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Art Gallery Theorems

1 Guarding an Art Gallery

Imagine that you are the owner of several art galleries and that you are in the process of
hiring people to guard one of them. Unfortunately, with so many in your possession, you
seem to have forgotten the exact shape of this particular one. In fact, all you can remember
is that the art gallery is a polygon with n sides. Of course, guards have the capacity to turn
around a full 360◦ and can see everything in their line of sight, but being terribly unfit, they
are unwilling to move. The question we would like to answer is the following.

What is the minimum number of guards that you need to be sure that they can watch
over the entire art gallery?

This question was first posed in 1973 by Victor Klee when asked by fellow mathematician
Vas̆ek Chvátal for an interesting problem. A little more precisely, let us consider our art
gallery to be the closed set of points bounded by a polygon. We will also need to make
the somewhat unrealistic assumption that our guards are points and we will allow them to
stand anywhere in the polygon, even along an edge or at a vertex. Guards are able to see a
point in the art gallery as long as the line segment joining them lies in the polygon.

To get a feel for the problem, consider the comb-shaped art gallery below which has fifteen
sides. It is clear that at least one guard is required to stand in each of the shaded areas
in order to keep an eye on each of the “prongs” of the comb. Thus, at least five guards
are needed to watch over the entire art gallery, and it is a simple enough matter to verify
that five are actually sufficient. In fact, it is not too difficult to see that you can form a
k-pronged comb-shaped art gallery which has 3k sides and requires k guards. Furthermore,
by chipping off a corner or two, it is clear that there exist art galleries which have 3k + 1 or
3k + 2 sides and require k guards.

In short, you will need to hire at least bn/3c guards to watch over your art gallery, but is
it possible that you might need even more? The following theorem states that you don’t,
which means that the comb-shaped art gallery actually gives a worst case scenario.

Art Gallery Theorem: Only bn
3 c guards or fewer are required to watch over an art

gallery with n sides.
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2 A Proof from the Book

The first proof of the art gallery theorem was produced by Chvátal two years after the
problem was originally posed, but in 1978, a proof from the book1 was found by Steve Fisk
[1]. His proof, which we will now present, involves three main steps and is simplicity in
itself.

◦ You can always triangulate a polygon.
To triangulate a polygon is to partition it into triangles using only diagonals which
join pairs of vertices. This can always be done, as long as we can find a diagonal
which joins two of the vertices and lies completely inside the polygon. For if this
were true, then we could use such a diagonal to cut the polygon into two smaller
polygons, and then cut those into still smaller ones, iterating the process until we
are left with nothing but triangles.

To see that such a diagonal always exists, consider a guard standing at a vertex
X and shining a torch towards the adjacent vertex Y . If the guard were to rotate
this ray of light towards the interior of the polygon, then it must at some stage hit
another vertex, which we will call Z. Now we can take one of XZ or Y Z as the
desired diagonal, as long as there is no vertex of the polygon which lies inside the
triangle XY Z. But no such vertices could possibly exist, otherwise the rotating ray
of light would have hit one of them first.

◦ There is a nice 3-colouring of every triangulation of a polygon.
A nice 3-colouring is a way to assign a colour (or, due to the monochromatic nature
of the Gazette, a number) to each vertex of the triangulation so that every triangle
has vertices with three different colours. This is an easy task if the polygon is a
triangle, so let us consider what happens when there are more than three sides. But
then by the result stated above, there exists a diagonal joining two of the vertices
which lies completely inside the polygon. This diagonal can now be used to partition
our art gallery into two smaller ones. Notice now that if we can nicely 3-colour the
two smaller art galleries, then they can be glued together, possibly after relabelling
the colours in one of the pieces, to give a nice 3-colouring of the original art gallery.

1Many of you will know that the renowned twentieth century mathematician Paul Erdős liked to talk

about “The Book”, in which God maintains the perfect proofs for mathematical theorems. Only on very
rare occasions are we mere mortals allowed to snatch a glimpse of The Book, and only the very fortunate

ones at that.
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But can we nicely 3-colour these two smaller art galleries? Of course we can. . . just
use the same trick to split them up into smaller and smaller pieces until we are left
merely with triangles, which can obviously be nicely 3-coloured!

◦ Now place your guards at the vertices which have the minority colour.
Suppose that the colour which occurs the least number of times is red, for example,
and that there are actually k red vertices. Since there are n vertices altogether
and only three colours, that tells us that k ≤ n/3 and since k is an integer, we
have k ≤ bn/3c. But what happens when we place k guards at these red vertices?
Well, by the properties of a nice 3-colouring, each triangle contains a red vertex and
a guard standing there can obviously watch over every part of that triangle. So
every triangle in the triangulation, and hence every point in the art gallery, is being
watched by at least one guard.

3 More Art Gallery Problems

Subsequent to the solution of the art gallery problem, people began to explore variations
on the art gallery theme. For example, they posed the problem for guards with constrained
power, for guards with enhanced power, for art galleries with restrictions, for art galleries
with holes inside, for exterior guarding of art galleries and for art galleries of higher dimen-
sion, just to name a few. The myriad of results in the area prompted Joseph O’Rourke to
write the monograph Art Gallery Theorems and Algorithms [3], which was the definitive
work on the topic at its time of publication. Presented in this section are just three of the
more natural and pleasing extensions to the art gallery problem.

Orthogonal Art Galleries

Imagine now that you have suddenly remembered that your art gallery isn’t just any old
random polygon with n sides, but actually satisfies the condition that any two walls which
meet do so at right angles. This is known as an orthogonal art gallery for obvious reasons
and, of course, we would like to know how many guards are required to watch over an
orthogonal art gallery with n sides. This time, the example of the comb-shaped art gallery
does not arise, but can be modified to give an orthogonal counterpart. Such an art gallery
with k prongs requires 4k edges, so we need at least bn

4 c guards. The following theorem
states that this is all that we need.
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Orthogonal Art Gallery Theorem: Only bn
4 c guards or fewer are required to watch over

an orthogonal art gallery with n sides.

The original proof relies on the nontrivial fact that any orthogonal polygon can be partitioned
into convex quadrilaterals, whose vertices are selected from those of the polygon. Once this
has been established, it is a simple matter to show the existence of a nice 4-colouring of
the resulting graph. Then placing guards at the vertices of the minority colour yields the
desired result.

Mobile Guards

Or suppose that you have enough money to hire fit guards who don’t just stand still but
patrol along a particular line segment within the art gallery. The astute reader is most likely
wondering how many of these “line guards” are required, a question that is answered by the
following. . .

Art Gallery Theorem for Line Guards: Only bn
4 c line guards or fewer are

required to watch over an art gallery with n sides.

Perhaps having guards walking to and fro, disturbing the patrons of your art gallery, is both
unnecessary and undesirable. It may be wiser to only allow your guards to patrol along an
edge of the polygon. So how many of these “edge guards” are required to watch over the
art gallery? Interestingly enough, the answer is unknown, but the following is believed to
be true.

Art Gallery Conjecture for Edge Guards: Only bn
4 c edge guards or fewer

are required to watch over an art gallery with n sides, except for a few
special cases.

Three-dimensional Art Galleries

It seems a natural progression for us to move up a dimension and pose the art gallery problem
for polyhedra rather than polygons. Unfortunately, very little is known about this situation.
The main obstruction to progress is the surprising fact that polygon triangulation, which
was central to the proof of the art gallery theorem, does not generalize to three dimensions.
A more precise statement of this fact is the following result.

There exist polyhedra which cannot be tetrahedralized. To tetrahedralize a polyhedron
is to partition it into tetrahedra whose vertices are selected from those of the original
polyhedron.

The simplest example of such a polyhedron was discovered by Schönhardt in 1928 and can
be constructed as follows. Consider an equilateral triangular prism, where the base triangle
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ABC lies directly below the upper triangle A′B′C ′. Suppose that the edges of the prism are
constructed from wire and that the edges AB′, BC ′ and CA′ have been added with extra
wire. It may be helpful to imagine that we have dipped the whole wire frame into soapy
liquid and that a soap film has formed along each of the eight triangular faces.

Now consider what happens if we slowly rotate the upper triangle. If we rotate in one
direction, then the rectangular faces of the prism bend outwards along the extra edges AB′,
BC ′ and CA′. However, if we rotate in the other direction, then the rectangular faces of
the prism bend inwards, yielding a polyhedron which is not convex. At the point when we
have rotated by a full 60◦, then the three edges AB′, BC ′ and CA′ intersect at the centre of
the figure. Schönhardt’s polyhedron is obtained when the rotation is by some intermediate
value, for example 30◦. In this instance, the line segments AC ′, BA′ and CB′ lie outside
the polyhedron. However, any tetrahedron constructed from the six vertices of Schönhardt’s
polyhedron must necessarily contain one of the line segments AC ′, BA′ and CB′ and hence,
cannot lie within its interior.

Note that for two-dimensional art galleries, placing a guard at every vertex will always suffice
to watch over the art gallery. However, this fact only follows once we have established that
every polygon can be triangulated. For then, each triangle in the triangulation is guarded
by the three guards at its vertices. Unfortunately, this argument does not generalize to
three-dimensional art galleries. The difficulties posed by the existence of polyhedra which
cannot be tetrahedralized is highlighted by the following unexpected result.

There exist polyhedra such that guards placed at every vertex do not see all of the
interior of the polyhedron.

4 Illuminating a Room

The following illuminating problem has a very similar flavour to the results presented above.
It was brought to the attention of mathematicians in 1969 by Victor Klee [2], the very same
person who brought you the original art gallery problem. Imagine that you are standing in
a room, perhaps an art gallery, in the shape of a polygon and that each wall is a mirror. If
you strike a match, is it always possible to illuminate the whole room? Of course, the light
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will propagate according to the well-known rule which states that “the angle of incidence
equals the angle of reflection” and to simplify matters, let us assume that light hitting a
corner of the room is not reflected at all. This question was answered in 1995 by George
Tokarsky [4], using the following example. He showed that if you are standing at point A,
then you cannot illuminate the whole room — in fact, you cannot illuminate the point B.
This example uses a polygon with 26 sides, but can you find one which is smaller?

It turns out that even though you cannot illuminate the whole room while standing at the
point A, you certainly can do so by moving to almost any other point of the room. So the
following question still remains. . .

Does there exist a polygonal room which cannot be illuminated from any point?

Playing around with the problem for long enough seems to indicate that no such polygon
exists, but amazingly enough, this fact remains an open conjecture. Consider now what
happens if we broaden our definition of a room to allow ones whose walls are differentiable
arcs. In this case, there are rooms which cannot be illuminated from any point, one of which
is shown in the figure below. It is constructed from two congruent half ellipses whose foci
are labelled F . The reader may like to verify that any light beam which passes through the
region labelled X can never pass through one of the regions labelled Y and vice versa.
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5 Interesting Problems for Interested Readers

When Victor Klee first posed the art gallery problem, he probably had little idea that
it would motivate such a wealth of research which still continues over thirty years later.
The area is absolutely brimming with interesting problems which anyone can work on with
minimal mathematical background. The interested reader is invited to try the following
selection. For more information, please consult the references listed below. A more extensive
bibliography of the art gallery theorem literature can be found in [5].

◦ Consider a square room whose walls are mirrors, but whose vertices do not reflect
any light. Prove that it is impossible to shine a light beam from a corner of the
room which returns to the same corner.

◦ Prove that bn+1
3 c or fewer guards are required to watch over an art gallery with n

sides and one polygonal hole. (Here, the total number of sides includes the sides of
the hole.)

◦ Prove that any orthogonal polygon can be partitioned into convex quadrilaterals,
whose vertices are selected from those of the polygon.

◦ What is the minimum number of lazy guards that you need to be sure that they
can watch over a polygonal art gallery with n walls? A lazy guard is one who is
unwilling to turn his or her body, but can see everything in their line of sight within
the half-plane in front of them. (UNSOLVED!)

◦ Is it possible to trap light from a point source in the plane with a finite number of
disjoint line segment mirrors? (UNSOLVED!)
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