determinant when the zi are distinct; the scaled Vandermonde matrix can be
obtained by multiplying each row of a Vandermonde matrix by the corresponding zi, so
the scaled Vandermonde matrix has a non-zero determinant when the zi are all non-zero
and distinct). First, we eliminate all 1 elements in the first column of Â∗. Since N1 is
full rank, we can express each row (1, 0, . . . , 0) of K as a linear combination of the
rows of N1. Subtracting this linear combination of the first n − t rows of Â∗ from the
rows below, we eliminate the 1 elements in the first column of these rows. Furthermore,
since M ′

1 consists of the submatrix of N1 except the first column, this operation has no
effect on the elements of M ′

` for ` ≥ 2. Next, we similarly eliminate the elements in V1

by expressing each row of V1 as a linear combination of the rows of N1 and subtracting

this combination of rows of Â∗ from the non-zero first s1 rows of V1. Due to the relation
of M ′

1 and N1 explained above and the fact that M̂ = 0, the first s1 rows of M̂ after
this operation are the first s1 rows of V1 before this operation (without the first column).
Similarly, we eliminate the s` non-zero rows of V` using N` for ` = 2, . . . , r. At the
end, we get all zero elements below the diagonal square block matrices N1, . . . , Nr,
and the matrix M̂ has the form of a scaled Vandermonde matrix relative to a subset of
the zi’s, and therefore has a non-zero determinant. It follows that det(Â∗) is the product
of the non-zero determinants of the N` for ` ∈ [r] and M̂ , so det(Â∗) is non-zero for
the above setting of the random variables, as claimed. ut

4 Private Fuzzy Matching Protocol

We show how to combine our our error correcting secret sharing scheme with homomor-
phic encryption to get a simple protocol secure in the passive case, which has quadratic
communication complexity in the size of the datasets. Our protocol is similar to a fuzzy
matching protocol of [3]. However, the protocol of [3] requires computation exponential
in the size of the datasets. In contrast, our protocol makes use of error correction tech-
niques to improve computation complexity to be polynomial in the size of the datasets.

Our simple protocol is shown in Fig. 1.

Theorem 3. The protocol Γ1 is a passive-secure t-fuzzy matching protocol, assuming
that the underlying homomorphic cryptosystem E and one-time symmetric cryptosystem
E are semantically secure.

Proof. We first show completeness. For each i ∈ [m], j ∈ [n], let Iij = {k ∈ [T] :
aik = bjk}. Note that if k ∈ Iij , i.e. Ai matches Bj on the kth letter, then the share
C̄ijk decrypted by Alice matches the corresponding share Cijk for secret Bj created by
Bob, whereas if k 6∈ Iij the share C̄ijk is independent and uniformly random in (Zp)r,
thanks to the uniform independent choice of γ`

ijk for ` ∈ [r]. There are two cases to
consider.

The first case is that Ai ≈t Bj , so that |Iij | ≥ t. In this case, C̄ij is sampled from
the noisy share vector distribution DCij ,Iij defined in Def. 5. Since |Iij | ≥ t and r ≥
T − t+1, we conclude from the δ-random error correcting property of IRS′T,t,p,r,zthat
in this case, except with probability δ ≤ (T − t)/p ≤ T/p, Alice recovers secret key
s = ksym

j so that B̄j = D(ksym
j , ρj) = Bj and Alice correctly adds (Ai, Bj) to the

output set S.
The second case is that Ai is not t-fuzzy equal to Bj so that |Iij | < t. In this

case, we claim that Alice correctly concludes that (Ai, Bj) 6∈ A ∩t B, except with
probability at most T/p. This is because, in order for Alice to make a mistake, C̄ij

would have to match some valid share vector Ĉ of scheme IRS′T,t,p,r,z on at least t
shares. To bound the probability of this bad event B, we first observe that |Iij | < t
implies, by the share-hiding property of IRS′T,t,p,r,z , that the probability distribution
of C̄ij is uniform on (Zr

p)
T , independent of the secret ksym

j . It follows from the δ-sparse
property of IRS′T,t,p,r,z that event B occurs with probability ≤ δ ≤ T/p. We conclude
that, for each i, j, Alice makes a mistake with probability at most T/p, hence the overall

Input: Security parameter k, Alice has a dataset A = {A1, . . . , Am} and Bob owns a
dataset B = {B1, . . . , Bn}, where Ai = (ai1, . . . , aiT) ∈ ZT

p and Bj = (bj1, . . . , bjT) ∈
ZT

p ,for some prime p ≥ 2kmnT .
Output: Alice learns A ∩t B.

0. Setup. Alice and Bob agree on T distinct points z = (z1, . . . , zT) ∈ (Zp \ {0})n and
parameter r ≥ T − t + 2 for the t-of-T secret sharing scheme IRS′T,t,p,r,z over Zp, a
homomorphic public key cryptosystem (K, E ,D) with plaintext space Zp, a one-time
symmetric cryptosystem (E, D) with key space Ksym and plaintext space ZT

p . All
arithmetic below is defined over Zp.

1. Bob
(a) for j ∈ [n] generates random symmetric key ksym

j ∈ Ksym and computes ci-
phertext ρj = E(ksym

j , Bj).
(b) sends (ρ1, . . . , ρn) to Alice (the Bj’s are indexed in a random order).

2. Alice
(a) generates a homomorphic cryptosystem key pair (kp, ks) using K(1l),
(b) sends public key kp and ciphertexts cik = E(aik) to Bob for i ∈ [m] and k ∈ [T].

3. Bob, for i ∈ [m], j ∈ [n]:
(a) computes a random share vector Cij = (Cij1, . . . , CijT) ∈ (Zr

p)T for se-
cret ksym

j using the t-of-T secret sharing scheme IRS′T,t,p,z,r , i.e. Cijk =

(C1
ijk, . . . , Cr

ijk) with C`
ijk = P `

ij(zk) ∈ Zp and P 1
ij(x), . . . , P r

ij(x) are ran-
dom polynomials over Zp of degree ≤ t− 1 with P `

ij(0) = ksym
j for ` ∈ [r].

(b) using cik, and the homomorphic properties of E , computes ciphertext η`
ijk =

E(C̄`
ijk) for C̄`

ijk = C`
ijk + γ`

ijk · (aik − bjk), where γ`
ijk is chosen uniformly

and independently from Zp.
(c) sends all η`

ijk’s to Alice.
4. Alice

(a) initializes output set S to empty.
(b) decrypts η`

ijk’s to C̄`
ijk = D(η`

ijk) for i ∈ [m], j ∈ [n], k ∈ [T] and ` ∈ [r].
(c) for i ∈ [m] and j ∈ [n],

i. runs the decoding algorithm from Theorem 2 for secret sharing scheme
IRS′T,t,p,r,z on noisy share vector C̄ij = (C̄ij1, . . . , C̄ijT), where C̄ijk =
(C̄1

ijk, . . . , C̄r
ijk) ∈ (Zp)r for k ∈ [T]. If the decoding algorithm succeeds

to recover share vector Cij matching C̄ij on ≥ t shares, conclude Ai ∩t Bj

and add (Ai, B̄j) to output set S, where B̄j = D(s, ρj) and s is the secret
corresponding to share vector Cij .

ii. otherwise, conclude (Ai, Bj) 6∈ A ∩t B.
(d) return S = A ∩t B.

Fig. 1. Protocol Γ1: Computation-Efficient Fuzzy Private Matching Protocol

protocol success probability is at least 1 − mnT/p ≥ 1 − 2−k using p ≥ 2k · mnT .
This completes the completeness proof.

The security against passive attacks is shown as follows.
Bob’s protocol view consists of just the public key kp and ciphertexts cik for Alice’s

dataset. Accordingly, Bob’s view simulator SB simply generates a key pair (kp, ks)
for E to get public key kp, and simulates ciphertexts cik = E(0) (i.e. by encrypting

0 messages). By a standard hybrid argument, the semantic security of the encryption
scheme E implies that this simulation is computationally indistinguishable from the
view of Bob in the real protocol (in which cik = E(aik)).

Alice’s protocol view consists of the symmetric key ciphertexts ρj and the public
key ciphertexts η`

ijk. On input (A, A∩tB), Alice’s view simulator SA works as follows.
First, SA generates random keys ksym

j ∈ Ksym for j ∈ [n]. Then, SA determines from
A ∩t B the number N of distinct words Bj such that (Ai, Bj) ∈ A ∩t B for some
i ∈ [m], and chooses a random subset V of N indices j ∈ [n] to assign to those
N words Bj . Now for each j ∈ V , SA computes ciphertexts ρj = E(ksym

j , Bj),
and C`

ijk for ` ∈ [r] and k ∈ [T] in exactly the same way as Bob computes them in
the real protocol (this is possible since Bob knows the corresponding Ais and Bjs).
Finally, for each j ∈ [n] − V , SA computes ρj = E(ksym

j , 0) (where 0 ∈ (Zr
p)T)

and η`
ijk = E(C̄`

ijk) for independent uniformly random C̄`
ijk ∈ Zp. To analyse this

simulation, note that for (i, j) with j ∈ V the simulation of the ρj and C`
ijk is perfect

since the simulation exactly follows the protocol. For all other (i, j), we know that Ai is
not fuzzy t-equal to Bj , and in this case in the real protocol, as shown in the correctness
proof above, the noisy share vector C̄ij is uniformly random in (Zr

p)
T , independent of

the secret ksym
j , perfectly matching the simulation of the η`

ijk for j ∈ [n]− V . Finally,
a standard hybrid argument shows that the semantic security of the one-time symmetric
encryption scheme E implies that the simulation of the ρj (as encryption of zero under a
random key) for j ∈ [n]−V is computationally indistinguishable from the real protocol
(encryption of Bj under a random key). This completes the security proof. ut

Implementation Remarks. For simplicity, we assumed in the version of the protocol
presented above that we use a homomorphic encryption scheme with plaintext space
Zp for p prime (the Okamoto-Uchiyama [8] cryptosystem is one such example). Our
protocol can also directly work with the Paillier cryptosystem [9], in which the plaintext
space is ZN , where N = pq and p, q are distinct primes. The correctness and security
analysis of our protocol naturally extend to this case, as long as the zi,zi − zj and
ai,` − bj,` are non-zero mod p and mod q; this can be easily ensured by restricting
zi, ai,`, bj,` < min(p, q) (or just relying on the hardness of factoring n). With the same
assumptions on the zi’s, the proof of Theorem 2 also extends (by analysing the linear
system of equations mod n separately mod p and mod q), except that unique decoding
may fail with probability at most δ ≤ (n− t) ·(1/p+1/q). This leads to the correctness
condition N/(p + q) > 2kmnT .

In practice, there are actually three separate parameters in our protocol which were
assumed to be equal above: the size of the dataset letter space pd, the encryption scheme
plaintext space N , and the secret sharing modulus p. Our protocol correctness only
requires p > 2kmnT for security parameter k, which may typically be much smaller
than N for the same security parameter (e.g. for security parameter k = 80, m,n < 220

and T < 210 we have 2kmnT < 2130 while N ≈ 21024). In this case we may improve
the efficiency of the protocol by taking p ≈ 2kmnT much smaller than N (assuming
that pd < p), which reduces the complexity of error correction. To maintain security of
our protocol in this case, Step 3(b) would have to be modified so that η`

ijk are computed
as ciphertexts of C̄`

ijk = C`
ijk+γ`

ijk·(aik−bjk)+w`
ijk·p, where γ`

ijk is chosen uniformly

and independently in ZN , and w`
ijk is chosen uniformly and independently in Zs where

s = bN/pc. In step 4(c), the decrypted plaintexts in ZN would be reduced modulo p
before proceeding with the decoding in Zp. With this modification, for the case when Ai

is not fuzzy t-equal to Bj in the simulation proof of Theorem 3, the noisy share vectors
C̄ij decrypted by Alice in Step 4 of the real protocol have coordinates uniformly random
in ZN for unmatching positions and coordinates uniformly random in Zk·p for matching
positions. The latter are statistically indistinguishable from uniform on ZN if N/p is
sufficiently large (namely the statistical distance is ≤ mnTp/N); thus ensuring that
N > 2kmnTp, maintains statistical security of the protocol (the simulation consists of
choosing the coordinates of C̄ij uniformly and independently at random from ZN). If
the condition pd < p does not hold, a possible solution is to hash the letters from Zpd

to Zp using a collision-resistant hash function, and then apply the previous protocol.
Efficiency. The communication and computation complexity of our scheme are sum-

marised in Table 1, which also includes the values for previous protocols.

Table 1. Comparison of protocol efficiency with previous protocols, with m = n, `pk and `sym

are the ciphertext lengths of the homomorphic encryption scheme E and symmetric encryption E,
respectively, k is the security parameter. Also, TE , TD , TH, TA denote the encryption/decryption
time and time for a homomorphic scalar multiplication/homomorphic addition for E , T ′E = TE +
TD + TH, and Tsym denotes the encryption time for E. Only dominant terms (proportional to
n2) are shown.

Scheme Communication Computation
Ours O(n2T 2`pk) O(n2(poly(T) + T 2T ′E))

CH1 [3] O(n2T`pk) O(n2(
(

T
t

)
poly(T) + TT ′E))

Yao [13] O(n2T (log p + log T)`sym) O(n2TTsym)
IW [6] O(n2kTD`sym) O(n2k(T 2TA + TDTsym))

Compared to the CH1 protocol [3], our protocol dramatically improves computation
by a factor O(

(
T
t

)
/poly(T)) but has larger communication by a linear factor O(T)

(due to our use of error correcting secret sharing). We also compare our protocol to
two other protocols based on the generic Yao ‘garbled circuit’ protocol for two-party
computation. Since one can choose `pk ≈ log p, we see that compared to the generic
Yao protocol [13], our protocol’s communication is roughly a factor O(T/`sym) times
that of the Yao protocol, hence we expect an improvement in the case T = O(`sym).
Although this may not be a huge improvement, we believe it is still a useful, simpler and
more natural alternative to the Yao protocol for this application. Note that Yao’s protocol
is generic and applies to any Boolean ciruit; to apply it to our problem, we represent
the fuzzy matching function as a boolean circuit having the n2 database words as input.
Such a circuit can be implemented with O(n2T (log p + log T)) 2-input gates, giving
the complexity estimate in Table 1 (in practice, one could use the Fairplay compiler [7]
to generate the circuit). The last row in Table 1 corresponds to the fuzzy matching
protocol of Indyk and Woodruff [6]. The latter protocol has a dominant communication
complexity term (the n2 term) independent of T , but uses (as a subprotocol) the Yao
protocol applied to the decryption circuit D of a homomorphic encryption scheme,
which typically has complexity TD = O(`3pk), where `pk is the length of the public key.
Thus we expect our protocol to be more efficient in the case T 2 = O(k`2pk).

5 Conclusion

We presented a novel share hiding random error-correcting secret sharing scheme based
on interleaved Reed-Solomon codes, and showed how to apply it to construct a simple
protocol for private fuzzy matching. We believe our secret sharing scheme may find
further cryptographic applications in future. The size of shares in our t-of-n scheme
is O((n − t)k), where k is the length of the secret. An interesting open problem is to
find alternative constructions with smaller shares, as this will improve our protocol’s
communication efficiency further.

Acknowledgements. The work of Q. Ye, R. Steinfeld and J. Pieprzyk was supported
in part by Australian Research Council grant DP0987734. The work of R. Steinfeld
was also supported in part by a Macquarie University Research Fellowship (MQRF).
The work of H. Wang is supported in part by the Australian Research Council under
ARC Discovery Project DP0665035 the Singapore National Research Foundation under
Research Grant NRF-CRP2-2007-03.

References

[1] B. Adida and D. Wikstrom. How to shuffle in public. In 4th Theory of Cryptography
Conference (TCC ’07),, volume accepted of LNCS. Springer-Verlag, 2007.

[2] D. Bleichenbacher, A. Kiayias, and M. Yung. Decoding interleaved reed-solomon codes
over noisy channels. Theoretical Computer Science, 379:348–360, 2007.

[3] L. Chmielewski and J.-H. Hoepman. Fuzzy private matching (extended abstract). In
The 3rd International Conference on Availability, Security and Reliability, pages 327–334.
IEEE CS Press, 2008.

[4] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection.
In C. Cachin and J. Camenisch, editors, Advances in Cryptology - Eurocrypt ’04, volume
3024 of LNCS, pages 1–9. Springer-Verlag Berlin Heidelberg, 2004.

[5] V. Guruswami and M. Sudan. Improved decoding of reed-solomon and algebraic-geometric
codes. IEEE Transactions on Information Theory, 45:1757–1767, 1999.

[6] P. Indyk and D. Woodruff. Polylogarithmic private approximations and efficient matching.
In TCC 2006, 2006. See also ECCC, Report No. 117 (2005).

[7] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay – a secure two-party computation
system. In Proceedings of the 13th USENIX Security Symposium. USENIX Association,
2004.

[8] T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factoring. In
Advances in Cryptology - Eurocrypt ’98, volume 1403 of LNCS, pages 308–318. Springer-
Verlag, 1998.

[9] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Advances in Cryptology - Eurocrypt ’99, volume 1592 of LNCS, pages 223–238. Springer-
Verlag, 1999.

[10] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of Society
for Industrial and Applied Mathematics, 8(2):300 – 304, June 1960.

[11] J. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal
of the ACM, 27:701–717, 1980.

[12] A. Shamir. How to share a secret. Communications of the ACM, 22:612–613, 1979.
[13] A. Yao. How to generate and exchange secrets. In Proceedings of the 27th FOCS, pages

162–167, 1986.

