
On Secure Multi-Party Computation in Black-Box Groups∗

Yvo Desmedt1†and Josef Pieprzyk2 and Ron Steinfeld2 and Huaxiong Wang2,3

1 Dept. of Computer Science, University College London, UK
2 Centre for Advanced Computing – Algorithms and Cryptography (ACAC)

Dept. of Computing, Macquarie University, North Ryde, Australia
3 Division of Math. Sci., Nanyang Technological University, Singapore

{josef,rons,hwang}@comp.mq.edu.au, hxwang@ntu.edu.sg

Abstract

We study the natural problem of secure n-party computation (in the passive, computationally
unbounded attack model) of the n-product function fG(x1, . . . , xn) = x1 ·x2 · · ·xn in an arbitrary
finite group (G, ·), where the input of party Pi is xi ∈ G for i = 1, . . . , n. For flexibility, we are
interested in protocols for fG which require only black-box access to the group G (i.e. the only
computations performed by players in the protocol are a group operation, a group inverse, or
sampling a uniformly random group element).

Our results are as follows. First, on the negative side, we show that if (G, ·) is non-abelian and
n ≥ 4, then no ⌈n/2⌉-private protocol for computing fG exists. Second, on the positive side, we
initiate an approach for construction of black-box protocols for fG based on k-of-k threshold secret
sharing schemes, which are efficiently implementable over any black-box group G. We reduce the
problem of constructing such protocols to a combinatorial colouring problem in planar graphs.
We then give two constructions for such graph colourings. Our first colouring construction gives a
protocol with optimal collusion resistance t < n/2, but has exponential communication complexity

O(n
(
2t+1

t

)2
) group elements (this construction easily extends to general adversary structures).

Our second probabilistic colouring construction gives a protocol with (close to optimal) collusion
resistance t < n/µ for a graph-related constant µ ≤ 2.948, and has efficient communication
complexity O(nt2) group elements. Furthermore, we believe that our results can be improved by
further study of the associated combinatorial problems.

Key Words: Multi-Party Computation, Non-Abelian Group, Black-Box, Planar Graph,
Graph Colouring.

1 Introduction

Background. Groups form a natural mathematical structure for cryptography. In particular, the
most popular public-key encryption schemes today (RSA [20] and Diffie-Hellman/ElGamal [11, 12])
both operate in abelian groups. However, the discovery of efficient quantum algorithms for breaking
these cryptosystems [22] gives increased importance to the construction of alternative cryptosystems
in non-abelian groups (such as [16, 18]), where quantum algorithms seem to be much less effective.

Motivated by such emerging cryptographic applications of non-abelian groups, we study the
natural problem of secure n-party computation (in the passive, computationally unbounded attack
model) of the n-product function fG(x1, . . . , xn) = x1 · x2 · · ·xn in an arbitrary finite group (G, ·),
where the input of party Pi is xi ∈ G for i = 1, . . . , n. For flexibility, we are interested in protocols

∗This is the full version of a paper presented at CRYPTO 2007.
†A part of this research was funded by NSF ANI-0087641, EPSRC EP/C538285/1. Yvo Desmedt is BT Chair of

Information Security.

1

for fG which require only black-box access to the group G (i.e. the only computations performed by
players in the protocol are a group operation (x, y) → x · y, a group inverse x → x−1, or sampling
a random group element x ∈R G). It is well known that when (G, ·) is abelian, a straightforward
2-round black-box protocol exists for fG which is t-private (secure against t parties) for any t < n and
has communication complexity O(n2) group elements. However, to our knowledge, when (G, ·) is non-
abelian, no constructions of black-box protocols for fG have been designed until now. Consequently,
to construct a t-private protocol for fG in some non-abelian group G one currently has to resort
to adopting existing non black-box methods, which may lead to efficiency problems (see ‘Related
Work’).

Our Results. Our results are as follows. First, on the negative side, we show that if (G, ·) is
non-abelian and n ≥ 4, then no ⌈n/2⌉-private protocol for computing fG exists. Second, on the
positive side, we initiate an approach for construction of black-box protocols for fG based only on
k-of-k threshold secret sharing schemes (whereas previous non black-box protocols rely on Shamir’s
t-of-n threshold secret sharing scheme over a ring). We reduce the problem of constructing such
protocols to a combinatorial colouring problem in planar graphs. We then give two constructions
for such graph colourings. Our first colouring construction gives a protocol with optimal collusion

resistance t < n/2, but has exponential communication complexity O(n
(
2t+1
t

)2
) group elements (this

construction also easily generalises to general Q2 adversary structures A as defined in [14], giving
communication complexity O(n|A|2) group elements). Our second probabilistic colouring construc-
tion gives a protocol with (close to optimal) collusion resistance t < n/µ for a graph-related constant
µ ≤ 2.948, and has efficient communication complexity O(nt2) group elements. Furthermore, we
believe that our results can be improved by further study of the associated combinatorial problems.
We note that our protocols easily and naturally generalize to other arbitrary functions defined over
the group G.

Related Work. There are two known non black-box methods for constructing a t-private protocol
for the n-product function fG for any t < n/2. They are both based on Shamir’s t-of-n threshold
secret sharing scheme [21] and its generalizations.

The first method [4, 5, 13] requires representing fG as a boolean circuit, and uses Shamir’s secret
sharing scheme over the field GF (p) for a prime p > 2t+ 1. This protocol has total communication
complexity O(t2 log t · NAND(fG)) bits, where NAND(fG) denotes the number of AND gates in the
boolean AND/NOT circuit for computing fG. Thus this protocol is efficient only for very small
groups G, for which NAND(fG) is manageable.

The second method [8] (see also [2] for earlier work) requires representing fG as an arithmetic
circuit over a finite ring R, and accordingly, uses a generalization of Shamir’s secret sharing scheme
to any finite ring. This protocol has total communication complexity O(t2 log t ·NM (fG) · ℓ(R)) bits,
where NM (fG) is the number of multiplication operations in the circuit for fG over R and ℓ(R) ≥
log |R| denotes the number of bits needed for representing elements of R. If we ‘embed’ group G in
the ring R = R(G), so that R inherits the multiplication operation of G, then NM (fG) = n− 1, and
hence the protocol from [8] has total communication complexity O(nt2 log t ·ℓ(R(G))) bits, compared
to O(nt2 · ℓ(G)) bits for our (second) protocol (assuming t < n/2.948), where ℓ(G) ≥ log |G| is the
representation length of elements of G. Hence, for t < n/2.948, the communication complexity of our

protocol for fG is smaller than the one from [8] by a factor Θ(ℓ(R(G))
ℓ(G) · log t) (for n/2.948 < t < n/2,

the protocol of [8] is still asymptotically the most efficient known proven protocol). Note that, for
any finite group G, we can always take R(G) to be the group algebra (or group ring) of G over
GF (2), which can be viewed as a |G|-dimensional vector space over GF (2) consisting of all linear
combinations of the elements of G (the basis vectors) with coefficients from GF (2) (the product
operation of R(G) is defined by the operation of G extended by linearity and associativity, and the
addition operation of R(G) is defined componentwise). However, for this generic choice of R(G) we
have ℓ(R(G)) = |G|, so, assuming ℓ(G) = log |G|, our protocol reduces communication complexity

by a factor Θ(|G|
log |G| · log t), which is exponentially large in the representation length log |G|. In the

2

worst case, we may have ℓ(R(G)) = Θ(ℓ(G)) and our protocol may only give a saving factor O(log t)
over the protocol from [8], e.g. this is the case for G = GL(k, 2) (the group of invertible k × k
matrices over GF (2)). We remark that this O(log t) saving factor arises essentially from the fact that
Shamir’s secret sharing for 2t+ 1 shares requires a ring of size greater than 2t+ 1, and hence, for a
secret from GF (2), the share length is greater than the secret length by a factor Θ(log t) (whereas
our approach does not use Shamir’s sharing and hence does not suffer from this length expansion).
On the other hand, for sharing a secret from GF (q) for ‘large’ q (q > 2t + 1), Shamir’s scheme is
ideal, so for specific groups such as G = GL(k, q) with q > 2t + 1, the communication cost of the
protocols from [2, 8] reduces to O(nt2 · ℓ(R(G))).

Application to General Multi-Party Computation. After the presentation of this paper at CRYPTO
2007, we became aware of a result due to Barrington [3], which implies that our black-box group
multiplication protocols, when applied to the symmetric group S5, can be used as a building block
to perform multi-party computation of arbitrary functions, secure against passive adversaries (We
refer the reader to the end of Sec. 4.5 for more details). Namely, in the paper [3], it shown that
any Boolean AND/NOT circuit C (containing NAND 2-input AND gates) can be converted into an
algebraic circuit C ′ over the group S5 (containing O(NAND) 2-input S5 multiplication gates), such
that C ′ computes the same Boolean function as C, when using a certain encoding of Boolean values
using S5 elements. Our t-private protocols for computing the n-Product function fG (implemented
with G = S5) are easily generalized to give t-private protocols for computing the algebraic circuit
C ′ (applying our ‘Shared 2-Product Subprotocol’ at each S5 multiplication gate in circuit C ′). Since
the order |S5| = 120 of group S5 is a small constant independent of the number of players n, each
share in our protocols can be encoded using a constant length string (of at most 7 bits). Similarly to
the discussion above for the case of fG, the resulting communication complexity of our ‘probabilistic
colouring’ protocol for circuit C is O(NAND · t2) bits, a saving of an O(log t) factor over the Shamir-
based protocol, but at the expense of a relaxed privacy threshold t < n/2.948. Interestingly, similar
tradeoffs of privacy versus communication complexity for multiparty computation have recently been
independently shown via a different approach, namely generalizations of Shamir secret sharing using
various classes of error-correcting codes [6, 7].

Organization. The paper is organized as follows. Section 2 contains definitions and results we use.
In Section 3 we show that t < n/2 is necessary for secure computation of fG. In Sections 4.2 and 4.3
we show how to construct a t-private protocol for fG given a ‘t-Reliable’ colouring of a planar graph.
Then in Section 4.4, we present two constructions of such t-Reliable colourings. Finally, Section 4.5
summarizes some generalizations and extensions, and Section 5 concludes with some open problems.

2 Preliminaries

We recall the definition of secure multi-party computation in the passive (semi-honest), computa-
tionally unbounded attack model, restricted to deterministic symmetric functionalities and perfect
emulation [13]. Let [n] denote the set {1, . . . , n}.

Definition 2.1 Let f : ({0, 1}∗)n → {0, 1}∗ denote an n-input, single-output function, and let Π be
an n-party protocol for computing f . We denote the party input sequence by x = (x1, . . . , xn), the
joint protocol view of parties in subset I ⊆ [n] by VIEWΠ

I (x), and the protocol output by OUTΠ(x).
For 0 < t < n, we say that Π is a t-private protocol for computing f if there exists a probabilistic
polynomial-time algorithm S, such that, for every I ⊂ [n] with #I ≤ t and every x ∈ ({0, 1}∗)n, the
random variables

⟨S(I,xI , f(x)), f(x)⟩ and ⟨VIEWΠ
I (x),OUT

Π(x)⟩

are identically distributed, where xI denotes the projection of the n-ary sequence x on the coordinates
in I.

3

To prove our result we will invoke a combinatorial characterization of 2-input functions for which
a 1-private 2-party computation protocol exists, due to Kushilevitz [15]. To state this result, we need
the following definitions.

Definition 2.2 Let M = C×D be a matrix, where C is the set of rows and D is the set of columns.
Define a binary relation ∼ on pairs of rows of M as follows: x1, x2 ∈ C satisfy x1 ∼ x2 if there exists
y ∈ D such that Mx1,y = Mx2,y. Let ≡ denote the equivalence relation on the rows of M which is the
transitive closure of ∼. Similarly, we define ∼ and ≡ on the columns of M .

Definition 2.3 A matrix M is called forbidden if all its rows are equivalent, all its columns are
equivalent, and not all entries of M are equal.

Definition 2.4 Let f : {0, 1}n × {0, 1}n → {0, . . . ,m− 1} be any 2-input function. A matrix M for
f is a 2n × 2n matrix with entries in {0, . . . ,m − 1}, where each row x of f corresponds to a value
for the first input to f , each column y corresponds to a value for the second input to f , and the entry
Mx,y contains the value f(x, y).

Theorem 2.1 (Kushilevitz [15]) Let f be a 2-input function and let M be a matrix for f . Then
a 1-private 2-party protocol for computing f exists if and only if M does not contain a forbidden
submatrix.

3 Honest Majority is Necessary for n-Product in Non-Abelian Groups

We show that an honest majority t < n/2 is necessary for secure computation of the n-product
function in non-abelian groups.

Theorem 3.1 Let (G, ·) denote a finite non-abelian group and let n ≥ 4. There does not exist a⌈
n
2

⌉
-private protocol for computing fG(x1, . . . , xn) = x1 · x2 · · ·xn.

Proof. The proof proceeds by contradiction; we show that if a
⌈
n
2

⌉
-private protocol Π exists for fG

for n ≥ 4, then we can construct a 1-private 2-party protocol for a 2-input function f ′
G whose matrix

M ′ contains a forbidden submatrix, thus contradicting Theorem 2.1.

Lemma 3.1 Suppose there exists a
⌈
n
2

⌉
-private n-party protocol Π for computing the n-input func-

tion fG : Gn → G defined by fG(x1, . . . , xn) = x1 · · ·xn for n ≥ 4. Then we can construct a
1-private 2-party protocol Π′ for computing the 2-input function f ′

G : G2 × G2 → G defined by
f ′
G((x

′
1, x

′
3), (x

′
2, x

′
4)) = x′1 · x′2 · x′3 · x′4.

Proof. Given party P ′
1 with input (x′1, x

′
3) and party P ′

2 with input (x′2, x
′
4), the protocol Π′ runs as

follows. First, if n ≥ 5, we partition the set {5, . . . , n} into two disjoint subsets S′
1 and S′

2 such that
the size of both S′

1 and S′
2 is at most

⌈
n
2

⌉
− 2 (namely, if n is even we take #S′

1 = #S′
2 = n/2 − 2,

and if n is odd we take #S′
1 = (n− 3)/2 and #S′

2 = (n− 5)/2). Then Π′(P ′
1, P

′
2) consists of running

the n-party protocol Π(P1, . . . , Pn) where:

• P ′
1 plays the role of parties (P1, P3, {Pi}i∈S′

1
) in Π, and sets those parties inputs to be x1 = x′1,

x3 = x′3, and xi = 1 for all i ∈ S′
1, respectively.

• P ′
2 plays the role of parties (P2, P4, {Pi}i∈S′

2
) in Π, and sets those parties inputs to be x2 = x′2,

x4 = x′4 and xi = 1 for all i ∈ S′
2, respectively.

The 1-privacy of protocol Π′(P ′
1, P

′
2) for computing f ′

G follows from the
⌈
n
2

⌉
-privacy of protocol

Π(P1, . . . , Pn) for computing fG because:

• fG(x
′
1, x

′
2, x

′
3, x

′
4, 1, . . . , 1) = f ′

G(x
′
1, x

′
2, x

′
3, x

′
4) = x′1 · x′2 · x′3 · x′4 for all x′1, x

′
2, x

′
3, x

′
4 ∈ G.

4

• For each (x′1, x
′
2, x

′
3, x

′
4), the view of P ′

1 (resp. P ′
2) in protocol Π′(P ′

1, P
′
2) is identical to the view

of a set of at most
⌈
n
2

⌉
parties in protocol Π(P1, . . . , Pn) whose inputs are known to P ′

1 (resp.
P ′
2), with special settings of 1 for some inputs. Thus the same view simulator algorithm S of Π

can be used to simulate the view in Π′.

This completes the proof. ⊓⊔

Lemma 3.2 For any non-abelian group G, the matrix M for the 2-input function f ′
G : G2×G2 → G

defined by f ′
G((x

′
1, x

′
3), (x

′
2, x

′
4)) = x′1 · x′2 · x′3 · x′4 contains a 2× 2 forbidden submatrix.

Proof. Observe from Definitions 2.2 and 2.3 that any 2 × 2 matrix with 3 equal elements and a
fourth distinct element is a forbidden matrix. Now recall that the rows of matrix M for f ′

G are
indexed by (x′1, x

′
3) ∈ G2, the columns of M are indexed by (x′2, x

′
4) ∈ G2, and the entry of M at

row (x′1, x
′
3) and column (x′2, x

′
4) is M(x′

1,x
′
3),(x

′
2,x

′
4)

= x′1 · x′2 · x′3 · x′4. Also, since G is non-abelian,
there exist a pair of elements a and b in G such that a and b do not commute and a, b ̸= 1.
Consider the 2× 2 submatrix of M formed by the intersections of the 2 rows (1, 1) and (a, a−1) and
the 2 columns (1, 1) and (b, b−1) (these row and column pairs are distinct because a, b ̸= 1). We
claim that this submatrix is forbidden. Indeed, three of the submatrix entries are equal because
M(1,1),(1,1) = M(a,a−1),(1,1) = M(1,1),(b,b−1) = 1, and the remaining fourth entry is distinct because
M(a,a−1),(b,b−1) = a · b · a−1 · b−1 = (a · b) · (b · a)−1 ̸= 1 since a and b do not commute. This completes
the proof. ⊓⊔
Combining Lemma 3.1 and Lemma 3.2, we conclude that if a

⌈
n
2

⌉
-private protocol Π exists for fG

for n ≥ 4, then we obtain a contradiction to Theorem 2.1. This completes the proof. ⊓⊔

4 Constructions

4.1 Our Approach: Black Box Non-Abelian Group Protocols

Our protocols will treat the group G as a black box in the sense that the only computations performed
by players in our protocols will be one of the following three: Multiply (Given x ∈ G and y ∈ G,
compute x · y), Inverse (Given x ∈ G, compute x−1), and Random Sampling (Choose a uniformly
random x ∈ G). It is easy to see that these three operations are sufficient for implementing a perfect
k-of-k threshold secret sharing scheme. We use this k-of-k scheme as a fundamental building block
in our protocols. The following proposition is easy to prove.

Proposition 4.1 Fix x ∈ G and integers k and j ∈ [k], and suppose we create a k-of-k sharing
(sx(1), sx(2), . . . , sx(k)) of x by picking the k−1 shares {sx(i)}i∈[k]\{j} uniformly and independently at
random from G, and computing sx(j) to be the unique element of G such that x = sx(1)sx(2) · · · sx(k).
Then the distribution of the shares (sx(1), sx(2), . . . , sx(k)) is independent of j.

4.2 Construction of n-Product Protocol from a Shared 2-Product Subprotocol

We begin by reducing the problem of constructing a t-private protocol for the n-product function
f(x1, . . . , xn) = x1 · · ·xn (where party Pi holds input xi for i = 1, . . . , n), to the problem of construct-
ing a subprotocol for the Shared 2-Product function f ′(x, y) = x · y, where inputs x, y and output
z = x · y are shared among the parties. We define for this subprotocol a so-called strong t-privacy
definition, which will be needed later to prove the (standard) t-privacy of the full n-product protocol
built from subprotocol ΠS . The definition of strong t-privacy requires the adversary’s view simulator
to simulate all output shares except one share not held by the adversary, in addition to simulating
the internal subprotocol view of the adversary.

Definition 4.1 (Shared n-Party 2-Product Subprotocol) A n-Party Shared 2-Product subpro-
tocol ΠS with sharing parameter ℓ and share ownership functions Ox,Oy,Oz : [ℓ] → [n] has the
following features:

5

• Input: For j = 1, . . . , ℓ, party POx(j) holds jth share sx(j) ∈ G of x and party POy(j) holds
jth share sy(j) ∈ G of y, where sx = (sx(1), sx(2), . . . , sx(ℓ)) and sy = (sy(1), sy(2), . . . , sy(ℓ))

denote ℓ-of-ℓ sharing of x
def
= sx(1) · sx(2) · · · sx(ℓ) and y

def
= sy(1) · sy(2) · · · sy(ℓ), respectively.

• Output: For j = 1, . . . , ℓ, party POz(j) holds jth share sz(j) of output product z
def
= sz(1) · · · sz(ℓ).

• Correctness: We say that that ΠS is correct if, for all protocol inputs sx =
(sx(1), sx(2), . . . , sx(ℓ)) and sy = (sy(1), sy(2), . . . , sy(ℓ)), the output shares sz =
(sz(1), sz(2), . . . , sz(ℓ)) satisfy

z = x · y

where x
def
= sx(1) · sx(2) · · · sx(ℓ), y

def
= sy(1) · sy(2) · · · sy(ℓ) and z

def
= sz(1) · · · sz(ℓ).

• Strong t-Privacy: We say that ΠS achieves strong t-privacy if there exists a probabilistic
simulator algorithm SΠS

such that for all I ⊂ [n] with #I ≤ t, there exist j∗x, j
∗
y , j

∗
z ∈ [ℓ]

with j∗z ∈ {j∗x, j∗y}, Ox(j
∗
x) /∈ I, Oy(j

∗
y) /∈ I and Oz(j

∗
z) /∈ I, such that for all protocol inputs

sx = (sx(1), . . . , sx(ℓ)) and sy = (sy(1), . . . , sy(ℓ)), the random variables

⟨SΠS
(I, {sx(j)}j∈[ℓ]\{j∗x}, {sy(j)}j∈[ℓ]\{j∗y})⟩ and

⟨VIEWΠS
I (sx, sy), {sz(j)}j∈[ℓ]\{j∗z}⟩

are identically distributed (over the random coins of ΠS). Here VIEWΠS
I (sx, sy) denotes the

view of I in subprotocol ΠS run with input shares sx, sy, and sz(j) denotes the jth output
share. If j∗z = j∗x (resp. j∗z = j∗y) then we say ΠS achieves x-preserving strong t-privacy
(resp. y-preserving strong t-privacy). If j∗z = j∗x = j∗y for all I, then we say ΠS achieves
symmetric strong t-privacy.

Remark 1: The share ownership functions Ox,Oy,Oz specify for each share index j ∈ [ℓ], the
indices Ox(j),Oy(j),Oz(j) in [n] of the party which holds the jth input shares sx(j) and sy(j) and
jth output share sz(j), respectively.
Remark 2: The adversary view simulator SΠS

for collusion I is given all input shares except the j∗xth
x-share sx(j

∗
x) and j∗yth y-share sy(j

∗
y) (where j∗x, j

∗
y ∈ [ℓ], which depend on I, are indices of shares

given to players not in I), and outputs all output shares except the j∗z th share sz(j
∗) of z. The

x-preserving strong t-privacy property ensures that, for each I, the same value of index j∗z = j∗x is
used for both x-input shares and output shares. This allows multiple simulator runs to be composed,
using output shares of one subprotocol run as x-input shares in a following subprotocol run, as
shown in the security proof of the following construction. If in addition, symmetric strong t-privacy
is achieved, one can use output shares of one subprotocol run as either x-input or y-input shares
for the following subprotocol run, allowing for more efficient protocols. Alternatively, instead of one

subprotocol ΠS which achieves symmetric strong t-privacy, we may use a pair of subprotocols Π
(x)
S ,

Π
(y)
S which are x-preserving and y-preserving, respectively, and are compatible in the following sense.

Definition 4.2 (Compatible Subprotocols) Let Π
(x)
S and Π

(y)
S denote two shared 2-Product sub-

protocols which satisfy x-preserving strong t-privacy and y-preserving strong t-privacy, respectively.

We say Π
(x)
S and Π

(y)
S are compatible if:

• Π
(x)
S and Π

(y)
S have the same share ownership functions Ox,Oy.

• For each collusion I ⊂ [n] with #I ≤ t, Π
(x)
S and Π

(y)
S have the same j∗x index and the same j∗y

index (defined as in Def. 4.1).

6

The idea is that if Π
(x)
S and Π

(y)
S are compatible, we can use the output shares of a Π

(x)
S run as x-input

shares to a following Π
(y)
S run, because the view simulator for the first subprotocol run simulates all

output shares except the j∗xth one (by the x-preserving property), while the view simulator for the
second subprotocol run requires as input all x-input shares except the j̄∗xth one. Since j̄∗x = j∗x by
compatability, we can use the output of the first simulator as input to the second simulator. Note
that if ΠS satisfies symmetric strong t-privacy then ΠS is compatible with itself, i.e. one can take

Π
(x)
S = Π

(y)
S = ΠS . Refer to Fig. 1(a) (resp. Fig. 1(b)) for an example of an x-preserving (resp.

y-preserving) shared 2-product subprotocol which achieves strong 2-privacy.

We now explain our construction of an n-Product Protocol Π(T,Π
(x)
S ,Π

(y)
S) given a binary com-

putation tree T for fG with n leaf nodes corresponding to the n protocol inputs (as illustrated in

Fig. 1(c)), and a pair of compatible Shared 2-Product subprotocols Π
(x)
S , Π

(y)
S . We assume that Π

(x)
S

(resp. Π
(y)
S) satisfy x-preserving (resp. y-preserving) strong t-privacy, with sharing parameter ℓ and

share ownership functions Ox,Oy,Oz.
The protocol Π begins with each party Pj computing an ℓ-of-ℓ sharing of its input xj , and

distributing out these shares to the n parties according to the share ownership functions Ox,Oy.
Then, for each internal node N of the tree T , protocol Π performs the 2-product computation
associated with node N on ℓ-of-ℓ sharings of the values of node N ’s two children nodes. This is done

by running one of the shared 2-product subprotocols Π
(x)
S or Π

(y)
S , resulting in an ℓ-of-ℓ sharing of

the internal node value. The choice of which subprotocol to run at node N is determined by N ’s

relationship to its parent node: if N is a left child, subprotocol Π
(x)
S is used, else if N is a right

child, subprotocol Π
(y)
S is used (if N is the root node, either subprotocol may be used). Eventually

this recursive process gives an ℓ-of-ℓ sharing of the root node value x1 · · ·xn, which is broadcast to
all parties. We refer the reader to Fig 1(d) for an example illustration of the composition of three
subprotocol runs corresponding to three internal nodes in the tree in Fig. 1(c), using the subprotocols
illustrated in Fig. 1(a)-(b). The Appendix A contains a formal specification of this construction.

Remark. As illustrated in the example in Fig. 1, the shares of a subprotocol input (say x-input
shares) may be held by a subset of only t+ 1 of the n players, and some players in this subset may
hold more than one input share. This is in contrast to classical protocols [4, 5], where subprotocol
inputs are shared among all n players, with each player holding one input share.

The following Lemma establishes the t-privacy of protocol Π(T,Π
(x)
S ,Π

(y)
S), assuming the correct-

ness and strong t-privacy of subprotocols Π
(x)
S ,Π

(y)
S . Refer to Appendix B for the proof.

Lemma 4.1 For any binary tree T with n leaves, if the n-party compatible Shared 2-Product subpro-

tocols Π
(x)
S (resp. Π

(y)
S) satisfy correctness and x-preserving (resp. y-preserving) strong t-privacy (see

Def. 4.1 and Def. 4.2), then protocol Π(T,Π
(x)
S ,Π

(y)
S) is an n-party t-private protocol for computing

n-Product function fG(x1, . . . , xn) = x1 · · ·xn.

4.3 Construction of a t-Private n-Party Shared 2-Product Subprotocol from a
t-Reliable n-Colouring of a Planar Graph

Next, we reduce the problem of constructing a t-Private n-Party Shared 2-Product Subprotocol ΠS to
a combinatorial problem defined below of finding a ‘t-Reliable n-Colouring’ of the nodes of a planar
graph. We note that our notion of a ’t-Reliable n-Colouring’ is closely related to a similar notion
defined in [10], and shown to be equivalent to the existence of private communication via a network
graph in which each node is assigned one of n possible colours and the adversary controls all nodes
with colours belonging to a t-colour subset I.

Consider a Planar Directed Acyclic Graph (PDAG) G having 2ℓ source (input) nodes drawn in
a horizontal row at the top, ℓ sink (output) nodes drawn in a horizontal row at the bottom, and
σG nodes overall. We use PDAG G to represent a blackbox protocol, where the input/output nodes
are labelled by the protocol input/output group elements, and the internal graph nodes are labelled

7

Figure 1: (a) Example of a 5-party shared 2-Product subprotocol Π
(x)
S satisfying x-preserving strong

2-privacy, with sharing parameter ℓ = 5. The source nodes on the top row are labeled with indices
of parties holding x-input and y-input shares, according to share ownership functions Ox,Oy. The
sink nodes on the bottom row are labeled with indices of parties holding the output shares according
to share ownership function Oz (note that Oz = Ox). Communication is from top to bottom. At
each internal node, the party whose index labels the internal node multiplies the shares received
on incoming edges, and splits the result into shares which are sent along the outgoing edges (see

Section 4.3 for more details). (b) Example of a 5-party shared 2-Product subprotocol Π
(y)
S satisfying

y-preserving strong 2-privacy. Note it is identical to Π
(x)
S , except that outputs are taken from a

different set of nodes. Also note that Oz = Oy. (c) Example of a binary computation tree T for fG
with n = 5. Leaf nodes correspond to the inputs x1, . . . , x5, and each internal node corresponds to a
multiplication in G. (d) Illustration of three subprotocol runs (corresponding to the top 3 internal

nodes in tree T in (c)) in the protocol Π(T,Π
(x)
S ,Π

(y)
S) for fG constructed from tree T in (c) and

subprotocols Π
(x)
S ,Π

(y)
S in (a),(b).

8

by intermediate protocol values. Each internal graph node is also assigned a colour specifying the
player which computes the internal node value. The graph edges represent group elements sent from
one player to another. The computation performed at each node is multiplication of the values
on all incoming edges and resharing the product along the outgoing edges using the k-of-k secret
sharing scheme in Proposition 4.1. All computations in the ith round of the 2-Product subprotocol
correspond to the ith row (from the top) in the PDAG. Communications between nodes correspond
to edges between consecutive rows.

Actually to construct a protocol for any non-abelian group our requirement on graph G is slightly
stronger than planarity and can be precisely defined as follows.

Definition 4.3 (Admissible PDAG) We call graph G an Admissible PDAG with share parameter
ℓ and size parameter m if it has the following properties:

• Nodes of G are drawn on a square m × m grid of points (each node of G is located at a grid
point but some grid points may not be occupied by nodes). Rows of the grid are indexed from
top to bottom and columns from left to right by the integers 1, 2, . . . ,m. A node of G at row i
and column j is said to have index (i, j). G has 2ℓ source (input) nodes on top row 1, and ℓ
sink (output) nodes on bottom row m.

• Incoming edges of a node on row i only come from nodes on row i − 1, and outgoing edges of
a node on row i only go to nodes on row i+ 1.

• For each row i and column j, let η
(i,j)
1 < . . . < η

(i,j)

q(i,j)
denote the ordered column indices of the

q(i,j) > 0 nodes on level i + 1 which are connected to node (i, j) by an edge. Then, for each
j = 1, . . . ,m− 1, we have

η
(i,j)

q(i,j)
≤ η

(i,j+1)
1 , (1)

i.e. the rightmost node on level i+ 1 connected to node (i, j) is to the left of (or equal to) the
leftmost node on level i+ 1 connected to node (i, j + 1).

We call the left ℓ source nodes on row 1 (indexed (1, 1), . . . , (1, ℓ)) the ‘x-input’ nodes and the
last ℓ source nodes on row 1 (indexed (1, ℓ+1), . . . , (1, 2ℓ)) the ‘y-input’ nodes. By ith x-input node,
we mean the x-input node at position i from the left. We define the ith y-input and ith output node
similarly.

Let C : [m] × [m] → [n] be an n-Colouring function that associates to each node (i, j) of G a
colour C(i, j) chosen from a set of n possible colours [n]. We now define the notion of a t-Reliable
n-Colouring.

Definition 4.4 (t-Reliable n-Colouring) We say that C : [m] × [m] → [n] is a t-Reliable n-
Colouring for admissible PDAG G (with share parameter ℓ and size parameter m) if for each t-colour
subset I ⊂ [n], there exist j∗x, j

∗
y , j

∗
z ∈ [ℓ] with j∗z ∈ {j∗x, j∗y} such that:

• There exists a path PATHx in G from the j∗xth x-input node to the j∗z th output node, such that
none of the path node colours are in subset I (we call such a path I-avoiding), and

• There exists an I-avoiding path PATHy in G from the j∗y th y-input node to the j∗z th output
node.

If j∗z = j∗x (resp. j∗z = j∗y) then we say that C is an x-preserving (resp. y-preserving) t-reliable
n-Colouring. If j∗z = j∗x = j∗y for all I, then we say that C is a Symmetric t-Reliable n-Colouring.

Remark. The paths PATHx and PATHy in Definition 4.4 are free to move in any direction along
each edge of directed graph G, i.e. for this definition we regard G as an undirected graph (throughout
the paper we assume that a path is simple, i.e. free of cycles; hence each node on the path is only
visited once). An example of an admissible PDAG with I-avoiding paths PATHx and PATHy is

9

shown in Fig 2(a). Given an admissible PDAG G (with share parameter ℓ and size parameter m) and
an associated t-Reliable n-Colouring C : [m] × [m] → [n], we construct a t-Private n-Party Shared
2-Product Subprotocol ΠS(G, C).

Shared 2-Product Subprotocol ΠS(G, C)

Input: We define the share ownership functions Ox,Oy,Oz of ΠS(G, C) according to the colours assigned
by C to the input and output nodes of G (i.e. Ox(j) = C(1, j), Oy(j) = C(1, ℓ + j), Oz(j) = C(m, j) for
j = 1, . . . , ℓ). For j = 1, . . . , ℓ, party POx(j) holds jth share sx(j) ∈ G of x and party POy(j) holds jth share
sy(j) ∈ G of y, where sx = (sx(1), sx(2), . . . , sx(ℓ)) and sy = (sy(1), sy(2), . . . , sy(ℓ)) denote ℓ-of-ℓ sharing of

x
def
= sx(1) · sx(2) · · · sx(ℓ) and y

def
= sy(1) · sy(2) · · · sy(ℓ), respectively.

For each row i = 1, . . . ,m and column j = 1, . . . ,m of G, party PC(i,j) does the following:

• PC(i,j) computes a label v(i,j) for node (i, j) of G as follows. If i = 1, PC(i,j) defines v(i,j) = sx(j) for

j ≤ ℓ and v(i,j) = sy(j) for ℓ + 1 ≤ j ≤ 2ℓ. If i > 1, PC(i,j) computes v(i,j) by multiplying the shares
received from nodes at previous row i− 1 (labels of edges between a node on row i− 1 and node (i, j)),
ordered from left to right according to the sender node column index.

• If i = m, PC(m,j) sets output share j to be the label v(m,j),

• else, if i < m, let η
(i,j)
1 < . . . < η

(i,j)

q(i,j)
denote the ordered column indices of the nodes on level i+1 which

are connected to node (i, j) by an edge. PC(i,j) chooses q(i,j) − 1 uniformly random elements from G

and computes a q(i,j)-of-q(i,j) secret sharing s
(i,j)
1 , . . . , s

(i,j)

q(i,j)
of label v(i,j) such that:

v(i,j) = s
(i,j)
1 · · · s(i,j)

q(i,j)
.

• For k = 1, . . . , q(i,j), PC(i,j) sends share s
(i,j)
k to party P

C(i+1,η
(i,j)
k)

and labels edge from node (i, j) to

node (i+ 1, η
(i,j)
k) by the share s

(i,j)
k .

Note that the correctness of ΠS follows from the fact that the product of node values at each row
of PDAG G is preserved and hence equal to x · y, thanks to condition (1) in Definition 4.3.

Lemma 4.2 If G is an admissible PDAG and C is an x-preserving (resp. y-preserving) t-Reliable n-
Colouring for G then ΠS(G, C) achieves x-preserving (resp. y-preserving) strong t-privacy. Moreover,
if C is a Symmetric t-Reliable n-Colouring, then ΠS(G, C) achieves Symmetric strong t-privacy.

Proof. (Sketch) The full proof of Lemma 4.2 can be found in Appendix C. Here we only explain
the main idea by considering the case when the I-avoiding paths PATHx and PATHy only have
downward edges (in [9] we extend the argument to paths with upward edges). Consider PATHx from
the j∗z th x-input node to the j∗xth output node. At the first node PATHx(1) on the path, although the
node value v(1) = sx(j

∗
x) is not known to the view simulator SΠS

, we may assume, by Proposition 4.1,
that in the real subprotocol ΠS , when node PATHx(1) shares out its node label among its q outgoing
edges, it sends new random elements (labels) ri on each of the q− 1 outgoing edges not on PATHx.
Thus simulator SΠS

can easily simulate all outgoing edge values of PATHx(1) which are not on
PATHx. The same argument shows that for all kth nodes PATHx(k) and PATHy(k) on PATHx

and PATHy respectively, simulator SΠS
can simulate all values on outgoing edges of PATHx(k) and

PATHy(k) which are not on PATHx or PATHy by independent random elements. The values on
edges along PATHx or PATHy depend on the inputs sx(j

∗
x) and sy(j

∗
y) which are not known to

simulator SΠS
, but since the paths PATHx and PATHy are I-avoiding, these values are not in the

view of I and need not be simulated by SΠS
. Since SΠS

knows all inputs to ΠS it can compute all
other edge values in the ΠS , including all outputs except the j∗z th one (which is on PATHx and
PATHy), as required. ⊓⊔

10

Figure 2: (a) Example of an admissible PDAG G with sharing parameter ℓ = 3 (node colours are not
indicated). For a given collusion I, an example I-avoiding path PATHx is shown in heavy black,
and an example I-avoiding path PATHy (until the meeting with PATHx) is shown in heavy gray.
In this example, we have j∗ = 2 and j∗y = 3. (b) The admissible PDAG Gtri(ℓ

′, ℓ).

4.4 Constructions of t-Reliable n-Colourings of Planar Graphs

We now present two general constructions of t-Reliable n-Colourings of planar graphs which can be
used to build t-Private n-Party protocols for the n-Product function in any finite group as explained
in the previous sections. Our first deterministic construction achieves optimal collusion security
(t < n/2) but has exponential complexity (ℓ =

(
n
t

)
). Our second probabilistic construction has

a slightly suboptimal collusion security (t < n/2.948) but has a very efficient linear complexity
(ℓ = O(n)).

The PDAG. The admissible PDAG Gtri(ℓ
′, ℓ) that we consider has sharing parameter ℓ and has

ℓ′ × ℓ nodes. It is shown in Fig. 2(b). The nodes of Gtri(ℓ
′, ℓ) are arranged in an ℓ′ × ℓ node grid. Let

(i, j) denote the node at row i ∈ [ℓ′] (from the top) and column j (from the left). There are three
types of edges in directed graph Gtri(ℓ

′, ℓ): (1) Horizontal edge: An edge connecting two adjacent
nodes on the same row, directed from right to left (i.e. from node (i, j) to node (i, j − 1), for i ∈ [ℓ′],
j ∈ [ℓ]\{1}), (2) Vertical edge: An edge connecting two adjacent nodes on the same column, directed
from top to bottom (i.e. from node (i, j) to node (i+1, j), for i ∈ [ℓ′]\{ℓ′}, j ∈ [ℓ]), and (3) Diagonal
edge: An edge connecting node (i, j) to node (i+ 1, j − 1), for i ∈ [ℓ′] \ {ℓ′}, j ∈ [ℓ] \ {1}).

The ℓ nodes on the top row (row 1) of Gtri are the x-input nodes, indexed from left to right. The
top ℓ nodes on the rightmost column of Gtri (column ℓ) are the y-input nodes, indexed from top to
bottom.

Remark 1. The reader may notice that the above specification of Gtri does not formally satisfy
the convention for drawing an admissible PDAG as defined in Def. 4.3, due to the horizontal edges
and the fact that the y-input nodes are arranged along a column, rather than along the same row
as the x-input nodes. However, it is easy to see that Gtri can also be drawn strictly according to
Def. 4.3. Namely by rotating the drawing of Gtri in Fig. 2 by 45 degrees anticlockwise, the horizontal
edges become diagonal edges, and x-inputs and y-inputs can be formally put on the same row by
adding appropriate ‘connecting’ nodes of the same colour as the corresponding input nodes of Gtri.
These are only formal changes in drawing conventions, and there is no change in the protocol itself.
In this section we use the drawing convention in Fig. 2 for clarity.

Remark 2. All diagonal edges in the definition of Gtri above are parallel (with a ‘positive slope’,

11

when using the drawing convention in Fig 2). However, it is clear that the admissible PDAG require-
ments are still satisfied if we remove from Gtri some ‘positive slope’ diagonal edges and add some
‘negative slope’ diagonal edges (connecting a node (i, j) to node (i+1, j +1), for some i ∈ [ℓ′] \ {ℓ′},
j ∈ [ℓ] \ {ℓ}), as long as planarity of G is preserved (no two diagonal edges intersect). We denote
such ‘generalised’ PDAGs by Ggtri.

First Construction Ccomb (t < n/2 and ℓ =
(
n
t

)
). We now present an explicit construction

of a t-Reliable n-Colouring Ccomb of the square graph Gtri(ℓ, ℓ). The construction applies for all
n ≥ 2t+ 1 (i.e. t ≤ ⌊n−1

2 ⌋), and hence (by Section 3) the n-Product protocol constructed from it by

the method of Sections 4.2 and 4.3 achieves ⌊n−1
2 ⌋-privacy (which is optimal, as shown in Section 3).

Unfortunately, the sharing parameter in this construction ℓ =
(
n
t

)
, is exponential in t (and therefore

the protocol communication cost is also exponential in t).

Colouring Ccomb for graph Gtri(ℓ, ℓ) with ℓ =
(
n
t

)
and n ≥ 2t+ 1

1. Let I1, . . . , Iℓ denote the sequence of all ℓ =
(
n
t

)
t-colour subsets of [n] (in some ordering).

2. For each (i, j) ∈ [ℓ] × [ℓ], define the colour C(i, j) of node (i, j) of Gtri(ℓ, ℓ) to be any colour in the
set Si,j = [n] \ (Ii

∪
Ij) (note that since |Ii| = |Ij | = t and n ≥ 2t + 1, the set Si,j contains at least

n− (|Ii|+ |Ij |) ≥ n− 2t ≥ 1 colours, so Si,j is never empty).

Lemma 4.3 For n ≥ 2t + 1, the colouring Ccomb is a Symmetric t-Reliable n-Colouring for graph
Gtri(ℓ, ℓ), with ℓ =

(
n
t

)
.

Proof. Given each t-colour subset I ⊆ [n], let j∗ denote the index of I in the sequence I1, . . . , Iℓ
of all t-colour subsets used to construct Ccomb, i.e Ij∗ = I. By construction of Ccomb, none of the
nodes of Gtri(ℓ, ℓ) along column j∗ have colours in Ij∗ = I. Hence one can take column j∗ of Gtri(ℓ, ℓ)
as PATHx. Similarly, we also know that none of the nodes of Gtri(ℓ, ℓ) along row j∗ have colours
in Ij∗ = I, so one can take PATHy to consist of all nodes on row j∗ which are on columns j ≥ j∗,
followed by all nodes on column j∗ which are on rows i ≥ j∗. Thus Ccomb is a Symmetric t-Reliable
n-Colouring for graph Gtri(ℓ, ℓ), as required. ⊓⊔

Remark. The colouring Ccomb remains a Symmetric t-Reliable n-Colouring even if we remove
all diagonal edges from Gtri(ℓ, ℓ) (since the paths PATHx and PATHy only contain vertical and
horizontal edges).

Combining Lemma 4.3 (applied to a subset of n′ = 2t+1 ≤ n colours from [n]) with Lemmas 4.1
and 4.2, we have

Corollary 4.1 For any t < n/2, there exists a black-box t-private protocol for fG with communication

complexity O(n
(
2t+1
t

)2
) group elements.

Second Construction Crand (t < n/2.948 and ℓ = O(n)). It is natural to ask whether the
exponentially large sharing parameter ℓ =

(
n
t

)
can be reduced. Our second construction Crand shows

that this is certainly the case when t < n/2.948, achieving a linear sharing parameter ℓ = O(n).
As a first step towards our second construction, we relax the properties required from C in

Definition 4.4 to slightly simpler requirements for the square graph Gtri(ℓ, ℓ) (i.e. ℓ
′ = ℓ), as follows.

Definition 4.5 (Weakly t-Reliable n-Colouring) We say that C : [ℓ] × [ℓ] → [n] is a Weakly
t-Reliable n-Colouring for graph Gtri(ℓ, ℓ) if for each t-colour subset I ⊂ [n]:

• There exists an I-avoiding path Px in G from a node on the top row (row 1) to a node on the
bottom row (row ℓ). We call such a path an I-avoiding top-bottom path.

• There exists an I-avoiding path Py in G from a node on the rightmost column (column ℓ) to a
node on the leftmost column (column 1). We call such a path an I-avoiding right-left path.

12

output nodes
for Ggtri

(x)

(a)

y-input
nodes

x-input nodes
row\col

1

2

3
:
:
: l1−l

1 2 3 ……. l
:
:

12 −l
col jx

*

1+l
mirror
image
rows

:
:

y-input
nodes

x-input nodes
row\col

1

2

3
:
:
: l1−l

1 2 3 ……. l
:
:

12 −l 1+l
output
nodes for
Ggtri

(y)

:
:

:
:

(b)

col jx
*

row jy
* row jy

*

Figure 3: (a) Graph G(x)
gtri(2ℓ− 1, ℓ). (b) Graph G(y)

gtri(2ℓ− 1, ℓ).
Note that the colour of the input and output nodes is identical to the colour of the nodes connected

to them.

Note that in the above definition of Weak t-Reliability, the index of the starting node of path Px in
the top row need not be the same as the index of the exit node of Px in the bottom row (whereas
in the definition of t-Reliability, PATHx must exit at the same position along the output row as the
position in the top row where PATHx begins).

The following lemma shows that finding a Weakly t-Reliable n-Colouring for the square graph
Gtri(ℓ, ℓ) is sufficient for constructing a (standard) t-Reliable n-Colouring for a rectangular graph
Ggtri(2ℓ − 1, ℓ). The idea is to add ℓ − 1 additional rows to Gtri(ℓ, ℓ) by appending a ‘mirror image’
(reflected about the last row) of itself, as shown in Fig. 3. Note that we define two versions of

Ggtri(2ℓ− 1, ℓ) called G(x)
gtri(2ℓ− 1, ℓ) and G(y)

gtri(2ℓ− 1, ℓ). The difference between them is only in the

choice of output nodes: the bottom row ℓ nodes are used as output nodes for G(x)
gtri(2ℓ−1, ℓ) as shown

in Fig. 3(a) (giving an x-preserving colouring) and the last ℓ nodes on the rightmost columnn are

used as output nodes for G(y)
gtri(2ℓ− 1, ℓ) as shown in Fig. 3(b) (giving a y-preserving colouring).

Lemma 4.4 Let C : [ℓ] × [ℓ] → [n] be a Weakly t-Reliable n-Colouring (see Def. 4.5) for square
admissible PDAG Gtri(ℓ, ℓ). Then we can construct an x-preserving (resp. y-preserving) t-Reliable

n-Colouring (see Def. 4.4) for a rectangular admissible PDAG G(x)
gtri(2ℓ− 1, ℓ) (resp. G(y)

gtri(2ℓ− 1, ℓ)).

Moreover, the 2-product subprotocols Π
(x)
S , Π

(y)
S constructed from G(x)

gtri(2ℓ − 1, ℓ) and G(y)
gtri(2ℓ − 1, ℓ)

(using Lemma 4.2) are compatible (see Def. 4.2).

Proof. For each t-colour subset I, let Px and Py denote the top-bottom and right-left I-avoiding
paths in Gtri(ℓ, ℓ) for the given colouring C. By planarity, it is clear that Px and Py must cross
over (intersect) on at least one node. Let n∗ denote the first node on Py which is also on Px (see
Fig. 4(a)). We can modify right-left path Py into a path P ′

y that follows Py until reaching the cross
over node n∗, and then follows Px to the exit. Hence we obtain a path P ′

y that begins at a node on
the rightmost column of Gtri(ℓ, ℓ) and exits at a node on the bottom row, namely the same bottom
row node index j∗ where Px exits. We let j∗x denote the index of the top row node where Px begins
(it is possible that j∗x ̸= j∗).

We construct a rectangular admissible PDAG G(x)
gtri(2ℓ − 1, ℓ) as follows. The first ℓ rows of

G(x)
gtri(2ℓ − 1, ℓ) and interconnecting edges are identical to Gtri(ℓ, ℓ). For the bottom ℓ − 1 rows of

G(x)
gtri(2ℓ−1, ℓ), we take the ‘mirror image’ reflection of the top ℓ rows and their interconnecting edges,

13

output nodes

x-input nodes

y-input
nodes

row\col

1

2

3
:
:
: l1−l 1

……. lNode n*

col j*

col jx
*

(a)

(b)

x-input nodes
row\col

1

2

3
:
:
: l1−l

1 2 3 ……. l
:
:

12 −l
col jx

*

1+l :
:

row jy
*

y-input
nodes

mirror
image
rows

:
:

Figure 4: (a) Example paths in square PDAG Gtri(ℓ, ℓ) for a given Weakly t-Reliable n-Colouring
(Px in heavy black, Py in heavy gray). (b) Corresponding paths in rectangular PDAG Ggtri(2ℓ−1, ℓ).

reflected about the ℓth row. The outputs are taken from the bottom ℓ nodes (see Fig. 4(b)). Note that
each ’positive slope’ diagonal edge between two rows among the first ℓ, give rise to ‘negative slope’
diagonal edges between two rows among the last ℓ. We construct the n-Colouring C ′ : [2ℓ−1]× [ℓ] →
[n] of G(x)

gtri(2ℓ − 1, ℓ) similarly, i.e. the top ℓ rows of G(x)
gtri(2ℓ − 1, ℓ) are coloured using C, i.e.

C ′(i, j) = C(i, j) for (i, j) ∈ [ℓ] × [ℓ], and the last ℓ − 1 rows of G(x)
gtri(2ℓ − 1, ℓ) are coloured by a

‘mirror image’ of the first ℓ− 1 rows, i.e. C ′(ℓ+ i, j) = C(ℓ− i, j) for i ∈ [ℓ− 1] and j ∈ [ℓ].

We claim that C ′ is an x-preserving t-Reliable n-Colouring for G(x)
gtri(2ℓ− 1, ℓ). Indeed, thanks to

the ‘mirror symmetry’ of C ′ and G(x)
gtri(2ℓ− 1, ℓ) about the ℓth row, the I-avoiding path Px from node

(1, j∗x) to node (ℓ, j∗) can be extended by its ‘mirror image’ to an I-avoiding path PATHx that exits

at output node (2ℓ − 1, j∗x) of G
(x)
gtri(2ℓ − 1, ℓ). Since it also reaches node (ℓ, j∗), the I-avoiding path

P ′
y evidently can also be extended along the same ‘mirror image’ path to an I-avoiding path PATHy

that exits at output node (2ℓ − 1, j∗x), as shown in Fig. 3(b). Thus C ′ satisfies the requirements of

an x-preserving t-Reliable n-Colouring for G(x)
gtri(2ℓ− 1, ℓ).

The PDAG G(y)
gtri(2ℓ − 1, ℓ) is identical to G(y)

gtri(2ℓ − 1, ℓ) except that the outputs are taken from
the ℓ bottom nodes of the last column as shown in Fig. 4(b). It is easy to see by adapting the above
argument (with PATHx and PATHy now leaving at the mirror image of the j∗yth node, i.e. output

node (2ℓ− j∗y , ℓ) of G
(y)
gtri(2ℓ−1, ℓ)) that C ′ is a y-preserving t-Reliable n-Colouring for G(y)

gtri(2ℓ−1, ℓ).

Moreover, since for all collusions PATHx and PATHy are identical in the top half of G(y)
gtri(2ℓ− 1, ℓ)

and G(x)
gtri(2ℓ − 1, ℓ), we see that j∗x and j∗y are the same in the two graphs so the corresponding

subprotocols Π
(x)
S and Π

(y)
S are compatible, as claimed. ⊓⊔

For our second colouring construction, we use the ‘probabilistic method’ [1], namely we choose
the colour of each node in the square graph Gtri(ℓ, ℓ) independently and uniformly at random from
[n]. Although there is a finite error probability p that such a random n-Colouring will not be Weakly
t-Reliable, we show that if n/t > 2.948 and we use a sufficiently large (but only linear in n) sharing
parameter ℓ = O(n), then the error probability p can be made arbitrarily small. Moreover, p decreases
exponentially fast with ℓ, so p can be easily made negligible.

Remark. Although our results allow one to efficiently (using ℓ = O(n log(δ−1))) generate colour-
ings for Gtri(ℓ, ℓ) which are Weakly t-Reliable except for a negligible error probability p ≤ δ, it is
natural to ask whether one can efficiently generate colourings which we are certain to be Weakly

14

t-Reliable. In this connection, we note that for any given t-collusion I, and a colouring C, there exists
an efficient algorithm (with run time linear in the number of nodes ℓ2) to verify that the coloured
graph contains I-avoiding top-bottom/right-left paths Px and Py. However, the naive approach to
verify that C is Weakly t-Reliable requires running this algorithm

(
n
t

)
times (once for every possible

I), giving a run time exponential in t. We do not know whether there is an efficient algorithm to
verify that a given a given colouring C of Gtri(ℓ, ℓ) is Weakly t-Reliable.

Colouring Crand for graph Gtri(ℓ, ℓ) with ℓ = O(n) and n ≥ 2.948t

For each (i, j) ∈ [ℓ]× [ℓ], choose the colour C(i, j) of node (i, j) of Gtri(ℓ, ℓ) independently and uniformly
at random from [n].

To analyse this construction, we will make use of the following counting Lemma. Here, for any
right-left path in Gtri(ℓ, ℓ), we define its length as the number of nodes on the path. We say a path
is minimal if removing any node from the path disconnects the path.

Lemma 4.5 The number NP (k, ℓ) of minimal right-left paths of length k in graph Gtri(ℓ, ℓ) is upper
bounded as

NP (k, ℓ) ≤ c(µ) · ℓ · µk,

for some constants µ, c(µ), with µ ≤ 2.948. We call the minimal possible value for µ the connective
constant of Gtri(ℓ, ℓ).

Proof. For a minimal right-left path, there are ℓ possible starting nodes on the rightmost column.
We may assume without loss of generality that the first edge of the path is not a vertical edge. For
the ith starting node on the rightmost column, there are at most 2 possibilities for the first path
edge: a horizontal edge, or a diagonal edge. For j ≥ 1, let Ni(j) denote the number of minimal
paths in Gtri(ℓ, ℓ) of length j starting at the ith node on the rightmost column. Note that the paths
counted in Ni(j) are not necessarily right-left paths, i.e. the last node in the path need not be on
the leftmost column.

We use induction on j to show Ni(j) ≤ 3j−1 for j ≥ 2. We have already shown above the basis
step Ni(2) = 2 < 3. For the induction step, suppose that Ni(j) ≤ 3j−1 for some j ≥ 2. We show
that Ni(j + 1) ≤ 3j .

Consider each path P of length j. We claim that there are at most 3 possible choices for adding
a (j + 1)th node P (j + 1) to P to create a minimal path P ′ of length j + 1. Let P (j − 1) and P (j)
denote the (j − 1)th node and jth node of P , respectively.

Suppose first that P (j) is is a boundary node of Gtri(ℓ, ℓ) (i.e. it is on row 1 or row ℓ or column 1
or column ℓ). Then P (j) has degree at most 4, and one of the 4 nodes adjacent to P (j) is P (j − 1),
so there are at most 3 possible choices for P (j + 1), as required.

Now suppose that P (j) is an internal node of Gtri(ℓ, ℓ). Then P (j) has degree 6, and one of the
6 nodes adjacent to P (j) is P (j − 1). Hence there are at most 5 possibilities for P (j + 1). But it is
easy to verify that 2 of those 5 adjacent nodes of P (j) must also be adjacent to P (j − 1). Hence,
neither of these 2 nodes can be chosen as P (j + 1) since the resulting path P ′ will not be minimal
(indeed, if P (j + 1) is chosen adjacent to P (j − 1) then internal node P (j) could be removed from
P ′ without disconnecting it). So there are at most 3 possibilities for P (j + 1) to keep P ′ minimal.

We conclude that any minimal path P of length j can be extended in at most 3 ways to a minimal
path P ′ of length j +1. It follows that Ni(j +1) ≤ 3Ni(j) ≤ 3j , which completes the inductive step.
Since there are ℓ possible starting nodes on the rightmost column, we get NP (k, ℓ) ≤ ℓ · 3k, which
proves µ ≤ 3.

We now show how to improve the connective constant upper bound to µ ≤ 2.948. This improve-
ment is based on the fact that the bound µ ≤ 3 only takes into account a ‘1 edge history’ of the path

15

to restrict the number of possible ‘next’ nodes by ruling out those which destroy the path minimality
due to 3 node cycles. By taking into account m-edge history for larger m > 1, we can improve the
bound by also ruling out m′-cycles for m′ > 3. Here we examine the case of m = 4 edge history,
ruling out m′ = 6 node cycles, as well as m′ = 3 node cycles (see [9] for some results with even larger
m).

Consider the 6 node cycle C6 in graph Gtri(ℓ, ℓ) shown in Fig. 5(a). For any minimal path P of
length j ≥ 4 whose last 4 edges match a sequence of 4 successive edges along C6 (in either clockwise
or anticlockwise sense, such as the 4 edges between nodes P (j− 4), P (j− 3), P (j− 2), P (j− 1), P (j)
in Fig. 5(a)), we have at most 2 possibilities (labelled n1, n2 in Fig. 5(a)) for choosing a (j + 1)th
node P (j+1) to extend P to a minimal path P ′ of length j+1. This is because by minimality, only
3 possiblities are allowed for P (j + 1) to rule out 3-node cycles in P ′ (as shown above), and out of
those 3 nodes, one (labelled n∗ in Fig 5(a)) can be eliminated to rule out the 6-cycle C6 from being
contained in P ′. This reduction from 3 to 2 possibilities for P (j + 1) when the last 4 edges of P
match a sequence from C6 will give us the improved upper bound on µ.

To analyse this improvement, let S(j) denote the set of all minimal paths P in Gtri(ℓ, ℓ) of length
j starting at the ith node on the rightmost column of Gtri(ℓ, ℓ). We partition S(j) into 4 disjoint
subsets S1(j), . . . , S4(j) according to the number of matches of the 4 last edges of P with a sequence
of successive edges on C6, namely:

• S4(j) denotes the subset of paths in S(j) whose 4 last edges match a sequence of 4 successive
edges along C6 (in either clockwise or anticlockwise sense).

• For k = 3, 2, 1, Sk(j) denotes the subset of paths in S(j) which are not in Sk+1(j), but whose k
last edges match a sequence of k successive edges along C6 (in either clockwise or anticlockwise
sense).

For j ≥ 5 and k ∈ {1, 2, 3, 4}, we say that a minimal path P of length j is in state k if P ∈ Sk(j). We
can now construct a finite state machine M whose state transition function specifies for each minimal
path P of length j in state k, the possible ‘next’ state k′ of a minimal path P ′ of length j+1 formed
by adding a (j + 1)th node to P . The state transition diagram of M is shown in Fig 5(b), where a
label b on a transition from state k to k′ indicates that there are b possibilities for the (j+1)th node
which lead to this state transition. For example, as shown in Fig 5(a), if P is in state 4, then there
are 2 possibilities for node P (j + 1): one (node labelled n1) leads to a transition to state 1 (since no
two successive edges in C6 are in the same column), the other (node labelled n2) leads to a transition
to state 2 (since no three successive edges in C6 are in the order ‘horizontal, vertical, horizontal’).
It is easy to verify that the same transition rule from state 4 holds for all paths P in state 4 (i.e.
regardless of the particular sequence of 4 successive edges along C6 which form the last 4 edges of
P). The transition rules for the other three states are also easy to verify.

For j ≥ 5 and k ∈ {1, 2, 3, 4} let Nk(j) denote the number of minimal paths (starting at ith
node of the rightmost column of Gtri(ℓ, ℓ)) of length j in state k. From the labelled state transition
diagram of M in Fig 5(b), we immediately obtain the following recursive bound:

N1(j + 1)
N2(j + 1)
N3(j + 1)
N4(j + 1)

 ≤ AM ·


N1(j)
N2(j)
N3(j)
N4(j)

 , where AM =


1 1 1 1
2 1 1 1
0 1 0 0
0 0 1 0

 . (2)

It follows from (2) that the vector N(j)
def
= [N1(j) N2(j) N3(j) N4(j)]

T satisfies

N(j) ≤ Aj−5
M N(5) (3)

for j ≥ 5. The matrix AM can be diagonalised into the form AM = Q ·D ·Q−1, where Q is a 4× 4
invertible matrix having the eigenvectors of AM as its columns, and D is a 4 × 4 diagonal matrix

16

Figure 5: (a) The 6 node cycle C6 in Gtri(ℓ, ℓ) is shown in heavy black. (b) The state transition
diagram of finite state machine M .

having the 4 eigenvalues λ1, . . . , λ4 of AM on the diagonal. Note that Aj−5
M = Q·Dj−5 ·Q−1, and Dj−5

is a diagonal matrix with diagonal elements λj−5
k for k = 1, . . . , 4. Plugging into (3) and adding up

the components of N(j), we get the following upper bound on the number NP (j) = N1(j)+ · · ·N4(j)
of minimal paths of length j, starting at the ith node in the rightmost column of Gtri(ℓ, ℓ):

NP (j) ≤ c1λ
j−5
1 + c2λ

j−5
2 + c3λ

j−5
3 + c4λ

j−5
4 , (4)

where the constants c1, . . . , c4 are determined from (3) by N(5) and the eigenvector matrix Q. It

follows that NP (j) = O(λj), where λ
def
= maxk |λk| is the largest eigenvalue magnitude of AM .

Numerical computation shows that λ ≤ 2.948, and hence (considering the ℓ possible starting nodes
on the rightmost column of Gtri(ℓ, ℓ)), the claimed bound NP (k, ℓ) ≤ c(µ) · ℓ · µk with µ = λ ≤ 2.948
follows, for some constant c(µ). ⊓⊔

Remark 1. Our terminology connective constant for µ comes from similar (although not identical)
constants defined in combinatorial studies of the ‘self avoiding walk’ in a lattice [17, 19]. However,
the particular connective constant µ which arises in our work seems to not have been previously
studied.

Remark 2. We have done some preliminary numerical eigenvalue computations using MATLAB
with larger values of the ‘edge history’ parameter m on the path, extending our method for proving
Lemma 4.5 (refer to [9] for more details). Using m = 8 we obtained the improved bound µ ≤ 2.913,
although we are not yet certain about the accuracy of these MATLAB computations. We believe
the efficient techniques from [17, 19] can be useful to further improve our numerical computed upper
bound on µ by using even larger values of the ‘edge history’ on the path. Also, our method of
bounding µ does not take into account the restriction that the paths of length k are right-left paths,
so further improvements might result by taking this restriction into account.

Now we are ready to prove the following result.

Theorem 4.1 Let µ, c(µ) denote the connective constants of Gtri(ℓ, ℓ) (see Lemma 4.5). For any
real constant R > µ, if t ≤ n/R, there exists a Weakly t-Reliable n-Colouring for graph Gtri(ℓ, ℓ) for
some ℓ = O(n). Moreover, for any constant δ > 0, the probability p that the random n-Colouring
Crand is not Weakly t-Reliable is upper bounded by δ if we choose

ℓ ≥ b ·
log

(
n
t

)
log(R/µ)

,

17

for a constant b satisfying

b−
(

3

logR

)
log b ≥ 1 +

log

(
2c(µ)δ−1

(
logR

log(R/µ)

)3
)

logR
. (5)

Proof. Fix a t-colour subset I. We upper bound the probability p(I), that if all ℓ2 node colours
of Gtri(ℓ, ℓ) are chosen uniformly and independently at random from [n], the colouring Crand is not
Weakly t-Reliable, i.e. either an I-avoiding top-bottom path Px doesn’t exist, or an I-avoiding
right-left path Py doesn’t exist.

Suppose that for a given colouring C, an I-avoiding top-bottom path Px doesn’t exist. This
implies that the set S(C) of graph nodes with colours in I must form a top-bottom cutset, which is
defined as follows.

Definition 4.6 (Cutset/Minimal Cutset) A set of nodes S in Gtri(ℓ, ℓ) is called a top-bottom
cutset (resp. right-left cutset) if all top-bottom paths (resp. right-left paths) in Gtri(ℓ, ℓ) pass via a
node in S. A cutset S is called minimal if removing any node from S destroys the cutset property.

Note that the top-bottom cutset S(C) must contain a minimal top-bottom cutset. The following
intuitively obvious lemma shows that in order to count the minimal top-bottom cutsets of Gtri(ℓ, ℓ)
it is enough to look at all minimal right-left paths in Gtri(ℓ, ℓ). Its formal proof can be found in
Appendix D.

Lemma 4.6 (Minimal Cutsets are Minimal Paths) A set of nodes S in Gtri(ℓ, ℓ) is a minimal
top-bottom cutset (resp. right-left cutset) if and only if it is a minimal right-left path (resp. top-bottom
path).

By Lemma 4.6, we conclude that if an I-avoiding top-bottom path doesn’t exist for a colouring
C then S(C) contains a minimal right-left path Pc,x. Since Pc,x is a subset of S(C), its nodes only
have colours in I. So, over the random choice of colouring Crand, the probability that an I-avoiding
top-bottom path doesn’t exist is equal to the probability px(I) that there exists a minimal right-left
path Pc,x whose node colours are all in t-collusion I.

Let NP (k, ℓ) denote the total number of minimal right-left paths in Gtri(ℓ, ℓ) of length k. Since
node colours are chosen independently and uniformly in [n], each such path has probability (t/n)k

to have all its node colours in I. It is clear that ℓ ≤ k ≤ ℓ2. So, summing over all possible path

lengths, we get the following upper bound: px(I) ≤
∑ℓ2

k=ℓNP (k, ℓ)(t/n)
k. By symmetry, a similar

argument gives the same upper bound on the probability py(I) that a right-left I-avoiding path Py

does not exist. So we get the following upper bound on the probability p(I) that either I-avoiding
top-bottom path doesn’t exist or an I-avoiding right-left path doesn’t exist for each fixed t-subset I:

p(I) ≤ 2
∑ℓ2

k=ℓNP (k, ℓ)(t/n)
k. Finally, taking a union bound over all

(
n
t

)
possible t-colour subsets I,

we get an upper bound on the probability p that the colouring Crand is not Weakly t-Reliable of the

form p ≤ 2
∑ℓ2

k=ℓNP (k, ℓ)(t/n)
k
(
n
t

)
. Using the bound on NP (k, ℓ) from Lemma 4.5, we get

p ≤ 2c(µ)ℓ3(µt/n)ℓ
(
n

t

)
. (6)

Since n/t ≥ R > µ, it is clear that this upper bound on p is less than 1 for sufficiently large ℓ. In
fact, it suffices to take ℓ = O(log(

(
n
t

)
)/ log(n/(µt))) = O(n), as claimed. Now suppose we fix δ > 0

and we want to find a lower bound on ℓ such that the error probability p ≤ δ. From (6) and using
n/t ≥ R we see that p ≤ δ is satisfied as long as

ℓ log(R/µ)− 3 log(ℓ) ≥ log(2c(µ)Nδ−1), (7)

where N =
(
n
t

)
. Take ℓ = b log(N)/ log(R/µ). Plugging this choice of ℓ into (7), and using the fact

that N ≥
(⌈R⌉

1

)
≥ R for all n ≥ R (since N =

(
n

n/R

)
increases monotonically with n), we conclude

18

that (7) is satisfied if the constant b is sufficiently large such that (5) holds. This completes the
proof. ⊓⊔

Combining Theorem 4.1 (applied with n′ = R · t ≤ n colours from [n] for constant R > µ) with
Lemmas 4.1, 4.2, 4.4 and 4.5, we have

Corollary 4.2 For any constant R > 2.948, if t ≤ n/R, there exists a black box t-private protocol
for fG with communication complexity O(nt2) group elements. Moreover, for any δ > 0, we can
construct a probabilistic algorithm, with run-time polynomial in n and log(δ−1), which outputs a
protocol Π for fG such that the communication complexity of Π is O(nt2 log2(δ−1)) group elements
and the probability that Π is not t-private is at most δ.

Remark. Our computational experiments indicate that t > n/2.948 can be achieved with moder-
ate values of ℓ – for example, for n = 24, t = 11 (i.e. t ≈ n/2.182), we found a t-Reliable n-Colouring
of Gtri(ℓ, ℓ) with ℓ = 350, which is much smaller than

(
n
t

)
≈ 2.5 · 106.

4.5 Generalisations and Other Results
General functions over G. Some applications may require n-party computation of more general
functions over G (using only the group operation) instead of fG. The most general such function is
of the form f ′

G(x1, . . . , xm) = x1 . . . , xm, where m ≥ n and each of the n parties holds one or more
xi’s. Our reduction from Section 4.2 (and hence all our protocols) trivially extends to this most
general case in the natural way.

General adversary structures. One may also consider more general adversary structures in place
of the t-threshold structure. With the exception of our second construction in Section 4.4, all other
results in the paper trivially generalise to the case of a Q2 adversary structure A, in which no
pairwise union of collusions in A covers all n parties [14]. In particular, the generalisation of the first
construction in Section 4.4 has communication complexity O(n|A|2) group elements.

More efficient protocols for small t. For the cases t ∈ {1, 2}, we have managed to design explicit
t-private black-box protocols for fG with linear communication complexity (O(n) group elements)
and optimal collusion resistance. These protocols and their analysis can be found in Appendices E
and F. We have also implemented a computer program for finding t-Reliable n-Colourings of a given
graph, with which one can easily construct efficient protocols for small values of n, t (avoiding the
error probability δ of Theorem 4.1).
General Boolean Functions. Here, we briefly review a method due to Barrington [3], which shows
how to efficiently transform an arbitrary Boolean circuit C (consisting of AND and NOT gates) into
a circuit C ′ over the non-Abelian group S5 (consisting of S5 multiplication gates), which computes
the same Boolean function. We then explain a variant of our reduction from Section 4.2 showing how
to reduce the secure computation of C ′ to the same shared 2-product subprotocol. This reduction
demonstrates how our techniques can be applied to general secure multiparty computation.

In the following, for a group G, we define an n-input 1-output G-circuit C as a circuit (directed
acyclic graph) with n input nodes, one output node, and two types of gates (corresponding to all
other circuit nodes):

1. Mult: Given two inputs x and y in G, the gate output is x · y ∈ G.

2. CMultα,β: Given one input x ∈ G, the gate output is α · x · β ∈ G (note that the constants
α, β ∈ G are built into the gate).

We denote by fC : Gn → G the function computed by the G-circuit C. Let 1G denote the identity
element of G. For some fixed σ ∈ G\{1G}, let ϕσ : {0, 1} → G denote the encoding function mapping
0 to 1G and 1 to σ. We say that a G-circuit C computes a Boolean function g if there exists σ ∈ G
such that g(x1, . . . , xn) = ϕ−1

σ (fC(ϕσ(x1), . . . , ϕσ(xn))) for all (x1, . . . , xn) ∈ {0, 1}n.
Since Barrington’s result is presented in a different context than in [3], we provide a proof adapted

from [3] for completeness.

19

Theorem 4.2 (Adapted from [3]) Let C be a Boolean circuit consisting of NA 2-input AND
gates, NN NOT gates, and depth d. Then there exists an S5-circuit C

′ which computes the Boolean
function computed by C. The circuit C ′ contains N ′

M = 3NA Mult gates and N ′
CM = 4NA + NN

CMult gates, and has depth d′ ≤ 4d.

Proof. It suffices to show an S5-circuit for computing the AND function (using 3 Mult gates and 4
CMult gates) and another for computing the NOT function (using 1 CMult gate).

We recall that two elements x, y ∈ S5 are called conjugates if there exists h ∈ S5 such that
x = h · y · h−1. It is easy to check that conjugacy is an equivalence relation, and hence partitions
S5 into conjugacy equivalence classes. Barrington’s method is based on the conjugacy class J of all
5-cycles of S5. In particular, J contains two distinct elements σ1 = (12345) and σ2 = (13542) whose
commutator c = [σ1, σ2] = σ1σ2σ

−1
1 σ−1

2 = (13254) is also in J . Furthermore, it is clear that σ−1
1 is

also in J .
For x ∈ {0, 1}, and σ ∈ J , let xσ = ϕσ(x) denote the encoding relative to σ. First, we observe

that for σ, σ′ ∈ J , we can convert an encoding of x relative to σ to an encoding of x relative to σ′

using one CMult gate, namely xσ′ = hσ,σ′xσh
−1
σ,σ′ , where hσ,σ′ satisfies σ′ = hσ,σ′σh−1

σ,σ′ and exists by
conjugation of σ, σ′.

The AND function z = AND(x, y) can be computed by the following S5 circuit, relative to the
encoding ϕσ1 . Given inputs xσ1 , yσ1 ∈ S5:

• Compute by encoding conversion (using 3 CMult gates) xσ−1
1
, yσ2 , yσ−1

2
.

• Compute (using 3 Mult gates) zc = xσ1yσ2xσ−1
1
yσ−1

2
(note that zc = [xσ1 , yσ2] is an encoding of

z = AND(x, y) relative to c = [σ1, σ2]).

• Compute by encoding conversion (using a CMult gate) zσ1 .

The NOT function can be computed using one CMult gate because NOT (x)σ−1
1

= xσ1 · σ−1
1 . The

composition of multiplication by σ−1
1 and the encoding conversion from σ−1

1 to σ1 can be combined
into one CMult gate. �
Next, we construct a protocol

∏
(C ′,

∏(x)
S ,

∏(y)
S) for private computation of the S5-circuit C ′ with

n input nodes corresponding to the n protocol inputs, using a pair of compatible shared 2-product

subprotocols
∏(x)

S and
∏(y)

S (see Definition 4.2) by a variant of the reduction from Section 4.2. We

assume that
∏(x)

S (resp.
∏(y)

S) satisfy x-preserving (resp. y-preserving) strong t-privacy, with sharing
parameter ℓ and share ownership functions Ox,Oy,Oz.
To simplify the protocol description, we assume the default sharing of node values is an Ox-sharing,
which is converted to an Oy-sharing when required using the following conversion subprotocol:

• Subprotocol Convert (Ox to Oy Sharing Conversion): Given an Ox sharing (sx(1), . . . , sx(ℓ)) of
x, where party POx(j) holds sx(j) for j = 1, . . . , ℓ. P1 (or any other arbitrary party) computes
a random sharing sy(1) · · · sy(ℓ) = 1S5 of the identity element, and sends sy(j) to party POy(j)

for j = 1, . . . , ℓ. Then shared 2-product subprotocol
∏(y)

S is run on the shared x value (as the

left input to
∏(y)

S), and the shared 1S5 value (as the right input to
∏(y)

S), resulting in an Oy

sharing of x.

The protocol
∏

begins with each party Pj computing an ℓ-of-ℓ sharing of its input xj (xj is assigned
to be the value of the jth input node of C ′), and distributing these shares to the n parties according
to the share ownership function Ox. Then, for each internal node N of C ′:

• If nodeN is aMult gate with incomingOx-shared values x = sx(1) · · · sx(ℓ) and y = sy(1) · · · sy(ℓ),
run subprotocol Convert to convert theOx-sharing sy(1) · · · sy(ℓ) of y to anOy-sharing s

′
y(1) · · · s′y(ℓ)

of y. Then, run 2-product subprotocol
∏(x)

S on the sharings (sx(1), . . . , sx(ℓ)) and (s′y(1), . . . , s
′
y(ℓ)),

resulting in an Ox-sharing of node N ’s output value x · y.

20

• If node N is a CMultα,β gate with incoming Ox-shared value x = sx(1) · · · sx(ℓ), party Ox(1)
replaces its input share sx(1) with α · sx(1), and party Ox(ℓ) replaces its input share sx(ℓ) with
sx(ℓ) · β.

Eventually, this recursive process gives an ℓ-of-ℓ sharing of the output node value of C ′, which is
broadcast to all parties.

The following lemma establishes the t-privacy of protocol
∏
(C ′,

∏(x)
S ,

∏(y)
S), assuming the correctness

and strong t-privacy of subprotocols
∏(x)

S ,
∏(y)

S . The proof is similar to that of Lemma 4.1.

Lemma 4.7 For any S5-circuit C ′ with n input nodes, if the n-party compatible shared 2-product

subprotocols
∏(x)

S (resp.
∏(y)

S) satisfy correctness and x-preserving (resp. y-preserving) strong t-

privacy (see Definition 4.1 and Definition 4.2), then the protocol
∏
(C ′,

∏(x)
S ,

∏(y)
S) is an n-party

t-private protocol for computing the function fC′(x1, . . . , xn).

Combining Theorem 4.2, Lemma 4.7 and Theorem 4.1, we obtain the following.

Corollary 4.3 Let C be an AND/NOT Boolean circuit with NA AND gates. For any δ > 0, if
t < n/2.948, we can construct a probabilistic algorithm, with run-time polynomial in n and log(δ−1),
which outputs a protocol

∏
for C such that the communication complexity of

∏
is O((n+ log δ−1)2 ·

NA) bits.

5 Conclusions

We showed how to design black-box t-private protocols for computing the n-product function over
any finite group by reducing the problem to a combinatorial graph colouring problem, using tools
from communication security [10]. Our work raises some interesting combinatorial questions. For
example, for our PDAG Gtri(ℓ, ℓ), what is the shape of the ‘tradeoff’ curve Rmax(ℓ) relating the
maximal achievable (using a suitable colouring) secure collusion resistance Rmax = t/n to the graph
size ℓ? (we showed that Rmax(ℓ) ≥ 1/2.948 for ℓ = O(t) and Rmax(ℓ) = 1/2 for ℓ ≥

(
2t+1
t

)
).

More generally, what is the largest collusion resistance achievable with an admissible PDAG of
size polynomial in n, and what kind of PDAG achieves this optimum? There are also interesting
cryptographic questions. First, can our black-box protocols be efficiently strengthened to yield black-
box protocols secure against active adversaries? Second, can the communication complexity O(nt2) of
our t-private protocols be reduced further? Third, does there exist an efficient (run-time polynomial
in n) deterministic algorithm to generate a Weakly t-Reliable n-Colouring of Gtri(ℓ, ℓ) (or some other
admissible PDAG) given n, t as input?

Acknowledgements. This research was supported by ARC research grants DP0451484, DP0558773,
DP0663452 and DP0665035. Ron Steinfeld’s research was supported in part by a Macquarie Univer-
sity Research Fellowship (MURF). Huaxiong Wang’s research was supported in part by the Singapore
Ministry of Education grant (T206B2204). Yvo Desmedt is grateful for the research visits to Mac-
quarie University. The authors also thank Chris Charnes and Scott Contini for helpful discussions
about this work, and Yuval Ishai for pointing out the applicability of our results to general multiparty
computation via the work of Barrington [3]. We thank Christophe Tartary for his assistance with
Sec. 4.5.

References

[1] N. Alon and J. Spencer. The Probabilistic Method. Wiley-Interscience, 2000.

[2] J. Bar-Ilan and D. Beaver. Non-Cryptographic Fault-Tolerant Computing in a Constant Number of
Rounds of Interaction. In Symposium on Principles Of Distributed Computing (PODC), pages 201–209,
New York, 1989. ACM.

21

[3] D.A. Barrington. Bounded-Width Polynomial-Size Branching Programs Recognize Exactly Those Lan-
guages in NC1. In Proceedings of the eighteenth annual ACM Symp. Theory of Computing, STOC, pages
1–5, 1986.

[4] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-Cryptographic Fault-
Tolerant Distributed Computation. In Proc. 20-th STOC, pages 1–10. ACM, 1988.

[5] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure protocols. In Proceedings of
the twentieth annual ACM Symp. Theory of Computing, STOC, pages 11–19, May 2–4, 1988.

[6] H. Chen and R. Cramer. Algebraic Geometric Secret Sharing Schemes and Secure Multi-Party Com-
putations over Small Fields. In CRYPTO 2006, volume 4117 of LNCS, pages 521–536, Berlin, 2006.
Springer-Verlag.

[7] H. Chen, R. Cramer, S. Goldwasser, R. de Haan, and V. Vaikuntanathan. Secure Computation from
Random Error Correcting Codes. In EUROCRYPT 2007, volume 4515 of LNCS, pages 291–310, Berlin,
2007. Springer-Verlag.

[8] R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz. Efficient Multi-Party Computation Over Rings. In
EUROCRYPT 2003, volume 2656 of LNCS, pages 596–613, Berlin, 2003. Springer-Verlag.

[9] Y. Desmedt, J. Pieprzyk, R. Steinfeld, and H. Wang. On Secure Multi-Party Computation in Black-Box
Groups. Full version of this paper, 2007. Available at http://www.comp.mq.edu.au/∼rons/.

[10] Y. Desmedt, Y. Wang, and M. Burmester. A Complete Characterization of Tolerable Adversary Structures
for Secure Point-to-Point Transmissions. In ISAAC 2005, volume 3827 of LNCS, pages 277–287, Berlin,
2005. Springer-Verlag.

[11] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Trans. on Information Theory,
22:644–654, 1976.

[12] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE
Tran. Info. Theory, IT-31(4):469–472, 1985.

[13] O. Goldreich. Foundations of Cryptography, Volume II. Cambridge University Press, Cambridge, 2004.

[14] M. Hirt and U. Maurer. Complete Characterization of Adversaries Tolerable in Secure Multi-Party
Computation (Extended Abstract). In Symposium on Principles Of Distributed Computing (PODC),
pages 25–34, New York, 1997. ACM.

[15] E. Kushilevitz. Privacy and Communication Complexity. SIAM J. on Discrete Mathematics, 5(2):273–
284, 1992.

[16] S. Magliveras, D. Stinson, and T. van Trung. New approaches to Designing Public Key Cryptosystems
using One-Way Functions and Trapdoors in Finite Groups. Journal of Cryptology, 15:285–297, 2002.

[17] J. Noonan. New Upper Bounds for the Connective Constants of Self-Avoiding Walks. Journal of Statistical
Physics, 91(5/6):871–888, 1998.

[18] S. Paeng, K. Ha, J. Kim, S. Chee, and C. Park. New Public Key Cryptosystem Using Finite Non Abelian
Groups. In CRYPTO 2001, volume 2139 of LNCS, pages 470–485, Berlin, 2001. Springer-Verlag.

[19] A. Pönitz and P. Tittmann. Improved Upper Bounds for Self-Avoiding Walks in ZZd. The Electronic
Journal of Combinatorics, 7, 2000.

[20] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems. Communications of the ACM, 21(2):120–128, 1978.

[21] A. Shamir. How To Share a Secret. Communications of the ACM, 22:612–613, 1979.

[22] P. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum
Computer. SIAM J. Comp., 26(5):1484–1509, 1997.

22

A Precise Specification of Protocol Π(T,ΠS)

For the specification of Π below, we use the following notation. Let σT denote the number of nodes
in the binary tree T . Assume that the nodes of T are indexed by integers 1, 2, . . . , σT , such that (1)
The n leaf nodes of T are indexed by the integers {1, . . . , n} from left to right (such that leftmost
leaf of T is node 1 and for i = 1, . . . , n, the ith leaf node from the left is node i), and (2) Internal
nodes of T have indices greater than the indices of both their children nodes. For each node i of T
(except the root node), we call i an L node (resp. R node) if i is a left child (resp. right child) of
the parent node of i. For a parent node i, we denote by L(i) (resp. R(i)) the left (resp. right) child
node of i.

n-Product Protocol Π(T,Π
(x)
S ,Π

(y)
S)

Input: For i = 1, . . . , n, party Pi holds input xi ∈ G.

1. For i = 1, . . . , n, party Pi generates a uniformly random ℓ-of-ℓ sharing sxi = (sxi(1), . . . , sxi(ℓ)) of
xi = sxi(1) · · · sxi(ℓ). If leaf node i of T is an L node (resp. R node), then for j = 1, . . . , ℓ, Pi sends jth
share sxi(j) to party POx(j) (resp. POy(j)). Label leaf node i of T with sxi .

2. For each internal node i = n + 1, . . . , σT of T , parties P1, . . . , Pn run subprotocol Π
(c)
S (where c = x

if node i is an L node or the root node, and c = y if i is an R node) on subprotocol inputs s
(i)
x and

s
(i)
y being the labels of the left (resp. right) children nodes L(i) (resp. R(i)) of node i (note that at

this stage, for j = 1, . . . , ℓ, party POx(j) holds jth share s
(i)
x (j) of s

(i)
x and party POy(j) holds jth share

s
(i)
y (j) of s

(i)
y). Label node i with the output shares s

(i)
z of the subprotocol Π

(c)
S . At the end of the

subprotocol run, for each j = 1, . . . , ℓ, party POz(j) holds an output share s
(i)
z (j). If node i is an L node

(resp. R node), then for j = 1, . . . , ℓ, POz(j) sends jth output share sz(j) to party POx(j) (resp. POy(j))
to prepare for next subprotocol run. Otherwise, if i is the root node, go to the next step.

3. For each j = 1, . . . , ℓ, party POz(j) broadcasts to all parties the share s∗z(j), where s
∗
z = (s∗z(1), . . . , s

∗
z(ℓ))

is the label of the root node of T .

4. All parties compute protocol output y = s∗z(1) · · · s∗z(ℓ).

B Proof of Lemma 4.1

The correctness of Π
(x)
S and Π

(y)
S implies that the label of each internal node α in T is a ℓ-of-ℓ sharing

of the product of the values whose sharings are the labels of the children nodes of α. It follows easily
by induction that the label of the root node of T is a ℓ-of-ℓ sharing of y = x1 · · ·xn, establishing the

correctness of Π(T,Π
(x)
S ,Π

(y)
S).

To establish the t-privacy, we construct a simulator algorithm S for the view of a t-collusion
I ⊂ [n]. Given I, {xi}i∈I and protocol output y = x1 · · ·xn, the algorithm S runs as follows.

1. For each leaf node i = 1, . . . , n of T , S chooses ℓ − 1 independent uniformly random group
elements to simulate the ℓ−1 shares {sxi(j)}j∈[ℓ]\{j∗} of xi sent out by party Pi to parties POc(j)

(where c = x if i is an L node and c = y if i is an R node) for j ∈ [ℓ] \ {j∗c }, where j∗x, j
∗
y ∈ [ℓ]

(which depend on I) are the share indices which are not simulated/input by/to simulator SΠS

of subprotocols Π
(x)
S and Π

(y)
S (see Def. 4.1). S labels leaf node i with {sxi(j)}j∈[ℓ]\{j∗c }.

2. For each internal node i = n+1, . . . , σT of T , S runs simulator SΠS
of subprotocol Π

(c)
S (where

c = x if i is an L node and c = y if i is an R node) on input (I, {sx(j)}j∈[ℓ]\{j∗x}, {sy(j)}j∈[ℓ]\{j∗y}),
where {sx(j)}j∈[ℓ]\{j∗x}, {sy(j)}j∈[ℓ]\{j∗y} are the labels of the left and right children nodes of node

i, respectively. Simulator S
Π

(c)
S

outputs a simulation of the internal view ⟨VIEWΠS(i)
I ⟩ of I in

Π
(c)
S at node i, along with simulated output shares (except the j∗cth) {s(i)z (j)}j∈[ℓ]\{j∗c } of Π

(c)
S .

S labels node i of T with {s(i)z (j)}j∈[ℓ]\{j∗c }.

23

3. After labelling all nodes of T , S has a complete simulation of the view of I in Π(T,Π
(c)
S),

except for the j∗th share s∗z(j
∗) of root node label, broadcast by party POz(j∗) in the last

round. However, we know that the root node shares satisfy s∗z(1) · · · s∗z(ℓ) = x1 · · ·xn
def
= y.

Accordingly, from the known value of y and the simulated shares {sz(j)}j∈[ℓ]\{j∗}, s∗z(j∗) is
uniquely determined and simulated by S by computing it as follows:

s∗z(j
∗) = (s∗z(1) · · · s∗z(j∗ − 1))−1 · y · (s∗z(j∗ + 1) · · · s∗z(ℓ))−1.

Note that for each i ∈ [n], the simulation of the ℓ−1 shares sent in the first round by Pi is perfect
due to the perfect ℓ-of-ℓ secret sharing used by Pi to share xi. Furthermore, the unsimulated share
sxi(j

∗
c) of xi is not in the view of I since Oc(j

∗
c) /∈ I.

For each internal node i > n of T , the perfect simulation of ⟨VIEWΠS(i)
I , {s(i)z (j)}j∈[ℓ]\{j∗}⟩ given

the view so far follows inductively from the strong t-privacy of Π
(c)
S , and the fact that the internal

view in Π
(c)
S at node i depends only on the inputs to Π

(c)
S at node i, that is:

Pr[⟨VIEWΠS(i)
I , {s(i)z (j)}j∈[ℓ]\{j∗c }⟩|{⟨VIEW

ΠS(k)
I , {s(k)z (j)}j∈[ℓ]\{j∗}⟩}k=1,...,i−1]

= Pr[⟨VIEWΠS(i)
I , {s(i)z (j)}j∈[ℓ]\{j∗c }⟩|{s

(i)
x (j)}j∈[ℓ]\{j∗x}, {s

(i)
y (j)}j∈[ℓ]\{j∗y}]

= Pr[S
Π

(c)
S

({s(i)x (j)}j∈[ℓ]\{j∗x}, {s
(i)
y (j)}j∈[ℓ]\{j∗y})

|{s(i)x (j)}j∈[ℓ]\{j∗x}, {s
(i)
y (j)}j∈[ℓ]\{j∗y}]. (8)

It follows that the full view of I in Π(T,Π
(x)
S ,Π

(y)
S) is perfectly simulated by S, as claimed. The

complexity claims are easy to verify. This proves the general result assuming symmetric strong
t-Privacy of ΠS .

⊓⊔

C Proof of Lemma 4.2

The correctness of ΠS(G, C) is immediate from the fact that, due to the ordering condition (1) in
Definition 4.3, the product of node labels at each row of G is preserved to be equal to x · y.

To establish the strong t-privacy of ΠS(G, C), let I ⊆ [n] denote an arbitrary t-colour collusion.
Since C is t-reliable there exists an I-avoiding path PATHx in G from j∗xth x-input node to the j∗z th
output node, and an I-avoiding path PATHy from the j∗yth y-input to the j∗z th output node. On
input (I, {sx(j)}j∈[n]\{j∗x}, {sy(j)}j∈[ℓ]\{j∗y}), the simulator SΠS

runs as follows:

• For each i = 1, . . . ,m and j = 1, . . . ,m:

– If node (i, j) is not on PATHx or PATHy, follow the protocol ΠS to label node (i, j)
and all its outgoing edges (using the product of incoming edge values if i > 1 or with
appropriate simulator input if i = 1).

– If node (i, j) is on PATHx or PATHy, label all outgoing edges of node (i, j) which go to
nodes not on PATHx or PATHy by independent random elements of G.

Since PATHx and PATHy are I-avoiding, the edge values simulated by SΠS
contain the view of

I, and SΠS
also simulates the values of all output nodes except the j∗z th output (which is the only

output node on PATHx or PATHy).
Let V denote a fixed value for the labels of edges NOT on PATHx or PATHy. We show that, in

the real subprotocol ΠS , for each fixed choice of the ‘missing inputs’ sx(j
∗
x) and sy(j

∗
y) there exists a

unique value for the random group elements {ri} chosen at nodes on PATHx and PATHy, which is
consistent with the view V . Thus the simulation is perfect, as required.

24

To each outgoing edge of a node on PATHx or PATHy (we call such a node a ’path node’ from
now on) in the real subprotocol ΠS we associate an edge equation relating the label of the edge to the
random elements {ri} chosen by path nodes, the fixed view V , and the values sx(j

∗
x) and sy(j

∗
y). For

an outgoing edge of a node on the path, we say that its edge equation is a view edge equation if the
edge is not on the path. Our problem is therefore to show that the collection of view edge equations
always has a unique solution for the {ri} (for any fixed values of V , sx(j

∗
x) and sy(j

∗
y)). To do this,

we show that one can order the view edge equations {Ei} and the random elements {ri} chosen by
path nodes, so that for all i, the following ‘good ordering’ condition is satisfied:

• Good Ordering Condition: The ith view edge equation Ei is of the form

α1riα2 = α3, (9)

where ri is new (i.e. ri does not appear in any of the first i−1 view edge equations E1, . . . , Ei−1),
while α1, α2, α3 are group elements determined by ‘old’ ri’s (i.e. r1, . . . , ri−1) and the fixed
values V , sx(j

∗
x) and sy(j

∗
y).

If such a good ordering exists, it is clear that a unique solution for the {ri} exists (where for all i, the
ith view equation Ei uniquely determines ri = α−1

1 α3α
−1
2 in terms of already determined previous

rj ’s and fixed values).
We now construct a good ordering of the view edge equations {Ei} and path random values {ri}.
First observe that since PATHx and PATHy both exit at output node j∗z , the two paths must

meet at some node, and then continue along the same path to output j∗z . Except for the unique
meeting node where PATHx and PATHy meet, we will regard the common nodes as belonging to
PATHx. Apart from the meeting node, we can classify the nodes on PATHx and PATHy into three
classes: minimum path nodes (which have two incoming edges on the path and no outgoing edges
on the path), maximum path nodes (which have no incoming edges on the path and two outgoing
edges on the path) and middle path nodes (which have one incoming and one outgoing edge on the
path, or are input/output nodes). Refer to Figure 6 for an example.

Let us first consider the nodes on PATHy. By Proposition 4.1, we may assume (without changing
the protocol distribution) that in the real subprotocol ΠS , when a middle PATHy node shares out
its node label v among its q outgoing edges, it sends new random elements (labels) ri on each of
the q− 1 outgoing edges NOT on PATHy. We take the view edge equations corresponding to those
nodes to be the first edge equations in our good ordering. It is clear that the good ordering condition
(9) is trivially satisfied, since these equations have the form ri = α, where ri is new and α is fixed
by V .

Suppose there are k minimum/maximum nodes on the PATHy (since each minimum node is
always followed by a maximum node, the number of maxima and minima is always equal). Note that
if the meeting node at the intersection between PATHx and PATHy has an outgoing (downward)
edge along PATHy, we regard it here as the last maximum node of PATHy. For each j = 1, . . . , k,
applying Proposition 4.1 again to the jth maximum path node having q ≥ 2 outgoing edges, we
can assume that the q − 2 outgoing edges NOT on the path are labelled with new random elements
ri. We take the corresponding view edge equations as the next ones in our ordering, again trivially
satisfying (9). Of the two outgoing edges on the path from the jth maximum node, one of them goes
to an earlier node on the path (towards the jth ’minimum’ path node), and we may assume that
this edge is labelled with a new (q − 1)th random element r∗j (note that r∗j does NOT appear in any
view edge equation so far and is left undetermined for now). The remaining outgoing edge on the
path from the jth maximum therefore has a label of the form α1(r

∗
j)

−1α2, where α1 and α2 are fixed
by V and the old ri’s. Therefore, it is easy to see that for each j = 1, . . . , k the label vj,j on any path
edge between the jth minimum and the jth maximum is of the form

vj,j = α1r
∗
jα2, (10)

25

Figure 6: Example of an admissible PDAG G with sharing parameter ℓ = 3 (node colours are not
indicated). For a given collusion I, an example I-avoiding path PATHx is shown in heavy black,
and an example I-avoiding path PATHy (until the meeting with PATHx) is shown in heavy gray.
Minimum path nodes are marked by a dotted triangle with a horizontal edge above the node, whereas
maximum path nodes are marked by a dotted triangle with a horizontal edge below the node. In this
example, we have j∗x = 2 and j∗y = 3, PATHx has 3 maximum and 3 minimum nodes, and PATHy

has 1 maximum and 1 minimum node.

where α1 and α2 are fixed by V . Similarly, for j = 1, . . . , k − 1, the label vj,j+1 on any path edge
between the jth maximum and and the (j + 1)th minimum is of the form

vj,j+1 = β1(r
∗
j)

−1β2, (11)

where β1 and β2 are fixed by V .
Suppose we have visited the first j − 1 minimum nodes and consider the jth minimum node.

Applying Proposition 4.1 to the jth ’minimum’ path node for j = 1, . . . , k, we see that out of the q
outgoing edges not on the path of the jth minimum node, we can assume that q−1 of those outgoing
edge labels are new random elements ri, giving q−1 new edge view equations trivially satisfying (9),
and it remains to consider the the view edge equation corresponding to the qth outgoing edge label,
which is determined from all other incoming and outgoing edges of the jth minimum node. This
equation has the form

γ1v
±1
j−1,jγ2v

±1
j,j γ3 = γ4, (12)

where γi’s are fixed by V , vj−1,j is the label on the path edge entering the jth minimum node, and
vj,j is the value on the path edge exiting the jth minimum node.

For j = 1, the label v0,1 on the incoming path edge to the first minimum node from an earlier
node on the path (i.e. towards the input node) has the form v0,1 = β1sy(j

∗
y)β2, with β1, β2 fixed by

V . Using (10), the label v1,1 on the incoming path edge to the first minimum node from the next
node on the path (i.e. towards the first maximum node) has the form v1,1 = α1r

∗
1α2, with α1, α2 fixed

by V . Plugging these expressions for v0,1 and v1,1 into (12), we see that since r∗1 is ‘new’ (recall that
r∗1 has only appeared in equations of edges on the path so far, and not in any view edge equation),
the condition (9) is satisfied for j = 1.

For j > 1, using (11), we have vj−1,j = β1(r
∗
j−1)

−1β2 with β1, β2 fixed by V , while using (10),
we have vj,j = α1r

∗
jαj , with α1, α2 fixed by V . Plugging these expressions for vj−1,j and vj,j into

(12), and noting that r∗j−1 is ’old’ (has appeared in a view edge equation for an outgoing edge of the
(j − 1)th minimum node) while r∗j is ‘new’, we see that condition (9) is also satisfied for 1 < j ≤ k.

26

Figure 7: The four subcases of Lemma 4.6: (a) Subcase 1, (b) Subcase 2, (c) Subcase 3, (d) Subcase
4. In each subcase, the gray shaded region shows the connected set S1, the contracted path P ′ is
indicated by the dotted region, the edges of path Px are shown in heavy black, and the edges on the
portion of path P ′

x which goes along P ′ are shown in heavy gray.

This completes the description of the good ordering of all view edge equations of nodes on PATHy.
We now apply the same argument as above to add the view edge equations of nodes on PATHx in
a good ordering. The only differences in this case are that (1) sx(j) takes the place of sy(j

∗
y), and

(2) the effect of the ‘meeting’ node of PATHx and PATHy. The only effect of (2) on the above
argument is that in the qth view edge equation (12) for the first minimum node on PATHx that
follows the meeting node, one of the αi’s will depend also on the r∗k random value which appeared
in the PATHy view edge equations. Since the r∗k is ‘old’, the good ordering condition (9) is still
satisfied.

We conclude that all random values of path nodes are determined uniquely, for any fixed values
of sx(j

∗
x),sy(j

∗
y) and view V . This completes the proof of the Lemma. ⊓⊔

D Proof of Lemma 4.6

The ‘if’ direction is immediate, since by planarity of Gtri(ℓ, ℓ), a right-left path must intersect any
top-bottom path at some node of Gtri(ℓ, ℓ).

For the ‘only if’ direction, suppose, towards a contradiction, that a set of nodes S is NOT a
minimal right-left path in Gtri(ℓ, ℓ) but is a minimal top-bottom cutset.

If S is a non-minimal right-left path, then it is possible to remove a node from S and still obtain a
right-left path, which, as explained in the ‘if direction’ above is still a top-bottom cutset, contradicting
the assumption that S is a minimal top-bottom cutset, as required.

The other case is that S is not a right-left path. In this case, if S is disconnected, it can be
partitioned into m ≥ 1 mutually disconnected but internally connected subsets S1, . . . , Sm. Consider
the connected subset S1. Let rmin, rmax denote the minimum (resp. maximum) row index over all
nodes in S1, and similarly let cmin, cmax denote the minimum (resp. maximum) column index over
all nodes in S1. There are several subcases:

Subcase 1: 2 ≤ rmin ≤ rmax ≤ ℓ − 1 and 2 ≤ cmin ≤ cmax ≤ ℓ − 1. In this case, the closed
rectangular path P in Gtri(ℓ, ℓ) connecting the 4 corner nodes (rmin − 1, cmin − 1),(rmin − 1, cmax +
1),(rmax + 1, cmax + 1),(rmax + 1, cmin − 1) clearly has the following two properties:

(1) The interior region enclosed by closed path P contains S1.

27

Figure 8: (a)-(f): The six types of contraction operations. In each case, the middle node is P (j)
and the edges connecting it to P (j − 1) and P (j + 1) are shown in heavy black. See text for further
details.

(2) No node on P is in S1.

Claim 1. The closed path P can be converted into a closed path P ′ that satisfies the above two
properties of P as well as the following third property:

(3) Each node on P ′ is adjacent to a node in S1 (we say that two nodes are adjacent if there is an
edge between them).

Before we prove this claim, we note that property (3) of P ′ implies that no node on P ′ is in Si for any
i ≥ 2, since otherwise S1 would be connected to Si, contrary to assumption. Together with property
(2), we conclude that no node on P ′ is in S. On the other hand, let n denote any node of S1. By
minimality of S, we know that there exists a top-bottom path Px which passes via node n, whereas
all other nodes on Px are not in S. Since by property (1), P ′ encloses S1, it follows by planarity of
Gtri(ℓ, ℓ) that Px must enter the region enclosed by P ′ via some node nin on P ′ and exit this region
via some other node nout on P ′. But this means that we can modify top-bottom path Px into another
top-bottom path P ′

x by replacing the portion of Px which passes via n (connecting nodes nin and
nout) by the portion of closed path P ′ that connects nin and nout (see Fig 7(a)). Since no nodes on
P ′ are in S, the resulting top-bottom path P ′

x does not pass via any node in S, contradicting the
assumption that S is a top-bottom cutset, as required.

Proof of Claim 1. Starting from the initial closed path P satisfying properties (1) and (2),
we repeatedly apply the following ‘contraction’ operation to P until we obtain the closed path P ′

satisfying (1),(2) and (3). The ‘contraction’ operation on P preserves properties (1) and (2), and
can always be applied if P does not satisfy property (3). On the other hand, each ‘contraction’
operation reduces the area enclosed by P , whereas by property (1), S is contained within P , so P
must always have a non-zero area. It follows that the ‘contraction’ operation can be applied at most
a finite number of times to P before we obtain P ′ satisfying (3) as well as (1) and (2), as required.

We now define the contraction operation on P . Suppose that P does not satisfy property (3).
Then there exists a sequence of 3 consecutive nodes P (j − 1), P (j), P (j + 1) along the closed path
P , where none of the nodes in Gtri(ℓ, ℓ) which are adjacent to P (j) are in S1. By symmetry consid-
erations, it suffices to consider the 6 possibilities for P (j − 1), P (j), P (j + 1) shown in Fig 8.

The ‘contraction operation’ for each of these cases consists of either adding a new node to P or
removing a node from P , and is shown in Fig 8 using the following notation: a circled node indicates
that the node is added to the path P , while a node enclosed with a triangle indicates that the node
is removed from P . In each case, an arrow pointing away from the added/removed node shows a
shaded area which is removed from the interior region of P by the contraction operation. Note that
in each of the 6 cases, the interior region of P may be on either left-hand or right-hand side of the
edges connecting P (j − 1), P (j), P (j +1), and accordingly, two contracting operations are shown for
each of the 6 cases. Also observe that nodes added to P are always adjacent to P (j) so that property
(2) of P is preserved, and no nodes are contained inside the shaded areas removed from the interior
region of P by the contraction operation, so property (1) of P is also preserved, as required. This
completes the proof of the claim. ⊓⊔

28

Subcase 2: rmin = 1, rmax = ℓ and either 2 ≤ cmin or cmax ≤ ℓ − 1. We may assume that
cmax ≤ ℓ − 1, since the other case cmin = 2 is handled analogously by symmetry. Let ct ≤ ℓ − 1
(resp. cb ≤ ℓ − 1) denote the column index of the rightmost node of S on row 1 (resp. row ℓ).
The ‘C-shaped’ path Pc in Gtri(ℓ, ℓ) connecting the 4 nodes (1, ct + 1),(1, cmax + 1),(ℓ, cmax + 1) and
(ℓ, cb+1), together with the left, bottom and top boundaries of Gtri(ℓ, ℓ) form a closed path P which
encloses S1. Thus P satisfies the properties (1) and (2) as in the previous subcase. Similarly to
Claim 1 in the first subcase, we can repeatedly apply a contraction operation to P until we obtain
P ′ satisfying (1), (2) and (3). The only differences in this subcase from the previous subcase are:

• In this subcase, the nodes (1, ct) and (ℓ, cb) in P are also in P ′, since they are already adjacent
to nodes of S1.

• The final path P ′ connects the top node (1, ct) to the bottom node (ℓ, cb) without passing via
a node in S. Hence P ′ is a top-bottom path not passing via S, contradicting the assumption
that S is a cutset.

Subcase 3: Exactly one of rmin = 1 or rmax = ℓ holds and exactly one of cmin = 1 or
cmax = ℓ holds. We may assume that rmin = cmin = 1 and rmax, cmax ≤ ℓ−1 since the other 3 cases
are handled analogously by symmetry. The ‘L-shaped’ path PL in Gtri(ℓ, ℓ) connecting the 3 nodes
(1, cmax +1),(rmax +1, cmax +1),(rmax +1, 1), together with the left and top boundaries of Gtri(ℓ, ℓ)
form a closed path P which encloses S1. Thus P satisfies the properties (1) and (2) as in the previous
subcase. Similarly to Claim 1 in the first subcase, we can repeatedly apply a contraction operation
to P until we obtain P ′ satisfying (1), (2) and (3). This path P ′ then contradicts the assumption
that S is a cutset by a similar argument as in the first subcase, namely bypassing the portion of a
top-bottom path passing via a node in S, with a portion along P ′ which does not contain nodes in
S. Note, however, that in this subcase, only exit node nout of Px on P ′ is guaranteed to exist (see
Fig 7(c) for an example), and P ′ connects a node on the top row to node nout, before continuing
along the original path Px to the bottom row.

Subcase 4: cmin = 1 and cmax = ℓ. This subcase implies (since S1 is connected) that S1

properly contains a right-left path, and hence is not a minimal cutset, contrary to assumption.
We conclude that in all cases, assuming that S is not a minimal right-left path but is a minimal

top-bottom cutset, leads to a contradiction. This completes the proof of the ‘only if’ direction. The
‘dual’ claims of the Lemma (stated in parantheses) follow by symmetry of the graph Gtri(ℓ, ℓ) under
a 90 degree rotation. This completes the proof of the Lemma. ⊓⊔

E A 1-Private n-Party Protocol

Theorem E.1 Let n ≥ 3 and G be a finite group. There exists a 1-private n-party protocol Π
for computing fG(x1, . . . , xn) = x1 · · ·xn which runs in 2n rounds and has total communication
complexity 2n group elements.

Proof. The protocol Π consists of the following 2n rounds (add/removing randomness phases):

• P1 → P2 : r1 · x1 for r1 ∈R G.

• P2 → P3 : r2 · r1 · x1 · x2 for r2 ∈R G, and so on up to round n− 1.

• ...

• Pn−1 → Pn : rn−1 · · · r1 · x1 · · ·xn−1 for rn−1 ∈R G.

• Pn → Pn−1 : rn−1 · · · r1 · x1 · · ·xn−1 · xn · rn for rn ∈R G.

• Pn−1 → Pn−2 : rn−2 · · · r1 · x1 · · ·xn · rn, and so on up to round 2n− 2.

29

• ...

• P1 → Pn : x1 · · ·xn · rn.

• Pn → ALL : x1 · · ·xn.

Let y = x1 · · ·xn. The view of P1 is (r1 · y · rn, y), which is independent of (x2, . . . , xn) satisfying
x1 · · ·xn = y. For 1 < i < n, the view of Pi is (ri−1 · · · r1) ·y ·xi ·(xi+1 · · ·xn), ri · (ri−1 · · · r1) ·y ·rn, y),
which is independent of {xj}j ̸=i satisfying x1 · · ·xn = y. The view of Pn is ((rn−1 · · · r1) · y · xn−1, y ·
rn, y), which is independent of (x1, . . . , xn−1) satisfying x1 · · ·xn = y. Thus Π is 1-private, completing
the proof. ⊓⊔

F A 2-Private n-Party Protocol

Theorem F.1 Let n ≥ 5 and G be a finite group. There exists a 2-private n-party protocol Π
for computing fG(x1, . . . , xn) = x1 · · ·xn which runs in n + 2 rounds and has total communication
complexity O(n) group elements.

Proof. We begin by presenting an n-party protocol SnowBalln which is 2-private for n ≥ 8. Using the
results of the security analysis of this protocol we will then show how to ‘patch’ the cases n ∈ {5, 6, 7}
to make them 2-private by “thwarting” certain collusions with extra randomisation.

Protocol SnowBalln

• Round 1. Pi → Pi+1 : ri,i+1 mod n for each i ∈ {1, . . . , n}, where ri,i+1 ∈R G .

• Round 2. P1 → P4 : M4,s = r1x1r
−1
1,2 and P2 → P4 : M4,c = r1,2x2r

−1
2,3 (where r1 ∈R G). P4

multiplies to get r1x1x2r
−1
2,3.

• Round 3. P4 → P5 : M5,s = r1x1x2r
−1
2,3 and P3 → P5 : M5,c = r2,3x3r

−1
3,4. P5 multiplies to get

r1x1x2x3r
−1
3,4.

...

• Round i (3 ≤ i ≤ n− 2). Pi+1 → Pi+2 : Mi+2,s = r1x1 · · ·xi−1r
−1
i−1,i and Pi → Pi+2 : Mi+2,c =

ri−1,ixir
−1
i,i+1. Pi+2 multiplies to get r1x1 · · ·xir−1

i,i+1.

...

• Round n−1. Pn → P2 : M2,s = r1x1 · · ·xn−2r
−1
n−2,n−1 and Pn−1 → P2 : M2,c = rn−2,n−1xn−1r

−1
n−1,n.

P2 multiplies to get r1x1 · · ·xn−1r
−1
n−1,n.

• Round n. P2 → P3 : M3,s = r1x1 · · ·xn−1r
−1
n−1,n and Pn → P3 : M2,c = rn−1,nxnr

−1
n,1. P3

multiplies to get r1x1 · · ·xnrn,1.

• Round n+ 1. P3 → P1: M1,s = r1x1 · · ·xnrn,1. P1 removes r1 and rn,1 to get x1 · · ·xn.

• Round n+ 2. P1 → ALL: y = x1 · · ·xn.

The protocol is illustrated in Fig. 9.
In the following security analysis we divide all possible 2 player collusions {i, j}1≤i<j≤n into several

cases and subcases. For each of these cases, we write each of the received messages in the view of the
colluding parties. For each of these viewed messages, we underline the randomness factor (if it exists)
which is independent of the collusion’s view so far (and hence allows the collusion to simulate the

30

Figure 9: Protocol SnowBalln.

message by an independent random group element). In some cases such an independent randomness
factor does not exist, but the received message can be simulated by the collusion by computing it
from the other (simulatable) view of the collusion and the protocol output y. We indicate in brackets
the reasoning and/or conditions for the simulation to work.

• Case {i, j} with 4 ≤ i < j ≤ n:

– View(i): Mi,s = r1x1 · · ·xi−3r
−1
i−3,i−2 (i, j ̸∈ {i − 3, i − 2}), Mi,c = ri−3,i−2xi−2r

−1
i−2,i−1

(i, j ̸∈ {i− 1, i− 2}).
– View(j): Mj,s = r1x1 · · ·xj−3r

−1
j−3,j−2 (1 ̸∈ {i, j}), Mj,c = rj−3,j−2xj−2r

−1
j−2,j−1 (either

i ̸∈ {j − 3, j − 2} or i ̸∈ {j − 2, j − 1} or i = j − 2; in the last case Mj,c is computable by
Pi).

• Case {i, j} with i = 1, 2 ≤ j ≤ n:

– View(1): M1,s = r1yrn,1 (computable by P1)

– Subcase i = 1, j ≥ 4

∗ View(j): Mj,s = r1x1 · · ·xj−3r
−1
j−3,j−2 (either 1 ̸∈ {j − 3, j − 2} or j = 4; in the last

case Mj,s is computable by P1), Mj,c = rj−3,j−2xj−2r
−1
j−2,j−1 (1 ̸∈ {j − 2, j − 1} since

j ≥ 4).

– Subcase i = 1, j = 3

∗ View(3): M3,s = r1x1 · · ·xn−1r
−1
n−1,n (1, 3 ̸∈ {n − 1, n} since n ≥ 5), M3,c =

rn−1,nxnrn,1 (M3,c = M−1
3,sM1,s computable by {P1, P3}).

– Subcase i = 1, j = 2

∗ View(2): M2,s = r1x1 · · ·xn−2r
−1
n−2,n−1 (1, 2 ̸∈ {n − 2, n − 1} since n ≥ 5), M2,c =

rn−2,n−1xn−1r
−1
n−1,n (1, 2 ̸∈ {n− 1, n} since n ≥ 5).

• Case {i, j} with i = 2, 3 ≤ j ≤ n:

– Subcase i = 2, j ≥ 6

∗ View(2): M2,s = r1x1 · · ·xn−2r
−1
n−2,n−1 (1 ̸∈ {2, j}), M2,c = rn−2,n−1xn−1r

−1
n−1,n (either

n−1, n ̸∈ {2, j} or n−2, n−1 ̸∈ {2, j} or j = n−1; in the last case M2,c is computable
by Pj).

∗ View(j): Mj,s = r1x1 · · ·xj−3r
−1
j−3,j−2 (2 ̸∈ {j − 3, j − 2} since j ≥ 6), Mj,c =

rj−3,j−2xj−2r
−1
j−2,j−1 (2 ̸∈ {j − 2, j − 1} since j ≥ 6).

– Subcase i = 2, j = 5

31

∗ View(2): M2,s = r1x1 · · ·xn−2r
−1
n−2,n−1 (n − 2, n − 1 ̸∈ {2, 5} if n ≥ 8), M2,c =

rn−2,n−1xn−1r
−1
n−1,n (n− 1, n ̸∈ {2, 5} if n ≥ 8).

∗ View(5): M5,s = r1x1x2r
−1
2,3 (1 ̸∈ {2, 5}), M5,c = r2,3x3r

−1
3,4 (3, 4 ̸∈ {2, 5}).

– Subcase i = 2, j = 4

∗ View(2): M2,s = r1x1 · · ·xn−2r
−1
n−2,n−1 (n − 2, n − 1 ̸∈ {2, 4} if n ≥ 7), M2,c =

rn−2,n−1xn−1r
−1
n−1,n (n− 1, n ̸∈ {2, 4} if n ≥ 7).

∗ View(4): M4,s = r1x1r
−1
1,2 (1 ̸∈ {2, 4}), M4,c = r1,2x2r

−1
2,3 (computable by P2).

– Subcase i = 2, j = 3

∗ View(2): M2,s = r1x1 · · ·xn−2r
−1
n−2,n−1 (1 ̸∈ {2, 3}), M2,c = rn−2,n−1xn−1r

−1
n−1,n (either

n− 1, n ̸∈ {2, 3} or n− 2, n− 1 ̸∈ {2, 3} since n ≥ 5).

∗ View(3): M3,s = r1x1 · · ·xn−1r
−1
n−1,n (M3,s = M2,sM2,c computable by P2), M3,c =

rn−1,nxnrn,1 (1, n ̸∈ {2, 3} since n ≥ 5).

• Case {i, j} with i = 3, 4 ≤ j ≤ n:

– Subcase i = 3, j ≥ 7

∗ View(3): M3,s = r1x1 · · ·xn−1r
−1
n−1,n (1 ̸∈ {3, j}), M3,c = rn−1,nxnrn,1 (either 1, n ̸∈

{3, j} or j = n; in the last case M3,c is computable by Pj).

∗ View(j): Mj,s = r1x1 · · ·xj−3r
−1
j−3,j−2 (3 ̸∈ {j − 3, j − 2} since j ≥ 7), Mj,c =

rj−3,j−2xj−2r
−1
j−2,j−1 (3 ̸∈ {j − 2, j − 1} since j ≥ 7).

– Subcase i = 3, j = 6

∗ View(3): M3,s = r1x1 · · ·xn−1r
−1
n−1,n (n− 1, n ̸∈ {3, 6} if n ≥ 8), M3,c = rn−1,nxnrn,1

(1, n ̸∈ {3, 6} if n ≥ 8).

∗ View(6): M6,s = r1x1x2x3r
−1
3,4 (1 ̸∈ {3, 6}), M6,c = r3,4x4r

−1
4,5 (4, 5 ̸∈ {3, 6}).

– Subcase i = 3, j = 5

∗ View(3): M3,s = r1x1 · · ·xn−1r
−1
n−1,n (n− 1, n ̸∈ {3, 5} if n ≥ 7), M3,c = rn−1,nxnrn,1

(1, n ̸∈ {3, 5} if n ≥ 7).

∗ View(5): M5,s = r1x1x2r
−1
2,3 (1 ̸∈ {3, 5}), M5,c = r2,3x3r

−1
3,4 (computable by P3).

– Subcase i = 3, j = 4

∗ View(3): M3,s = r1x1 · · ·xn−1r
−1
n−1,n (either n− 1, n ̸∈ {3, 4} or n = 5; in the last case

M3,s = M4,sM4,cr2,3x3x4r
−1
4,5 is computable by P3, P4).

∗ View(4): M4,s = r1x1r
−1
1,2 (1 ̸∈ {3, 4}), M4,c = r1,2x2r

−1
2,3 (1, 2 ̸∈ {3, 4}).

From the above analysis, we conclude that SnowBalln is 2-private for n ≥ 8. We can also see that
the insecure collusions for the cases n ∈ {5, 6, 7} are as follows:

• n = 7: {2, 5}, {3, 6}

• n = 6: {2, 4}, {2, 5}, {3, 5}, {3, 6}

• n = 5: {2, 4}, {2, 5}, {3, 5}

Patching SnowBalln for the cases n ∈ {5, 6, 7}. The above collusions {i, j} are insecure for the
stated values of n because the ‘state’ messages Mi,s and Mj,s received by {i, j} contain only one
randomness value r1 which is not known to {i, j}. This leads to an attack where one of the messages
Mi,s,Mj,s is used to solve for r1 and the other to get information on player secrets and hence break

32

the protocol. Accordingly, the idea for thwarting each of the above collusions {i, j} is to generate a
new independent random group element r̂i′,j′ shared between a pair of players {i′, j′}, where i′, j′ are
chosen such that:

• i′, j′ are not in the collusion {i, j}.

• The subsequence of players between i′ and j′ along the protocol’s multiplier player sequence
(i.e. the sequence (1, 4, 5, . . . , n, 2, 3) of players which multiply pairs of received group elements)
contains exactly one of the collusion players {i, j}, say player i.

If these conditions are met, then the protocol can be ‘patched’ as follows (exploiting the fact that the
‘multiplier’ players in the original protocol only multiply elements on the right of the ‘state’ element):
the new random element r̂i′,j′ (exchanged by players i′,j′ in round 1) is multiplied by player i′ on
the left of the state element (we assume that i′ occurs before j′ along the protocol’s multiplier player
sequence), and this randomness is later removed by player j′ when the state element reaches it.
Thanks to the second condition above, the result of this patch is that the new random element r̂i′,j′

appears as the leftmost factor in the state element Mi,s received by player i (which is thus simulatable
by {i, j} thanks to independence of r̂i′,j′ from the view of {i, j}), but not in the state element Mj,s

received by player j (which is thus simulatable by {i, j} thanks to independence of r1 from the view
of {i, j}). Hence the patched protocol becomes secure against the collusion {i, j} (without becoming
insecure against any other collusions).

In Fig. 10, we illustrate for each of the cases n ∈ {5, 6, 7} the insecure collusions for the unpatched
SnowBalln protocol, and the choices for {i′, j′} used to thwart those collusions in the patched protocol
as explained above. We remark that for the case n = 5, there is one collusion, namely {2, 5}, which
cannot be thwarted by the above method, because players 2 and 5 are adjacent in the protocol’s
multiplier player sequence (so i′,j′ satisfying the above conditions do not exist). To thwart this
collusion, we use in the patched protocol a shared randomness r̂3,4 between players {3, 4}. The
player 4 multiplies r̂3,4 on the right of his ‘contribution’ message M2,c to player 2. The randomness
r̂3,4 is removed from the state element by the following player 3 before multiplying the contribution
of player 5 on the right. This patch suffices to thwart the collusion {2, 5}.

For clarity, we give below the details of the abovementioned patches shown in Fig 10 for the n = 5
protocol, along with the security analysis which proves that they thwart the insecure collusions of
the original protocol.

The patches for protocol SnowBall5 are the following:

• Round 1 additions. P1 → P5 : r̂1,5, P1 → P2 : r̂1,2, P3 → P4 : r̂3,4

• Round 2 mods. P1 → P4 : M4,s = r̂1,5r1x1r
−1
1,2

• Round 4 mods. P5 → P2 : M2,s = r1x1x2x3r
−1
3,4 (P5 removed r̂1,5), P4 → P2 : M2,c =

r3,4x4r
−1
4,5 r̂3,4

• Round 5 mods. P2 → P3 : M3,s = r̂1,2r1x1x2x3x4r
−1
4,5 r̂3,4, P5 → P3 : r4,5x5r5,1. P3 removes r̂3,4

from M3,s and multiplies to get r̂1,2r1x1x2x3x4x5r5,1.

• Round 6 mods. P3 → P1 : M1,s = r̂1,2r1yr5,1. P1 removes r̂1,2r1 and r5,1 to get y.

Let us now formally verify that the patched protocol is indeed secure against the collusions {2, 4},
{2, 5}, {3, 5}:

• Collusion {2, 4}

– View(2): M2,s = r1x1x2x3r
−1
3,4 (1 ̸∈ {2, 4}), M2,c = r3,4x4r

−1
4,5 r̂3,4 (computable by P4).

– View(4): M4,s = r̂1,5r1x1r
−1
1,2 (1, 5 ̸∈ {2, 4}), M4,c = r1,2x2r

−1
2,3 (computable by P2).

33

Figure 10: Patches for SnowBalln cases n ∈ {5, 6, 7}. The solid lines indicate the insecure collusions
{i, j} in the original protocols. The dashed lines indicate the pairs of players {i′, j′} chosen to share
a new randomness value ri′,j′ in the patched protocols in order to thwart the insecure collusions, as
explained in the text.

• Collusion {2, 5}

– View(2): M2,s = r1x1x2x3r
−1
3,4 (M2,s = r̂−1

1,5M5,sM5,c computable by P5),M2,c = r3,4x4r
−1
4,5 r̂3,4

(3, 4 ̸∈ {2, 5}).
– View(5): M5,s = r̂1,5r1x1x2r

−1
2,3 (1 ̸∈ {2, 5}), M5,c = r2,3x3r

−1
3,4 (3, 4 ̸∈ {2, 5}).

• Collusion {3, 5}

– View(3): M3,s = r̂1,2r1x1x2x3x4r
−1
4,5 r̂3,4 (1, 2 ̸∈ {3, 5}), M3,c = r4,5x5r5,1 (computable by

P5).

– View(5): M5,s = r̂1,5r1x1x2r
−1
2,3 (1 ̸∈ {3, 5}), M5,c = r2,3x3r

−1
3,4 (computable by P3).

We conclude that the patched SnowBall5 protocol is 2-private. We leave it to the reader to verify
the security of the patches described in Fig. 10 for the cases n ∈ {6, 7}. This completes the proof of
the theorem. ⊓⊔

34

