$C^{*} / c^{* *}$ Semidilute solution in fairly good,
lut not perfectly gad solvert
$\longrightarrow \xi_{\theta}$ dre to sobvat quality (small)
\rightarrow Sor de to overlep

$$
\begin{aligned}
& \text { \{ov } \sim\left\{_{\theta} \begin{array}{l}
n^{\nu} \\
L \text { H of } \theta \text {-blobs in an }
\end{array}\right. \\
& \text { \& } \sim 1 / 2 \text { voerlepp blob } \\
& \longrightarrow H \text { of monsmes in a } \theta \text { bel } \\
& \xi_{\theta}-b t^{-1} \quad \tau=\frac{T-\theta}{\theta} \quad m \sim t^{-2} \\
& c \sim \frac{m n}{f_{00}^{3}}
\end{aligned}
$$

Belore overlap: $R-b N^{\nu} \tau^{2 \nu-1}$

$$
\begin{aligned}
& C^{*} \sim \frac{N}{\left[b N^{v} \tau^{2 v-1}\right]^{3}} \sim b^{-3} N^{-(3 v-1)} \tau^{-(6 v-3)} \\
& \text { T } \underbrace{c^{*} \text { sumidilete }} \\
& C^{*} \sim \tau^{-(6 v-3)} \\
& \sim \tau-0.6 \\
& R \sim b N^{1 / 2} \underbrace{f\left(N^{1 / 2} \tau\right)}_{\left(N^{1 / 2} \tau\right)^{2 V-1}}
\end{aligned}
$$

T fixed, increase c
$\xi_{\theta}=$ cost., Fou decreases
at sone point $\xi_{0 r}=\xi_{\theta}$ is receded, no SAW windar left. What is the concutration $C^{* *}$ where this happens?

$$
\begin{aligned}
& n=1, \quad m \sim \tau^{-2} \quad \xi_{0 r}=\left\{_{\theta}=b \tau^{-1}\right. \\
& c^{x *}=\frac{m n}{\xi_{\theta}^{3}}=\frac{\tau^{-2}}{\left(b \tau^{-1}\right)^{3}}=b^{-3} \tau
\end{aligned}
$$

$$
\begin{aligned}
& c^{*}=C^{* *} \\
& \frac{1}{b^{3}} N^{-(3 v-1)} \tau^{-(6 v-3)}=\frac{1}{b^{3}} \tau
\end{aligned}
$$

$$
\begin{aligned}
& N^{-(3 v-1)}=\tau^{1+6 v-3}=\tau^{6 \nu-2}=\tau^{2(3 v-1)} \\
& N^{-1}=\tau^{2} \quad \tau=N^{-1 / 2} \\
& C=\frac{1}{b^{3}} \tau=\frac{1}{b^{3}} N^{-1 / 2}
\end{aligned}
$$

$$
5 . D Y N A M / C S
$$

5.1. Brownian Motion:

The Smohidowshi Equation
Look at one particle performing F REE Brownian nairn, "tines step" h

$$
t=0, t=L, t=2 h, \ldots
$$

etc.
This is a RW $]_{0}$
hem square displacencut α tine

$$
\left\langle\Delta \vec{r}^{2}\right\rangle=\left\langle\langle\ddot{r}(t)-\ddot{r}(0)\}^{2}\right\rangle=6 D t
$$

$$
=2 \text { spatial dimusian diffusion instant }
$$

(3)
requirmut: $\left.\left\langle\Delta \vec{r}^{2}\right)^{1 / 2}\right\rangle$ atomic lugth scales
grot as for the Gaussian polymer chain

$$
\begin{aligned}
& P(\Delta \tilde{r})=\left(\frac{1}{\sqrt{2 \pi \cdot 2 D t}}\right)^{3} \exp \left(-\frac{\Delta \dot{r}^{2}}{2 \cdot 2 D t}\right) \\
& \left(\Delta r^{\prime \prime}\right)=\underbrace{\Delta \Delta x^{2}}_{2 \Delta t})+\underbrace{\left.\Delta \Delta y^{2}\right)}_{2 D t}+\underbrace{\left(\Delta z^{2}\right)}_{2 D t} \\
& 6 t=3 \cdot 2 D t
\end{aligned}
$$

$$
P(\Delta \vec{r})=(4 \pi \lambda t)^{-3 / 2} \exp \left(-\frac{\Delta \vec{r}^{2}}{4 \lambda t}\right)
$$

We know already:
This is the solution of the diffusion equation

$$
\frac{\partial}{\partial t} P(\Delta \ddot{r}, t)=D \nabla^{2} P(\Delta \ddot{r}, t)
$$

with initial condition

$$
P(\Delta \ddot{r}, t=0)=\delta(\Delta \ddot{r})
$$

Now, stidy Brounian motion on a luttic,.
Sinple cabic lattice in 3D, lattice spacing a,
nearest-neigh hor hops, timu steph

$$
\begin{aligned}
& \vec{c}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \tilde{c}_{2}=\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right), \overrightarrow{c_{3}}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \overrightarrow{c_{4}}=\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right) \\
& \vec{c}_{5}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \quad \vec{c}_{6}=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right) \quad \begin{array}{l}
\text { unit vectors } \\
\text { to the hearest } \\
\text { neiglbors }
\end{array}
\end{aligned}
$$

$p(r, t)$: poratilitiy to fiade the partich at site \ddot{F}, al time t. Start at $\ddot{F}=0$

$$
\begin{aligned}
p(\ddot{r}, t=0) & =\delta_{\tilde{r}, 0} \\
\left\langle\Delta \vec{r}^{2}\right)_{h}= & \frac{1}{6} a^{2} \vec{c}_{2}^{2}+\frac{1}{6} a^{2} \vec{c}_{2}^{2}+\ldots+\frac{1}{6} a^{2} \vec{c}_{c}^{2}=a^{2} \\
& \vdots \vdots \\
& \text { protalility to hop in }
\end{aligned}
$$

$\tilde{c}_{\text {a }}$ diedion

$$
D=\frac{a^{2}}{6 L}, \quad h=\frac{a^{2}}{60}
$$

question: continumm L imit $a \rightarrow 0, h \rightarrow 0$
but heop D constant
(difthasive scoling)
overdunped motion, no mass pare rundoun hops
p satisties a Mastor equation

$$
p(\vec{r}, t+h)=\frac{1}{6} \sum_{i=1}^{6} p\left(\vec{r}+a \tilde{c}_{i}, t\right)
$$

target

$$
\begin{aligned}
& \text { trusition souree } \\
& \text { probalility }
\end{aligned}
$$

$$
p\left(\ddot{r}, t+\frac{a^{2}}{6 D}\right)=\frac{1}{6} \sum_{i} p\left(\ddot{r}+a \vec{c}_{i}, t\right)
$$

a-10, Taylor exparsion up to order a^{2} sono algebne: - $\alpha, \beta, \gamma \cdots$ Cartesian inderes

- Einstion sumnation convation

If a Greek index ocens trice, then it is bing swmmed over.

$$
\begin{aligned}
& F \cdot g, \quad \vec{r}^{2}=r_{\alpha} r_{\alpha}, \delta_{\alpha \alpha}=3 \\
& \frac{1}{6} \sum_{i} 1=1 \\
& \frac{1}{6} \sum_{i} c_{i}=0 \text { syphetry } \\
& \frac{1}{6} \sum_{i} c_{i \alpha} c_{i \beta}=A \delta_{\alpha \beta} \quad A=? \\
& 1=\frac{1}{6} \sum_{i} 1=\frac{1}{6} \sum_{i} c_{i \alpha} c_{i \alpha}=A \delta_{\alpha \alpha}=3 A \Rightarrow A=1 / 3 \\
& (1 / 6) \sum_{i} c_{i \alpha} c_{i \beta}=(1 / 3) \delta_{\alpha} \beta
\end{aligned}
$$

$$
p\left(\vec{r}, t+\frac{a^{2}}{6 D}\right)=\frac{1}{6} \sum_{i} p\left(-\vec{r}+a \ddot{c}_{i}, t\right)
$$

1Ls: $p\left(\vec{r}, t+\frac{a^{2}}{6 D}\right) \simeq p(\vec{r}, t)+\frac{a^{2}}{6 D} \partial_{t} p(\vec{r}, t)$
rhs $p(\vec{r}+\vec{a} \vec{c} ; t)=p(\vec{r}, t)+a c_{i \alpha} \partial_{\alpha} p(\vec{r}, t)$

$$
\begin{aligned}
& \left.+\frac{a^{2}}{2} c_{i} c_{i} \partial_{\alpha} \partial_{\beta} \beta(\vec{r}, t) \quad \right\rvert\, \frac{?}{6} \sum_{i} \\
\frac{1}{6} \sum_{i} p\left(\vec{r}+a \vec{c}_{i}, t\right) & \simeq p(\vec{r}, t)+\frac{a^{2}}{2} \frac{1}{3} \delta_{\alpha \beta} \partial_{\alpha} \partial_{\beta} p(\vec{r}, t) \\
& =p(\ddot{r}, t)+\frac{a^{2}}{6} D^{2} p(\vec{r}, t)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{a^{2}}{6 D} \partial_{t} p(\ddot{r}, t)=\frac{a^{2}}{6} D^{2} p(\vec{r}, t) \\
& \partial_{t} p(\ddot{r}, t)=D D^{2} p(\vec{r}, t) \quad \left\lvert\, \frac{1}{a^{3}} p-p\right. \\
& \partial_{t} P(\ddot{r}, t)=D D^{2} p(\vec{r}, t) \mid
\end{aligned}
$$

difpusion equation

