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Abstract

The central aim of this thesis is to examine the collapse dynamics of a polymer

chain in a poor solvent, using the technique of Brownian dynamics (BD) simulations.

Motivated by the protein folding problem, BD simulations of a nonlinear bead-spring

chain model incorporating implicit fluctuating hydrodynamic interactions (HI) are

used to investigate the role of the solvent in mediating the dynamics of the collapse

of a single polymer chain, when the solvent quality is suddenly quenched from good

to poor. Effects of HI, which has been found to play a key role in assisting the

collapse, are incorporated via the Rotne-Prager-Yamakawa tensor.

In addition to this principal goal, this thesis also examines two aspects of the BD

simulations technique itself. The first is an examination of the accuracy of using a

bead-spring chain model for a polymer versus the use of a bead-rod model in the sim-

ulations. The second aspect is the comparison of the BD simulation technique with

another recently introduced and popular mesoscopic simulation technique, namely,

the lattice Boltzmann (LB) method. Each of these evaluations of the BD method

are carried out in a variety of contexts, such as the static and dynamic properties of

equilibrium polymer solutions, and their rheological behaviour in far from equilib-

rium viscometric flows. Given the diverse nature of the problems examined here, a

summary of the principal results in each case is given separately under each of the

headings below:

1. Comparison of bead-spring and bead-rod chains:

In general, the bead-rod model is assumed to be the most accurate representation

for describing the actual dynamics of polymer molecules. The number of Kuhn

steps Nk in this model is an experimentally measured quantity and fixed for a given

polymer. On the other hand, predictions of bead-spring models are strong functions

of the number of beads N . In almost all studies in the literature, N has been chosen

arbitrarily to fit experimental results. As justification for using the coarse-grained
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bead-spring chain model in this work to study the collapse transition of a single

polymer chain, we show that predictions obtained from BD simulations of a bead-

rod model can be reproduced from BD simulations of a bead-spring chain model

using the recently developed successive fine graining (SFG) scheme [R. Prabhakar,

J. R. Prakash, and T. Sridhar, J. Rheol., 48, 1251-1278, 2004]. In the SFG scheme,

results of bead-spring chain simulations are extrapolated to the limit where the

number of springs (Ns) approaches the number of rods (equal to the number of

Kuhn steps, Nk) in a bead-rod model. It is found that in the absence of excluded

volume (EV) and HI, the analytical results for linear viscoelastic properties obtained

using the bead-spring model with the SFG scheme are in complete agreement with

the infinitely stiff Fraenkel spring results. The numerical computations of linear

viscoelastic properties in the presence of HI are found to be in good agreement with

the results of the bead-rod model. In shear flow, the SFG results show excellent

agreement with bead-rod results for a range of shear rates both in the absence and

presence of HI and EV. In the limit Ns → Nk, the numerical and analytical results

obtained using the SFG scheme are found to be independent of the choice of spring

force law.

2. Comparative evaluation of the BD and LB methods:

Since HI plays a key role in all of our simulations, an important question to ad-

dress is which is the most efficient mesoscopic simulation technique to capture the

effects of HI in a dilute solution. An important and popular new technique is the

LB method. In this segment of the thesis, the difference between using an implicit

solvent model (BD) versus an explicit solvent model (LB) is evaluated by compar-

ing their predictions of static and dynamic properties of dilute polymer solutions.

The LB method used here is the recently established hybrid algorithm based upon

dissipative coupling between Molecular Dynamics and lattice Boltzmann (LB) intro-

duced by Ahlrichs and Dünweg [P. Ahlrichs and B. Dünweg, J. Chem. Phys., 111,

8225, 1999]. Applying these methods to the same physical system (a single polymer

chain in a good solvent in thermal equilibrium) allows us to draw a detailed and

quantitative comparison in terms of both accuracy and efficiency. It is found that

the static conformations of the LB model are distorted when the box length L is

too small compared to the chain size. Furthermore, some dynamic properties of

the LB model are subject to an L−1 finite size effect, while the BD model directly

reproduces the asymptotic L → ∞ behavior. Apart from these finite size effects,
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it is also found that in order to obtain the correct dynamic properties for the LB

simulations, it is crucial to properly thermalize all the kinetic modes. It is only then

that these results are in excellent agreement with each other, as expected. Moreover,

Brownian Dynamics is found to be much more computationally efficient than lattice

Boltzmann as long as the degree of polymerization is not excessively large.

3. Collapse dynamics of a homopolymer :

Having established that BD simulations of a bead-spring chain model is probably

the most efficient mesoscopic method for studying the collapse problem, simulations

have been carried out to study the collapse dynamics of a single polymer chain in

a poor solvent. Our simulations suggest that homopolymer collapse takes place via

a three-stage mechanism, namely, formation of pearls, coarsening of pearls and the

formation of a compact globule. The collapse pathways from a good solvent state

to a poor solvent state are found to be independent of hydrodynamic interactions

(HI). On the other hand, HI is found to significantly speed up the collapse rate.

At large quench depth (the depth of the Lennard Jones potential), independent

of the presence of HI, polymer molecules are found to be trapped in metastable

states for long periods before acquiring their native globular state. The exponents

characterizing the decay of various properties such as the radius of gyration are

determined and compared with the values reported in the literature.

4. Collapse dynamics of a copolymer :

Although the homopolymer model has been widely used as a prototype to un-

derstand the protein folding problem, this model cannot capture all the complex

behaviour seen in a protein. For instance, an important example of a missing detail

in a homopolymer model is the formation of hydrophobic residues (H) or amino

acids in the core and polar residues (P) on the outer surface of a collapsed globule.

As an improvement of a homopolymer model, we have used a two-letter code HP

model with equal population of H and P type residues to represent a protein chain,

i.e, a HP copolymer. Due to the diverse range of chain sequences that a copoly-

mer can have, many interesting behaviours are revealed in the collapse dynamics of

copolymers. The presence of HI significantly speeds up the collapse process of all

copolymer sequences. It is found that the chain sequence has a strong influence on

the kinetics of copolymer collapse as well as on the compactness and energy of its

final collapsed state. Our simulations suggest that copolymer collapse takes place

via at least two, sometime three stages of collapse in which a rapid formation of
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clusters is followed by cluster coalescence with the clusters finally rearranging them-

selves into a compact state. The chain total collapse time is mainly governed by

the rate of collapse of the second stage known as the “cluster aggregation” stage,

and the rate of collapse of this stage depends on the block size of P type monomers.

Furthermore, our results also indicate that the presence of P type monomers in the

chain prevents it from being trapped in local wells, i.e., it appears to smooth out

the energy landscape for the folding process of copolymers. This in turn pushes the

value of quench depth where trapping occurs to a much higher value than that for

a homopolymer. It is also found that any chain sequence which consists of short

block lengths of P type monomers collapses much faster than chain sequences with

long P block lengths.

5. A polymer chain in a poor solvent subjected to extensional flow :

When a homopolymer in a poor solvent is subjected to extensional flow, our sim-

ulations show that the nondimensional strain rate at which a coil-stretch transition

occurs is delayed to a much later extension rate compared to that of a homopolymer

in a theta or in a good solvent. Furthermore, it was found that the coil-stretch

hysteresis window for a homopolymer in poor solvent is much wider compared to

that for a theta or a good solvent. Indeed, the width of the hysteresis window is

increased by at least an order of magnitude or more. It is observed that the width

of the hysteresis window reduces with increasing solvent quality from poor to good.

The simulations results for a diblock copolymer which is composed of one block of

P monomers and another block of H monomers subjected to extensional flow shows

a dual coil-stretch hysteresis window. Interestingly, it is found that below a critical

extensional rate, while the P block has completely gone into a stretched state, the H

block still remains in a coiled state. It is only when the extension rate is increased

beyond this critical extension rate that the H block starts to unravel, leading to a

coil-stretch transition. If the interaction potentials for the two blocks in a copolymer

chain are sufficiently different to each other, then one could see a dual coil-stretch

hysteresis window. However, if the two potentials are not significantly different,

then an overlapping hysteresis window is observed.
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Chapter 1

Introduction

The complexity of protein self-assembly into well-ordered 3-D structures has been a

fascinating problem and it has attracted a significant number of researchers world

wide. Proteins are polypeptide chains made of twenty different amino acids or

residues. During the folding process, a protein molecule has to go through a rugged

energy landscape, hoping from one transition state to another while overcoming the

free energy barriers along the way. The state of a protein is primarily controlled

by the solvent condition that it is subjected to and this condition may be tuned by

varying the temperature or by changing the concentration of osmolytes or chemical

denaturants in solution [13]. Despite numerous efforts that have been made to

understand this folding problem over the past few decades, it still remains one of

the challenging unsolved problems in molecular biology [41]. The groundwork for

understanding the kinetics of protein folding was laid in the early 1960s when the

famous experiment performed by Anfinsen and co-workers [11; 12] first showed that

proteins can fold repeatedly and quickly into a unique compact native structure

from any denatured state. This result suggests that the native structures of some

small globular proteins are thermodynamically stable states, with conformations at a

global minimum in the free energy, which are kinetically accessible. However, in the

late 1960s, Levinthal argued (later known as ‘Levinthal paradox’) that there were

too many possible conformations for proteins to find the native structure in the vast

amount of conformational space by random searching, while the biological folding

times of a typical protein sequence is in milliseconds to seconds. He suggested that

instead, proteins must fold by specific ‘folding pathways’ [47; 124; 210; 217].

Levinthal’s paradox suggests that the protein folding problem can be broken
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down into two goals - achieving thermodynamic stability and kinetic accessibility.

Thermodynamic stability requires that a protein should reach its global minimum

energy, and that the native structure should be determined only by the final native

conditions and not by the initial denatured states (i.e. folding is pathway indepen-

dent), but this might take a long time because it requires an extensive search. On

the other hand, kinetic accessibility requires that the folding process must happen

quickly. In such a situation, the kinetics may become pathway dependent, and as a

result, the protein may end up reaching only local optima. The need to satisfy these

two requirements has led to a search for folding pathways that avoid local minima

and lead directly to the native state. Within this view, it appeared possible that the

folding code (or foldable sequences) might be revealed from kinetics experiments

if one could observe intermediate states along the folding pathways. This search

led to the discovery of two different types of folding intermediates: the on-pathway

[205] and the off-pathway [93] intermediates, with the implication that the fold-

ing code could only be revealed from the on-pathway intermediates as off-pathway

intermediates lead to non-native states. However, this view on the existence of fold-

ing pathways is now not in favour due to new detailed observations seen in recent

experiments and computer simulations [30; 32; 48; 60; 91; 95; 177; 189; 190].

Experiments on small well characterized fast-folding two-state proteins has shown

that these proteins can fold quickly without the guidance of the intermediate states

[60; 91; 95; 177; 189; 190]. The new experimental techniques have revealed a rich

collection of information about folding kinetics that was not available previously

[140]. Advances in experimental methods that give more detailed information at

the atomic level and a new conceptual framework revealed from simplified statisti-

cal mechanical models has resulted in a ‘New View’ of the kinetics of protein folding

[14; 15]. In this new view, the kinetic process of folding a protein can be described

as rolling a ball down mountainsides of complex shape rather than water flowing

through a single gully. Furthermore, each individual protein molecule follows its

own trajectory, which is randomly directed by Brownian forces through the hills

and valleys. Thus the new view emphasizes more on ensembles and multiple folding

routes rather than specific structures and pathways [48].

The straightforward computational approach to tackle the protein folding prob-

lem would appear to be to take a natural amino acid sequence and perform atomistic

molecular dynamic (MD) simulations on an exact or simplified model of a protein
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and hope that it converges to the native 3-D conformation. However, the native

structure resulting from the simulations may not be a global or a pronounced local

minimum because the simulation model would inevitably use approximate energetic

interactions for the set of 20 different amino acids, while the true protein sequence

could have been evolutionary designed to fold to its native structure with some

‘exact’ set of potentials [141]. Further, it cannot be guaranteed that any folding al-

gorithm will converge to a native state, which can be distinguished by energy from

many other such conformations. Moreover, it is quite difficult to obtain any reliable

statistically accurate results from this method because of its large computational

cost. Tanaka and Mattice [197] have pointed out that the intense computational

cost of studying large-scale properties makes models accounting for atomistic de-

tails inappropriate even for short polypeptide chains because reliable results cannot

be obtained due to poor statistics.

The computational limitations of models with detailed atomic structure has led

to the frequent use of a more coarse grained statistical mechanics model such as

the lattice chain model or the bead-spring chain model. Although these models ne-

glect atomic detail, they still preserve the main microscopic ingredients of proteins

including: chain connectivity, flexibility, excluded-volume, and sequence-dependent

intrachain interactions [30; 32]. Further, the statistical models recognize that macro-

scopic ‘states’ such as the denatured state, intermediate state, and native state, are

ensembles of individual chain conformations rather than specific and unique con-

formational states. These coarse-grained models have also been extensively used

to study various phenomena in polymer solutions for quite some time. The rich

variety of conformations which leads to many different intrinsic properties of poly-

mer solutions has continuously drawn considerable interest in soft matter research.

Coarse-grained computer modeling is increasingly being used as an integral part of

theoretical study, in order to both test existing theories and to trigger the develop-

ment of new concepts. Furthermore, coarse-grained computer simulations have also

become an essential tool in materials research, especially for predicting and under-

standing the behavior of complex systems, where a complete theory is not available.

It has been proven to be an effective and inexpensive way to study these systems.

Even with these simple statistical models, one obtains a great deal of information

about the physical processes that trigger the folding of proteins and the effects of

physical variables on the kinetics as well as the thermodynamics of folding. The
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simplest model for protein folding takes into account only two states, the denatured

state and the folded state. Many small proteins have been shown to obey this

minimal model [94]. Other attempts to try to understand the kinetics of protein

folding have often employed a very simple statistical mechanical model, such as

a linear chain composed of the same type of beads (known as a ‘homopolymer’)

to represent a polypeptide chain, and to study its kinetics of folding or collapse.

The conformational changes of this simplified chain are commonly referred to as

polymer collapse because of the dramatic change in the size of the polymer molecule

which decreases from a swollen state to its native globular state when the solvent

conditions are changed from being a good solvent to a poor solvent. Understanding

the dynamics of the conformational change of a single polymer, arising due to a

change in the solvent quality has also been of interest in its own right for many

years [25; 44; 45; 148]. It is believed that understanding the collapse transition of a

homopolymer itself will enable us to obtain better insight into the conformational

transitions in many complex biological systems, and to understand how other bio-

molecules such as DNA react to a change in their environment.

Since the folding process of globular proteins to their distinct compact native

conformations mostly occurs in an environment surrounded by solvent molecules

such as water, the solvent plays an important role in mediating the hydrodynamic

interactions between moving residues or amino acids in analogy to hydrodynamic in-

teractions in polymers [106; 215]. Hydrodynamic interactions (HI) is the long-range

dynamic correlation between different segments of the chain due to the movement of

other parts in the chain that are propagated through the solvent medium. While HI

does not affect static properties, it seriously alters the dynamic properties of semi-

dilute and dilute solutions. For instance, a recent study of the diffusion and folding

of several model proteins by Frembgen-Kesner and Elcock [66] have shown that

molecular simulations which neglect HI are incapable of reproducing the expected

experimental translational and rotational diffusion coefficients of folded proteins,

and only when HI is included do the predictions of the diffusion coefficients match

very well with the expected experimental values. Study of small proteins folding

has also revealed that inclusion of HI hastens the folding process by at least two

fold [37; 66]. These studies have demonstrated the importance of HI in studying the

kinetics of proteins folding.

As a result of numerous such studies in literature, the collapse transition from a
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coiled state to a globular state has been relatively well described for a homopolymer

chain [45; 73; 127]. Although the equilibrium properties of the polymer solution in

different solvent quality regimes, namely, good, theta (θ) and poor, are very well

understood [44; 50], understanding the kinetics of the collapse is still an emerging

field. The kinetics of homopolymer collapse, both in the absence and in the presence

of HI has been studied via a variety of different theoretical approaches [2; 25; 45; 80;

104; 107; 114; 160] as well as numerical simulations [2; 26; 33; 103; 104; 123; 151;

162; 163; 164; 197]. A few important issues related to collapse kinetics are that,

(i) the comparison of theory and experiments is still in its infancy, (ii) there is no

common consensus on the effect of solvent mediated interactions on enhancing the

collapse rate, and (iii) there is ambiguity with regards to the scaling laws for the

various properties (for instance, the change in the radius of gyration with time as

the polymer collapses).

Furthermore, although the homopolymer model has been widely used as a pro-

totype to understand the protein folding problem, this model cannot capture all

the complex behavior seen in a protein. For instance, an important example of a

missing detail in a homopolymer model is the formation of hydrophobic residues (H)

or amino acids in the core and polar residues (P) on the outer surface of a collapsed

globule. Moreover, it is believed that the kinetic ability of natural proteins to fold

is due to evolutionary selection of their sequence, but how information can be en-

coded in such a protein sequence is still a puzzle. Certainly, this question cannot be

addressed from studying a simple homopolymer model. Beside the encodability of

a protein native structure, the degeneracy of a protein sequence is also important

because of its unique native structure. This means that the sequences of globular

proteins must have very low degeneracies (number of lowest-energy conformations)

in general. However, the findings from the kinetics of homopolymer collapse do not

provide any information about encodability and degeneracy. This is because the

ability to encode structures requires a monomer alphabet containing at least two

different types of interactions or letters. Thus the structure of a normal homopoly-

mer without charge in a poor solvent is not encodable, and, it is more appropriate

to use a multi-letter code model to study the kinetics of protein folding.

On the forefront of protein modeling using simplified statistical mechanical mod-

els with multi-letter codes, the 20-letter code model is probably the closest in repre-

senting the interactions between amino acids in a real protein chain, as exemplified
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by the energy matrices introduced by Miyazawa and Jernigan [141]. However, it has

been shown that predictions obtained from some of these energy matrices are not

physical and they are quite different to those seen in real proteins, for instance, the

burial of charged residues as well as the formation of polar residues in the core for

many native structures of designed sequences [1; 76; 77; 199]. Chan and Dill [32]

have suggested that models with a 20-letter code are not necessarily better than

codes with fewer letters because these models neglect certain important features ex-

isting in a real proteins (for instance, correlations among inter-residue interactions)

and only focus on maximum compact conformations. Moreover, Go and co-workers

have shown that sequences with less correlations are more stable and fold faster

[71; 196]. It has also been observed that adding repulsive interactions prevents trap-

ping in local minima [77; 188] and leads to more sequences folding uniquely and

with more designable folds [32], which are the bottlenecks in many lattice folding

models [27; 31; 183; 199].

For convenience as well as efficiency in numerical calculations, we choose to

use a simple two-letter code to study the kinetics of the protein folding problem.

Such models have been referred to as prototeins [81]. In this model, a chain is

represented by a binary sequences of H (hydrophobic) and P (polar) monomers, and

has been widely used in literature to study heteropolymers or copolymers. Although

the HP model has been widely used to study the protein folding problem as well

as heteropolymers in general, almost all the results are obtained from predictions

on discrete lattice models. Only a very limited number of HP models have been

investigated via continuous models [40]. Surprisingly, even with this simple HP

approach in lattice models, certain features of protein folding can be observed. For

example, the model predicts that only a small fraction of sequences fold uniquely

and not all structures can be encoded [32; 122]. In addition, a folding sequence is

most likely to have only a single native conformation [122].

Due to the astronomically large number of sequences and folding conformations

that are possible for a chain composed of N beads with arbitrary combinations of

H and P block sizes, it is inappropriate to investigate all these conformations and

sequences because the computational cost is way beyond the limit of our patience

and lifespan, especially for N ≥ 20 chains [81; 122]. Thus one has to try to narrow

down the search in order to obtain some useful information about the kinetics of

folding. Since roughly half of the naturally occurring amino acids are hydrophobic
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[211], it follows that on average a random protein sequence should have a ratio of

NH/N ' 0.5, where NH is the number of hydrophobic monomers. The predicted

results reported by Camacho and Thirumalai [28] suggest that the search for the

foldable sequences should only focused on searching among a subclass of compact

structures, especially those which have minimum energy because this criterion would

salsify the low degeneracy requirement in a globular protein. In fact, their results

indicate that the chain sequence should consist of half H type and half P type

monomers because this ratio is not only very convenient to stabilize proteins in

solution [47], but it is also close to the optimum ratio required to achieve the fewest

number of minimum energy compact structures or minimum degeneracy. Although

the kinetics of collapse of copolymers with such a ratio have also been reported in the

literature [40; 102], it is still not known which features in a sequence of a copolymer

chain directly affect its dynamics of folding and how exactly these features control

the speed of folding as well as the compactness of the final equilibrium state. Further,

it remains to be seen whether the order of collapse amongst the various copolymers

is independent of chain length and HI.

As a starting point to study the protein folding problem, a Brownian dynamics

simulation of bead-spring chains has been used to investigate the influence of implicit

hydrodynamic interactions and quench depths on the dynamics of collapse as well

as their effects on the kinetics pathways of a homopolymer chain. In addition, a

bead-spring chain composed of 50% hydrophobic H type beads and 50% polar P

type beads has been used to investigate the effect of chain sequence on copolymer

collapse. In particular, the aim is to determine the effects of block length on the

kinetics of folding and the compactness of the final collapsed state in the presence of

HI (which are incorporated implicitly through the Rotne-Prager-Yamakawa (RPY)

tensor), for three different types of copolymers. The identification of the exact

features of a sequence that directly governs the chain’s kinetics of collapse and its

final equilibrium size will be attempted. The influence of HI on the dynamics of

folding is investigated by comparing the values of various dynamic quantities for

cases with and without HI. Further, effects of HI and chain length on the order

of collapse amongst the various copolymers is also examined. To the best of my

knowledge, the combined effects of HI and chain sequence on collapse kinetics within

the framework of BD simulations has not been reported previously in the literature.

Although Brownian dynamics simulations of bead-spring chains has been used
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extensively to study various phenomenon in polymer solutions due to its low com-

putational requirements, there are other issues for this model that have not been

resolved. Firstly, the bead-spring model is not the most accurate coarse-grained

description of a flexible polymer molecule of Nk Kuhn segments. There are no sys-

tematic ways of choosing the input parameters for the bead-spring chain models

with Ns < Nk springs to obtain predictions that match with experimental results

[88; 90; 96; 120; 125; 126]. In this work, predictions from the Brownian dynamics

simulations of a bead-spring chain model using the recently developed successive fine

graining (SFG) scheme [166] are examined to see whether this model is capable of re-

producing the widely accepted bead-rod results. Secondly, since HI has been shown

to facilitate the folding process by speeding it up significantly [33; 37; 66; 103; 158],

it is crucial to use a simulation technique that accurately and effectively captures

the role of HI. However, it is still unclear which is the most efficient mesoscopic sim-

ulation technique to capture HI in a dilute solution. Further, the difference between

using an implicit solvent model which includes fluctuating HI such as our BD model

versus an explicit solvent model has not been solidly established in the literature.

An important and popular new technique amongst explicit solvent models is the

lattice Boltzmann (LB) method, which has been shown to be a promising candidate

to replace the traditional computationally intensive MD simulations [7]. Detailed

quantitative comparison on the predicted static and dynamic properties of dilute

polymer solutions, in terms of both accuracy and efficiency, for both simulation

techniques has been carried out for a system made up of a single polymer chain in

a good solvent in thermal equilibrium. The LB method used here is the recently

established hybrid algorithm based upon dissipative coupling between Molecular

Dynamics (MD) and lattice Boltzmann (LB) introduced by Ahlrichs and Dünweg

[7].

Apart from the collapse dynamics problem, the effects of solvent quality and

chain sequence on the coil-stretch conformational hysteresis phenomena observed

in polymer solutions when subjected to extensional flow is also of equal interest,

especially in a poor solvent regime as these have not been reported in literature.

Understanding single molecule conformations in a flow field is essential in order to

effectively design and manufacture microfluidics and micro total analysis systems

[49]. In 1974, using an approximate model, de Gennes [43] and Hinch [83] have

independently shown that the coupling of flow field with the hydrodynamic drag
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for long-flexible polymer molecules in dilute solution could create kinetically frozen

states, leading to a coil-stretch hysteresis. Since then, there has been a long debate

about the validity of such hysteretic effects in bulk properties of dilute polymer

solutions. However, researchers world wide have now conclusively confirmed the

existence of this phenomenon with both experiments and numerical calculations

[18; 68; 84; 89; 132; 179; 180; 191; 198]. Since the central aim of this thesis is to

study the dynamics of collapse of homopolymers and various types of copolymers

when the solvent quality is suddenly quenched from good to poor, we have obtained

a wealth of information on the equilibrium configurations of these chains in both

good and poor solvent conditions. These configurations can be used directly as the

initially coiled chains for the hysteresis study in various solvent conditions. Thus,

this thesis includes a study of the effects of solvent quality (or quench depth) and

chain sequence on the conformational hysteresis window for the listed polymers.

This thesis is organized as follows. A brief description of the bead-spring chain

model and the computer simulation methods used to study implicit and explicit

solvent models are given in Chapter 2. This is followed by the validation of the suc-

cessive fine graining scheme in Chapter 3. A detailed and quantitative comparison

in terms of both accuracy and efficiency between the results predicted by the LB

and the BD simulations are presented in Chapter 4. Chapter 5 discusses the effects

of HI and quench depth on the dynamics of collapse and the kinetics pathways of a

homopolymer, while the effects of chain sequence on the total collapse time and the

compactness of the final collapsed state are explored in Chapter 6. Chapter 7 dis-

cusses the effects of solvent quality and chain sequence on the coil-stretch hysteresis

window of a polymer chain subjected to extensional flow. The major conclusions of

this work are finally summarized in Chapter 8.



Chapter 2

Molecular model and simulation

methods

This chapter briefly describes the bead-spring chain model and the two simulations

methods that have been used in this work to study static and dynamic properties

of dilute polymer solutions, namely, the Brownian dynamics (BD) and the lattice

Boltzmann (BD) methods. The set of governing equations for a bead-spring chain

model with a non-linear spring force, and with hydrodynamic and excluded volume

interactions incorporated, are presented for both methods.

Since inter- and intra-molecular interactions are ultimately responsible for the

behavior of any material observed at macroscopic scales, one would expect that

accurate prediction of properties of polymer solutions would require computer sim-

ulations of detailed molecular models of these systems. However, such detailed

simulations are computationally very expensive to perform. In spite of their di-

versity due to the tremendous variety in polymer molecules and their solvents, the

macroscopic properties of large classes of polymeric materials share common fea-

tures, and appear to depend only on a small set of parameters. It has been found

that the experimental data for different polymer-solvent systems can be collapsed

on to universal master plots. In the words of Doi and Edwards [50], “the ability

of such superposition indicates the existence of an inherent simplicity hidden be-

hind the apparent complexity of the polymer systems”. Since universal features of

macroscopic behavior for different polymer systems within any single class of poly-

meric materials are the same, their universal properties must be independent of the

details of polymer/solvent chemistry. Furthermore, the fact that master plots can

10
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be obtained by rescaling raw experimental data with a few well defined parameters

means that all chemistry dependence has been absorbed into those parameters.

A recent review by Keunings [100] has described the number of levels of modeling

of polymer solutions, such as quantum mechanics, atomistic modeling, kinetic theory

and continuum mechanics, which can be used for their description. However, the

chosen level of sophistication is primarily governed by its analytical tractability and

computational efficiency. While the use of a quantum level description is out-of-

question due to the requirements of excessive computational resources, atomistic

modeling (molecular dynamics (MD) simulation) has been used to some extent to

predict rheological properties in simple flows. However, the intense computational

requirement makes such techniques inappropriate for large polymer systems. An

alternative and efficient method to represent the fluid is the kinetic theory based

fluid description, which is sufficient to accurately capture large-scale properties of

many polymer systems.

For the representation of polymer chain itself, there are a number of ways in

which a polymer can be represented within the framework of kinetic theory, based on

coarse-grained micro-mechanical molecular models such as bead-rod, bead-spring,

and dumbbell models. These models provides a good description of the polymer

conformation (e.g., stretch and orientation), and they can incorporate important

physics such as the finite extensibility of the polymer molecules and the presence of

solvent mediated interactions such as hydrodynamic (HI) and excluded volume (EV)

interactions between parts of the polymer chain. The incorporation of these effects

is necessary to explain many experimentally observed features such as scaling laws,

shear thinning and bounded extensional viscosity in homogeneous flows of dilute

polymer solutions [21; 22; 51; 90; 112; 153; 165; 166; 168; 176; 218]. The inclusion

of HI is also shown to be extremely important in explaining various experimentally

observed dynamic scaling laws, and transport coefficients (e.g., diffusivity) [38; 44;

90; 108; 120; 121; 132; 152; 193; 195].

As has been pointed out in Chapter 1, the bead-rod model is assumed to be the

most accurate representation for capturing the behavior of real polymer molecules

in solution. However, its application to represent typical polymer molecules encoun-

tered in experiment is still beyond available computational resources. Although

a dumbbell model is the simplest and most computationally efficient method to

represent a polymer molecule, it does not accurately predict quantitative features
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and some qualitative features for the collapse dynamics problem such as the ki-

netic pathways and cluster formation because it does not have enough number of

degrees of freedom. Thus a bead-spring model appears to be the most appropri-

ate model to represent a polymer molecule due to its computational efficiency over

the bead-rod model and its ability to accurately capture qualitative and quantita-

tive behavior of a polymer system. Using kinetic theory, the probability density

function describing the probability of finding a bead-spring chain with a given con-

figuration can be obtained from the diffusion or Fokker-Plank equation, which is

a partial differential equation. The solution to the Fokker-Plank equation is the

probability density function, which can be used to evaluate macroscopic properties

of interest such as the elastic stress. However, the Fokker-Plank equation is analyt-

ically intractable for non-linear bead-spring chains. Alternatively, BD simulations

or stochastic simulations based on the Itô stochastic differential equation (SDE)

which is equivalent to the Fokker-Plank equation, are widely used to solve for the

configuration of bead-spring chains without even solving for the probability density

function. Configurational averages can then be subsequently used to evaluate the

elastic stress and other macroscopic properties.

2.1 Molecular model

For major parts in this work, a polymer molecule is represented by a conventional

bead-spring chain model, which consists of N beads that are connected via N − 1

finitely extensible nonlinear elastic (FENE) massless springs. The springs are chosen

such that their force-extension behavior mimics the response of the polymer to an

imposed extension at its ends. The Lennard-Jones potential, which acts between

all monomers, is often used to model the excluded volume (EV) effect. The two

potentials VSpr and VEV are given by the expressions

VSpr = −HQ
2
0

2
ln

(

1 −
(

Qµν

Q0

)2
)

, (2.1)

VEV = 4εLJ

(

σ12

r12
µν

− σ6

r6
µν

+
1

4

)

, rµν ≤ 21/6σ, (2.2)

where H is the Hookean spring constant (also referred to as FENE spring constant

in some literature), Q0 the maximum extension of a single spring, Qµν and rµν are
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the connector vector and the distance from bead µ to bead ν, respectively. εLJ and σ

are the energy and length parameters of the Lennard-Jones potential, respectively.

As will be elaborated in subsequent chapters, in individual circumstance, we

have used variations of the basic LJ potential and spring force law depending in the

context in which they are employed.

2.2 Brownian dynamics (BD) simulations

The instantaneous configuration of a bead-spring chain is specified by the set of

position vectors rµ (µ = 1, . . .N). The evolution of the configurational probability

distribution Ψ(r1, . . . , rN) is governed by the Fokker-Planck equation [22; 155], which

in dimensionless form is given by

∂Ψ

∂t∗
= −

N
∑

µ=1

∂

∂r∗µ
·
{

κ
∗ · r∗µ +

1

4

∑

ν

Dµν ·
(

Fs
ν
∗ + Fint

ν

∗)
}

Ψ +
1

4

N
∑

µ,ν=1

∂

∂r∗µ
· Dµν ·

∂

∂r∗ν
,

(2.3)

where lH =
√

kBT/H and λH = ζ/4H are used as the length scale and time

scale, respectively [165; 194]. kB is Boltzmann’s constant, T is the temperature,

ζ (ζ = 6πηsd, where ηs is the solvent viscosity) is the Stokes friction coefficient of

a spherical bead of radius d, t∗ = t/λH is the dimensionless time. κ∗ is a time-

dependent, homogeneous, dimensionless velocity gradient. Dµν is the diffusion ten-

sor representing the effect of the motion of a bead µ on another bead ν and is defined

as Dµν = δµνδ + Ωµν, where δµν is the Kronecker delta, δ is the unit tensor and

Ωµν is the hydrodynamic interaction tensor. Fs
ν
∗ = −∂VSpr/∂rν is the dimensionless

spring force, Fint
ν

∗
= −∂VEV/∂rν is the dimensionless excluded-volume force.

Using polymer kinetic theory and stochastic calculus [22; 155], it can be shown

that the time evolution of the configuration of the bead-spring chain is governed by

the following dimensionless Itô stochastic differential equation:

dr∗µ =

{

κ
∗ · r∗µ +

1

4

∑

ν

Dµν ·
(

Fs
ν
∗ + Fint

ν

∗)
}

∆t∗ +
1√
2

N
∑

ν=1

Bµν · dWν, (2.4)

where for all ν = 1, . . . , N , Wν is a non-dimensional Wiener process and the com-

ponents of Bµν are related to the HI tensor such that Dµν = Bµν · BT
µν [155].
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The regularized Rotne-Prager-Yamakawa (RPY) tensor is used in this work to

incorporate hydrodynamic interactions [173; 213]. Note that the same HI tensor is

used by Petera and Muthukumar [157] and Liu et al. [129] in their bead-rod model

and Hsieh et al. [87] in the stiff FENE-Fraenkel spring model. The form of the

dimensionless RPY tensor is:

Ω(r∗) =

[

Ω1δ + Ω2

r∗r∗

r∗2

]

(2.5)

where for r∗ ≥ 2
√
πh∗

Ω1 =
3
√
π

4

h∗

r∗

(

1 +
2π

3

h∗2

r∗2

)

; Ω2 =
3
√
π

4

h∗

r∗

(

1 − 2π

3

h∗2

r∗2

)

(2.6)

and for 0 < r∗ ≤ 2
√
πh∗

Ω1 = 1 − 9

32

r∗

h∗
√
π

; Ω2 =
3

32

r∗

h∗
√
π

(2.7)

Here, h∗ is the dimensionless bead radius in the bead-spring model and is defined

as h∗ = a/lH
√
π.

When there is no flow field present, κ∗ = 0. In the presence of the flow field, the

velocity gradient tensors for simple shear (SS) and uniaxial extensional (UA) flow,

which are the flows of interest in this work, are given by

κ
∗

SS = γ̇∗









0 1 0

0 0 0

0 0 0









, κ
∗

UA = ε̇∗









1 0 0

0 −1
2

0

0 0 −1
2









(2.8)

where γ̇∗ = λH γ̇ and ε̇∗ = λH ε̇ are the dimensionless shear, and dimensionless

extension rate, respectively. Further details of the model and simulations method

can be found in Ref. 165.

The most computationally intensive part in performing BD simulations is to

determine the matrix Bµν in Eq. (2.4) above. Generally, Cholesky decomposition

of Dµν is used to obtain Bµν as an upper (or lower) triangular matrix and the

computational cost for this method scales as N 3 [64]. Fixman made use of the fact

that Bµν can be approximated as the square-root matrix of Dµν, and noting that it is

the vector Bµν ·∆Wν that is required rather than the matrix Bµν, applied Chebyshev
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polynomials to obtain Bµν · ∆Wν with a lower computational cost, scaling roughly

as N2.25 [64].

The spatial configuration of the chain, r∗µ at any time t∗ is obtained numerically

by integrating Eq. (2.4) using a semi-implicit predictor-corrector scheme proposed

by Prabhakar and Prakash [165]. The macroscopic properties of the solutions are

obtained by simulating a large ensemble of independent trajectories.

2.3 The lattice Boltzmann (LB) method

In this method, the evolution of the LB variables ni is governed by the following

lattice Boltzmann equation [19; 192; Dünweg and Ladd]:

ni(r + ci∆τ, t+ ∆τ) = ni(r, t) (2.9)

+
b
∑

j=1

Lij

(

nj(r, t) − neq
j (ρ,u)

)

+ n′
i(r, t).

The variable ni(r, t) is the (partial) fluid mass density at grid site r at time t,

corresponding to the discrete velocity ci. ∆τ is the time step, and the lattice spacing

is denoted by a. The small set of velocities ci (i = 1, . . . , b, where the value of b

depends on the details of the model) is chosen such that ci∆τ is a vector leading to

the ith neighbor on the grid. Lij is a collision operator for dissipation due to fluid

particle collisions, such that the populations always relax toward the local pseudo-

equilibrium distribution neq
j that depends on the local hydrodynamic variables ρ =

∑

i ni (the total mass density) and u =
∑

i nici/
∑

i ni (the local flow velocity). The

collision process is constructed in such a way that it conserves both ρ and u. n′
i(r, t)

is the stochastic term, which is essential in order to simulate thermal fluctuations

that drive Brownian motion.

The local pseudo-equilibrium distribution can be represented as a second-order

expansion of the Maxwell-Boltzmann distribution, given by [192]

neq
i (ρ,u) = ρwci

(

1 +
ci · u
c2s

+
(ci · u)2

2c4s
− u2

2c2s

)

, (2.10)

where wci
are a set of weight factors, which depend on the sublattice i (i. e. the

magnitude of ci) and cs =
√

1/3(a/∆τ) is the speed of sound. In this work, we have
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used the algorithm proposed in Ref. [7], however, with the modification that the

original 18-velocity model (D3Q18) was replaced by the D3Q19 19-velocity model

[192]. The set of ci consists of the particle being at rest, the 6 nearest and 12

next-nearest neighbors on a simple cubic lattice. The magnitudes of the velocities

corresponding to these three sets of particles are ci = |ci| = 0, a/∆τ , and
√

2a/∆τ ,

respectively. The weight factors for the D3Q19 model are w0 = 1/3, w1 = 1/18 and

w√
2 = 1/36.

2.4 Conclusions

In this chapter the governing equations for the general molecular model and two sim-

ulation methods have been presented. The Brownian dynamics simulations method

is the main simulations technique used in this thesis and it has been employed in all

the following chapters: Chapter 3 to validate the successive fine graining scheme,

Chapter 4 to compare BD predictions with LB results, Chapters 5 and 6 to study

the dynamics of collapse of polymers, and Chapter 7 to explore the effects of solvent

quality on the hysteresis window. The lattice Boltzmann simulation technique is

only used in Chapter 4 to compare LB predictions with BD results.



Chapter 3

Validation of the successive fine

graining (SFG) scheme

3.1 Introduction

The measurement and prediction of the properties of dilute polymer solutions has

been of interest for decades. While polymer solutions used in commercial applica-

tions are mostly nondilute, dilute polymer solutions are frequently studied theoret-

ically to understand the relationship between the dynamics of individual polymer

molecules and the viscoelastic behavior of their solutions. The Brownian dynamics

simulation (BDS) method with a coarse grained representation of linear polymer

molecules has proved to be the most suitable method to theoretically predict the

behavior of dilute polymer solutions. The most accurate coarse grained model pro-

posed in the literature to model a flexible polymer molecule is the freely-jointed

chain, in which a chain of beads is connected by freely-jointed links. This model

is usually implemented in terms of the bead-rod model. However, a stiff Fraenkel

spring between the beads has also been used to simulate freely-jointed chains. In

the bead-rod model proposed by Kramers [110], a polymer molecule is modeled as

a chains of beads connected by rigid links with a fixed length. The length of each

link is equal to the Kuhn length (l). An alternative and computationally more ef-

ficient way of simulating polymer molecules is the bead-spring chain model, which

is a coarse-grained version of the bead-rod model. In the bead-spring chain model,

N beads are connected by entropic springs representing an ensemble of links (Kuhn

steps) in the bead-rod model. The springs are chosen such that their force-extension

17
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behavior mimics the response of the polymer to an imposed extension at its ends.

Both the bead-spring and bead-rod models have been used extensively in the litera-

ture and have been shown to be in quantitative agreement with experimental results

[119; 186] when the essential physics such as the finite extensibility of the molecules

and solvent mediated interactions such as excluded volume (EV) and hydrodynamic

interactions (HI), are incorporated in the models [22; 90; 96; 119; 120; 166; 186; 194].

While the bead-rod model is assumed to be an accurate representation for de-

scribing the actual dynamics of polymer molecules, the computational efficiency

of this model has largely restricted its use and development. The routine simula-

tion of bead-rod chains is currently beyond the available computational resources

particularly for long molecules with Nk ≥ 103. Larson [119] and Hsieh et al. [87]

have pointed out that apart from computational requirements, there are other is-

sues such as the equilibrium distribution function of the bead-rod model being dif-

ferent from the random walk distribution and the need for carefully addressing

the proper treatment of constraints on fixed rod length etc. [22; 61; 110]. Dif-

ferent algorithms have been developed in the last decade to address these issues

[9; 52; 61; 85; 87; 92; 110; 130; 142; 154]. Inclusion of HI and EV introduce further

complexity and ambiguity in the bead-rod model formulation and implementation

[4; 5; 131; 147; 154]. Predictions of rheological properties in shear and elongational

flows from the bead-rod model with the inclusion of both EV and HI has also been

reported recently by Muthukumar and coworkers [129; 157].

The complications introduced by the bead-rod model are particularly responsible

for the development and frequent use of coarse-grained bead-spring chain models.

While the number of Kuhn steps Nk in a bead rod model is an experimentally

measured quantity and fixed for a given polymer, the use of a bead spring model

introduces an additional parameter, Ns (Ns = N−1). Although it is very well known

that the predictions of bead spring models are strong functions of N , in almost all

studies in the literature, the number of beads N has been chosen arbitrarily to

fit experimental results [88; 90; 96; 120; 125; 126]. The exceptions are the recent

work by Hsieh et al. [87], Prabhakar et al. [166] and Sunthar and Prakash [194].

While Hsieh et al. [87] introduced the use of stiff FENE-Fraenkel springs within

the framework of the bead spring model, Prabhakar et al. [166] and Sunthar and

Prakash [194] developed a scheme called successive fine graining (SFG). Both the use

of stiff FENE-Fraenkel springs and SFG eliminates the arbitrariness of the number
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of beads.

The idea of stiff FENE-Fraenkel springs is based on the fact that the springs in

the bead-spring model can be stiff enough to keep its length constant and thus behave

like a rigid rod in the freely-jointed chain. The arbitrariness in the number of springs

is eliminated by using as many springs as the number of rods in a bead-rod model.

With the use of stiff FENE-Fraenkel springs, Hsieh et al. [87] were able to reproduce

the viscosity data predicted by the bead-rod model using Liu’s BDS algorithm [130]

in simple shear flow and in the absence of HI. However, when HI was incorporated,

a discrepancy was observed between their results and the results reported by Petera

and Muthukumar [157], particulary for low values of non-dimensional shear rate. Al-

though the use of the stiff FENE-Fraenkel spring is a promising method to compute

freely-jointed chain results with the bead-spring model and hence, overcome vari-

ous modeling complications associated with the bead-rod model, simulating large

polymers (Nk ≥ 103) remains the major concern as the number of springs equals

the number of rods. The work by Hsieh et al. [87] also raises an important question

about the limiting behavior of conventional bead-spring chain models particularly

in the presence of HI. It remains to be seen whether the results of the conventional

bead spring chain model in the limit of Ns → Nk approaches the bead rod model

results or results of the stiff FENE-Fraenkel spring model.

The SFG procedure eliminates the arbitrariness of the number of beads by ac-

cumulating results for various values of N where the force law is valid in a conven-

tional bead-spring chain model and subsequently, extrapolating them to the limit

Ns → Nk. The central hypothesis of the SFG scheme is to keep certain static prop-

erties of the actual polymer molecule invariant, such as its end-to-end distance and

contour length so that the same polymer molecule is represented at any level of

fine graining. The strength of hydrodynamic interactions are also kept the same

at the bead level. In the limit of extrapolation Ns → Nk, the bead-spring chain

with the SFG scheme would have the same static properties as well as it would feel

the same drag force as that of the actual polymer molecule of Nk Kuhn segments.

Since increasing values of N represent more fine-grained versions of the underlying

chain, the procedure is called “successive fine graining”. In contrast to the bead-

rod and stiff FENE-Fraenkel spring models, the SFG is computationally efficient

as NS << Nk. Previous work has shown the predictions of SFG to be in excel-

lent agreement with experimental data for dilute DNA and polystyrene solutions
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in extensional flow [166; 194]. Another interesting feature of SFG is the system-

atic treatment of hydrodynamic and excluded volume interactions which leads to

parameter free predictions of experimental data [166; 194].

While the SFG procedure undoubtedly leads to an improved understanding of the

choice of parameter values and increased computational efficiency specially for larger

Nk, there has been no direct verification so far of the SFG procedure by comparison

with exact bead-rod results. The comparison of SFG results with bead-rod results

can be useful in understanding the limiting behavior of the conventional bead-spring

chain model. Before the SFG procedure is carried out, it is important to investigate

the limit on the number of springs, beyond which SFG is no longer valid since

spring force laws break down when the bead-spring chain is fine grained excessively

[194; 206]. We denote the number of springs at which a particular spring force law

breaks down by Nc. Note that Nc < Nk. One might argue, for instance, that the

bead-spring chain model is only valid for Ns < Nc, and legitimately, extrapolations

should not be carried out beyond this value of Ns. On the other hand, the value

Nk is fundamentally built into the SFG procedure as the degree of flexibility of

the underlying chain. So perhaps the extrapolation should be carried out to Nk,

i.e. Ns → Nk. This subtle issue has not been resolved in the previous work by

Prabhakar et al. [166] and Sunthar and Prakash [194]. This is partly because, for a

large molecular weight polymer chain (i.e. large Nk) simulated by Prabhakar et al.

[166] and Sunthar and Prakash [194], it is not possible to distinguish the difference

between the Nk and Nc limits due to the very small difference between 1/
√
Nc and

1/
√
Nk (the coordinates in which SFG extrapolation is carried out).

3.2 Models

In this work, three most commonly used spring force laws, namely, the finitely

extensible nonlinear elastic (FENE) spring [209], the inverse Langevin chain (ILC)

[39], and the wormlike chain (WLC) [134], are employed to account for the finite

extensibility of the molecule. The use of three different finitely extensible spring

(FES) force laws is based on the argument by Hsieh et al. [87] that the behavior

of infinitely stiff springs is close to that of freely-jointed chains independent of the

choice of spring force laws. As discussed by Prabhakar et al. [166], since successive

fine graining leads to infinitely stiff springs (which represents the limit b → 0), one
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anticipates that SFG results should be independent of the spring force law. The

force laws used here can be represented in a general form consisting of a Hookean

part and a nonlinear part f by

Fs
ν
∗(Q∗

ν) = Q∗
νf(Q∗/

√
b) (3.1)

where F∗
ν is the connecter force in the spring whose end-to-end vector is specified by

the connector vector Q∗
ν = r∗ν+1 − r∗ν. Q

∗ is the dimensionless length of the spring

and
√
b = Q0/lH is the dimensionless maximum stretchable length of a single spring.

The non-Hookean part f(Q∗/
√
b) for various spring forces is

fFENE =
1

1 − q2
; fILC =

3 − q2

3(1 − q2)
; fWLC =

1

6q

(

4q +
1

(1 − q)2
− 1

)

(3.2)

where q = Q∗/
√
b. As the aim of this chapter is to compare predictions of bead-

spring models with bead-rod models, we have employed the same EV force (derived

from the purely repulsive Lennard Jones potential) that has been used by Petera

and Muthukumar [157] and Liu et al. [129]. However, due to the differences in the

length and time scales used in the bead-rod and bead-spring models, the excluded

volume force used in Refs. 157 and 129 is renondimensionalised by using lH and λH .

The following form of the EV force is used in our simulations:

F∗
µ =

Fµ√
HkBT

=
∑

µ6=ν

pĀ(2R̄exlR)p/lpH
(

r∗µν/lH
)p+2

r∗µν

lH
=
∑

ν 6=µ

pĀ(2R̄exlR/lH)p

(

r∗µν

)p+2
r∗µν (3.3)

In the above equation, lR = l and λR = l2ζ/kBT are, respectively, the length and

time scales used in bead-rod model [129; 157]. Here, p = 12, Ā is the strength of

excluded volume interaction and R̄ex is the dimensionless excluded volume radius

of bead in the bead-rod model. Note that this is not the same as the dimensionless

bead radius in the bead-rod model, R̄hyd (R̄hyd = Rhyd/lR) [157]. In the rest of

the chapter, the “*” superscript is used to indicate that the parameters are non-

dimensionalized by lH and λH , while “-” denotes a non-dimensionalization by lR and

λR.

In order to predict the rheological properties of a polymer solution, we use

Kramers expression for the stress tensor τp [22]. The dimensionless form of Kramers
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expression is given by

τ
∗
p =

τp

npkBT
= (N − 1)δ +

N
∑

ν=1

〈

R∗
νF

φ
ν

∗
〉

(3.4)

where np is the number density of polymer, R∗
ν = r∗ν − r∗c is the position vector

of the bead with respect to the center-of-mass r∗c and Fφ
ν
∗

= Fs
ν
∗ + Fint

ν
∗
. The

angular bracket represents an ensemble average with respect to the configurational

distribution function of the chain [22].

In this work, we have computed the zero-shear rate polymer viscosity (ηp,0) and

the zero-shear rate first normal stress difference coefficient (Ψ1,0).

In the absence of EV and HI, both ηp,0 and Ψ1,0 are known analytically for

the bead-spring and the infinitely stiff Fraenkel spring models. The dimensionless

zero-shear rate viscosity (η∗p,0) for a free draining bead-spring model derived using a

retarded motion expansion is given by [167; 194]

η∗p,0 =
η0 − ηs

npkBTλH
=

2N

3

〈

R∗
g
2
〉

eq
=
N2 − 1

3
χ2(b) (3.5)

where
〈

R∗
g
2
〉

eq
is the dimensionless equilibrium mean square radius of gyration,

χ2(b) =
〈

Q∗2
〉

/3 is the mean square equilibrium length of a spring in the FES

chain non-dimensionalised by the root mean square equilibrium length of a Hookean

spring [194] and η0 is the solution viscosity. Similarly, for the infinitely stiff Fraenkel

spring model, the dimensionless zero-shear rate polymer viscosity (η̄p,0) is given by

[22]:

η̄p,0 =
η0 − ηs

npkBTλR
=
Nk(Nk + 2)

36
(3.6)

Note that the above expression also valid for the Kramers bead-rod chain [22; 110].
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For bead-spring chains, the dimensionless zero-shear rate first normal stress co-

efficient (ΨS
1,0

∗
) is given by [206]

ΨS
1,0

∗
=

ΨS
1,0

npkBTλ2
H

=

(

4

15

)









〈

Q∗4
〉

eq

15
−
〈

Q∗2
〉2

eq

9





(

N4 − 1

N

)

+





〈

Q∗2
〉2

eq

9





(

(N2 − 1) (2N2 + 7)

6

)





(3.7)

and for the infinitely stiff Fraenkel spring, the analytical expression for the dimen-

sionless zero-shear rate first normal stress difference coefficient Ψ̄F
1,0 is [22]

Ψ̄F
1,0 =

ΨF
1,0kBT

npζ2l4
=

ΨF
1,0

npkBTλ2
R

=
Nk(Nk + 2)(10N 3

k + 18N2
k + 41Nk + 21)

16200(Nk + 1)
(3.8)

where l is the length of the stiff spring (the same as the length of a rod in the bead-

rod model). To our knowledge, an analytical expression for the first normal stress

difference coefficient for the bead-rod model with an arbitrary number of beads is not

available in the literature (even when EV and HI are absent). Equation (3.7), where
〈

Q∗2
〉

eq
and

〈

Q∗4
〉

eq
are respectively, the non-dimensional equilibrium averages of

the second and fourth moment of the connector vector of a spring, are valid for any

spring force law.

In the presence of HI, however, analytical expressions for ηp,0 cannot be derived

and hence, a Green-Kubo formula is used. The Green-Kubo formula relates the

autocorrelation function Cs with η∗p,0 as [193]

η∗p,0 =

∫ ∞

0

Cs(t) dt (3.9)

The autocorrelation function Cs(t) is related, for instance in a dumbbell, to the

equilibrium autocorrelation of the quantity Sxy = Qx∂U/∂Qy (where, Qx is the

x-component of the connector vector Q and U is the potential energy of the bead-

spring chain) by,

Cs(t) = 〈Sxy(t)Sxy(0)〉
eq

(3.10)

Further details on the autocorrelation function for bead-spring chains can be found

in Sunthar et al. [193].
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3.3 Choice of value for the hydrodynamic inter-

action parameter

The strength of HI is governed by the non-draining parameter h [88; 90; 194; 213;

215]. For the bead-rod model, h ≡ hR = h∗k
√
Nk + 1, where h∗k =

√

3/πR̄hyd is the

HI parameter used by Petera and Muthukumar [157]. Sunthar and Prakash [194]

have shown that for FES chains, the strength of HI is given by h ≡ hS = h̃∗
√
N ,

where h̃∗ = h∗/χ and h∗ is the hydrodynamic interaction parameter for chains with

Hookean springs. Here, we choose to impose three different choices for h̃∗ in order to

investigate the convergence behavior of the extrapolation process in the SFG scheme

in the presence of HI.

3.3.1 Case 1

In this case, h̃∗ is chosen to have a constant value in the SFG scheme [166; 194]. As

a result, h̃∗ = h∗k. With this value of h̃∗, both the bead-rod and bead-spring models

have the same value of h in the limit Ns → Nk.

3.3.2 Case 2

In the second case, h̃∗ is assumed to have a constant value such that both the

bead-rod and bead-springs models have the same value of h in the limit of Ns →
Nc. In other words, we set hS = hR at Ns = Nc. With this choice of hS, h̃∗ =

h∗k
√

(Nk + 1)/(Nc + 1) Note that in both of these cases, the non-draining parameter

hS changes with N as the fine-graining procedure is carried out, and is equal to hR

in the extrapolation limit. The value of Nc for various force laws is discussed shortly.

3.3.3 Case 3

Here, h̃∗ is chosen such that at any fine graining level, the bead-spring model has the

same value of h as the bead-rod model. This implies that the strength of HI is kept

invariant as fine-graining is carried out. This ensures hS = hR for all values of N .

In this case, h̃∗ = h∗k
√

(Nk + 1)/N . For the special case, N = Nc, h̃
∗ in case 3, has

the same value as in case 2. In other words, simulations (with all other parameters

kept the same) at N = Nc are identical in both cases 2 and 3.



3.4. Results and discussion 25

3.4 Results and discussion

The numerical computations are performed with the same set of non-dimensional

parameters (Ā = 1, R̄hyd = 0.5 and R̄ex = 0.4) as was used by Petera and Muthuku-

mar [157], except for the time step, ∆t∗. For linear viscoelastic properties, a time

step size of ∆t∗ = 0.01 was used which yielded a time converged solution for an

ensemble average of 3 × 105 trajectories. For shear flow, different values of time

step size, depending upon the flow strength (γ̇∗), are used to obtain the ensemble

averages over 105 independent trajectories. In shear flow, we have used the same

set of time steps as used by Hsieh et al. [87]. Computations with a smaller set of

time steps were also carried out to ensure the time step convergence of our results.

The convention used to represent our results is similar to that used by Petera and

Muthukumar [157]; +EV/-EV indicates whether excluded volume is present or not

and +HI/-HI indicates whether hydrodynamic interactions are present or not.

3.4.1 Upper bound on the number of beads in the bead-

spring model

As the SFG results may be extrapolated to a limit where Ns → Nk or Ns → Nc,

it is important to investigate the limit of N beyond which the different force laws

used in this study are no longer valid.

In the SFG procedure, certain static properties are kept invariant, such as

the square end-to-end vector R2
e and maximum stretch length Lmax of polymer

molecule, as they do not depend on N [166; 194]. For the bead-spring models,

R2
e,S = 3χ2l2H(N − 1) and Lmax,S = (N − 1)

√
blH , and for the bead-rod model

R2
e,R = l2RNk and Lmax,R = lRNk [22; 194].

By equating the ratios of R2
e/Lmax obtained from the bead-rod and bead-spring

models, it is possible to relate the spring force parameters with Nk and N as [166;

194]
1

Nk

=
3χ2(b)

b(N − 1)
(3.11)

Also the ratio of Lmax,R/Lmax,S gives lR/lH as

lR
lH

=
(N − 1)

√
b

Nk

(3.12)
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The term χ2 in Eq. (3.11), which is a function of b, depends upon the spring force

law. Since it is related to
〈

Q∗2
〉

, the equilibrium distribution function ψeq is used

to evaluate χ2 [22]. The equilibrium average of the second moment of the connector

vector is given by

〈

Q∗2
〉

=
〈

Q∗2
〉

=

∫

√
b

0
Q∗4e−φ/kBTdQ∗

∫

√
b

0
Q∗2e−φ/kBTdQ∗

(3.13)

where the spring potential φ is related to the spring force by Fs = ∂φ/∂Q. The

dimensionless spring potentials, φ∗ = φ/kBT for three force laws, used in this work,

are given by

φ∗
ILC =

b

6
q2 − b

3
ln (1 − q2); φ∗

FENE = − b
2

ln (1 − q2); φ∗
WLC =

b

6

[

2q2 +
1

(1 − q)
− q

]

(3.14)

For the FENE force law, χ2 can be evaluated analytically as:

χ2 =
b

b + 5
(3.15)

Combining Eqs. 3.11 and 3.13 gives,

(N − 1)/Nk =

∫ 1

0
q4e−φ∗

dq
∫ 1

0
q2e−φ∗dq

(3.16)

As b > 0, the above equation imposes an upper bound on N that can be used in

bead-spring models for a given value of Nk. If Ns = Nc for b = 0, then, since φ∗ → 0,

as b → 0, for all force laws

Nc =
3Nk

5
(3.17)

The above equation implies that as b→ 0, the value of Nc is the same for all different

force laws used in this work.

From Eq. 3.11, to obtain the value of b for a particular Nk value at each level of

fine graining N , an expression for χ as a function of b or N is required.

Since analytical expressions for χ for ILC and WLC force laws cannot be derived,

χ is evaluated numerically by using a Gauss quadrature integration formula [194].

Figure 3.1 shows the values of b/3χ2(b) as a function of b for different force laws.

b/3χ2(b) is evaluated for a given Nk and N from Eq. (3.11). A fitting procedure

proposed by Sunthar and Prakash [194] is used to fit the data for ILC and WLC
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Figure 3.1: The mean square dimensionless maximum stretching length of a spring
for a range of Nk/Ns ratios (i.e y) for all the three force laws.

Table 3.1: The values of the coefficients for the series approximation, which accu-
rately fit the obtained numerical values of the ILC and WLC force laws.

Type c1 c2 c3 c4 c5 c6
ILC 0.0002 -1.1144 0.0108 -0.7707 -0.6125 0.5210
WLC -0.6137 -0.7207 -0.5490 -1.6144 1.6788 1.2590

force laws. The following series is used to represent the data in Fig. 3.1

b = 3y

[

1 +
c1√
y

+
c2
y

+
c3
√

y3
+
c4
y2

+
c5
√

y5
+
c6
y3

]

(3.18)

where y = b/3χ2(b). The values of various parameters (c1, . . . , c6) for the ILC and

WLC force laws are presented in Table 3.1. These values have been obtained by

a nonlinear least-squares regression fit of the numerical data in the b vs y space.

Thus for any given values of Nk and N , b can be determined via y from Fig. 3.1 or

Eq. 3.18, and subsequently, χ(b) can be obtained. While Sunthar and Prakash [194]

have performed a similar fitting procedure for the WLC force law, it is extended

here to the limit b→ 0.
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3.4.2 Linear viscoelastic properties

In this section we present the analytical and numerical results for linear viscoelastic

properties obtained using the SFG method. The analytical calculations are carried

out for the case where both HI and EV interactions are absent. Most of the previous

results derived in the literature for the linear viscoelastic properties for free draining

bead-spring chains without EV are the functions of the spring parameters and the

number of beads and hence, cannot be used directly to compare with results for

Kramers bead-rod chains [22; 167; 206] (the exception are the results of infinitely

stiff Fraenkel spring [22; 206]). In our work, we have used expressions for the

zero-shear rate viscosity and zero-shear rate first normal stress coefficient which, in

literature, are expressed in term of the beads N , the second moment
〈

Q∗2
〉

eq
and

the fourth moment
〈

Q∗4
〉

eq
of the end-to-end vector given in Refs. 22; 167; 206 to

derive expressions which can be directly compared to the bead-rod results.

3.4.2.1 SFG - Validation from kinetic theory for free-draining chains

without EV

The dimensionless zero-shear rate viscosity and zero-shear rate first normal stress

difference coefficient predicted by the bead-spring model non-dimensionalised by the

time scale of the bead-rod model are

η̄S,0 ≡ η∗p,0

λH

λR

; Ψ̄S
1,0 ≡ ΨS

1,0

∗λ2
H

λ2
R

(3.19)

Equation (3.19) can be used to compare the results of the bead-spring chain

model directly with the bead-rod model as they are based on the same length and

time scales. The ratio λH/λR depends on the coarse graining procedure adopted for

evaluating the friction coefficient. Here, for the free-draining case without EV, two

different values of friction coefficients are chosen to study the convergence behavior

of the results and to show that SFG extrapolations are independent of these choices.

For the first case, denoted as case (a), the total friction on the bead-spring chain

is kept the same as that of the bead-rod chain at any level of fine graining. By

equating the total friction on the chain in the two models, the ratio of bead friction
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coefficients can be determined

ζR(Nk + 1) = ζSN ⇒ ζR
ζS

=
N

Nk + 1
(3.20)

where ζR and ζS are the bead friction coefficients in the bead-rod and bead-spring

models, respectively. The ratio λR/λH for this case is

λR

λH
=
ζRl

2
R

kBT

4kBT

l2HζS
=

4N

(Nk + 1)

l2R
l2H

=
4bN(N − 1)2

N2
k (Nk + 1)

(3.21)

From Eqs. (3.5), (3.7), (3.19) and (3.21)

η̄Sa,0 =
χ2

b

N2
k (Nk + 1)2

12N(N − 1)
(3.22)

Ψ̄Sa

1,0 =
ΨS

1,0
∗

b2
N4

k (Nk + 1)2

16N2(N − 1)4
(3.23)

In case (b), the bead friction coefficient in the bead-spring model is kept the equal

to that of the bead-rod model at each level of fine graining, i.e. ζR = ζS. This

implies that both the bead-rod and bead-spring models have the same total friction

coefficient in the limit of Ns → Nk. The ratio λR/λH for this case is

λR

λH

=
ζRl

2
R

kBT

4kBT

l2HζS
=

4l2R
l2H

=
4b(N − 1)2

N2
k

(3.24)

From Eq. (3.5), (3.7) (3.19) and (3.24)

η̄Sb,0 =
χ2

b

N2
k (N + 1)

12(N − 1)
(3.25)

Ψ̄Sb

1,0 =
ΨS

1

∗

b2
N4

k

16(N − 1)4
(3.26)

The terms χ2/b (and hence,
〈

Q∗2
〉

/b) and
〈

Q∗4
〉

/b2 are required in Eqs. (3.22),

(3.23), (3.25) and (3.26). While these terms are analytically known for the FENE

force [22], there are no closed-form expressions for the ILC and the WLC force laws,

and have to be computed numerically.
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〈

Q∗4
〉
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line) values for FENE (·), ILC (�) and WLC (◦). Inset shows the relative error in
〈

Q∗4
〉

/b2 for ILC and WLC force laws at each level of fine graining. Relative error

is defined as Relative Error =
(
〈

Q∗4
〉

/b2)FENE − (
〈

Q∗4
〉

/b2)ILC or WLC

(
〈

Q∗4
〉

/b2)FENE

From Eq. (3.11),
〈

Q∗2
〉

/b is

〈

Q∗2
〉

b
=

3χ2

b
=
N − 1

Nk

(3.27)

The above equation in independent of the choice of spring force law. For a FENE

spring,
〈

Q∗4
〉

eq
is given by [22]

〈

Q∗4
〉

eq
=

15b2

(b + 5)(b+ 7)
(3.28)

Figure (3.2) shows the numerical results for
〈

Q∗4
〉

eq
/b2 for the ILC and WLC

force laws together with the analytical result for the FENE spring force law. Since

the maximum deviation in
〈

Q∗4
〉

eq
/b2 for ILC and WLC force laws is between 2

to 4% compared to the FENE force law for a given value of Nk, it is reasonable to
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assume that
〈

Q∗4
〉

eq
/b2 is independent of the choice of force law for all values of N

and hence, Eq. (3.28) can be used for ILC and WLC as well. Note that deviation

in the results for ILC and WLC force laws occur only for the intermediate values

of b. Analytically, the independence of
〈

Q∗4
〉

eq
/b2 with respect of the nature of the

force law in the limit of large b (b → ∞) and small b (b → 0) can be seen from the

following expression:
〈

Q∗4
〉

/b2 =

∫ 1

0
q6e−φ∗

dq
∫ 1

0
q2e−φ∗dq

(3.29)

For b → 0, φ∗ → 0 and hence,
〈

Q∗4
〉

/b2 is independent of choice of the force

law. For b → ∞, all finitely extensible force laws reduce to the Hookean force law

which implies
〈

Q∗4
〉

/b2 is independent of force law. The difference for intermediate

values of b is depicted in Fig. 3.2.

Substituting Eq. (3.27) into Eqs. (3.22) and (3.25)

η̄Sa,0 =
Nk(Nk + 1)(N + 1)

36N
; η̄Sb,0 =

Nk(N + 1)

36
(3.30)

From Eqs. (3.11), (3.15), (3.23), (3.26) and (3.28)

Ψ̄Sa

1,0 =

(

N3
k (Nk + 1)2(N + 1)

180N3(N − 1)

)[

N2 + 1

3Nk + 2(N − 1)
+

2N3 − 6N2 + 7N − 6

18Nk

]

Ψ̄Sb

1,0 =

(

N3
k (N + 1)

180N(N − 1)

)[

N2 + 1

3Nk + 2(N − 1)
+

2N3 − 6N2 + 7N − 6

18Nk

] (3.31)

In the limit Ns → Nk,

η̄S,0 = η̄Sa,0 = η̄Sb,0 =
Nk(Nk + 2)

36
(3.32)

Ψ̄S
1,0 = Ψ̄Sa

1,0 = Ψ̄Sb

1,0 =
Nk(Nk + 2)(10N 3

k + 18N2
k + 41Nk + 21)

16200(Nk + 1)
(3.33)

Although, as Ns → Nk, the spring force laws for the FES chain are no longer valid (χ

and b do not have any physical meaning) the analytical expressions for the zero-shear

rate intrinsic viscosity and the zero-shear rate first normal stress coefficient for the

bead-spring models are exactly the same as the known expressions for the random

walk chain or the Fraenkel spring with infinite stiffness [Eq. (3.6) and (Eq. (3.8)].
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The analytical results for this simple case suggest that the limit of extrapolation for

the SFG scheme is Nk and not Nc.

3.4.2.2 Numerical results

In this section we compare numerical results for linear viscoelastic properties ob-

tained using the SFG scheme with the bead-rod model.

Numerically the zero-shear rate viscosity can be obtained in two different ways.

It can either be obtained by accumulating data at various finite shear rates and

extrapolating the results to the limit of zero shear rate or by using the Green-Kubo

expression. While Petera and Muthukumar [157] used the extrapolation method

to obtain the zero-shear rate viscosity with the bead-rod model, we have used the

Green-Kubo formulation.

In order to compare η̄S,0 obtained from the bead-spring model with that of bead-

rod model, the ratio λR/λH is required. For free draining chains, either Eq. (3.21)

or (3.24) can be used. In the presence of HI, since λR = 6πηsR̄hydl
3
R/kBT , and

λH = (3ηsπ
3/2l3Hh

∗)/2kBT , the ratio λR/λH is

λR

λH

=
4R̄hyd√
πh∗

(

lR
lH

)3

=
4R̄hydb

3/2(N − 1)3

√
πh∗N3

k

(3.34)

Figure 3.3 displays analytical and numerical results computed using the SFG

scheme for different force laws and two different values of Nk as a function on N . The

results in Fig. 3.3 are plotted as a function of 1/N because in the absence of HI and

EV, the zero-shear rate viscosity is proportional to 1/N provided the total friction is

kept the same (Eq.3.30). The bead-rod results of Petera and Muthukumar [157] and

extrapolated results of the SFG scheme in the limit Ns → Nk are also displayed for

comparison. The results obtained at the extrapolated limit Nk for two different Nk

values are in excellent agreement with the theoretical values for a random walk chain

and also it is clear that Nk is in fact the right limit to obtain the extrapolated results.

On the other hand, the values reported by Petera and Muthukumar [157] show a

discrepancy from analytical results. As Liu [130] have shown that the zero-shear

rate viscosity and zero-shear rate first normal stress difference coefficient predicted

by the bead-rod model using the mid-point algorithm are in good agreement with

random walk results, a possible source for the discrepancy in the results of Petera

and Muthukumar [157] could be due to their extrapolation of finite shear rate data
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Figure 3.3: Zero-shear rate viscosity for Nk = 10 and Nk = 20 for the two different
approaches. Symbols indicate simulations data obtained at various values of N
for ILC (◦), FENE(O) and WLC (M). The error bars are smaller than the size of
symbols. ‘BR Sim’ represents results of Petera and Muthukumar [157]. ‘BS Theory’
are SFG results evaluated from Eq. (3.30). ‘BR Theory’ represents the theoretical
values for a bead-rod or a random walk chain model (Eq. (3.32)). The case (a)
represents the situation where the total friction coefficient on the bead-spring chain
is kept the same as that of the bead-rod chain at any level of fine graining and the
case (b) represents the situation where the bead friction coefficient on the bead-
spring chain is kept the same as that of the bead-rod chain.

to zero-shear. As can be seen from Fig. 3.3, case (a), where the total fiction in the

bead-spring chain is kept equal to that the total friction on bead-rod chain, leads to

faster convergence of bead-spring results to the bead-rod results.

Similar to the free draining case under θ-conditions, the values of η̄S,0 in the

presence of HI is shown in Fig. 3.4 for the three different choices of HI parameter

discussed in section 3.3 and for two Nk values as a function of N . In the presence of

HI, Sunthar and Prakash [194] have shown that the leading order correction for any

universal ratio is 1/
√
N . Since the zero-shear rate viscosity is related to the universal

ratio via the radius of gyration of the chain (i.e. η∗p,0 ∼ UηRR
∗
g
3), it can be shown

that the zero-shear rate viscosity is also a function of 1/
√
N . Therefore, it is more

appropriate to use 1/
√
N in the extrapolation scheme for the cases involving HI.

For all three choices of HI parameters, the non-dimensional results vary smoothly
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Figure 3.4: Zero-shear rate viscosity for Nk = 10 and Nk = 20 for three different HI
parameter choices. The error bars are smaller than the size of symbols. ‘BR Sim’
represents values reported by Petera and Muthukumar [157].

with N , and are independent of the force law. For linear viscoelastic properties, the

choice of spring force law appears to be an irrelevant issue. For case 1, it is not clear

whether Nc or Nk is the proper limit for both Nk = 10 and 20. The difficulty is

further compounded by the fact that Petera and Muthukumar [157] do not report

error bars on their values for the case of HI without EV. However, cases 2 and 3

clearly reveal that the limit Ns → Nk is in fact the correct limit. At N = Nc, the

value of η̄S,0 in both the cases 2 and 3 is very different from the bead-rod value.

Overall, values obtained in the limit Nk using a bead-spring model with the SFG

scheme agree very well with the reported values of Petera and Muthukumar [157].

In the presence of HI, it appears that keeping the hydrodynamic interaction

parameter h̃∗ = h∗k (denoted by case 1) leads to the most rapid convergence to the

bead-rod result which is in contrast the free draining case discussed earlier.

3.4.3 Shear properties

In this section SFG results are compared with the results of bead-rod and stiff

FENE-Fraenkel spring models in shear flow.

In order to compare the results of different models, it is necessary to make sure
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that the chain representing the polymer in different models experiences the same

strain rate. Equating the shear rate of the bead-rod and bead-spring model results

in γ̇∗ = γ̄λH/λR, where γ̄ = γ̇λR is the dimensionless shear rate of the bead-rod

model.

Figure 3.5 shows the shear viscosity for two different shear rates as a function

of N obtained for bead-spring chains in the presence of both EV and HI. The shear

results displayed in Fig. 3.5 further substantiate the earlier result that a choice of

h̃∗ = h∗k leads to faster convergence in the presence of HI.

Since it was shown for linear viscoelastic properties, that keeping the chain total

friction [i.e. case (a)] to be the same as that for the bead-rod model in the absence

of HI and choosing h̃∗ = h∗k in the presence of HI leads to rapid convergence of bead-

spring results to the bead-rod value, we have chosen these cases to study the validity

of SFG in shear flow. Furthermore, only the FENE spring force law is used as it

was seen earlier that the results for linear viscoelastic properties are independent

of the choice of spring force law. For the purpose of extrapolation of bead-spring

results, the TEXTRA program, proposed by Öttinger [155], is used in shear flow.

The TEXTRA algorithm is based on the assumption that the various properties

are polynomial functions of independent variables. It is clear from Fig. 3.5 that
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Figure 3.6: Shear viscosity for Nk = 10 in the absence of EV and HI for the bead-rod
model, a stiff FENE-Fraenkel spring model and the bead-spring model with SFG.

the extrapolation scheme works very well. The results of extrapolation for all the

remaining cases obtained suggest that a quadratic function in 1/
√
N is adequate for

fitting purposes.

Figure 3.6 compares the viscosity predicted by three different models for Nk = 10

as a function of shear rate in the absence of HI and EV. SFG results agree very well

with the results of the bead-rod model as well as the results of FENE-Fraenkel

springs up to a shear rate γ̄ ∼ 50 and starts to deviate beyond this value. In

terms of the reduced shear rate β, which is defined β = γ̄ η̄0, the value of γ̄ ∼ 50

is equivalent to β = 167 for Nk = 10, which is far greater than values typically

encountered in experiments. Ghosh et al. [70] have shown that in a rapid stretching

flow, the inverse Langevin force deviates from the force profile of the Kramers chain.

This deviation is due to the assumption of local equilibrium for bead-spring chains,

which fails in strong flows [22; 52; 87]. The coarse-grained bead-spring model only

captures the behavior of the Kramers chain when the product of shear rate and

spring relaxation time (γ̇∗) is of the order of 1 or lower, and it is not realistic to

expect SFG to work at very high shear-rates.

Figure 3.7 shows that in the presence of HI, the viscosity data obtained from the

stiff FENE-Fraenkel spring model does not coincide with the values of the bead-rod
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model reported by Petera and Muthukumar [157] and the discrepancy is higher at

low shear rates. Hsieh et al. [87] have pointed out that this discrepancy is more

likely to reside in the code for the bead-rod chain as the bead-rod simulations with

HI are complicated to formulate and implement. However, the results obtained from

our simulations seem to agree with the results of the bead-rod model rather than the

results of stiff FENE-Fraenkel spring model. As in the free draining case, deviations

appear at shear rates > 50. In the presence of EV, the viscosity obtained from the

SFG method agrees well with the bead-rod values.

The combined effect of both EV and HI on the shear viscosity for Nk = 20 and

60 is shown in Fig. 3.8. The results obtained from the SFG method are in excellent

agreement with the results of the bead-rod model for both Nk values. Moreover, the

deviation at high strain rate values is also observed in this case.

3.5 Conclusions

In this chapter, the successive fine graining scheme (SFG) has been used to investi-

gate the rheological properties of dilute polymer solutions. The validity of the SFG

scheme is established by comparing bead-spring chain results with the results of a

bead-rod model and a stiff FENE-Fraenkel spring model both in the absence and

presence of HI and EV, and in the linear viscoelastic limit and in shear flow. The

advantage of SFG is three fold. First, it avoids the complexity introduced by the

bead-rod model while preserving the accuracy of computational results. Second, the

computational gain, particulary for Nk ≥ 103, is enormous. Third, existing com-

putational algorithm for bead spring chains can be used to obtain bead-rod results

with minor changes.



Chapter 4

Implicit and explicit solvent

models for the simulation of a

single polymer chain in solution:

Lattice Boltzmann vs Brownian

dynamics

4.1 Introduction

In order to observe large-scale properties, it is crucial to reduce the computational

cost by coarse-graining the details of the atomic structure. This is particularly true

for polymer systems and studies of their universal static and dynamic properties

[44; 50]. In this context, using a conventional bead-spring chain model to represent

a polymer molecule in Molecular Dynamics (MD) simulations is usually sufficient

[20; 53; 111; 159; 187]. In the case of dilute and semidilute polymer solutions, a

correct model also needs to take into account the effect of solvent molecules. This

effect is two-fold: On the one hand, the good solvent quality results in swelling of

the random coil; on the other, the solvent-mediated long-range dynamic correlations

between different segments of the chain, known as hydrodynamic interactions (HI),

significantly influence the dynamical behavior [44; 50; 195].

In general, MD simulations are commonly used to simulate polymer solutions.

39
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However, in order to capture hydrodynamic interactions in MD simulations, the

solvent particles need to be incorporated explicitly. Typically, the number of solvent

particles required for such a model is of the order of thousands even for a short chain.

Although such studies are feasible [53], they are rather inefficient, for this reason.

Therefore, a more coarse-grained description of the solvent is highly desirable. Two

complementary approaches have been developed to do this. “Mesoscopic” methods

keep the solvent degrees of freedom, but describe them in a simplified fashion. These

include Dissipative Particle Dynamics (DPD) [56; 57; 74; 86; 135; 156; 178], Multi–

Particle Collision Dynamics (MPCD) [72; 123; 133], and lattice Boltzmann [3; 6; 7;

19; 34; 54; 116; 117; 118; 192; Dünweg and Ladd]. These approaches are typically

one to two orders of magnitude faster than MD [7]. Conversely, Brownian Dynamics

(BD) simulations [55; 96; 128; 166; 194] remove the solvent degrees of freedom

completely, and take their effect into account via non-trivial long-range dynamic

correlations in the stochastic displacements. This is possible due to the time scale

separation between the fast solvent motion and the slow conformational polymer

degrees of freedom. Since the number of degrees of freedom is reduced drastically,

the method has the potential to save CPU time by additional several orders of

magnitude, in particular in the dilute limit. However, a simple implementation of

the correlations [55] leads to an algorithm which scales like O(N 3), where N is the

number of Brownian particles, and therefore becomes infeasible as soon as N exceeds

a few hundred [128]. It is therefore very important to treat HI by means of Fixman’s

algorithm [64] (scaling roughly as O(N 2.25)), which we do in the present study.

Nevertheless, these algorithms are not sufficient to reach N ∼ 103 . . . 104; this

latter goal is only attainable by the implementation of very recent “superfast” BD

algorithms based upon Fast Fourier Transforms [16; 82; 174]. These latter algorithms

scale as N1+x logN , where the exponent x depends on the details of the underlying

physics, and is usually substantially smaller than unity. These methods require the

study of a confined system, and hence are not used in the present study.

While the advantages and disadvantages of the methods are well-known in gen-

eral terms (and have resulted in differing methodological preferences in different

groups of researchers), not much is known quantitatively in terms of a clear com-

parison of computational efficiency. The present work aims at partly filling this

gap.

Recently, Dünweg and co-workers [6; 7] has proposed a new mesoscopic method
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for simulating polymer-solvent systems. The solvent is represented by a fluid on a

grid, simulated via the lattice Boltzmann approach, while the motion of the polymer

chain is governed by a continuous MD model. The two parts are coupled by a simple

dissipative force. The lattice Boltzmann (LB) method was originally developed

to simulate hydrodynamics on a grid [19; 34]. It has been shown that the LB

method is a fast and effective method for simulating fluid flows, which has the

same speed and accuracy as other Navier-Stokes solvers [19; 116; 117; 136]. Ladd

[116; 117] successfully applied the LB method to colloidal systems (originally with

a conservative coupling) and showed that the CPU cost scales linearly with the

number of particles. Moreover, he showed how fluctuations can be incorporated into

the LB model, which is essential in order to investigate Brownian motion [116]. This

procedure has recently been refined and improved [3; 54]. The dissipative coupling

method [6; 7] was thoroughly tested by applying it to a single polymer chain in

solution, for which the data of a previous MD simulation [53] were available, and

whose parameters were used as an input for the mesoscopic model.

In this work, we study the dynamics of a single chain in a solvent to compare

the predictions of the explicit solvent model via the LB method with the predictions

of the implicit solvent model by BD simulations. We show how to map the input

parameters of the hybrid model onto the input values of the BD model to directly

compare the predicted quantities.

4.2 Molecular model and simulation methods

This chapter employs the molecular model and simulation techniques described in

Chapter 2. However, the early model of Ref. [7] only considered the thermaliza-

tion of modes related to the viscous stress tensor. It is important to note that

even though this procedure is correct in the hydrodynamic limit, it provides poor

thermalization on smaller length scales [3]. Adhikari et al. [3] have shown that by

applying thermalization to all nonconserved modes one gets a significantly improved

numerical behavior at short scales; the theoretical background is now thoroughly un-

derstood [54; Dünweg and Ladd]. In this work, we have also investigated the effects

of thermalization of the kinetic modes on various dynamic properties.

For these simulations, the parameters εLJ, σ, and τ (τ =
√

mσ2/εLJ, where m

is the mass of the monomer) are chosen as the units of energy, length, and time,
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respectively. The coupling to the beads is done via simple interpolation of the

flow velocity from the surrounding sites, and by introducing a phenomenological

Stokes friction coefficient ζbare of the beads. This gives rise to a friction force on

the particles, plus a Langevin force that balances the frictional losses. The total

momentum is conserved by subtracting the corresponding momentum transfer from

the surrounding fluid. It can be shown that this procedure satisfies the fluctuation-

dissipation theorem [Dünweg and Ladd]. Further technical details on this method

and its theoretical analysis, are given in Ref. [Dünweg and Ladd].

Since the length and time units used for the lattice Boltzmann simulations are

different from the ones used in the Brownian dynamics simulations, the EV and

FENE forces in the BD simulation have been re-dimensionalised by lH and λH . In

the rest of the chapter, the “*” superscript is used to indicate that the parameters

are non-dimensionalized by lH and λH , while “-” denotes a non-dimensionalization

by σ and τ .

4.2.1 Input parameters for the lattice Boltzmann method

The physical input values for the present model are chosen from the benchmark

values developed in Ref. [7], which have been shown to reproduce the results of a

typical pure MD simulation [53]. As in the comparison between LB and MD sim-

ulations, we study a system of a single polymer chain of length N = 32 monomers

immersed in a fluid with temperature kBT/εLJ = 1.2, density ρ̄ = 0.864, and kine-

matic viscosity ν̄ = 2.8. The lattice spacing ā is set to unity, which is roughly

identical to the bond length; this is necessary to resolve the hydrodynamic interac-

tions on small length scales with sufficient accuracy. In order to match the value of

the monomer diffusion coefficient (D0 = kBT/ζeff, where ζeff is the effective friction

coefficient) obtained from LB simulations to the known value from MD simulations,

Ahlrichs and Dünweg [7] have shown that the effective friction coefficient ζeff can be

determined from the “bare” friction coefficient ζbare in the LB simulation via

1

ζeff
=

1

ζbare

+
1

gηa
, (4.1)

where g ≈ 25, and η = ρν. Since the MD simulations lead to D̄0 = 0.076, ζ̄bare was

set to 20.8 to obtain the desired ζeff value. The values of the FENE spring potential

parameters are H̄ = 7 and R̄0 = 2. The time step size for the polymer (the MD part
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of the simulations) is set to ∆t̄ = 0.01. The value of the time step that updates the

fluid should be chosen in a way such that the LB variables ni do not become negative

too often. Here, we choose ∆τ̄ = 0.02, where such a case rarely occurred during the

observation time. It is important to mention another free input parameter which

governs the time scale for the evolution of hydrodynamic interactions, known as

the Schmidt number Sc = ν/D0. This parameter can be set arbitrarily in the LB

method by choosing ν and D0 (which can be tuned by choosing ζbare) accordingly.

Ideally, the value of Sc should be chosen such that hydrodynamic interaction evolves

much faster than the diffusion of a monomer. In our case, we have Sc ≈ 32, which

has been shown to result in Zimm-like behavior [7; 97].

For the LB simulations, the polymer chain moves within a cubic box of length L

with periodic boundary conditions, while it is drifting freely in an infinite medium for

the BD simulations. In order to accurately compare various properties between the

two systems, one must understand the effects of the box length L on any observable

of interest in the LB simulations. Thus it is essential to only compare quantities

under identical condition (i. e. independent of the box length). Hence various box

lengths L ranging from 10 to 35 Lennard-Jones units were investigated.

4.2.2 Mapping the lattice Boltzmann parameters onto Brown-

ian dynamics parameters

In other to compare the results between LB and BD simulations, one has to take

into account that the two methods use different unit systems for length and time;

therefore the ratios between the elementary scales of the two methods are needed.

These ratios can be evaluated by equating the dimensional forms for the FENE

spring potentials in the two models, resulting in

σ

lH
=

(

k̄FENEε

kBT

)1/2

, (4.2)

τ

λH
=

4k̄FENE

ζ̄eff
. (4.3)

The value of the maximum stretching length of a spring in the BD model can

then be determined from the above result, which leads to R∗
0 = 2(σ/lH). Note that

the bead friction coefficient ζ in the BD simulations has been set equal to ζeff.
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Since Stokes’ law is used in both models, the value of the dimensionless bead

radius (h∗) in the BD model can be calculated from the input parameters of the LB

model

h∗
√
πlH = d =

ζeff
6πη

=
ζ̄effσ

6πη̄
, (4.4)

or

h∗ =
ζ̄eff

6π3/2η̄

(

k̄FENEε

kBT

)1/2

. (4.5)

For the BD simulations, the time step size ∆t∗ = 0.005 was found to produce

accurate results.

In the rest of the chapter, all properties will be presented in LB dimensionless

units, regardless of the applied simulation method.

4.3 Results and discussion

4.3.1 Static properties

The mean square radius of gyration and the mean square end-to-end distance are

given by

〈

R2
g

〉

=
1

2N2

∑

ij

〈

r2
ij

〉

, (4.6)

〈

R2
e

〉

=
〈

(rN − r1)
2
〉

(4.7)

with rij = |ri − rj| being the inter-particle distance.

These two quantities are both related to the number of monomers by the expres-

sion
〈

R2
g

〉

∝
〈

R2
e

〉

∝ N2ν , (4.8)

where ν is the Flory exponent. For a self-avoiding walk (SAW), the Flory exponent

ν is 0.588 [65]. In principle, ν can be obtained from simulations, using the scaling

law in Eq. 4.8. However, this method would require simulations for a wide range of
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Table 4.1: Properties for a single chain of length N = 32 obtained from lattice Boltzmann simulations at various finite box
lengths and Brownian dynamics simulations in infinite medium. a Exponent obtained by fitting a power law in the sub-diffusive
scaling regime of the chain in Lattice Boltzmann simulations, t̄ ∈ [20 : 80]. b Exponent obtained from Lattice Boltzmann
simulations without thermalization of all the kinetic modes.

LB BD
Box length L 10 15 25 ∞
Time step 0.02 0.02 0.02 0.005
exponent ν 0.615 ± 0.005 0.617 ± 0.005 0.619 ± 0.005 0.619 ± 0.004
〈

R̄2
e

〉

94.56 ± 1.20 100.05 ± 1.26 100.20 ± 1.28 99.22 ± 1.24
〈

R̄2
g

〉

14.83 ± 0.10 15.31 ± 0.11 15.36 ± 0.11 15.25 ± 0.11
〈

R̄−1
H

〉

∞ 0.291 ± 0.0005 0.290 ± 0.0005 0.289 ± 0.0005 0.290 ± 0.0005
ḡ1-exp.a 0.640 ± 0.0005 0.675 ± 0.0005 0.710 ± 0.0005 0.728 ± 0.0006
ḡ1-exp.a,b 0.645 ± 0.0006 0.684 ± 0.0006 0.714 ± 0.0006 0.728 ± 0.0006
ḡ3-exp.a 1.008 ± 0.0008 1.020 ± 0.0008 1.050 ± 0.0008 0.995 ± 0.0008
D̄CM × 10−3 3.914 5.162 6.959 9.843

±1 × 10−3 ±1 × 10−3 ±2 × 10−3 ±1 × 10−2

τ̄tr(estimate) 631.36 ± 4.43 492.01 ± 3.56 368.51 ± 2.67 258.28 ± 1.87
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Figure 4.1: The static structure factor for the LB simulations (at various box lengths
L) and the BD simulations (L = ∞) for a wide range of dimensionless wave vectors
k̄.

N values. Alternatively, one can use the static structure factor

S(k) =
1

N

∑

ij

〈exp (ik · rij)〉

=
1

N

∑

ij

〈

sin(krij)

krij

〉

(4.9)

to obtain ν much more efficiently.

In the scaling regime R−1
g � k � a0 (a0 being a microscopic length of the order

of the bond length), a power law relation between the static structure factor and

the wave vector k holds:

S(k) ∝ k−1/ν . (4.10)

Figure 4.1 shows the static structure factor as a function of wave vector k for

the LB simulations with the presence of thermalization of all modes, and the BD

simulations. It can be clearly seen that the values of the static structure factor

obtained from the LB simulations are exactly the same as those obtained from the

BD simulations, indicating that they have the same static conformations. From

Eq. 4.10, the value of ν can be extracted from the linear region of the log-log plot
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of S(k) vs k. As expected, the values for ν obtained via this method are the

same for both the LB and the BD simulations, as reported in Table 4.1. However,

they are approximately 5% higher than the asymptotically correct value, which is

a consequence of the finite chain length. The results for the mean square radius of

gyration and the mean square end-to-end distance in Table 4.1 further confirm this

agreement with regard to static conformations between the two methods. However,

at small box length (L = 10), the results for these static properties for the LB

method deviate from their asymptotic values. The discrepancy observed here always

arises when the box length is too small compared to the chain size, where the

chain is more likely to wrap over itself (overwrapping) due to spatial restriction and

hence alter its static conformations. We also found that the two versions of LB

thermalization (“stresses–only” vs “full” thermalization) yield identical results for

the chain conformational statistics. In general, we only quote values obtained for

full thermalization, unless indicated otherwise.

The hydrodynamic radius for a single chain in an infinite medium is given by

〈

1

RH

〉

∞
=

1

N2

∑

i6=j

〈

1

rij

〉

. (4.11)

For a chain in a finite box, as is the case here in the LB method, it has been

shown that the hydrodynamic interactions of the chain with its periodic image effec-

tively increases RH [7; 53]. In order to account for this finite-size effect, a finite-size

correction of order L−1 for most dynamic properties, resulting from the slow r−1 de-

cay of hydrodynamic interactions, is required [7; 53]. The results for the infinite-box

value
〈

R−1
H

〉

∞ agree excellently with each other for all simulations (see Table 4.1).

Since the overwrapping effect is more sensitive to large inter-particle distances, it

turns out that the deviation in the inverse hydrodynamic radius is too small, for the

range of box lengths used, for it to be distinguishable. As can be seen in Table 4.1,

the deviation is more pronounced for the radius of gyration, and even more for the

end-to-end distance.

4.3.2 Dynamic properties

According to dynamic scaling, the longest relaxation time τZ of the chain is, by order

of magnitude, identical to the time that the chain needs to move its own size, i. e.
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Figure 4.2: The dimensionless mean-square displacement ḡ3(t̄) of the chain’s center
of mass, Eq. 4.12.

DCMτZ ∼ R2
g, where DCM is the diffusion constant of the chain’s center of mass. This

leads to a dynamic scaling law τZ ∝ Rz
g, where z is the dynamic scaling exponent.

For a chain with hydrodynamic interactions, this relaxation time is known as the

Zimm time τZ. For this case, DCM ∝ R−1
g in the limit of long chains. This implies

that τZ ∝ R3
g, which gives a dynamic exponent of z = 3 for models with HI. For the

Rouse model (i. e. chains without hydrodynamic interactions), where DCM ∝ N−1,

one finds a dynamic exponent of z = 2 + 1/ν. These quantities will be referred to

in the discussion below.

The mean-square displacement of the chain’s center of mass

g3(t) =
〈

(RCM(t0 + t) − RCM(t0))
2
〉

(4.12)

for both methods is depicted in Fig. 4.2. From the figure, it can be clearly seen that

g3 strongly depends on the box length L for the LB simulations. Moreover, they

seem to converge to the value predicted by the BD simulations (L = ∞) in the limit

of large L. Effects of thermalization of the kinetic modes in LB simulations on this

property will be discussed subsequently. The chain’s center of mass diffusion con-

stant DCM can be determined by the slope of the g3 vs t curve, where the relationship
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Figure 4.3: The dimensionless mean-square displacement ḡ1(t̄) of the central
monomer, Eq. 4.13.

g3(t) = 6DCMt holds. By fitting a power law to the simulation data, we obtain the

exponents and the diffusion constants shown in Table 4.1. These exponents support

the prediction of simple diffusive behavior (t1). Theoretically, one would expect that

two diffusive regimes exist: On the one hand, there should be a short-time diffusive

regime, corresponding to time scales well below the Zimm time, t � τZ, but also

well above the ballistic regime, t � τ0; note that τ0 > 0 only in the LB case, since

the BD equation of motion is overdamped. On the other hand, there should be

free diffusion for times t � τZ. Both these regimes exhibit t1 behavior, but with

different prefactors, with a smooth crossover around the Zimm time [62; 63; 128].

In principle these two different diffusion constants can be obtained via fits to the

corresponding regimes. In practice, however, it turns out that the values are very

close to each other, and hence the crossover is very smooth [62; 63; 128]. Therefore

its unambiguous identification is very difficult, i. e. impossible within the resolution

of our data.

The mean-square displacement of a single monomer i is given by

g1(t) =
〈

(ri(t0 + t) − ri(t0))
2
〉

. (4.13)
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Figure 4.4: The dimensionless mean-square displacement ḡ2(t̄) of the central
monomer in the chain’s center of mass system, Eq. 4.15.

Here, only the two innermost monomers near the center of the chain are evaluated

to eliminate end effects; the results are plotted in Fig. 4.3. The values of g1 behave

similarly to those of g3. In the sub-diffusive time regime, corresponding to the

short-time diffusive regime for g3, here evaluated between t̄ = 20 and 80, the scaling

behavior g1(t) ∝ t2/z is predicted [50]. The corresponding exponents obtained from

a power-law fit are listed in Table 4.1 and indicate a value of z = 2.75 as L → ∞.

Regardless of the finite-size corrections due to the box length and the effects of

thermalization, these values clearly favor the Zimm model compared to the Rouse

model, which predicts g1(t) ∝ t0.54. Moreover, the data also indicate that full

thermalization does indeed improve the quality of the results, in the sense that it

brings the effective z value somewhat closer to the known asymptotic value 2/3.

Figure 4.4 shows the mean-square displacement of a single monomer in the center

of mass system (i. e. the two innermost monomers to eliminate end effects)

g2(t) = 〈([ri(t0 + t) − RCM(t0 + t)] (4.14)

− [ri(t0) − RCM(t0)])
2〉.

Interestingly, when viewed within the center of mass system, all the results lie
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on top of each other, regardless of the box length L. This result also holds for LB

simulations without full thermalization. This shows that the global center-of-mass

motion of the chain is actually the primary contribution to the deviations between

LB and BD results. In the data of Fig. 4.4 this contribution is suppressed: In terms of

Rouse modes, only the internal modes remain. For these modes, however, it has been

shown [7] that the HI with the periodic images is much weaker (essentially of dipolar

nature), while the leading-order r−1 HI cancels out. Therefore, the corresponding

finite-size effect scales as L−3 instead of L−1, and this is so small that it is invisible

in Fig. 4.4.

Theoretically, these data can also be used for estimating the Zimm time as the

time where the crossover to the long-time plateau occurs. However, the crossover is

quite extended and smooth, making it difficult to extract. We therefore estimated

the Zimm time via

τZ =

〈

R2
g

〉

6DCM

. (4.15)

Strictly speaking, this definition is only valid for a single chain in an infinite medium,

where there is no finite box size effect. In the presence of finite box size, it becomes

the definition for the translational time (τtr) rather than the Zimm time: The former

is subject to an L−1 finite-size effect, due to the strong L-dependence of DCM, while

the latter, being defined via the relaxation of internal modes, is only subject to an

L−3 size effect, as discussed above. The translational times obtained from Eq. 4.15

(as shown in Table 4.1) are indeed different for different box lengths L, as expected.

Conversely, the results displayed in Fig. 4.4 indicate that the systems with different

box sizes have (essentially) all the same (internal-mode) Zimm time, since their data

all lie on top of each other.

Next, we focus on the leading order L−1 finite size correction for the long-time

diffusion constant of the chain’s center of mass, DCM. In principle, a plot of DCM vs

L−1 should give a straight line for large L, and an extrapolation to the limit L→ ∞
should yield the same value as predicted by the BD simulations. Figure 4.5 shows

the values of DCM for the LB simulations with and without thermalization of the

kinetic modes at various box lengths L plotted together with the value obtained

from the BD simulation at L = ∞. It is worth mentioning that the BD value of

DCM can be obtained from the mean square displacement of the chain center of mass

or via Fixman’s expression [62]. The latter method has been shown to produce a
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much more reliable result and is easier to carry out [128]. According to Fixman [62],

the long-time diffusion coefficient DCM can be obtained from the difference between

its value at short times DK and the contributions from intramolecular dynamic

correlations D1 (i.e. DCM = DK −D1), where DK and D1 are given by [105; 195],

DK =
D0

N
+
kBT

6πηs

1

RH

, (4.16)

D1 =
1

3N2

∫ ∞

0

〈Ai(t)Ai(0)〉 dt. (4.17)

Here, ηs is the solvent viscosity, and Ai = (
∑

µDµνijFνj)/4 is the velocity of the

chain’s center of mass, where
∑

µDµνij and Fνj are the diffusion tensor and the

matrix of total body force, respectively.

Figure 4.6 shows the values of DCM obtained from BD simulations for both

methods and the results are in excellent agreement with each other. For the LB

simulations without thermalization of the kinetic modes, the value of DCM at the

asymptotic limit L = ∞ is different from that predicted by the BD simulations by

about 9.5%. However, when all the kinetic modes in the LB simulations have been

thermalized, the deviation in DCM reduces to 3%. This result clearly indicates that

it is very important to thermalize all the kinetic modes in order to obtain correct

values for dynamic properties.

The reason for the remaining small discrepancy between LB and BD is not

completely clear, since there are numerous possible sources. Firstly, it should be

noted that the underlying equations of motion are quite different: LB works with

inertia, while BD employs overdamped dynamics. This results in different Schmidt

numbers Sc and different Mach numbers Ma, the latter being defined as the ratio of

the flow velocity to the speed of sound: Both are finite in the LB method, while in the

BD case they are strictly infinite (Sc) and zero (Ma), respectively. Furthermore, the

shape of the HI function at small interparticle distances is somewhat different for the

two methods: In the BD case, we employ the RPY tensor, while the nearest-neighbor

interpolation for LB results in a short-range HI that differs somewhat from the RPY

tensor (see also the discussion in Ref. [Dünweg and Ladd]). Finally, it should be

noted that the value of the constant g in Eq. 4.1, which is crucial for the mapping

between the LB friction parameter ζbare and the BD friction ζeff, is only known with

some numerical inaccuracy. For highly accurate mappings, it is also necessary to
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(Eq. 4.19) for LB simulations at L = 25 and BD simulations at L→ ∞.

include a finite-size correction in the definition of g [Dünweg and Ladd]; this was

not done in the present study.

In order to examine whether the thermalization of the kinetic modes is also

important for the internal modes, we have performed a Rouse mode analysis. The

Rouse modes for a discrete chain are defined as [7; 109]

Xp =
1

N

N
∑

n=1

rn cos

[

pπ

N

(

n− 1

2

)]

(4.18)

for p = 1, 2, . . . , N − 1.

Within the approximation of the Zimm model, the autocorrelation function of

the modes should decay exponentially [50]

〈Xp(t0 + t) ·Xp(t)〉
〈

X2
p

〉 = exp

(

− t

τp

)

, (4.19)

where τp is the relaxation of the p-th mode. To validate our Rouse mode analysis

routine, we have carried out extensive simulations for a (Gaussian) Rouse chain of

N = 8 in the absence of HI and EV; the results for τp are in excellent agreement
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with the analytical predictions [50]. Figure 4.7 shows the normalized autocorrelation

function for p = 1, 2, . . . , 5 for the LB model with box length L = 25, and the BD

model. For nonzero times, there is a small deviation between LB and BD, the latter

exhibiting again a slightly faster dynamics. This deviation systematically becomes

smaller upon increasing the mode index p. Since high mode index means essentially

relaxation on a rather small length scale, it is tempting to attribute the deviation

to the finite propagation of HI in the LB model, i. e. to retardation effects which

are more important on large length scales than on small ones. Nevertheless, this

hypothesis is not proven.

In Ref. [6] it was shown that the autocorrelation function is only subject to an

L−3 finite size effect, in contrast to the usual L−1 behavior. Figure 4.8 shows the

value of the autocorrelation function of the first Rouse mode X1 at a fixed finite time

t̄ = 700, for LB simulations at various box lengths L and BD simulations at L = ∞.

Within our numerical resolution, the data indeed confirm this L−3 finite size effect,

both with and without thermalization of the kinetic modes. Furthermore, they

demonstrate again that thermalization of all the kinetic modes in LB simulations

improves the accuracy of the dynamic properties and brings them closer to the BD
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prediction: The deviation in the extrapolated limit L → ∞ is reduced from 3%

down to 2%. The reasons for the remaining discrepancies are probably of the same

nature as in the case of DCM.

We have also evaluated the dynamic structure factor, which is defined as

S(k, t) =
1

N

∑

ij

〈exp (ik · [ri(t) − rj(0)])〉 . (4.20)

When both the wave number and time are in the scaling regime (i. e. R−1
g �

k � a−1
0 and τ0 � t� τZ), S(k, t) is predicted [50] to exhibit the scaling behavior

S(k, t) = S(k, 0)f(kzt). (4.21)

A plot of S(k, t)k1/ν against (kzt)2/z should collapse to a single curve [7]. The

results for both methods are shown in Fig. 4.9. The data were restricted to the

scaling regime 20 < t < 80 and 0.7 < k < 1.5. These ranges were obtained from the

single monomer mean-square displacement, Fig. 4.4, and from the static structure

factor, Fig. 4.1, respectively. Here, we particularly focus on adjusting the exponent

z such that it would produce the best total data collapse for a chain in an infinite

medium (i. e. in the BD model). Obviously, the results from the simulations show

Zimm-like rather than Rouse-like behavior. Even though we have suppressed the

finite box size effect, a dynamic exponent of z = 2.75 yields the best data collapse,

which is somewhat smaller than the correct asymptotic one. This result is also

consistent with the value of z obtained earlier via the exponent of g1 in the sub-

diffusive scaling regime (i. e. 2/z = 0.728). The deviation from the asymptotic value

is due to the finite chain size used here, and one can expect z = 3 only in the long

chain limit N → ∞.

More detailed comparisons of the structure factor S(k̄, t̄) are shown in Fig. 4.10

(k̄ dependence at constant time), Fig. 4.11 (k̄ dependence for the relative deviation in

the structure factor S(k̄, t̄) from BD simulations ((LB-BD)/BD) at constant time),

and Fig. 4.12 (time dependence for the normalized structure factor S(k̄, t̄)/S(k̄, 0)

at constant k̄).

Figure 4.10 shows the structure factor for BD simulations for a wide range of k̄

at three different times and the data clearly indicate that the structure factor decays

rapidly with time. Figure 4.11 shows the relative deviation in the structure factor
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for the LB simulations as a function of k̄ at three different times. Figure 4.11(a)

shows that the relative deviation for various box lengths L for the LB model at t̄ = 0

are very small (less than 1.5%), which means that they produce similar values for

the static structure factor. However, for box length L = 10, some deviation in the

static conformation can be spotted via the values of the end-to-end distance or the

radius of gyration (see Table 4.1). For t̄ 6= 0, the relative deviation in the structure

factor increases with increasing k̄. The deviation is larger for smaller box length

L and this is attributed to the L−1 finite-size correction of the dynamic properties.

The scale used in Fig. 4.11(a), (b), and (c) highlights the relative deviation for the

LB model (at various box lengths L) from the BD model at three different times.

The discontinuity observed in the relative deviation, which occurs roughly at k̄ = 4

for t̄ = 20 and at k̄ = 2 for t̄ = 80 arises as a result of the statistical noises in the

structure factor, that has completely decayed to zero beyond these values of k̄. As

expected, the LB results seem to approach the BD data as L is increased. A similar

feature is also observed in the normalized structure factor S(k̄, t̄)/S(k̄, 0) for three

different k̄ values shown in Fig. 4.12.
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4.3.3 Efficiency

For the ultra-dilute system considered here, the lattice Boltzmann part of the hybrid

LB method uses up most of the computational resources as the CPU cost for the

MD part for the polymer chain is negligible. Since the dynamic properties predicted

by the LB model are subject to a finite-size correction of order L−1, extrapolation is

required to obtain these properties in the asymptotic limit L→ ∞. To perform this

extrapolation, the results of at least three different box lengths for the LB model are

required. Moreover, the box length should be large enough compared to the chain

size such that it does not alter the static properties. The data displayed in Table 4.1

indicate that it is safe to choose L such that
√

〈R2
e〉/L ≤ 0.5. The three different

box lengths L chosen here are
√

〈R2
e〉/L = 0.5, 0.4, and 0.3. In this work, we set the

total CPU time required for the LB simulations to be the sum of all the CPU times

required to run 1000 MD time steps for each of the chosen box lengths. For BD, we

take the CPU time needed to observe the system for the same time span in physical

units. Each of the simulations performed for the CPU time comparison was run

on an Itanium 2 processor of a 1.6 GHz SGI Altix server 3700. All the parameters

used to carry out this comparison are the optimal values for both methods. Several
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Figure 4.13: Comparison of the CPU time required by the LB and BD systems for
the equivalent of 1000 time steps for a wide range of system sizes N .

chain sizes ranging from N = 16 to 1024 have been used to obtain the CPU cost

for comparison. The results are shown in Fig. 4.13. For the LB method, it is clear

that the CPU cost scales linearly with the number of particles, i. e. the number

of grid points that the solvent lives on, or L3. Since the ratio of
√

〈R2
e〉/L is kept

constant, or L ∝
√

〈R2
e〉 ∝ Nν, this leads to a CPU cost scaling as N 3ν . This is

indeed found in our benchmarks, see Fig. 4.13. Similarly, our data also confirm the

predicted N2.25 CPU cost scaling for BD. Though the LB exponent is lower than BD,

the large prefactor ensures that the total CPU cost for LB is much more expensive

compared to BD for the typical chain lengths used in the literature. It is only when

the chain length is excessively large (i. e. N of the order of 106 or higher) that LB

will become superior to BD for a single-chain system.

The situation completely changes if one studies a semi-dilute system instead, as

has been done in Ref. [8]. Here one has a system of M chains of N monomers each,

such that the total number of monomers is MN . Therefore the BD CPU cost scales

as (MN)2.25, while the LB CPU cost depends on the density. Within the blob picture
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of semidilute solutions, one views a chain as a sequence of “blobs”, each comprising

n monomers, and having size ξ, which can be viewed as the typical correlation

length of density fluctuations, or the typical distance from which point on chain-

chain interactions become important. Since the conformation statistics within the

blob is that of a SAW, one has ξ ∼ anν , where a is the monomer size. The sequence

of blobs forms a random walk, hence Re ∼ ξ(N/n)1/2. This gives the minimum

size of the simulation box, i. e. L ∼ ξ(N/n)1/2 ∼ anν(N/n)1/2 = aNν(n/N)ν−1/2, or

L3 ∼ a3N3ν(n/N)3ν−3/2. We thus see that the CPU effort for the LB method is even

slightly decreased by the factor (n/N)3ν−3/2 compared to the single-chain case at the

same N , due to the shrinkage of the chains resulting from EV screening. In order to

estimate the number of chains M , we note that the arrangement of blobs is space-

filling, i. e. L3 ∼ ξ3M(N/n) ∼ a3Mn3ν(N/n). Comparing this with the previous

expression for L3, one finds M ∼ (N/n)1/2. Therefore the BD effort, compared

to the single-chain case, is increased by a factor of M 2.25 ∼ (N/n)1.125. Taken

together, this means that the ratio between LB effort and BD effort is changed by

a factor of ∼ (N/n)3ν+1.125−1.5 ≈ (N/n)1.425 in favor of LB. For N/n = 30, which is

needed as a minimum to resolve the Gaussian statistics of the chains as a whole, one

obtains a factor of 130, which more or less compensates the two orders of magnitude

seen in Fig. 4.13. Taking into account that for such a system the BD simulation

would have to calculate the HI with the periodic images, e. g., via Ewald sums,

which is much more complicated than the present single-chain simulation, one sees

that for a semidilute solution clearly LB is more efficient, unless a “superfast” BD

algorithm [16; 82; 174] is used. For the latter case, the answer is not yet known.

The results of Ref. [35] indicate that LBM/MD may be favorable for a rather

small number of monomers; however, this study was done under complete neglect of

thermal fluctuations in the LBM part, which is clearly incorrect, as demonstrated

theoretically in detail in Ref. [Dünweg and Ladd], and also corroborated by the

present numerical results. Therefore, the estimate of the LB CPU effort given there

is most probably too optimistic.
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4.4 Conclusions

The results in this chapter has shown that Brownian dynamics simulations are ca-

pable of reproducing various properties predicted by a two-component lattice Boltz-

mann model (or vice versa). We have demonstrated how to obtain the input values

for the BD simulations from the physical input parameters of the LB model such

that both models would produce the same static and dynamic properties. For the

LB model, most dynamic properties are subject to a finite-size correction of order

L−1. In addition to this, it is very important to thermalize all the kinetic modes in

order to obtain the correct dynamic properties. Those results that are not affected

by L−1 finite size effects, such as the mean square displacement in the center of mass

system, or the Rouse mode autocorrelation function, agree very favorably with each

other. For highly dilute systems where the simulation of a single chain is sufficient,

BD is usually the method of choice, as it is much more efficient than the coupled

LBM/MD approach, and finite box size effects are absent. The situation changes

however in the semidilute case, where it is easy to estimate that BD will not be

able to compete, unless “superfast” algorithms are used. Moreover, one should take

into account that the hybrid LBM/MD algorithm is rather easily adaptable to com-

plicated boundary conditions, and can even be applied to flows at high Reynolds

numbers, where the fluid degrees of freedom become intrinsically important, and

cannot be handled in terms of a Green’s function.



Chapter 5

Homopolymer collapse

5.1 Introduction

The outcomes in Chapter 3 and 4 have strongly suggested that BD simulations

of a bead-spring chain model is the most efficient mesoscopic simulation technique

for studying a dilute polymer solution. Having validated the chosen model and

simulation technique, BD simulations have been carried out to study the collapse

dynamics of a single polymer chain in a poor solvent. As a starting point, a single

homopolymer chain is used as a prototype to study the protein folding problem.

The lack of comparative studies between theory and experiments, to some ex-

tent, can be attributed to the difficulties observed in experiments. Experimental

observation of the collapse transition is tricky because of the competition between

intrachain collapse and interchain aggregation of chains upon quenching. Although

the use of noninteracting polymer molecules, leading to a large aggregation time

compared to collapse time, avoids one of the major hurdles in carrying out experi-

ments, there have been only a handful of experimental studies on collapse kinetics

[36; 78; 98; 143; 200; 208; 214]. However, the reliability of some of these experiments

has been questioned [170].

Unavailability of accurate experimental data on polymer collapse and recent

advances in computational resources have led researchers to carry out fairly accurate

numerical computations. In fact, much of our understanding of collapse dynamics

comes from numerical simulations [2; 26; 33; 103; 104; 123; 162; 163; 164; 197]. The

development of numerical computations has also been motivated by, (i) the fact

that experiments do not conclusively support any of the theories proposed in the

64
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literature, and (ii) there are widely divergent pictures of collapse and scaling laws

predicted from the various theories. While a comprehensive review of the theories

and simulation studies proposed so far in the literature is not given here, a brief

overview of various developments in understanding the kinetics of homopolymer

collapse is given below. Before doing so however, it is appropriate to first discuss

the manner in which these different approaches model the role of the solvent.

The solvent is the seat of two molecular interactions that occur between solvent

molecules and the monomers on a polymer chain. The first interaction, commonly

referred to as solvent quality, which is responsible for the solution being classified

as good, θ, or poor, arises due to the differing thermodynamic affinities that exist

between solvent-solvent, solvent-monomer, and monomer-monomer molecular pairs.

The second interaction, the so-called hydrodynamic interaction (HI) arises because

solvent molecules propagate the motion of any one monomer through the ambient

liquid to all the other monomers on the polymer chain through a disturbance in

the velocity field. While it is essential to include the former interaction in some

form in order to model polymer collapse, many theories and simulations neglect the

occurrence of hydrodynamic interactions. Furthermore, each of these interactions

are included in the different approaches in a variety of different ways. However, a

few general remarks regarding aspects that are common to these differing treatments

may be made.

The most common approach to the treatment of solvent quality effects is to

ignore the explicit presence of solvent molecules, and instead treat them implicitly.

This is true both in theoretical and computational models. Basically, it is assumed

that the role of the solvent may be mimicked approximately through an effective

interaction potential that acts between pairs of monomers. The alternative approach

that has been adopted in some studies, in spite of the computational intensity that

it entails, is to account explicitly for the presence of solvent molecules, and as a

result, model all the three possible pair-wise intermolecular interactions. As will be

clear from the summary of the literature below, in general, substantial differences

arise between predictions of models that adopt the two different treatments.

With regard to the treatment of hydrodynamic interactions, once again two

broadly differing approaches may be discerned depending on whether the solvent is

treated implicitly or explicitly. The most common occurrence of the former approach

is in analytical theories and in Brownian dynamics simulations, where the presence
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of explicit solvent molecules is neglected, and only the dynamics of a single polymer

chain is examined. In this approach, the propagation of velocity disturbances in the

solvent is assumed to occur instantaneously, leading effectively to a instantaneous

coupling of the motion of all pairs of monomers on a polymer chain. Interestingly,

within the explicit approach to the treatment of HI, the solvent molecules are treated

either as point particles (i.e. the solvent is structureless), or as molecules with finite

size and mass. In either of these explicit cases, hydrodynamic interactions between

pairs of monomers on a polymer chain require a finite period of time to develop,

as they are propagated from one monomer to the other through the medium of the

solvent molecules.

The difference and similarities in the predictions of models with these different

approaches to the treatment of solvent quality effects and HI are expanded on below.

It is worthwhile noting that all possible combinations of methods to treat these

effects have been explored in the literature, namely, (i) implicit solvent quality and

implicit HI, (ii) implicit solvent quality and explicit HI, and (iii) explicit solvent

quality and explicit HI. The treatment of solvent quality explicitly though the use

of explicit solvent molecules automatically implies the explicit treatment of HI. This

is the case for instance in explicit solvent molecular dynamics simulations.

A description of the kinetics of collapse with an implicit treatment of solvent

quality was first attempted by de Gennes [45] in 1985, when he proposed a two-

stage kinetic model for the collapse of a single chain. De Gennes in his pioneering

work showed that after an abrupt change in the solvent quality (from good to poor),

a single flexible chain quickly forms small blobs or clusters of collapsed monomers

along the chain which he called “pearls”. The chain then thickens and shortens with

the growth of these blobs to form a sausage like structure before ultimately collapsing

to the final compact globule state. It was predicted that the characteristic collapse

time (τ) increases with increasing the quench depth (i.e. the temperature difference

between the theta and final state). Following the work of de Gennes [45], various

phenomenological models considering more subtle details, such as topological effects,

have been developed to understand collapse kinetics [25; 75; 80; 107]. It is worth

mentioning that these phenomenological models also concluded that the collapse

takes place via a two stage mechanism as predicted originally by de Gennes [45].

Within the frame work of these models, scaling exponents for various properties

which characterize the kinetics of collapse were estimated. For instance, scaling
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exponents for the growth of the average cluster size (〈S(t)〉) with time (t) (defined

as 〈S(t)〉 ∼ tz) and the characteristic collapse time (τ) with the chain length (N)

(define as τ ∼ Nγ) were obtained. (The predicted values of the exponents z and γ

by various authors are given later in Table 5.2).

Besides these phenomenological models, Dawson and coworkers in a series of pa-

pers [115; 201; 202] developed a Gaussian self-consistent method using the Langevin

equation with implicit solvent to understand the kinetics of collapse. They proposed

a three stage collapse mechanism: first a rapid formation of small clusters, followed

by a coarsening stage, and then a slow relaxation towards the compact globule. They

also performed Brownian dynamics simulations with implicit solvent and without

hydrodynamic interactions (HI) to obtain scaling exponents for various properties

[26]. Pitard and Orland [161] developed an analytical theory based on the Langevin

equation to study the scaling laws in the absence of HI. Pitard [160] further included

HI using a preaveraged Oseen tensor in the theory developed earlier and concluded

that HI speeds up the collapse rate.

Recent advances in computational resources has made it possible to perform

computationally expensive but highly accurate and informative molecular dynamics

(MD), Monte Carlo (MC) and Brownian dynamics (BD) simulations [2; 33; 103;

104; 123; 162; 163; 164; 197]. Tanaka and Mattice [197] performed atomistic mole-

cular dynamic simulations and proposed that collapse is a three stage mechanism.

However, Tanaka and Mattice [197] could not report any reliable scaling laws as

statistically accurate results were difficult to obtain. Though models accounting for

atomistic details would probably be the best for such problems, the intense compu-

tational requirement makes this techniques inappropriate even for small molecular

weight polymer molecules.

The MC and MD simulation techniques have been used for most of the studies

related to polymer collapse. The exception are Brownian dynamics simulations per-

formed by Byrne et al. [26] and by Chang and Yethiraj [33]. Notably, except for

MD simulations using an explicit solvent model, all others simulations techniques

reported in the literature using MC, Gaussian self-consistent, and BD simulations

have employed implicit-solvent methods for treating solvent quality, and the effect of

HI is not accounted for [26; 33; 115; 201; 202]. It has been argued in the literature

that averaging out solvent degrees of freedom to construct a monomer-monomer



5.1. Introduction 68

pair potential in the implicit solvent approach, as opposed to the multi-body in-

teractions that arise naturally in the explicit solvent approach, can significantly

affect polymer collapse dynamics and scaling laws [33; 162; 163; 164]. In one of the

earliest attempts to incorporate the effect of explicit solvent, Polson and Zucker-

mann [163] investigated the effect of the degree of hydrophobicity of monomers on

the collapse transition and found that collapse rate increases monotonically with in-

creasing hydrophobicity. To reduce the computational cost, Polson and Zuckermann

[163] considered a two dimensional system which was extended to three dimensional

systems by Polson and Zuckermann [164] and Polson and Moore [162].

Chang and Yethiraj [33] in their work presented a comprehensive systematic

comparison of the explicit solvent predictions from MD simulations with that of an

implicit solvent model using BD simulations. The different systems were mapped

onto each other by matching the solvent mediated potential in their MD model to

the pair-wise two-body interaction in the BD model. Since Chang and Yethiraj [33]

did not include hydrodynamic interactions in their BD model, they compared two

extreme cases where, (i) either HI was completely neglected (BD simulation), or (ii)

HI was included very accurately through a molecular model for the solvent (explicit

solvent MD simulation). One of the striking features of this study was that while

for the BD simulation, the collapse rate increases initially with increasing quench

depth, but decreases at later times, MD simulations predicted a uniform increase in

the collapse rate with quench depth. This difference was attributed to the fact that

for the BD model, the polymer chains often get trapped in a metastable stage (a

local minimum energy state) at large quench depths. No trapping was observed in

the case of MD simulations. In addition, the collapse paths between BD simulations

and MD simulations were also found to be different.

In order to overcome the computational intractability of explicit solvent based

MD simulations, Reddy and Yethiraj [171] have recently proposed a new implicit

solvent method in which the solvent is taken into account via a many-body interac-

tion that depends on the solvent accessible surface area (SASA) of the monomers.

They show that although there are quantitative differences, in the SASA model, just

as in the explicit solvent MD case, homopolymer collapse at large quench depths

occurs smoothly without any trapping in metastable states. Since HI effects are not

included in the SASA model, their results suggest that the occurrence of trapping

or otherwise is not related to the existence of HI, but rather to the manner in which
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solvent quality effects are included in the model.

More recently, a hybrid simulation technique with the synergy of MD simulations

for polymer molecules and stochastic rotation dynamics for the solvent has been

proposed to study the dynamical behavior of a polymer chain [103; 104; 123]. This

technique ignores individual solvent molecules for the treatment of solvent quality

effects, but it preserves the ability of the solvent to transmit the hydrodynamic force

and hence, serves as an efficient algorithm to study the collapse dynamics of long

polymer molecules. Kikuchi et al. [104] used this technique to show that inclusion

of HI accelerates the collapse significantly. They also observed that independent of

the presence of HI, polymer molecules always get trapped in local minimum energy

states at large quench depth. The absence of explicit solvent-polymer molecular

interactions in their work, or the use of shorter chains by Chang and Yethiraj [33]

was cited as possible reasons for the discrepancy between their observations and the

explicit solvent MD results of Chang and Yethiraj [33]. The collapse path was found

to be independent of the presence of HI. Kikuchi et al. [104] also presented a simple

scaling theory describing the processes responsible for the collapse kinetics. The

scaling exponents predicted from the theory were found to be in good agreement

with numerically computed values. In another study, Abrams et al. [2] modeled

the collapsing chain as a Gaussian fractal structure and derived a new set of scal-

ing laws for polymer collapse. These authors successfully compared their predicted

time-dependent structure factor with values obtained from explicit solvent MD sim-

ulations. The predictions of the collapse path by Kikuchi et al. [104] were also in

good agreement with that of Abrams et al. [2]. However, scaling exponents proposed

by Kikuchi et al. [104] were different from those predicted by Abrams et al. [2] (see

Table 5.2).

Given the conflicting nature of the mechanisms proposed in the various theories

for the observed kinetics, the role of explicit versus implicit solvent models for the

treatment of solvent quality effects and HI, and a virtual absence of experimental

observations, the analysis of collapse dynamics using a different approach is a useful

exercise. Brownian dynamics simulations with HI incorporated are often used in

the literature to model dilute polymer solutions [119; 155], though their application

to resolve the collapse problem has been somewhat limited. Brownian dynamic

simulations have been shown to reproduce various experimentally observed features

at equilibrium and in homogeneous flows [90; 96; 119; 120; 155; 166; 186; 194;
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195]. Although the predictions of MD simulations incorporating detailed molecular

interactions are much more informative, the Brownian dynamics simulation method

offers an efficient and computationally cheaper way to simulate polymer collapse

as it is computationally expensive to reach hydrodynamic time scales using MD

simulations. This is because of the large number of solvent molecules, and the fact

that the polymer molecule in MD simulations evolves slowly compared to the time

scale of thermal fluctuations. Another major disadvantage of MD simulations is

that it is virtually impossible to simulate polymers with Kuhn steps of order 103.

In this work, we use Brownian dynamics (BD) simulations of bead-spring chains

to investigate the effect of hydrodynamic interactions, which has been shown to be

very crucial in studying the collapse dynamics problem [33; 103; 104; 158]. By its

very nature, BD simulations treat the solvent molecules implicitly both in terms of

solvent quality effects, and with regard to hydrodynamic interactions.

5.2 The Model

As a preliminary check of our code, we have compared our results with those of

Chang and Yethiraj [33], who carried our BD simulations without HI. In order

to do this, we have employed the same EV force (derived from the full Lennard

Jones potential) and FENE (finitely extensible nonlinear elastic) spring force used

by Chang and Yethiraj [33]. However, as the length and the time scales used by

Chang and Yethiraj [33] are different from the ones used here (σ, the Lennard-

Jones parameter was used by them as the length scale, and τBD = σ2/D0, with

the monomeric diffusion coefficient D0 = kBT/ζ, as the time scale), the EV and

FENE forces have been rescaled by lH and λH . In the rest of the chapter, the “*”

superscript is used to indicate that the parameters are non-dimensionalized by lH

and λH .

The following forms of EV and attractive interaction for good and poor solvents,

respectively, are used in our simulations:
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VEV(r∗µν) =











4ε∗LJ

[

(σ/lH)12

r∗µν
12

− (σ/lH)6

r∗µν
6

+
1

4

]

for r∗µν ≤ 21/6(σ/lH),

0 for r∗µν > 21/6(σ/lH)

(5.1)

Vattr(r
∗
µν) =











4ε∗LJ

[

(σ/lH)12

r∗µν
12

− (σ/lH)6

r∗µν
6

− c(R∗
c)

]

for r∗µν ≤ R∗
c ,

0 for r∗µν > R∗
c

(5.2)

where σ is the Lennard Jones parameters, ε∗LJ = εLJ/kBT is the strength of excluded

volume interaction or quench depth, r∗µν is the distance from bead µ to bead ν.

R∗
c = 2.5(σ/lH) is the cutoff radius and the function c(R∗

c) is chosen such that the

value of the potential is zero at the cutoff, i.e., c(R∗
c) = [(σ/lH)/R∗

c ]
12−[(σ/lH)/R∗

c ]
6.

The repulsive and attractive forces can be derived from the above potentials,

and their dimensionless forms are given below:

FLJ∗

µ, EV(r∗µν) =




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

4ε∗LJ

[

12(σ/lH)12

r∗µν
14

− 6(σ/lH)6
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8

]

r∗µν for r∗µν ≤ 21/6(σ/lH),

0 for r∗µν > 21/6(σ/lH)

(5.3)
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14
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8
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c ,

0 for r∗µν > R∗
c

(5.4)

The dimensionless form of the FENE spring force is:

FFENE
ν

∗
=

Q∗
ν

1 − (Q∗
ν/Q

∗
0)

2
(5.5)

where FFENE
ν

∗
is the connecter force in a spring whose end-to-end vector is specified

by the connector vector Q∗
ν = r∗ν+1 − r∗ν. Q∗

ν is the dimensionless length of the

spring and Q∗
0 = 2(σ/lH) is the dimensionless maximum stretchable length of a

single spring. The two different length and time scales used here and in Ref. 33 are

related to each other through the expressions σ/lH =
√

7 and τBD/λH = 28, which

can be derived by equating the dimensional form of the spring force used in Ref. 33

with the one used here.

The strength of hydrodynamic interactions are governed by the non-draining

parameter h [88; 90; 194; 213; 215]. For bead-spring models with finitely extensible
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springs, h ≡ h̃∗
√
N , where h̃∗ = h∗/χ, with h∗ being the hydrodynamic interaction

parameter for chains with Hookean springs, and χ the spring parameter [166; 194].

For the FENE spring force law, χ2 = Q∗
0
2/(Q∗

0
2 + 5). In this work, two different

values, h̃∗ = 0.25 and 0.5, are used to account for HI. The quench depth values

used here are chosen based on those values used by Chang and Yethiraj [33], i.e.,

ε∗LJ = 2.50, 2.61, 5.00 and 10.00.

It is worth mentioning that our model is similar to the model used by Pitard

[160], but the current model includes fluctuating HI rather than preaveraged HI.

For good solvent simulations, initial configurations of chains are generated from the

random walk distribution function. The chains are then brought to equilibrium in

good solvent conditions by carrying out BD simulation for a period of Teq = 15τ ∗1,R,

where τ ∗1,R = 0.5 sin−2(π/2N) is the longest dimensionless Rouse relaxation time.

Hydrodynamic interactions were turned off during the equilibrium simulations as

HI does not affect the equilibrium distribution. Once the chain has equilibrated

in a good solvent, it is suddenly quenched into the poor solvent by switching the

potential from good to poor. For all the simulations, the time step size ∆t∗ = 0.001

is used which yielded a time converged solution. Property values are obtained from

an ensemble average of 1000 statistically independent trajectories.

5.3 Results and discussion

In this section, we numerically investigate the dynamics of polymer collapse for

different strengths of the attractive interaction or quench depths, ε∗LJ. We monitor

various observable quantities given below, which can be used to characterize the

kinetics of collapse.

The mean square radius of gyration is defined as

〈

R∗
g
2(t∗)

〉

=
1

2N2

N
∑

ij

〈

r∗2
ij

〉

(5.6)

The total collapse time τ is defined as the time taken for the radius of gyration

of a chain to reach 99% of its total change in size during the transition period in

which the chain is transformed from a coil to a compact globule. Mathematically,
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it is defined as

R∗
g(τ) =

1

100
(R∗

g(0) −R∗
g, eq) +R∗

g, eq, (5.7)

where R∗
g, eq =

√

〈

R∗
g
2
〉

eq
is the root mean square equilibrium dimensionless radius

of gyration in the collapsed state.

In addition to the above properties, the growth of the average cluster size with

time 〈S(t∗)〉 is also recorded. In this work, we have employed two different definitions

of average cluster size to investigate the effect of the definition of the average cluster

size on this scaling law. These are the number average and the weighted average

cluster size, respectively, and they are defined as

〈Sn(t∗)〉 =

∑

s sn(s)
∑

s n(s)
; 〈Sw(t∗)〉 =

∑

s s
2n(s)

∑

s sn(s)
(5.8)

where s denotes the cluster size and n(s) the number of clusters of size s. The

algorithm proposed by Sevick et al. [181] is used here to compute the number of

clusters and their size. The cluster size is determined by considering the non-nearest-

neighbor beads to be a part of a cluster when the separation between two non-

nearest-neighbors is less than D. Note that the separation at the minimum of the

total potential (FENE+EV) is always smaller than the separation at the minimum

of the Lennard Jones potential for the EV force alone. The presence of the FENE

potential forces the minimum leftward. In addition, a bead cannot use the separation

from either of its nearest-neighbors to register itself as part of a cluster, even if the

neighboring bead already belongs to a cluster. It is worth mentioning that this latter

restriction on the cluster definition is very crucial because the scaling exponent is

very sensitive to the way a cluster is being defined as well as the overlapping distance

D. In fact, it was found that if this restriction is neglected, then the average cluster

size becomes so sensitive to the value of the overlapping distance D that no universal

value for this exponent can be obtained. The values of the average cluster size at

various values of D is also investigated to observe the sensitivity of this quantity to

the overlapping distance D.

In order to establish the time step convergence and the accuracy of our BD

simulations, we show results for the Flory exponents ν and the time evolution of

the normalized mean square radius of gyration in the absence of HI, together with

the results of Chang and Yethiraj [33], in Figs. 5.1 and 5.2, respectively. It is well
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Figure 5.1: The equilibrium mean radius of gyration at various chain lengths in
good and poor solvents. The values of the Flory exponents ν for good solvent and
poor solvent are approximately 0.59 and 0.33, respectively.
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Figure 5.2: Variation of normalized mean square radius of gyration with time for
a collapsing polymer chain, with N = 128, in the absence of HI, for two different
quench depths, plotted together with the results reported by Chang and Yethiraj
[33].
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Figure 5.3: Variation of the mean square radius of gyration with time for a collapsing
polymer chain, with N = 128, with and without HI at a low quench depth, ε∗LJ =
2.61.

known that the mean radius of gyration scales with the chain length as R∗
g ∼ Nν

with ν = 0.588 for a good solvent and ν = 0.33 for a poor solvent [65]. Figure. 5.1

shows that the values 0.59 for good solvent and 0.33 for poor solvent obtained from

our simulations are very close to the expected values. Figure 5.2 clearly shows that

in the absence of HI, the predicted evolution of the radius of gyration in this work

is in excellent agreement with that of Chang and Yethiraj [33] for both ε∗LJ = 2.61

and 5.00. The agreement also indicates that the mapping of the length and time

scales between our bead-spring model to that used by Chang and Yethiraj [33] have

been performed satisfactorily.

Figure. 5.3 shows the effect of hydrodynamic interactions on the evolution of the

mean square radius of gyration at a low quench depth (ε∗LJ = 2.61) for N = 128. It is

evident that HI plays an important role in accelerating the collapse. Increasing the

strength of hydrodynamic interactions or the value of h̃∗, leads to a larger collapse

rate and hence, a faster convergence to the final compact state. It can be seen that

the time taken for the chain to reach its final equilibrium state reduces approximately

four fold in the presence of HI. Molecular dynamics simulations also predict a similar

qualitative behavior [33; 104].
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Figure 5.4: Variation of the mean square radius of gyration with time for a collapsing
polymer chain, with N = 128, with and without HI for two different quench depths.

Increasing the value of the quench depth from 2.61 to 5 reveals some interesting

results. As shown in Fig. 5.4, initially the collapse rate increases with increasing

quench depth. However, at long times, the collapse becomes more gradual, leading

to a lower collapse rate at high quench depth compared to that at low quench depth.

We observed that this collapse behavior is independent of the presence of HI. Similar

behavior was observed previously by Kikuchi et al. [104] using a hybrid approach

which, as mentioned earlier, includes the solvent explicitly as point particles in

order to propagate hydrodynamic interactions, but (as in BD simulations) treats

the solvent implicitly with regard to solvent quality effects. Generally, one would

expect that the radius of gyration for a chain at deep quench should be smaller than

that of a chain at lower quench, since the stronger interaction would cause the chain

to squeeze tighter. However, the chain at large quench gets trapped in a metastable

state and stays there for a long time rather than approaching its final minimum

energy state [33; 104]. Our simulations suggest that chains are trapped in one of

the local energy minima irrespective of the presence of HI, in agreement with the

earlier results of Kikuchi et al. [104].

The trapping phenomena occurs more frequently at high quench depth as shown

in Fig. 5.5. Figure 5.5 compares the time evolution of the radius of gyration for
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Figure 5.5: Variation of the square radius of gyration with time for various quench
depths from 5 independent trajectories, for chain length N = 64. (a) ε∗LJ = 2.61, (b)
ε∗LJ = 2.61, h̃∗ = 0.50, (c) ε∗LJ = 5.00, (d) ε∗LJ = 5.00, h̃∗ = 0.50, (e) ε∗LJ = 10.00, and
(f) ε∗LJ = 10.00, h̃∗ = 0.50.
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five independent trajectories for chains of length N = 64, with and without HI

at three different quench depths ε∗LJ = 2.61, 5.00 and 10.00. At the lowest quench

depth (ε∗LJ = 2.61), all trajectories go to their equilibrium values independent of the

presence of HI [Figs. 5.5(a) & 5.5(b)] with a slightly smoother collapse for some of

the trajectories with HI. As expected, the time taken for the trajectories to reach the

equilibrium values is smaller in the presence of HI. For the remaining intermediate

and largest quench depth, some trajectories become trapped in metastable states

and this trapping effect happens more frequently at larger quench depth [Fig. 5.5(c)-

(f)]. Here, the change in the chain size occurs in a discrete manner, hopping from

one metastable state to another until the final configuration is reached. Even the

inclusion of HI cannot avoid the trapping at sufficiently large values of the quench

depth.

As mentioned earlier, both the explicit solvent MD simulations of Chang and

Yethiraj [33], and the SASA model of Reddy and Yethiraj [171] lead to a collapse

pathway that is free of trapped states even at large quench depths. The discrep-

ancy between these results and results of other simulation techniques remains an

unanswered question. Based on the similarity between the picture of collapse in this

work and the observations of Kikuchi et al. [104], where HI was included explicitly,

it seems likely that the discrepancy with the results of Yethiraj and coworkers arises

not because of the presence or absence of HI, but because of the different treatment

of solvent quality effects in the different approaches. As suggested by Chang and

Yethiraj [33], due to the absence of the solvent spatial volume, an implicit treatment

of solvent molecules cannot capture the crowding effect seen in explicit solvent MD

simulations, and hence might be responsible for the discrepancy.

In this context, it is worth noting that due to the large computational effort,

and for convenience, all simulation studies of the collapse transition by explicit

solvent MD carried out so far have used solvent particles which are identical to the

monomers on the polymer chain [2; 33; 162; 163; 164; 171]. Consequently, it is not

clear how sensitive the results are to the size of the solvent molecules. In an extensive

investigation of a binary mixture of nano-colloidal particles using equilibrium and

nonequilibrium MD simulations, McPhie et al. [137] have shown that the results of

MD simulations only approach the Brownian limit when the mass ratio between the

monomer and the solvent particles, µ ≥ 50, or the size ratio, s ≥ 4. Since in the

theory that leads to BD simulations the mass ratio is assumed to approach infinity,
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it seems reasonable to expect that in order to compare the results of MD simulations

with those of BD simulations, it is preferable to use size and mass ratios in the MD

model at which the results from both the models are comparable. In the case of the

polymer collapse problem, Polson and Moore [162] have suggested that it would be

very useful to investigate systems with smaller solvent-to-monomer size ratios, with

the implication that this more accurately describes the polymer-solvent systems in

experimental studies of polymer collapse. Clearly a detailed investigation of the

effect of the solvent size on the collapse dynamics of polymers is required before

the reasons for the discrepancy between explicit MD and BD simulations can be

completely resolved.

Snapshots of the typical collapse pathways for a collapsing chain of length N =

128 at two different quench depths, ε∗LJ = 2.61 and 10.00, are shown in Figs 5.6

and 5.7, respectively. For comparison, the results are presented both in the absence

and in the presence of HI with h̃∗ = 0.5. There are no noticeable differences in the

collapse pathways for the two cases. However, the collapse pathways are significantly

different for small and large quench depths. For small quench depth (Fig. 5.6), the

chain quickly forms localized blobs and these blobs then coarsen to form a dumbbell

or two pearls separated by a linear chain. Finally, the pearls combine to form a

sausage which slowly rearranges itself into a compact state. Similar qualitative

features of the collapse pathways have been observed by other authors [2; 33; 104].

For large quench depth, Fig. 5.7, the formation of localized blobs and sausage like

structure is very rapid but the transformation from the sausage to the globule is

much slower.

Due to the conflicting depiction of various scaling law exponents in literature,

we have also attempted to explore this issue with the predictions of BD simulations.

However, we have only carried out this analysis for ε∗LJ = 2.50, where no trapping

occurs.

The exponent α characterizing the power law decay of the mean square radius

of gyration (
〈

R2
g(t)
〉

=
〈

R2
g(0)

〉

−Atα, where A is a constant) at the initial stage of

collapse is obtained by fitting a linear curve to the log-log plot of
〈

R2
g(0)

〉

−
〈

R2
g(t)
〉

vs t. An example of this procedure is shown in Fig. 5.8 and the inset shows the values

of α for various degrees of polymerization N at low quench depth (ε∗LJ = 2.50). The

computed values of α for various chain lengths are given in Table 6.1. The values

of α for h̃∗ = 0.25 follow the same trend as that for h̃∗ = 0.5, but they lie between
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(a) (b)

Figure 5.6: Simulations snapshot of a collapsing N = 128 chain at ε∗LJ = 2.61, (a)
in the absence of HI and, (b) in the presence of HI with h̃∗ = 0.50. The time interval
between each successive snapshot is 280 λH and the sequence is A to H.
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(a) (b)

Figure 5.7: Simulations snapshot of a collapsing N = 128 chain at ε∗LJ = 10.00,
(a) in the absence of HI and, (b) in the presence of HI with h̃∗ = 0.50. The time
interval between each successive snapshot is 280 λH and the sequence is A to H.
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Figure 5.8: Decrease in the magnitude of the mean square radius gyration relative
to its initial size with time for a collapsing polymer chain of length N = 128, in
the absence and presence of HI, at a low quench depth, ε∗LJ = 2.50. Inset: The
corresponding values of α for various chain lengths.

Table 5.1: Values of the exponents for the early stages of collapse and the growth
of the number average cluster size for D = 1.20Dmin (i.e. α and z in R2

g ∼ tα

and 〈Sn〉 ∼ tz) at various degrees of polymerization N , in the absence and in the
presence of HI. Note that only the values at low quench depth ε∗LJ = 2.50 have been
calculated, where no trapping occurs.

N α (h̃∗ = 0) α (h̃∗ = 0.50) z (h̃∗ = 0) z (h̃∗ = 0.50)
16 0.81 ± 0.03 0.92 ± .01 0.42 ± 0.01 0.53 ± 0.01
32 0.80 ± 0.03 0.92 ± .01 0.53 ± 0.01 0.72 ± 0.01
48 0.78 ± 0.02 0.96 ± .02 0.58 ± 0.01 0.85 ± 0.01
64 0.81 ± 0.02 0.98 ± .01 0.62 ± 0.01 0.93 ± 0.01
96 0.83 ± 0.02 1.01 ± .01 0.66 ± 0.01 1.04 ± 0.01
128 0.82 ± 0.02 1.05 ± .01 0.67 ± 0.01 1.08 ± 0.01
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the values of α for h̃∗ = 0 and h̃∗ = 0.5. For the case with HI, only property values

for h̃∗ = 0.5 are reported here as chains with this value of h̃∗ collapse more rapidly

compared to those with h̃∗ = 0.25. It is clear from the inset of Fig. 5.8 that while the

values for α appear to have reached their asymptotic limit with large N for the case

without HI, the asymptotic value of α is yet to be attained for simulations with HI

at N = 128, which is the largest value considered here. The computational intensity

for larger values of N has prohibited us from considering even larger values of N , so

we report the value at N = 128 here.

Values of α reported previously in literature are shown in Table 5.2. Kuznetsov

et al. [115] used the Gaussian self-consistent (GSC) method and predicted that for

small quench, the exponent α should take a value ∼ 0.6363 in the absence of HI,

and ∼ 0.8181 in the presence of HI, which are different from the ones predicted

here. However, the exponent values predicted by Kuznetsov et al. [115] may not be

accurate because the GSC method has been known to predict an incorrect Flory

exponent in the large fluctuation regime, i.e. for chains in good and theta solvents

[24; 46; 50; 201]. On the other hand, our predictions are close to α = 1 (with

HI) and 3/4 (without HI) predicted by Pitard [160]. This is expected because the

model used here is a rigorous version of the model used by Pitard [160] and includes

fluctuating hydrodynamic interactions.

The second stage of collapse is known as cluster coarsening, where previous

studies indicate that a power law also holds for the growth of the average cluster size

with time (〈S(t)〉 ∼ tz). The growth of the number average and the weight average

cluster size with time for a wide range of overlapping distances D is shown in Fig. 5.9.

The overlapping distance D is measured in term of Dmin, where Dmin = 21/6(σ/lH)

is the distance at the minimum of the Lennard Jones potential. The values of the

cluster growth exponent z at a chosen overlapping distance are obtained from the

slope of a linear fit to the linear portion of the log-log plot of 〈S(t)〉 vs t (as shown in

Fig. 5.10). Moreover, the overlapping distance D should be chosen such that at the

final compact globular state, the average cluster size should be the same as the chain

length N because the chain has formed a single cluster of N beads at this stage.

Fig. 5.9 indicates that the minimum value of D/Dmin should be 1.10 or higher in

order to satisfy this requirement. The values of z for the two different definitions

of the average cluster size at various overlapping distance are shown in the inset of

Fig. 5.9 and they are also listed in Table 5.4. The above figure and table indicate
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Table 5.2: Values of all the scaling exponents reported in literature, in the absence and in the presence of HI.

α α z z γ γ
Authors no HI HI no HI HI no HI HI
Abrams et al. [2] – – – – 3/2 5/6
Byrne et al. [26] – – 0.66 – – –
de Gennes and co-workers [25; 45] – – – – 2.00 0.50
Halperin and Goldbart [80] – – – – 6/5 4/5
Kikuchi et al. [104] – – 1/2 3/4 2 4/3
Klushin [107] – – 0.54 0.80 1.60 0.93
Dawson and co-workers [114; 115] 7/11 9/11 1/2 – 1.96 1.34
Lee and Kapral [123] – – – – – 1.00
Pitard and co-workers [160; 161] 3/4 1 – – 5/3 1.00
Our results 0.82 1.05 0.67 1.08 1.35 1.01

± 0.02 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.01
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Figure 5.9: Variation of the number average and the weighted average cluster size
with time for a collapsing polymer chain with N = 128, in the presence of HI, at
a low quench depth, ε∗LJ = 2.50. From bottom to top: D/Dmin = 1.00 (where
Dmin = 21/6(σ/lH)) with an increment of 0.05 for each line and symbol moving
upwards. Lines represent the number average cluster size and symbols represent the
weight average cluster size. Inset: The corresponding values of z for the number
average (square) and the weighted average (circle) cluster size for various values of
overlapping distance D.

that there is no universal value for the exponent z and that z is very sensitive to

the value of the overlapping distance D. Furthermore, one can clearly see from this

figure that there are only two different regimes for the weight average cluster size,

while there are three different regimes for the number average cluster size. Since the

number average cluster size definition reproduces the visual observation of a three-

stage collapse (as seen in Fig. 5.6), we have used this definition here to characterize

cluster growth.

Even though there is no unique choice of D, a value of D/Dmin = 1.2 is used

in order to compare with the numerical value of z reported by Byrne et al. [26],

who have used this value previously. The number average cluster growth for this

value of D is shown in Fig. 5.10 and the figure inset shows the values of z for various

chain lengths. These values are also listed in Table 6.1 for different N . Interestingly,

for this choice of D, z attains an asymptotic value with increasing N . In the free
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Table 5.4: Values of the exponent z for the growth of the average cluster size at var-
ious values of overlapping distance D (in unit of Dmin = 21/6(σ/lH)) for a collapsing
polymer chain with N = 128, in the presence of HI at εLJ/kBT = 2.50.

D/Dmin z for Sn ∼ tz z for Sw ∼ tz

1.10 1.19 ± 0.01 0.81 ± 0.01
1.15 1.13 ± 0.01 0.77 ± 0.01
1.20 1.08 ± 0.01 0.74 ± 0.01
1.25 1.03 ± 0.01 0.72 ± 0.01
1.30 0.99 ± 0.01 0.69 ± 0.01
1.35 0.95 ± 0.01 0.67 ± 0.01
1.40 0.91 ± 0.01 0.64 ± 0.01

10
1

10
2

10
3

10
1

10
2

 

 

10
−2

10
−1

0.4

0.6

0.8

1

PSfrag replacements

t∗

〈S
n
(t

∗ )
〉

1/N

z

h̃∗ = 0

h̃∗ = 0.25

h̃∗ = 0.50

Figure 5.10: Variation of the number average cluster size with time for a collapsing
polymer chain with N = 128 for D/Dmin = 1.20, in the absence and presence of HI,
at a low quench depth, ε∗LJ = 2.50. Inset: The corresponding values of z for various
chain lengths.
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Figure 5.11: Mean collapse time at various chain lengths, in the absence and presence
of HI, at a low quench depth, ε∗LJ = 2.50.

draining limit (h̃∗ = 0), the exponent value has converged to the limiting value of

2/3 reported by Byrne et al. [26], and is slightly larger than the prediction of 0.54

by Klushin [107]. In the presence of HI, the value appears to be converging to z ∼ 1

for h̃∗ = 0.50, which is larger than the theoretical value of 0.80 predicted by Klushin

[107] (see Table 5.2 for a detailed comparison).

The characteristic collapse time (τ) has been predicted to scale with the chain

length (N) as τ ∼ Nγ . Results for the collapse time τ for different values of N are

shown in Table 5.5 and Fig. 5.11. It is observed that for all N , the collapse time

is always smaller when HI is switched on (τH) compared to the case where HI is

suppressed (τB). The rate of collapse also increases with increasing strength of HI,

which is not shown here. The exponents for the collapse time are γH = 1.01 ± 0.01

for h̃∗ = 0.5 and γB = 1.35 ± 0.01. These results agree reasonably well with values

reported by other authors [2; 107; 160]. However, they are different from the values

predicted recently (4/3 and 2 with and without HI, respectively) by Kikuchi et al.

[103, 104]. We believe that the reason for the discrepancy could lie in the relative

large ratio of chain size to the box length used in the simulations performed by

Kikuchi et al. [104], which might affect dynamic scaling. More recently, Lee and

Kapral [123] have used the same method but with a larger box length to study
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Table 5.5: Average collapse time of a polymer chain of length N , without (τB)
and with (τH) hydrodynamic interactions, at εLJ/kBT = 2.50. The values of the
exponent γ for the total collapse time in terms of the degree of polymerization N
(τ ∼ Nγ) are also listed.

N τB (h̃∗ = 0) τH (h̃∗ = 0.50)
16 78.92 ± 1.35 71.16 ± 1.23
32 206.10 ± 2.74 142.05 ± 1.75
48 346.03 ± 4.26 211.01 ± 2.36
64 525.12 ± 6.00 289.30 ± 2.75
96 905.48 ± 9.93 426.44 ± 3.61
128 1325.69 ± 10.08 590.97 ± 7.38
γ 1.35 ± 0.01 1.01 ± 0.01

polymer collapse, and they found that in the presence of HI, the collapse time

scales as τH ∼ N1, which is closer to our prediction (see Table 5.2 for a detailed

comparison).

5.4 Conclusions

We have presented an alternative way to incorporate implicit hydrodynamic interac-

tions by means of Brownian dynamics simulations to study the dynamics of polymer

collapse in a poor solvent. The Brownian dynamics simulations predict similar ob-

servations to those that have been reported previously in the literature regarding

the speed up of collapse caused by hydrodynamic interactions and the existence of

a three stage collapse path. One of the striking features of this study is the confir-

mation that an implicit treatment of HI does not avoid the trapping phenomena,

and that chains always get trapped in metastable states of local free energy minima

at large quench depth, unlike earlier explicit solvent based MD simulations which

show a smooth transition to the final global minimum free energy state. We have

computed exponents of various observable quantities to show that the predictions

of BD simulation agree well with some of the theoretical predictions.



Chapter 6

Copolymer collapse

6.1 Introduction

The collapse of different types of copolymers has been studied previously through

both theory [203] and simulations [40; 69; 79; 101; 102; 204; 207]. In an early

theoretical study, Timoshenko et al. [203] have shown that the kinetics of collapse

for random copolymers involves at least two, sometimes three, distinct stages. The

earliest of these stages is described as the rapid formation of clusters or micelles along

the chain, in a manner similar to homopolymer collapse. Following this stage is the

coarsening of these intramolecular micelles, which coalesce at a rate that depends

on the dispersion of the hydrophobicity. A third kinetic stage is also observed for

polymers with particularly large dispersion, i.e. chains which are composed of more

H beads than P beads, where rapid rearrangement to a more compact globule occurs.

Using Brownian dynamics simulations of a bead-spring chain model composed of

50% H and 50% P monomers without incorporating HI, Cooke and Williams [40]

found that microphase separation (H blocks being separated by P blocks due to

unfavourable interactions) plays an important role in the thermodynamics as well as

the kinetics of collapse for heteropolymers with various block sizes. This microphase

separation often gives rise to compact states in the form of connected strings of

intrachain micelles. The existence of strings of such micelles has been observed in

simulations [40; 69; 204] and was also predicted by Halperin [79].

Even with the above composition for H and P monomers, the number of possi-

ble sequences and conformations is still too large to be investigated via computer

simulations. This is one of the primary motivations for many researchers in recent

89
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years to attempt to design or engineer sequences that mimic biological evolution

such that they rapidly fold to a desired target native structure with lowest energy

[182; 184; 185]. Recently, Khokhlov and Khalatur [101; 102] have introduced a

method of designing a copolymer chain composed of 50% H and 50% P monomers

such that it would fold rapidly into its final native structure and is quite stable.

The method involves first collapsing a homopolymer chain into its equilibrium com-

pact state and then marking half of the monomers that are closest to the center

of mass as H type while the remaining monomers are marked as P type. Surpris-

ingly, copolymer chains with sequences generated via this method (also known as

“protein-like” copolymers) were found to fold much more rapidly and the native

conformations were more stable compared to random copolymers (RC) and random

block copolymers (RBC) with the same average block length of H or P polymers 〈L〉.
Although the protein-like copolymer (PLC) chains seem to collapse faster and they

form the most compact equilibrium structures compared to RBC chains with the

same average block length 〈L〉, it remains to be seen if this behavior also holds for

off lattice bead-spring chain models, especially when HI is present. In addition, it

is unclear whether RBC chains with different average block lengths 〈L〉 also consis-

tently collapse slower and are less compact compared to PLC chains in the presence

of HI.

In this chapter, we use Brownian dynamics simulations of bead-spring chains

composed of 50% hydrophobic H type beads and 50% polar P type beads to investi-

gate the effect of chain sequence on copolymer collapse. In particular, our aim is to

determine the effects of block length on the kinetics of folding and the compactness of

the final collapsed state in the presence of HI, for three different copolymers, namely,

multi-block copolymers (MBC), random block copolymers (RBC) and protein-like

copolymers (PLC). The exact features of a sequence that directly governs the chain’s

kinetics of collapse and its final equilibrium size will be identified. Effects of HI and

chain length on the order of collapse amongst the various copolymers is also exam-

ined.
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6.2 The Model

6.2.1 General Model

Here, we have employed a two letters code HP model for our copolymers. The

polymer is assumed to be in an aqueous solvent such that HP and PP interactions

are purely repulsive (i.e. in good solvent), while HH interactions are attractive (i.e.

in poor solvent).

In this chapter, the same dimensionless potentials accounting for bead-bead in-

teractions and spring entropic resistance as well as simulation technique are used

here as used previously in Chapter 5. In this work, we use h̃∗ = 0.50 (i.e. h∗ = 0.46

for the chosen value of Q∗
0 = 2

√
7) to account for HI, since it has been shown pre-

viously that this value leads to a rapid collapse. The quench depth value used here

is chosen based on the value used in the work for homopolymer collapse, namely,

ε∗LJ = 2.50, since with this value, a homo-polymer chain smoothly folds into its

final equilibrium compact stage without being trapped in one of its intermediate

metastable states.

The main aim of this study is to investigate the effect of the sequence and/or

the average block size on the static and dynamic properties of different types of

copolymers including the protein-like copolymer (PLC) generated by the coloring

algorithm proposed by Khokhlov and Khalatur [101, 102], both in the presence and

in the absence of HI.

Since the energy of the denatured state is not sequence-specific, the chain se-

quence does not play a role under good solvent conditions [184]. In fact, it is

thermodynamic quantities such as the temperature that govern the chain properties

in the denatured state. Chain initial configurations are generated from the random

walk distribution function. For equilibration in the denatured stage, we have treated

all copolymer chains as homo-polymer chains and they are brought to equilibrium in

good solvent conditions by carrying out BD simulation for a period of Teq = 15τ ∗1,R,

where τ ∗1,R = 0.5 sin−2(π/2N) is the longest dimensionless Rouse relaxation time.

Moreover, hydrodynamic interactions were turned off during the equilibrium simu-

lations as HI does not affect the equilibrium distribution. For convenience, we have

saved the equilibrium position vectors of 500 independent homopolymer chains in

good solvent conditions in a file and used them as initial configurations for all types

of copolymer chains. With these stored configurations, each copolymer chain is
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constructed with a selected sequence and then suddenly quenched into poor solvent

conditions by switching the potential from good to poor and various properties are

then monitored. For all the simulations, the time step size ∆t∗ = 0.001 is used which

yielded a solution with very small discretization errors. Property values are obtained

from an ensemble average of 500 statistically independent trajectories, which use the

starting configurations from these saved files.

6.2.2 Chain Sequence Construction

We have carried out simulations for two different chain lengths of N = 64 and 128

beads at a fixed H:P ratio of 1:1 (i.e. NH = NP = N/2). We have studied three

different families of copolymer chains with sequence types that were either inherited

from the parent globule, regular or probabilistic. The first type is the protein-

like copolymers or PLC, where the process of generating the sequence involves first

collapsing a homopolymer to its native state. Then the interior of this collapsed

globule is marked as the hydrophobic H block and the exterior as the hydrophilic or

polar P block. The marked chain is then unraveled to obtain a designed sequence

of copolymers. The second family of copolymers is the regular or alternating multi-

block copolymers (MBC), where the sequences were of the form LHLP with N/2L

blocks, with L being the size of contiguous H or P blocks. The last family is known

as the random-block copolymers (RBC) in which the chain sequence is primarily

characterized by the Poisson distribution f(x) = e−λλ
x

x!
, (x = 1, . . . , λ > 0), where

λ = 〈L〉 is the average block length, and x is the size of the contiguous block.

6.3 Results and discussion

In this section, we numerically investigate the dynamics of collapse for three different

types of copolymers at a single value of the strength of the attractive interaction or

quench depth, ε∗LJ = 2.50, both in the presence and in the absence of HI. We monitor

various observable quantities given below, which can be used to characterize the

kinetics of collapse.

Apart from the mean square radius of gyration given by Eq. 5.6, the state of
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polymer collapse can also be observed by the internal energy U, which is given as

U =
∑

ij

(VEV(r∗ij) + C(µ, ν)Vattr(r
∗
ij)), (6.1)

where the function C(µ, ν) takes a value of 1 when µ and ν are both H type monomers

and 0 otherwise.

In addition, the growth of the average cluster size with time 〈S(t∗)〉 is also

monitored. We have used the definition of the number average cluster size to study

this property, which has been shown to consistently reproduce three-stage kinetics

for homo-polymer collapse [158]. The number average cluster size is defined as

〈Sn(t
∗)〉 =

∑

s sn(s)
∑

s n(s)
, (6.2)

where s denotes the cluster size and n(s) the number of clusters of size s. The

algorithm proposed by Sevick et al. [181] is used to compute the number of clusters

and their size. Only H type beads were used to define a cluster. The cluster size

is determined by considering non-nearest-neighbor beads to be a part of a cluster

when their separation is less than a certain overlapping distance D. In addition, a

bead cannot use the separation from either of its nearest-neighbors to register itself

as part of a cluster, even if the neighboring bead already belongs to a cluster. It is

worth mentioning that in the previous chapter, we have found that the exponent z

for the scaling law 〈Sn〉 ∼ tz, observed in the second stage of collapse, is not universal

and it is very sensitive to the value of the overlapping distance D for homo-polymer

collapse. Further details on the average cluster size and the sensitivity of z to D

can be found in Chapter 5.

Figure 6.1 shows the effects of block length L and average block size 〈L〉 for

the protein-like, regular multi-block and random block copolymer chains on the

evolution of the mean square radius of gyration for N = 128, in the presence of

HI. The data certainly shows that the average block length plays an important role

in accelerating the collapse as well as controlling the final equilibrium size of the

copolymer chains. It is worth mentioning that the average block length 〈L〉 for a PLC

chain in our model, for both N = 64 and N = 128 bead chains, is approximately

3, which is very close to the value reported by Khokhlov and Khalatur [101, 102]

(〈L〉 = 3.173), who used a lattice model for N ≥ 256 chains. We first discuss the
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Figure 6.1: Variation of the mean square radius of gyration with time for N = 128
chains, in the presence of HI, for (a) the PLC chain and MBC chains with various
values of block length L, and (b) all three types of copolymers with values of average
block length 〈L〉 ≤ 4.
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Table 6.1: Values of the exponents for the early stages of collapse and the
growth of the number average cluster size for D/Dmin = 1.20 (i.e. α and z in
〈

R2
g(0)

〉

−
〈

R2
g(t)
〉

∼ tα and 〈Sn〉 ∼ tz) for all types of copolymers with N = 128
at various values of average block lengths 〈L〉, in the presence of HI. Values of the
total collapsed time τ and the equilibrium mean square radius of gyrations

〈

R2
g

〉

eq

are also listed here to give an indication of how fast the chain collapsed and their
compactness at the equilibrium collapsed stage. Note that PLC, MBC and RBC
denote protein-like, multi-block and random-block copolymers, respectively.

Type 〈L〉 α z τ
〈

R2
g

〉

eq

PLC 3 0.945 ± 0.021 0.510 ± 0.009 5732 ± 146 69.762 ± 1.151
MBC 64 0.999 ± 0.012 0.920 ± 0.044 2044 ± 185 369.034 ± 8.605
MBC 32 0.978 ± 0.022 0.158 ± 0.003 N/A N/A
MBC 16 0.842 ± 0.043 0.441 ± 0.005 N/A N/A
MBC 8 0.616 ± 0.020 0.646 ± 0.004 6670 ± 139 79.819 ± 0.989
MBC 4 1.033 ± 0.026 0.819 ± 0.017 4248 ± 101 57.616 ± 0.064
MBC 3 1.316 ± 0.088 0.858 ± 0.018 3304 ± 118 54.287 ± 0.239
MBC 2 1.287 ± 0.029 1.008 ± 0.025 1967 ± 53 77.051 ± 0.385
MBC 1 0.929 ± 0.038 0.857 ± 0.018 2771 ± 103 103.906 ± 1.134
RBC 4 0.987 ± 0.028 0.631 ± 0.008 5447 ± 138 71.511 ± 1.278
RBC 3 1.071 ± 0.025 0.575 ± 0.006 5496 ± 141 64.513 ± 1.006
RBC 2 1.045 ± 0.037 0.595 ± 0.009 4948 ± 132 62.839 ± 0.985

effect of block length on the behavior of the MBC chain. The simplest type of MBC

is the diblock copolymer with L = N/2. It can be seen from Fig. 6.1 (a) that this

diblock chain collapses to its equilibrium state faster than any of the other copolymer

chains present in the plot. This is always true for such a copolymer because one of

its ends (i.e. the end with the H block) behaves like a homo-polymer chain in a poor

solvent, which rapidly folds into its final equilibrium globular state, while the other

end behaves like a homopolymer in a good solvent, remaining as a swollen coil. Due

to the large size of this swollen part, the chain cannot form a compact equilibrium

structure and consequently always has a relatively large final equilibrium size. By

reducing the block size to L = 32, so that one has 4 blocks, one can clearly see two

distinctive regions of collapse. The first region represents the early stage of collapse,

where each H block of size L rapidly folds into a single cluster. Thus at the end of

this stage, the chain is made up of N/2L clusters or pearls separated by strings of

P block chains. Since the folding of the H block is entirely homopolymer-like and
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is unaffected by the P type monomers, the time taken for each of these H block

chains to completely fold into a small cluster within each block is quite fast. This

leads to a narrow range of time where the early stage of collapse occurs. The time

window where this early collapse stage takes place depends on the block size of

the H block as it takes longer for a large block to completely fold compared to a

smaller block, as might be expected. The second regime represents the growth or

coalescence of these intrachain-clusters into a single large cluster. These clusters are

separated from each other by a string of P block, which has the same fully stretched

length as that of the original H block. If the separation between the two intrachain-

clusters is larger than the range of the attractive interaction (or equivalently, the P

block chain length is large), then these intrachain-clusters go through a diffusion-like

process, with each of these clusters diffusing around due to thermal fluctuations. It is

only when they interact with each other, i.e. when their separation distance comes

within the range of attractive interaction, that they coalesce. Thus the growth

of the average cluster size is quite gradual in this case. However, if the P block

chain length is sufficiently small such that two intrachain-clusters are within the

range of their attractive interaction, then the two clusters quickly coalesce to form

a larger cluster and diffusion plays little or no role in the collapse. Moreover, the

average cluster size will also grow much more rapidly, or equivalently, there is a

rapid reduction in chain size. Since the diffusion time is proportional to the size of

the intervening P block [40], it is expected that the coalescence time is shorter for

smaller P block sizes and consequently the collapse is much more rapid compared

to large P block sizes. Further, the presence of a large P block size also leads to a

less compact final collapsed size because blocks of P beads always repel the core of

H beads and they form dangling legs extruding away from the core, resulting in a

larger equilibrium size.The results for L = 32 to L = 8 for MBC chains in Fig. 6.1

(a) also confirm these expectations. Since the window for the early stage of collapse

is quite narrow for most copolymer chains investigated, it is not clearly visible in

Fig. 6.1. Note that for all MBC chains with L ≥ 8, the final equilibrium size is still

larger than that of the PLC chain. However, when L = 4, the MBC chain reaches

its equilibrium native state faster and the final equilibrium size is smaller than that

of a PLC chain. Reducing the block size of MBC chain to L = 3 further reduces

the final size as well as the total collapse time compared to values obtained for the

L = 4 chain. In fact, the data shows that the MBC chain with L = 3 produces
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the lowest final equilibrium size compared to all other types of copolymer chains for

the entire range of L and 〈L〉 values that have been investigated. The total collapse

time and the mean square radius of gyration for all three types of copolymers are

also listed in Table. 6.1. Further reduction in the block size to L = 2 leads to a

slightly faster collapse (as evidenced by the value of τ in Table. 6.1), but it also

increases the final chain equilibrium size. Note that for every L monomers of H

type that fuse with another cluster of H type monomers, L monomers of P type are

brought into close proximity due to the connectivity along the chain. As a result,

a repulsive force builds up as the coalescence process takes place. For the L = 2

chain, the energy gained from coalescence of clusters of H type monomers cannot

overcome the repulsion due to the presence of P type monomers and so the chain

does not form a single cluster of H monomers. This means that the chain cannot

fold into a spherical compact globule at equilibrium, and this leads to an increase

in the final chain equilibrium size. The kinetics of collapse of an MBC chain with

L = 1 also conforms to this behavior, with the chain collapsing slower, and the final

equilibrium size even larger than for L = 2. The large increase in the repulsive force

for this chain has increased the total collapse time and it further swells the chain to

a larger equilibrium size.

The large repulsive force built up due to the overcrowded presence of P type

monomers for MBC chains with L ≤ 2 can also be observed via the high value of

the internal energy U in Fig. 6.2. Note that the internal energy for MBC chains

with L = 32 and 16 is not reported here because the chains with these block sizes

had not yet reached their equilibrium state during the course of simulation. This

figure also clearly indicates that a chain which has the lowest equilibrium size does

not necessarily have the lowest internal energy. Moreover, a chain with the lowest

internal energy may not fold into the most compact final structure. Our finding

is also consistent with the findings reported by Cooke and Williams [40] who have

used BD simulations without HI for their analysis.

From Fig. 6.1 (b), we can see that an RBC chain with 〈L〉 = 4 almost has the

same kinetics of collapse as well as the final equilibrium size as that of the PLC chain.

However, the final equilibrium size for an RBC chain with 〈L〉 < 4 is smaller than the

size of a PLC chain. This result contradicts the findings of Khokhlov and Khalatur

[102] who have found that an RBC chain that has the same average block size as

that of a PLC chain, collapses slower and forms a less compact final structure. The
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spectively, in the final collapsed state for all copolymer chains with N = 128, in the
presence of HI.

discrepancy between our results and the results reported by Khokhlov and Khalatur

[102] may arise because we have used a different model as well as a different strength

of H-P interactions.

In order to show that the above results predicted by our BD simulations in terms

of the order of collapse amongst the various copolymers and the final equilibrium

value of Rg are independent of HI, we have carried out simulations for N = 128

chains without HI. In addition, simulations of N = 64 chains at various values

of quench depth ε∗LJ have also been carried out to show that the order of collapse

amongst the various copolymers is independent of chain length as well as the quench

depth. Figure 6.3 shows the effects of average block size for all types of copolymers

on the evolution of the mean square radius of gyration for N = 128, in the absence

of HI. Since it is very time consuming to completely observe a copolymer chain

from its denatured state to its totally collapsed state when HI is suppressed, we

have only simulated these chains up to the upper limit of time that was chosen for

the case when HI is present. It can be seen from the figure that only the MBC

chain with L = 2 has reached equilibrium and the value of the final equilibrium size

is the same as for the case with HI as observed in Fig 6.1 (a). Nevertheless, the
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Figure 6.3: Variation of the mean square radius of gyration with time for all three
types of copolymer chains with N = 128, for various values of the average block
length 〈L〉, in the absence of HI.

qualitative similarity of the data seems to indicate that the results discussed above

are independent of HI.

Figure 6.4 shows the effects of quench depth on the kinetics of collapse forN = 64

chains with the block length L = 3 (MBC) and average block size 〈L〉 = 3 (PLC,

RBC) for all three types of copolymers. For all the quench depths investigated, it

can be seen from the figure that the MBC chains collapse the fastest and have the

most compact equilibrium size, followed by the RBC chains. Out of all three types

of copolymer chains, the PLC chain collapses the slowest and the final equilibrium

size is the least compact. Generally, one would expect that the radius of gyration

for a chain at deep quench should be smaller than that of a chain with lower quench

values because the stronger attractive interaction would cause the chain to squeeze

into a tighter globule. The above figure shows that a chain smoothly folds into its

final compact state for low quench depth. However, at very large quench depth (i.e.

ε∗LJ = 10), a chain gets trapped in a metastable state and stays there for a long time

rather than approach its final minimum energy state. The inset of Fig. 6.4 (a) shows

this trapping behavior at very large quench depths much more clearly for a MBC

chain. This inset reveals that while MBC chains with ε∗LJ ≤ 5 have fully reached
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Figure 6.4: Variation of the mean square radius of gyration with time for chains
with N = 64, in the presence of HI, for (a) PLC and MBC chains with block length
of L = 3, and (b) PLC and RBC chains with an average block length of 〈L〉 = 3.
Here, ε∗ denotes the value of the quench depth or ε∗LJ. Insets: Variation of the mean
square radius of gyration with time for chains with N = 64 and L = 3 or 〈L〉 = 3
at various quench depths ε∗, for (a) MBC chain, and (b) PLC chain.
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their equilibrium compact state, chains with ε∗LJ = 10 are still gradually approaching

the equilibrium state. A similar result is also observed for other types of copolymer

chains (see Fig. 6.4 (b)). This trapping behavior for an implicit solvent model

has also been observed by various other authors [33; 104; 158; 216]. In previous

chapter, we have shown that a homopolymer chain will get trapped at ε∗LJ = 5,

while our current results indicate that a copolymer chain still smoothly folds at this

quench depth. This result seems to indicate that the presence of P type monomers

in the chain prevents it from being trapped in a local well and smooths out the

energy landscape for the folding process of copolymers. This in turn pushes the

value of quench depth where trapping occurs to a much higher value, when the local

interaction is so strong that thermal fluctuations cannot be overcome, leading to the

chain being trapped in a metastable stage.

Snapshots of the typical collapse pathways for a collapsing chain of length N =

128 for MBC chains are shown in Fig 6.5, and for PLC and RBC chains in Fig 6.6.

From these figures, it can be seen that there exist at least two distinct stages for

the kinetics of collapse for these copolymers. It is to be noted that almost all of

the copolymer chains with sequences that fold into a spherical compact structure

have a three-stage mechanism. The early stage involves the rapid formation of

localized blobs along the chain. Following this stage, these blobs then coarsen by

fusing with other nearby blobs to form a dumbbell or two pearls separated by linear

chain. Finally, the pearls combine to form a sausage which slowly rearranges itself

into a compact state. However, for copolymer chains with sequences consisting of

short P blocks that do not fold into a spherical compact structure (for instance,

MBC chains with L ≤ 2), only the first two distinct stages is observed and the

final compaction stage is not observed. Further, copolymer chains with sequences

consisting of large P blocks such as MBC chains with L = 32 and 16, seem to

acquire another distinct stage after the early rapid collapse stage, known as the

“diffusion” or “plateau” regime. During this diffusion stage, the number and size

of the intrachain clusters remains unchanged due to the large separation between

the H blocks. Similar qualitative features of the collapse pathways have also been

observed by other authors [40; 42].

The exponent α characterizing the power law decay of the mean square radius

of gyration (
〈

R2
g(t)
〉

=
〈

R2
g(0)

〉

−Atα, where A is a constant) at the initial stage of

collapse is obtained by fitting a linear curve to the log-log plot of
〈

R2
g(0)

〉

−
〈

R2
g(t)
〉

vs
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Figure 6.5: Snapshots of different types of collapsing regular multi-block copolymers
(MBC) chain with N = 128, in the presence of HI.
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Figure 6.6: Snapshots of different types of collapsing protein-like copolymers (PLC)
and random-block copolymers (RBC) chains with N = 128, in the presence of HI.

t. The computed values of α for all type of copolymers with different average block

sizes are given in Table 6.1. The values for the cases without HI are not reported

here because the chains had not reached their final equilibrium state during the

course of the simulations. For a homopolymer chain at the same quench depth, we

have obtained a value of α = 1.05 ± 0.01 with the presence of HI. Interestingly, it

can be seen from Table 6.1 that there exist some copolymer chains which have a

faster rate of collapse for this early stage compared to that of a homopolymer chain.

Similar results have also been observed by Cooke and Williams [40] for copolymer

chains in the absence of HI. Thus the presence of P type monomers along the chain

speeds up the rate of collapse in the early stage of collapse for these sequences.

However, most of the copolymer chains investigated in this work have a slower rate

of collapse compared to that of a homopolymer chain.

The second stage of collapse is known as cluster coarsening, where previous

studies of homopolymer chains indicate that a power law also holds for the growth of

the average cluster size with time (〈Sn(t)〉 ∼ tz). The growth of the number average

cluster size with time for a chosen value of overlapping distance D/Dmin = 1.20,

where, Dmin = 21/6(σ/lH) is the distance at the minimum of the Lennard Jones

potential, is shown in Fig. 6.7. One can clearly see from Fig. 6.7 (a) and Fig. 6.7
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Figure 6.7: Variation of the number average cluster size with time for chains with
N = 128 for the overlapping distance D/Dmin = 1.20, in the presence of HI, for (a)
MBC chains, (b) the PLC chain and RBC chains with 〈L〉 ≤ 4, and (c) MBC chains
with L = 32 and 16.
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Figure 6.8: Variation of the number of clusters with time for the PLC and MBC
chains with the overlapping distance D/Dmin = 1.20, in the presence of HI.

(b) that there are three different regimes for the number average cluster size. Thus

this result on the growth of the number average cluster size with time also confirms

a three-stage collapse as has been seen earlier via observations in Figs. 6.5 and 6.6.

However, for MBC chains with large block size (i.e. L = 32 and 16), the kinetics

of collapse can be described in terms of four different regimes rather than three,

where an additional regime appears between the first and second stage entirely due

to diffusion. The existence of this plateau region for MBC chains with large block

size is observed in Fig. 6.7 (c) and coincides with the large diffusion regime seen

in Fig 6.5, where the average cluster size remains constant as coalescence has not

yet occurred during this process. Since the range of attractive interaction between

H type clusters is quite short compared to the size of the P block that separates

them, it is necessary for these clusters of H type monomers to diffuse until they are

within the range of attractive interaction to coalesce to a larger cluster. The final

and fourth regime is not observed in Fig. 6.7 (c) since the chains in our simulations

have not yet reached their equilibrium size after t∗ = 1.5×104. The appearance of a

diffusion regime for MBC chains with large P block can also be identified from the

plateau regions in the evolution of the number of clusters Nc with time as shown in

Fig. 6.8.
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Figure 6.9: Coordinate pairs (z, τ) of the second stage exponent and total collapsed
time, respectively, for all copolymer chains with N = 128, in the presence of HI.

Although there is no unique choice of D, we choose D/Dmin = 1.20 in order

to compare effects of average block size on the rate of collapse of the second stage.

A similar value for D has also been used by other authors to study the exponent

z for homopolymer and copolymer chains [26; 40; 158]. The values of the cluster

growth exponent z at a chosen overlapping distance are obtained from the slope of

a linear fit to the linear portion of the log-log plot of 〈Sn(t∗)〉 vs t∗ in Fig. 6.7 for all

types of copolymers with various block sizes 〈L〉. Values of z are listed in Table 6.1.

Interestingly, the value of z obtained for these copolymers is always smaller than

the value z = 1.08 ± 0.01 reported for a homopolymer as shown in Chapter 5.

The characteristic collapse times (τ) for all three types of copolymers with N =

128 are shown in Table 6.1. It is observed that for all types of copolymers used in

this work, the collapse time is much larger than the collapse time for a homopolymer

chain, for which τ = 590.97± 7.38. A plot of τ vs z shown in Fig. 6.9 indicates that

the total collapse time depends on the rate of collapse of the second stage, which is

characterized by z. As has been pointed out earlier, MBC chains with L = 32 and

16 had not yet reached their equilibrium state during the course of our simulation,

and hence, the the total collapse time for these two chains are not available. Careful

analysis of the exponent z for MBC chains with L ≤ 32 shows that the block size of P
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Figure 6.10: Coordinate pairs (LP, z) of the block size of P type monomers and the
second stage exponent, respectively, for MBC chains and a homopolymer chain with
N = 128, in the presence of HI. Inset: The corresponding coordinate pairs (LP, τ)
of the block size of P type monomers and total collapse time for these chains, in the
presence of HI.

type monomers has a direct influence on the value of z, with an increases in the value

of z for decreasing value of P block size as seen in Fig 6.10. The inset of Fig 6.10

shows a direct relationship between the total collapse time and the P block size for

MBC chains that formed a final equilibrium state with globular conformations, with

a reduction in the total collapse time for decreasing P block size. The data clearly

indicate that the block size of P type monomers is not only controlling the length of

the diffusion process for chains with large P block size, but it also affects the rate of

collapse of the cluster coarsening stage for copolymers with small P block size where

diffusion plays little or no role at all. Thus one can conclude the rate of collapse

of the second stage is the rate limiting factor that controls the total collapse time

of a polymer chain. Since the exponent z for a homopolymer chain is always larger

than for copolymer chains, this explains why the total collapse time for copolymers

is much larger than that of a homopolymer.

In order to understand the relationship between the kinetic accessability of the

final collapsed state and the final equilibrium size of a copolymer, we plot the chain

collapse time versus its final size, in Fig. 6.11. Since not all copolymer chains fold
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Figure 6.11: Values of the total collapse time with the equilibrium mean square
radius of gyration at the final collapsed stage for all copolymers chain with N = 128,
in the presence of HI.

into a compact globular structure, and our primary interest is in chains that form a

compact state which closely resembles globular proteins, we only plotted the collapse

time of selected copolymer chains that have folded into a spherical compact struc-

ture. The figure clearly shows that the chain total collapse time is directly related

to its final equilibrium size. This result reveals a very interesting feature that is not

expected, i.e., a chain which has a small equilibrium size tends to fold much more

rapidly compared to a chain with a larger equilibrium size. Intuitively, one might

expect that it would take longer for a chain to fold into a more compact equilib-

rium structure rather than a loosely packed structure, but these results suggest the

opposite. Sali et al. [175] have pointed out that a pronounced energy minimum is a

necessary condition to guarantee that the native state is stable, and it is sufficient

for a compact globule with random structures to rapidly find a transition state that

folds to the stable native state in a short time. Thus the deep energy minimum of

the compact structure seems to provide a guide (or a strong thermodynamic driving

force) for the chain to quickly fold into its final equilibrium state. In the present

work, we have made no attempts to determine the free energy of the chains. How-

ever, we anticipate that knowledge of the relationship between the free energy of
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Figure 6.12: The tails of the normalized distribution of P blocks for a protein-like
copolymer (PLC) and random-block copolymers (RBC) with three different average
block lengths 〈L〉, for N = 128. Inset: The complete normalized distribution for
PLC and RBC chains.

the native state and the size of the native conformation may help in resolving this

behavior.

Before we discuss Fig. 6.12, we recall our earlier discussion on the kinetics of

collapse for MBC chains in Fig. 6.1 (a) which showed that the presence of a large

P block size leads to a less compact final collapsed size due to the formation of

dangling legs of P type monomers extruding away from the core of H type monomers.

Furthermore, the discussion on the rate of collapse of the second stage in Fig. 6.7

and Fig 6.10 showed that the P block size not only governs the diffusion time but

it also plays an important role in the speed of the collapse of the second stage. The

length of P block in a chain has a direct effect on the total collapse time because a

larger P block size would induce a longer diffusion time as well as a larger cluster

coalescence time for the second stage, leading to an increase in the total collapse

time. Since the total collapse time and the final equilibrium size depend on the block

size of P type monomers in the chain, we have plotted the block length distribution

of P type monomers for PLC and RBC chains in Fig. 6.12, focusing on the tails of

the distribution at large block length L (the complete distribution is shown in the
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inset). It can be seen that the distribution for PLC chains decays much more slowly

compared to that for RBC chains, i.e. it has a longer tail. Thus on average, a PLC

chain sequence is more likely to have large blocks of P type monomers compared to

an RBC chain sequence. This also leads to a larger collapse time as well as a larger

equilibrium size in PLC chains compared to RBC chains with the same average

block size 〈L〉. Therefore, any chain with a sequence that has a long tail for the

distribution of P type monomers tends to have a slow dynamics of collapse, as well

as to have an increase in its final equilibrium size.

6.4 Conclusions

We have shown that Brownian dynamics simulations incorporating implicit hydro-

dynamic interactions can be used to study the dynamics of copolymer collapse in

a poor solvent. Our simulations observations are similar to those that have been

reported previously in the literature regarding the speed up of collapse caused by

hydrodynamic interactions and the existence of at least two stages of collapse. The

kinetics of collapse can be described as a rapid initial formation of clusters followed

by cluster coalescence and sometimes a rearrangement of the clusters to form a com-

pact state. It is also found that the presence of P type monomers pushes the value of

quench depth at which the trapping phenomena occurs to a higher value compared

to the value seen for homopolymer chains. A striking feature observed here is that

the total collapse time is completely governed by the coarsening stage and the rate

of collapse of this stage depends on the block size of P type monomers along the

chain.



Chapter 7

Effects of solvent quality and

chain sequence on the coil-stretch

hysteresis window

7.1 Introduction

In a landmark paper in 1974, using an approximate dumbbell model, de Gennes [43]

showed that the presence of hydrodynamic interactions creates large barriers in the

effective steady-state free energy landscape of polymers suspended in an irrotational

flow. Further, he predicted that these ergodicity breaking barriers would result in

the phenomenon of coil-stretch hysteresis. A similar prediction was made by Hinch

[83] at about the same time. Almost immediately after the reports of the possible

occurrence of this peculiar phenomenon, several researchers [68; 84; 198] carried out

more detailed numerical calculations with a dumbbell model, including nonlinear

spring force laws incorporating the effects of finitely extensibility, and variable drag

coefficients accounting for the change in hydrodynamic drag produced by chain de-

formation. They too confirmed the existence of coil-stretch hysteresis. Predictions

of the occurrence of coil-stretch hysteresis using a detailed bead-spring chain model

combined with the consistent-averaging technique for including hydrodynamic in-

teractions was first reported by Magda et al. [132]. These authors predicted the

existence of multiple solutions for the extensional viscosity at a particular extension

rate in uniaxial extensional flow, indicating the presence of coil-stretch hysteresis.

Bird and co-workers [58; 212], however, argued that the hysteretic effects predicted

111
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by de Gennes [43] were a consequence of the use of inappropriate mathematical clo-

sure approximations rather than due to the presence of variable drag acting on the

beads induced by hydrodynamic interactions. Although it has subsequently been

shown that indeed hysteresis does not exist at a true steady-state [17], this criti-

cism ignored de Gennes’s original observation that a quasi-steady state can still be

sustained for a long period of time, which could significantly exceed typical experi-

mental observation times. According to de Gennes, such a quasi-steady state would

arise due to the existence of a large energy barrier over which the configurations of a

long polymer would have to hop in order to transition between coiled and extended

states.

These issues remained largely unresolved until Schroeder and co-workers [179;

180] demonstrated in 2003 for the first time that coil-stretch hysteresis does indeed

exist by performing single molecule experiments and observing conformations of

DNA chains at a microscopic level. In these experiments, highly extensible stained

E-coli DNA molecules (1.3 mm in length, about 3.0 million base pairs) were stretched

in a planar extensional flow and visualized by fluorescence microscopy. For a narrow

range of flow strengths near the coil-stretch transition, the DNA molecules were

found to be stable for at least 12 strain units in either a coiled or a stretched state,

depending on the deformation history. They also performed Brownian dynamics

simulations with a bead-spring chain model that included HI and observed similar

behavior as seen in the experiments. Recently, Sridhar et al. [191] have reported ex-

perimental observations of coil-stretch hysteresis for synthetic polymers of moderate

to large molecular weights using the filament stretching rheometer (FSR). In their

experiments, these authors introduced a new method to measure the stress in a di-

lute polymer solution. In this method, the polymer solution is initially exposed to a

high strain rate causing the chains to rapidly unravel and stretch. Subsequently, the

strain rate is suddenly quenched into a range of values in which coil-stretch hysteresis

is observed. The unique design of the FSR enables a continuous measurement of the

stress during the entire period of experimental observation. With this method, they

observed that different time-dependent elongational strain-rate profiles led to pro-

nounced history dependence and aging effects within a narrow range of strain rates.

In addition to experimental measurements, these authors also performed Brownian

dynamics simulations with a bead-spring chain model that included HI to confirm

their findings.
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A theoretical explanation for the existence of hysteresis [43; 179; 180] can be

briefly sketched as follows. In a uniaxial elongational flow, the nonequilibrium

steady-state probability distribution function ψ(Q) for a polymer molecule’s end-

to-end distance Q, has a Boltzmann form, ψ(Q) ∼ exp [−E(Q; ε̇)/(kBT )], where,

E(Q; ε̇) is the effective nonequilibrium energy function parameterized by the strain

rate ε̇ [179; 180]. The minima in the effective energy E (with a corresponding max-

ima in the probability ψ) occur at the values of Q at which the total frictional force

on the polymer exerted by the surrounding solvent is balanced by the entropic resis-

tance of the molecule to stretching. For ε̇ < ε̇min, E has a single minimum at Q = 0,

whereas for ε̇ > ε̇max, this minimum is shifted to a value of Q close to its maximum

value of stretchable length Lmax. However, for ε̇min < ε̇ < ε̇max, the existence of

nonlinearities both in the drag coefficient and in the entropic spring resistance lead

to two minima in E: one at Q = 0, and another closer to L. For molecules that are

sufficiently large, the intervening maximum between the two minima can be much

larger than the mean energy of thermal fluctuations in the solvent, kBT . Therefore,

if an ensemble of chains is subjected to a strain rate ε̇min < ε̇ < ε̇max, the molecules

are kinetically trapped in either the coiled or stretched state energy minimum, de-

pending on their initial configurations. In such a circumstance, de Gennes showed

that the time required for ergodicity to be fully established could be far greater

than observation time scales typically encountered in experiments, even for polymer

molecules of moderately large molecular weights. Using a rate theory to describe

thermally activated transitions over an energy barrier, Beck and Shaqfeh [18] have

recently shown that the rate of hopping between the energy minima decreases ex-

ponentially with molecular weight, indicating that in the limit of infinite system

size, ergodicity is broken at strain rates that lie between the two critical values ε̇min

and ε̇max. As a result, there is a significant slowing of the dynamics of macroscopic

observables within the “hysteresis window” for solutions of long polymer molecules.

The principal findings of studies so far of the coil-stretch hysteresis phenomenon

can be briefly summarized as follows:

1. Both BD simulations and experimental observations under theta conditions

have indicated that hysteretic behavior can only be observed for polystyrene

molecules with a minimum molecular weight of about 5× 105 [89; 191]. Below

this chain length, the barriers to transitions between the basins of attraction

are comparable to or less than kBT at all strain rates.
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2. Hysteresis only occurs for values of the ratio of effective drag coefficients in the

stretched to coiled states, ζstretch/ζcoil, which are 4.5 or greater. In line with

the previous point, it is estimated that the value of ζstretch/ζcoil for polystyrene

molecules with molecular weight of about 5 × 105 under theta condition is

around 4.5 [89; 191]. Further, Hsieh and Larson [89] have estimated that

the minimum molecular weight for a coil-stretch hysteresis to occur in a good

solvent is seven times higher than that in a theta solvent because the coiled

state is more expanded in a good solvent.

3. Under theta conditions, the longest relaxation time τ1 scales with the molecular

weight N as τ1 ∼ Na, where a = 2 and 3/2 for cases without and with HI,

respectively. Interestingly, the inverse of the above scaling law is observed for

the molecular weight scaling of the critical strain rate ε̇max which corresponds

to the extension rate for the occurrence of a coil-stretch transition from an

initially coiled state, i.e. ε̇max ∼ N−a [22; 23; 29; 38; 99; 145; 146]. While each

of these two properties heavily depend on HI, their product ε̇maxτ1 (which is

often referred to as the critical DeborahDemax or Weissenberg number Wimax),

remains constant at round 0.5 and is independent of HI as well as molecular

weight [38; 89; 132].

4. In recent years, several groups of researchers have studied the effects of solvent

quality on the molecular weight scaling of ε̇max and τ1. They have found

that the introduction of excluded-volume interactions due to good solvent

conditions does not alter the values of the exponent a for the scaling law

ε̇max ∼ N−a observed under theta conditions [10; 59; 67; 99; 138; 139; 144;

149]. However, the presence of excluded-volume interaction has been found to

change the value of the exponent a for the scaling of the relaxation time τ1 in

the presence of HI from a = 1.5 for theta solvents to a = 1.8 for good solvents

[38; 150; 172].

5. Cifre and de la Torre [38] have shown that for a fixed chain length, the value

of the critical strain rate ε̇max remains unchanged for a wide range of solvent

qualities in good and in theta solvents. However, this value changes rapidly in

a poor solvent, increasing as the strength of attractive interaction increases.

These results suggest that the value of the exponent a for poor solvents maybe

different from the value of 1.5 obtained in good and theta solvents.
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Although it was found through BD simulations and through rate theory that the

molecular weight of the dissolved polymer has a large influence on the size of the coil-

stretch hysteresis window [18; 89], there has been no attempt so far to investigate the

effects of solvent quality on the size of the hysteresis window, especially in the poor

solvent regime where the ratio of effective drag coefficients ζstretch/ζcoil could exceed

the minimum value of 4.5 even for short polymer molecules because the coiled state

is much more compact. The present chapter aims at partially filling this unexplored

gap.

In this work, we have carried out BD simulations of a FENE chain model with

N = 32 and 64 beads, in the presence of HI, to study the effects of solvent quality on

the nature of the conformational hysteresis window in extensional flows. Apart from

studying solvent quality effects on a homopolymer (Ho) chain, effects of different

types of interaction potentials between intrachain blocks in a diblock copolymer

(Co) has also been investigated. Here, two types of diblock copolymers have been

examined, where the difference between these diblock copolymers lies in the energetic

interaction between the blocks in the chain. The first type is the standard good-

poor diblock copolymer, which is composed of a block of P type monomers for good

solvent and a block of H type monomers for poor solvent. The interactions between

the beads within these two blocks are the same as those described for the copolymers

used in Chapter 6. Beads that belong to different blocks interact via the repulsive

interaction potential. The dimensionless forms of these potentials are given as

VEV(r∗µν) =











4ε∗LJ

[

(σ/lH)12

r∗µν
12

− (σ/lH)6

r∗µν
6

+
1

4

]

for r∗µν ≤ 21/6(σ/lH),

0 for r∗µν > 21/6(σ/lH)

(7.1)

Vattr(r
∗
µν) =











4ε∗LJ

[

(σ/lH)12

r∗µν
12

− (σ/lH)6

r∗µν
6

− c(R∗
c)

]

for r∗µν ≤ R∗
c ,

0 for r∗µν > R∗
c

(7.2)

where σ is the Lennard Jones parameters, ε∗LJ = εLJ/kBT is the strength of excluded

volume interaction or quench depth, r∗µν is the distance from bead µ to bead ν.

R∗
c = 2.5(σ/lH) is the cutoff radius and the function c(R∗

c) is chosen such that the

value of the potential is zero at the cutoff, i.e., c(R∗
c) = [(σ/lH)/R∗

c ]
12−[(σ/lH)/R∗

c ]
6.

The second type is known as the theta-poor diblock copolymer, which is made up

of a theta block and a poor block. The same interactions are employed for this type
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of copolymer, except that there are no bead-bead interactions between the beads in

the theta block as if this block is a segment of an ideal Gaussian chain. Note that all

the blocks are equal in length. We use the same FENE spring potential as has been

used in Chapter 5 with h̃∗ = 0.5. For convenience, we use the equilibrium position

vectors of chains that have fully reached their final collapsed state from previous

simulations reported in Chapter 5 and Chapter 6 as the initial coiled configurations

for this study. Chains with initially stretched configurations are generated from

linear chains aligned in the flow direction that have been extended to 90% of their

maximum stretchable length. For all the simulations, the product of extension rate

and time step size ε̇∗∆t∗ = 0.0001 has been used, which yielded a solution with very

small discretization errors. Property values are obtained from an ensemble average

of 500 statistically independent trajectories.

7.2 Results and discussion

In order to observe the effects of solvent quality on the coil-stretch conformational

hysteresis window for a full range of solvent conditions, we have run simulations

for chains under three different solvent regimes, namely, good, theta and poor. For

good and poor solvent conditions, a value of ε∗LJ = 2.50 has been used, ε∗LJ =

5.00 is used to represent a poorer solvent condition, and bead-bead interactions are

suppressed under theta conditions. Here, the dimensionless strain rate has been

non-dinmensionalized by the characteristic relaxation time of a Hookean spring λH .

The starting configurations of both initially coiled (IC) and initially stretched (IS)

states have been used for these simulations.

It is observed that a majority of researchers in the field of polymer science have

often used the Rouse-Zimm longest relaxation time τ1 to rescale the strain rate

and plot various properties such as stress and end-to end distance as a function

of Weissenberg number. However, in practice, it is quite difficult to extract the

longest relaxation time from experimental data. In presenting their experimental

findings, experimentalists quite often used η∗p,0λH (where η∗p,0 is the dimensionless

zero-shear rate polymer viscosity) as the relaxation time since this quantity can be

easily obtained from experiments, and it is given as

η∗p,0λH =
η0 − ηs

npkBT
, (7.3)
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Figure 7.1: Variation of the zero-shear rate polymer viscosity with time for a ho-
mopolymer chain with N = 8 in a poor solvent condition, at ε∗LJ = 2.50, in the
absence of HI.

Table 7.1: Values of the zero-shear rate intrinsic viscosity for various types of poly-
mer chains under different solvent conditions, in the presence of HI at ε∗LJ = 2.50.

Type Interaction N ε∗LJ η∗p,0

Homopolymer good 32 2.50 690.091 ± 9.510
Homopolymer theta 32 2.50 105.495 ± 1.045
Homopolymer poor 32 2.50 253.697 ± 19.884
Homopolymer good 64 2.50 2437.772 ± 32.755
Homopolymer theta 64 2.50 269.561 ± 1.301
Homopolymer poor 64 2.50 529.313 ± 26.612
Homopolymer poor 64 5.00 503.670 ± 20.101
Copolymer good-poor 64 2.50 1922.758 ± 60.339
Copolymer theta-poor 64 2.50 462.045 ± 46.732
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Figure 7.2: Variation of the mean square end-to-end distance with dimensionless
strain rate at ε = 10 for a homopolymer polymer chain, at various solvent qualities.
For good solvent conditions, a chain of N = 32 beads has been used. For all the
remaining solvent conditions, chains with N = 64 beads have been used.

where η0 is the solution viscosity, ηs is the solvent viscosity, and np is the number

density of polymer.

In this work, we have used η∗p,0λH as the longest relaxation time rather than the

actual Rouse-Zimm longest relaxation time τ1, and the definition of the Weissenberg

number used here is the product of η∗p,0λH and ε̇. The zero-shear rate intrinsic vis-

cosities reported here are obtained via the Green-Kubo formulation. The values of

the zero-shear rate intrinsic viscosity obtained from simulations have also been val-

idated with the theoretical predictions for cases without HI as reported by Prakash

[167]. We have used a multi-exponential curve to fit the stress-stress autocorrela-

tion function data obtained from simulations and have extracted the zero-shear rate

viscosity by performing a numerical integration of the fitted curve. As can be seen

in Fig. 7.1 this method produces a very reliable value for the zero-shear rate viscos-

ity. Values of the zero-shear rate intrinsic viscosity for chains subjected to different

static solvent conditions are listed in Table 7.1.

Figure 7.2 shows the variation of mean square end-to-end distance with dimen-

sionless strain rate for a homopolymer chain with N = 64 at a Hencky strain ε = 10,
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for four different solvent conditions, except for chains in a good solvent where N = 32

has been used. It can be seen from the figure that conformational coil-stretch hys-

teresis can be observed for chains with N = 64 beads in theta and in poor solvents.

However, there is no hysteresis for a 32 bead chain under good solvent conditions.

Since, as suggested by Hsieh and Larson [89], the occurrence of coil-stretch hystere-

sis in a good solvent requires a chain with molecular weight at least seven times

larger than that required for theta conditions, and the required simulation time ex-

ceeds our current computational resources, we have only performed simulations for

a chain with N = 32 beads in a good solvent, which will prove to be useful later

on for the analysis of copolymers with N = 64 in flow. The figure clearly shows

that the critical strain rate ε̇∗max for the occurrence of a coil-stretch transition is de-

layed further as the solvent quality decreases from good to poor. In a poor solvent,

the critical strain rate ε̇∗max for the occurrence of a coil-stretch transition increases

with larger quench depth because the stronger attractive interaction has caused the

coiled chain to remain in a coiled state much longer compared to that for a weaker

attractive interaction. The critical strain rate ε̇∗min for a stretch-coil transition is

also higher for larger quench depth because the stronger attractive interaction has

overcome the large energy barrier and allowed the stretched chain to collapse back

to a coil at a higher strain rate, which does not occur for a stretched chain with

a shallower quench depth. Thus the width of the hysteresis window increases with

increasing attractive interaction. It is observed that the hysteresis window for the

theta condition is very narrow compared to that for poor solvents and it lies within

the hysteresis window of a poor solvent at ε∗LJ = 2.50.

Variation of mean square end-to-end distance with Weissenberg number for the

case described above is shown in Fig. 7.3. The coil-stretch hysteresis window for

a theta solvent is located at a lower Weissenberg number compared to that for a

poor solvent. Although there is no coil-stretch hysteresis for a chain in a good

solvent used in this work, if one takes the mid point of the change in the end-to-

end distance as the point where coil-stretch transition occurs (as is frequently done

in the literature [38; 146]), one can deduce that the critical Weissenberg number

Wimax for the coil-stretch transition is higher for good solvents compared to that

for a theta solvent. Previous findings reported by various authors [38; 59; 67; 99;

138; 139; 144; 149; 150; 172] have shown that the critical Weissenberg number Wi

scales as N 0.3 for good solvents while it remains constant at 0.5 for a theta solvent.
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Figure 7.3: Variation of the mean square end-to-end distance with Weissenberg
number at ε = 10 for a homopolymer polymer chain, at various solvent qualities.
For good solvent condition, a chain of N = 32 beads is used. For all the remaining
solvent conditions, chains of N = 64 beads are used.

This result implies that the critical Weissenberg for the occurrence of coil-stretch

hysteresis is higher in good solvents compared to that in theta solvents for chains

with sufficiently large molecular weight. In our simulations, we see in Fig. 7.3 that

the above expectation in the shift of critical Weissenberg number Wimax is true even

though the chain used in the good solvent is only half the length of the chain used in

the theta solvent. Moreover, it is observed that the width of the hysteresis window

for a poor solvent is at least an order of magnitude higher compared to that for a

theta solvent and this ratio further increases with increasing the quench depth.

In addition to the quench depth, the width of the hysteresis window for a poor

solvent can also be increased by increasing the chain length as seen in Fig. 7.4,

where the hysteresis window for chains with N = 32 is completely embedded within

the window of the chains with N = 64. It is clear that the critical Weissenberg

number for coil-stretch transition is not universal in poor solvents, and it depends

on chain length even though the quench depth is kept constant. This might have to

do with the fact that the solvent quality is determined not only by ε∗LJ, but also by

chain length [112; 113]. Since our main aim is to study the effects of solvent quality
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Figure 7.4: Variation of the mean square end-to-end distance with Weissenberg
number at ε = 10 for homopolymer polymer chain with N = 32 and N = 64, at
ε∗LJ = 2.50.

on the conformational hysteresis window, we have not attempted to determine the

molecular weight scaling of the critical Weissenberg number for coil-stretch transition

in a poor solvent. Detailed study of the molecular weight scaling of Wimax in the

future may help clarify these observations.

Furthermore, we have found that the width of the hysteresis window is sensitive

to the value of Hencky strain at which the data is extracted and the window is nar-

rower for larger values of Hencky strain. This is entirely in line with the expectation

that hysteresis vanishes as the steady state is approached and chains have sufficient

time to hop barriers [17]. The results in Fig. 7.3 suggest that from an experimental

point of view, experimental observations of conformational coil-stretch hysteresis

should be much easier to observe and detect for a chain in a poor solvent because

the coil-stretch transition occurs at a much higher strain rate and the width of the

window is significantly wider even for very short chain lengths.

Figure 7.5 shows snapshots of the typical unraveling pathways for a coiled ho-

mopolymer chain of length N = 96 in a poor solvent, at ε∗LJ = 2.50, which is

subjected to a dimensionless strain rate of ε̇∗max = 0.10. It can be seen that un-

raveling pathways of a homopolymer chain in extensional flow are very different
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Figure 7.5: Simulation snapshots of an initially coiled chain with N = 96 at ε̇ = 0.10
at various values of Hencky strain ε. The ends beads are indicated with blue color.

to the collapsing pathways in a quiescent poor solvent. For a collapsing chain in

a static poor solvent, it is observed that the chain first forms many small clusters

followed by a dumbbell configuration before rearrangement to a compact globule.

In extensional flow, the chain does not form strings of clusters or a dumbbell, rather

it forms a chain with folded ends that are aligned along the flow direction. Due to

the attractive interaction, the chain unfolds itself by sliding the folded segments at

each folded end away from the chain’s center until it is completely stretched out.

Typical snapshots of an initially coiled homopolymer chain of length N = 96

subjected to a wide range of dimensionless strain rate at ε = 10, in a poor solvent

with ε∗LJ = 2.50, is shown in Fig. 7.6. Here, it can be seen that below a certain critical

strain rate (i.e. ε̇∗max < 0.10), the chain remains in a coiled state even at a value

of Hencky strain of ε = 10. It is interesting to note that at a certain dimensionless

strain rate (i.e. ε̇∗ = 0.30), a chain appears to be stretched out to a greater length

than the same chain subjected to a higher dimensionless strain rate. This behavior

can be explained by the rapid stretching of the folded ends of the chain due to the

strength of flow. In the presence of a flow field with strain rate greater than the
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Figure 7.6: Simulation snapshots of an initially coiled chain with N = 96 at ε = 10
subjected to various flow strengths. The ends beads are indicated with blue color.

critical strain rate for a coil-stretch transition, the flow causes the coiled chain to

unravel beginning with the parts that are exposed to the flow. This leads to the

formation of folded loops at each end. However, the number of folded loops is usually

not distributed evenly at each end. Since the two ends of the chain have to stretch

in opposite directions, one end is likely to unraveled faster than the other. The

remaining end continues to stretch such that it forms a folded end which is made up

of a string with the folded part inward. Since the characteristic time scale (inverse

of the extension rate) is shorter in a strong flow, we may anticipate that the number

of fluctuations in chain configurations within the characteristic flow time are small.

Thus it is less likely for the flow to grab the folded segments and stretch it out.

As a result, beads in the string along the folded end align with the flow direction

and slowly slide on top of each other due to the attractive interaction between them

until they are unfolded. In contrast, the lower characteristic time scale in a weaker

flow tolerates the existence of a larger number of chain configurational fluctuations.

In this case, it is more likely that the flow will grab the folded end and unravel it

fully. Thus in a certain range of Hencky strains and strain rates, the length of the
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folded end of a chain in a strong flow is longer than for a chain in a weaker flow.
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Figure 7.7: Variation of the mean square end-to-end distance with Hencky strain for
a homopolymer chain in a poor solvent, with N = 64, at ε∗LJ = 2.50, subjected to
various flow strengths. The values of dimensionless strain rate increases from right
to left, beginning with ε̇∗ = 0.06 (dot-dot), ε̇∗ = 0.10 (dash-dot), ε̇∗ = 0.20 (thin
dash-dash), ε̇∗ = 0.30 (thin line), ε̇∗ = 0.60 (thick dash-dash), and ε̇∗ = 1.00 (thick
line). Inset: Variation of the end-to-end distance with Hencky strain focusing on
the non monotonic region.

To examine if this behavior is confined to individual trajectories, or it is also

a property of an ensemble of chains, we also plot the ensemble average end-to-end

distance of 500 independent trajectories for a range of dimensionless strain rates

and the results are shown in Fig. 7.7. The inset of Fig. 7.7 clearly shows that this

non-monotonic increase in the stretching of the chain’s end-to-end distance, which

occurs at values of Hencky strain between 10 and 25, is also seen for an ensemble

averaged property.

Snapshots of a typical initially coiled good-poor copolymer chain of length N =

128 subjected to a wide range of dimensionless strain rates at ε = 10, in a poor

solvent at ε∗LJ = 2.50, is shown in Fig. 7.8. The figure shows that while the good

block has been fully unraveled at ε̇∗ = 0.001, the poor block still remains in a coiled

globule and only unravels at a strain rate 0.001. This visual observation suggests

that it may be possible to obtain a dual coil-stretch hysteresis window provided that
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Figure 7.8: Simulations snapshot of an initially coiled good-poor diblock copolymer
chain with N = 128 at ε = 10 subjected to various flow strengths.

there is a coil-stretch hysteresis window for each individual block.

Figure 7.9 (a) shows the variation of mean square end-to-end distance with di-

mensionless strain rate for a good-poor diblock copolymer chain in a poor solvent

at ε∗LJ = 2.50, with N = 64, at ε = 10, and the corresponding variation for each

individual block which is a homopolymer with N = 32. For the good-poor diblock

copolymer, it is observed that only the poor solvent block gives rise to a coil-stretch

hysteresis window and there is no hysteresis window for the good solvent block with

the short chain length used in this study. It is clearly shown that the good block in

a good-poor copolymer begins to unravel at a lower dimensionless strain rate com-

pared to that of the individual good block with the same chain length. Moreover,

the coil-stretch transition for the poor block in a good-poor diblock copolymer with

N = 64 occurs at much lower dimensionless strain rate compared to that for an

individual poor block alone with N = 32. The large drag force induced from the

attached poor solvent globule appears to help reduce the energy barrier, which in

turn causes the chain to unravel at a much lower dimensionless strain rate. Sim-

ilarly, the drag of a unraveled tethered chain due to the presence of a good block



7.2. Results and discussion 126

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

 

 

Ho, good − IC
Ho, good − IS
Ho, poor − IC
Ho, poor − IS
Co, poor − IC
Co, poor − ISPSfrag replacements

〈R
2 e
〉/
L

2 m
a
x

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

 

 

Ho, good − IC
Ho, good − IS
Ho, poor − IC
Ho, poor − IS
Co, poor − IC
Co, poor − ISPSfrag replacements

〈R
2 e
〉/
L

2 m
a
x

ε̇∗ Wi
(a) (b)

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

 

 

Ho, theta − IC
Ho, theta − IS
Ho, poor − IC
Ho, poor − IS
Co, theta−poor − IC
Co, theta−poor − ISPSfrag replacements

〈R
2 e
〉/
L

2 m
a
x

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

 

 

Ho, theta − IC
Ho, theta − IS
Ho, poor − IC
Ho, poor − IS
Co, theta−poor − IC
Co, theta−poor − ISPSfrag replacements

〈R
2 e
〉/
L

2 m
a
x

ε̇∗ Wi
(c) (d)

10
−4

10
−3

10
−2

10
−3

10
−2

10
−1

10
0

 

 
Co, good−poor − IC
Co, good−poor − IS
Co, theta−poor − IC
Co, theta−poor − IS

PSfrag replacements

〈R
2 e
〉/
L

2 m
a
x

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

 

 

Co, good−poor − IC
Co, good−poor − IS
Co, theta−poor − IC
Co, theta−poor − ISPSfrag replacements

〈R
2 e
〉/
L

2 m
a
x

ε̇∗ Wi
(e) (f)

Figure 7.9: Variation of the mean square end-to-end distance with dimensionless
strain rate at ε = 10, for (a) N = 64 good-poor diblock copolymer chain and the
corresponding individual blocks with N = 32, (c) N = 64 theta-poor diblock copoly-
mer chain and the corresponding individual blocks with N = 32, (e) a good-poor
and a theta-poor diblock copolymer chain, with N = 64. The same combinations
as a function of Wi are shown in (b), (d), and (f), respectively.
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also appears to help speed up the unraveling of the poor block. Variation of the

end-to-end distance with Wi for these chains are shown in Fig. 7.9 (b). It can be

seen from the figure that the width and the height of the hysteresis window for

the poor block in a good-poor copolymer are much narrower compared to that of a

poor block alone. The value of Weissenberg number at which the good block in a

good-poor copolymer begins to unravel is almost the same as that of the individual

good block. Similar behavior is also observed for a theta-poor copolymer chain as

seen in Fig. 7.9 (c). The existence of a hysteresis window for a theta block, which

is completely embedded within the window of a poor block, appears to lead to the

emergence of an overlapping hysteresis window for a theta-poor copolymer chain.

Notably, however, the width of the hysteresis window for either copolymer chain

composed of two different blocks is significantly narrower compared to the width

obtained for an individual poor block with half the total chain length (see Figs. 7.9

(b) and (d)).

Figure 7.9 (e) shows that the coil-stretch transition for a good-poor copolymer

chain occurs at lower dimensionless strain rate compared to a theta-poor copoly-

mer chain. However, in term of Weissenebrg number, the coil-stretch transition

for a good-poor copolymer chain is delayed to a much higher Weissenberg number

compared to a theta-poor copolymer chain as can be seen in Fig. 7.9 (f). Further,

the height of the hysteresis window for the theta-poor copolymer is much larger

than that for a good-poor copolymer. This is perhaps related to the fact that the

observed hysteresis window for a theta-poor copolymer chain is a combination of

two overlapping hysteresis windows that occur within the same range of dimension-

less strain rates, one for the theta block and one for the poor block. The results

suggests that if the diblock copolymer chain has significantly long good and poor

blocks such that coil-stretch hysteresis may be observed for the good solvent block

as well, the existence of a dual coil-stretch hysteresis window is possible. Such ex-

periments would surely be easier for one to perform than to carry out simulations

due to computational limitations.

7.3 Conclusions

Brownian dynamics simulations of a nonlinear bead-spring chain model incorporat-

ing implicit hydrodynamic interactions have been carried out to study the hysteresis
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phenomenon of a single chain molecule in extensional flow. Our simulations for a

homopolymer indicate that the occurrence of the coil-stretch transition, which is

the key characteristic of polymer behavior in extensional flows, is delayed to signif-

icantly higher Weissenberg numbers in a poor solvent relative to that in theta or

good solvents. Furthermore, the width of the coil-stretch hysteresis window (which

can only be predicted by including HI in the model) is observed to increase by an

order of magnitude in poor solvents compared to that in good or theta solvents.

Diblock copolymers are found to exhibit a fascinatingly complex behavior in exten-

sional flow. With increasing extension rate, the P block gets fully stretched while

the H block remains coiled. Ultimately, a threshold value is reached at which the H

block begins to unravel, and the copolymer undergoes a coil-stretch transition. For

sufficiently different interaction potentials for the two blocks, it is envisaged that a

dual coil-stretch hysteresis window may be observed.



Chapter 8

Conclusions

The main objective of this work has been to use Brownian dynamic simulations of

bead-spring chain models incorporating implicit fluctuating hydrodynamic interac-

tions to investigate the role of the solvent in mediating the dynamics of the collapse

of a single flexible polymer molecule in dilute solution, when the solvent quality

is suddenly quenched from good to poor. In such conditions, the intramolecular

hydrodynamic interactions due to momentum propagation via the solvent medium

plays a very crucial role in speeding up the process of collapse. More importantly,

effects of hydrodynamic interactions, the strength of bead-bead interactions, and

chain sequence on the dynamics of folding and on the final equilibrium size have

been studied in great detail. The precise features of a copolymer sequence that

controls chain kinetics as well as the size of the equilibrium compact state have been

identified. In addition, predictions of the effects of solvent quality on the confor-

mational coil-stretch hysteresis window has also been attempted via simulations of

bead-spring chain models.

Before examining the kinetics of collapse of a single chain molecule, Brownian

dynamic simulations have been carried out to show that a nonlinear bead-spring

chain model with the SFG scheme can reproduce the predictions of the fine-grained

bead-rod model. The main findings of this work on validating the model are listed

below:

• In the absence of EV and HI, the analytical results for linear viscoelastic

properties obtained using the bead-spring model with the SFG scheme are

in complete agreement with the infinitely stiff Fraenkel spring results in the

129
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limit Ns → Nk. This establishes that the correct limit for carrying out the

extrapolation procedure when using the SFG scheme is Nk.

• The numerical computations of linear viscoelastic properties in the presence of

HI are found to be in good agreement with the results of the bead-rod model.

In shear flow, the SFG results show excellent agreement with bead-rod results

for a range of shear rates both in the absence and presence of HI and EV. In

the limit Ns → Nk, the numerical and analytical results obtained using the

SFG scheme are found to be independent of the choice of spring force law.

Since the presence of the nonlinear phenomena of intramolecular hydrodynamic

interactions significantly hastens the folding process, it was worth while exploring

which is the most efficient mesoscopic simulation technique to capture the effects of

HI in a dilute solution. The difference between using an implicit solvent model (BD)

versus an explicit solvent model (LB) was evaluated by comparing their predictions

of static and dynamic properties of dilute polymer solutions. The results of this

comparative study are given below:

• A mapping method on obtaining the input values for the BD simulations from

the physical input parameters of the LB model such that both models would

produce the same static and dynamic properties has been demonstrated.

• The static conformations of the LB model are found to be distorted when the

box length L is too small compared to the chain size. For the LB model, most

dynamic properties are subject to a finite-size correction of order L−1, while

the BD model directly reproduces the asymptotic L→ ∞ behavior.

• Apart from the finite box size effects, it is crucial to properly thermalize all

the kinetic modes in order to obtain the correct dynamic properties for the LB

simulations. It is only then that these results are in excellent agreement with

each other.

• For dilute polymer solutions, Brownian Dynamics is found to be much more

computationally efficient than lattice Boltzmann as long as the degree of poly-

merization is not excessively large.
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The principal findings with regard to the collapse of homopolymers and copoly-

mers in a quiescent solvent and their behavior in extensional flow obtained via BD

simulations are summarized below.

• Simulations of a non-linear bead-spring chain model has shown that solvent

mediated interactions such as bead-bead interactions and hydrodynamic inter-

actions play an important role in the kinetics of collapse for a single polymer

chain. Our predictions confirms previous observations that HI facilitates the

folding, and it is observed that HI hastens the folding process by at least a

factor of four for a chain with N = 128 beads.

• Our simulations indicate that the polymer collapse takes place via a three-

stage mechanism, namely, formation of pearls, coarsening of pearls and the

formation of a compact globule. Although HI is found to speed up the folding

process significantly, visual inspection of the snapshots of the folding process

has revealed that the presence of HI does not alter the kinetic pathways of the

coil-to-globule transition. However, it is found that the kinetic pathways are

significantly different for shallow and deep quenches.

• BD results also confirm that an implicit treatment of HI does not avoid the

trapping phenomena, and that chains always get trapped in metastable states

of local free energy minima for long periods before acquiring their native glob-

ular state at large quench depth, unlike earlier explicit solvent based MD

simulations which show a smooth transition to the final global minimum free

energy state.

• Two different definitions of average cluster size have been employed and it

is found that the number average cluster size definition reproduces the visual

observation of a three-stage collapse. Careful analysis of the growth of average

cluster size in the second stage of collapse has shown that there is no universal

value for the exponent z for the scaling law 〈Sn(t)〉 ∼ tz and that z is very

sensitive to the value of the overlapping distance D. The exponents charac-

terizing the decay of various properties such as the radius of gyration have

been determined and they agree well with some of the theoretical predictions

as well as the values reported in the literature.
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• A two-letter HP code has been employed to model a copolymer chain, with

hydrophobic and hydrophilic interactions with the solvent. Both these inter-

actions are modeled as effective interactions between segments of the polymer

chain using Lennard-Jones potentials with appropriately chosen cut-off dis-

tances, such that attractive interactions are switched on for H type blocks,

while purely repulsive interactions are retained for P type blocks. It is found

that the chain sequence has a strong influence on the kinetics of copolymer

collapse as well as on the compactness and energy of its final collapsed state.

• Our simulations suggest that copolymer collapse takes place via at least two,

sometimes three stages of collapse in which a rapid formation of clusters is

followed by cluster coalescence with the clusters finally rearranging themselves

into a compact state.

• The coloring algorithm proposed by Khokhlov and Khalatur [102] has been

used to construct the protein-like copolymer chains. Multi-block and ran-

dom block copolymer chains are found to collapse much faster compared to

protein-like copolymer chains with the same average block length. This order

of collapse amongst the three types of copolymers investigated is also found

to be independent of HI and chain length.

• It is found that the presence of P type monomers along the chain pushes the

value of quench depth at which the trapping phenomena occurs to a higher

value compared to the value seen for homopolymer chains. Further, the pres-

ence of P type monomers also speeds up the rate of collapse in the early stage

of collapse for copolymer chains. In some cases, it is found that a copoly-

mer chain might have a larger value of the exponent α for the scaling law
〈

R2
g(0)

〉

−
〈

R2
g(t)
〉

∼ tα, compared to that for a homopolymer chain.

• A very interesting feature observed in this study is that the total collapse

time is completely governed by the coarsening stage known as the “cluster

aggregation” stage, and the rate of collapse of this stage depends on the block

size of P type monomers along the chain. Any chain sequence which consists

of short block lengths of P type monomers is found to collapse much faster

than chain sequences with long P block lengths. In addition, the block size

of P type monomers also controls the equilibrium size of the compact native
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state due to the formation of a dangling leg extruding away from the compact

hydrophobic core when large P block lengths are present. Moreover, our results

suggest that a chain that forms a small final equilibrium compact size tends to

have a lower total collapse time, indicating that the size of the native compact

structure also has an influence on the dynamics of folding.

• Numerical data obtained from simulations of a homopolymer shows that the

critical Weissenberg number at which coil-stretch transition occurs in poor

solvents strongly depends on the molecular weight of the chain. The results

indicate that the value of Weissenberg number at the coil-stretch transition

increases with increasing chain length. It is found that the occurrence of the

coil-stretch transition is delayed to significantly higher Weissenberg numbers

in a poor solvent relative to that in theta or good solvents. Furthermore, the

width of the coil-stretch hysteresis window is increased by at least an order of

magnitude in poor solvents compared to that in good or theta solvents.

• Diblock copolymers are found to exhibit a fascinatingly complex behavior

in extensional flow. With increasing extension rate, the P block gets fully

stretched while the H block remains coiled. Ultimately, a threshold value is

reached at which the H block begins to unravel, and the copolymer undergoes

a coil-stretch transition. For sufficiently different interaction potentials for the

two blocks, it is predicted that a dual coil-stretch hysteresis window may be

observed for chains with sufficiently large molecular weight such that there is

a coil-stretch hysteresis window for each individual block.

Although the dynamics of collapse and the conformational coil-stretch hysteresis

of a single polymer chain in a poor solvent has been studied in great detail in this

thesis via BD simulations, several additional features can be implemented into the

model to further improve the predictions of a polymer chain’s dynamical behavior.

• In practice, a real protein chain is not only composed of hydrophobic and

hydrophilic molecules but also contains charged molecules. Thus it would be

worthwhile incorporating long range electrostatic interactions into our current

model in order to mimic the true physical behavior of a real protein [169].

Inclusion of long range attractive electrostatic interactions due to the presence

of oppositely charged molecules might lead to a chain with has faster dynamics
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of collapse as well as a more compact final equilibrium state compared to

that for a neutral chain. Moreover, it remains interesting to see whether the

dynamics of collapse is still controlled by the P block size when long range

electrostatic interactions are incorporated.

• Although our results indicate that the value of critical Weissenberg number for

the occurrence of a coil-stretch transition in a poor solvent increases with in-

creasing chain length, the molecular weight scaling of this critical Weissenberg

number has not been attempted due to limited number of chain lengths and

dimensionless strain rates used in this study. Detailed study of the molecular

weight scaling of critical Weissenberg number may help clarify this observa-

tion. Further, the exact scaling law obtained from such study can also be used

to compare with existing results for good and theta solvents.

• Since our results suggest that a dual coil-stretch hysteresis window may be

observed for a diblock copolymer in a poor solvent, it may even be possible to

observe a triple or multiple coil-stretch hysteresis windows in a block copoly-

mer provided that different interaction potentials between each of the blocks

are tuned appropriately. Further, the addition of long range electrostatic inter-

actions would lead to completely new and unforeseeable effects on coil-stretch

hysteresis.
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