2. SYMMETRY IN GEOMETRY 2.3. Symmetry in the Plane

Recap

Now is probably a good time for a quick recap of our exploration into symmetry so far. Philosophically, our
broad goal is to give a mathematically precise definition of symmetry and see where this definition can take
us. When we began, I tried to convince you that the notion of symmetry in geometry is somehow tied to the
notion of distance. In particular, this observation motivated us to define isometries, functions which take
points in the plane to points in the plane and which preserve distances. Mathematicians are always trying
to classify things, so it made sense to try to classify all of the possible isometries. We discovered that there
were essentially four types — namely, translations, rotations, reflections and glide reflections. The definition
of an isometry allowed us to mathematically define a symmetry of a subset of the Euclidean plane as an
isometry which leaves the subset exactly where it is. We observed that the symmetries of a given shape can
be composed with each other and are collectively known as the symmetry group of the shape. Then we
found that the structure of a symmetry group is encapsulated in its “multiplication table”, which is more
accurately known as its Cayley table.

At this point, we turned to more abstract matters, using four very simple properties of symmetry groups to
define the notion of a group. A group is a set G with a “multiplication table” such that the following four
properties hold.

m (Closure) For all g and /1 in G, the expression g - 1 is also in G.

m (Identity) There is a special element e in G such that if gisin G, wehavee-g=g-e=g.
m (Inverses) For every g in G, there is an element #in Gsuch thatg-h =h-g=-e.

= (Associative) For all g, h,kin G, we have (g-h) -k =g (h-k).

So, from the seeds of our intuition about symmetry, we have developed the abstract notion of a group. And
now we're in a position to delve a little deeper into the mysterious world of group theory.

When are Two Groups the Same?

Quite a while ago, we noted that the letters H and X have the same symmetry group structure — the identity,
a rotation by 180°, a reflection in a horizontal mirror, and a reflection in a vertical mirror. We also decided
that the letters A and B have the same symmetry group structure, even though they superficially seem to
be different. The crucial point is that, in both cases, there is the identity as well as one reflection, and that
reflection composed with itself gives back the identity. This all sounded like mumbo jumbo back then and it
probably sounds like mumbo jumbo now — but it’s time now to make all this mumbo jumbo mathematically

precise.
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If you don’t actually remember, then that’s fine because here’s the Cayley table once again.

o 1 R1 R, R3 Mh M, MAC MBD

I I Rq Ry R3 M, M, Musc Mpp
Rq Rq Ry Rj3 I Mpp Musc M, My

Rs3 R3 I Ry Ry Myuc Mpp My, M,

My | M, Mac Mo Mpp I Ry Ry Rs3

M, | My Mpp M, Mac R I R3 Ry
Mac | Mac My Mpp My R3 Ry I Ry
Mpp | Mgpp My Mac My Ry R3 Ry I

Now suppose that, due to failing the course, you were forced to take it again next summer.! And suppose
that I was the lecturer once again and decided to write out the Cayley table for the symmetry group of the
square. If I had instead named the elements

i/ r1,12,¥3, My, My, MAC, MBD,

would you think that I had made some sort of mistake? Would you think that this new Cayley table is
different from its capitalised version? No, of course you wouldn’t, and rightly so. And that’s because the
two Cayley tables have essentially the same structure, even though we are using different symbols for each
element of the group. In fact, by this reasoning, I could even have changed the names of the symmetries of
the square to

A,B,C,D,EF,G,H,

and you’d still have to agree that the resulting Cayley table and the resulting symmetry group have essentially
the same structure. It would certainly be silly to treat two groups differently just because you've written their
Cayley tables using different symbols. This idea is most aptly described by Shakespeare himself, in his play
Romeo and Juliet.

What's in a name? That which we call a rose
By any other name would smell as sweet.

Translating this couplet from the world of Shakespearean tragedy to its group theoretic equivalent, we have
the following.

Taking a Cayley table and renaming the elements
Gives a group with the same structure.

So we consider two groups to be the same if the entries in the Cayley table of one can be renamed to give the
Cayley table of the other. If this is the case, then we say that the two groups are isomorphic, which in ancient
Greek means “same structure”. An even more mathematically precise way to express this is as follows. Two
groups G and H are isomorphic if there exists a bijection — that is, a one-to-one dictionary correspondence —
f : G — H such that

f(81-82) = f(g1) - f(g2)-

Hopefully none of you will fail the course, so this story is purely hypothetical.
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Here, the function f is called an isomorphism and simply describes the relabelling of the elements of G into
elements of H. The equation above simply encapsulates the idea that the elements of G should be relabelled
into elements of H in such a way that respects the structure of the two Cayley tables.? If two groups G and H
are isomorphic, then we usually write this using the shorthand notation G = H.

Examples of Isomorphisms

The notion of isomorphism is a very powerful one indeed in mathematics, appearing in all sorts of areas
apart from group theory. The definition is truly very simple, but it will be useful to see some small examples
of isomorphisms.

Example. We've actually already considered an isomorphism between two groups a long time ago, when we
discussed direct and opposite isometries. Back then, we observed that the following two tables seem to have
a very similar structure.

‘ dir opp X ‘ pos  neg
dir | dir opp pos | pos neg
opp | opp dir neg | neg pos

More formally, you can verify that they both correspond to Cayley tables of groups and that the two groups
are isomorphic. In fact, it’s easy to describe the isomorphism between them as

f(dir) = pos and f(opp) = neg.

To verify that this is indeed an isomorphism, all you need to do is check that the following statements are
true, which is quite easy to do.

f(dirodir) = f(dir) x f(dir)
f(diroopp) = f(dir) x f(opp)
floppodir) = f(opp) x f(dir)
floppoopp) = f(opp) X f(opp)

Example. Now consider the group — let’s call it G — whose Cayley table looks like the table below left.

a b c o ‘ I R Ry
alc a b I I Ry Ry
bla b c R] Rl R2 I
clb ¢ a Ry | Ry I R

We know about a group with three elements already — namely, the cyclic group Cs. Recall that this consists of
the rotational symmetries of an equilateral triangle or, if you prefer, the symmetries of a decorated equilateral
triangle. Above right is the Cayley table of C3, where we denote the identity isometry by I, the rotation

2Note that the - on the left hand side of the equation corresponds to composition using the Cayley table of G while the - on the right
hand side corresponds to composition using the Cayley table of H, even though I've used the same symbol for both.
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by 120° about the centre of the equilateral triangle by R; and the rotation by 240° about the centre of the
equilateral triangle by R,. With this notation, an isomorphism f : G — Cs is given by

I was careful to say “an isomorphism” because it’s not a priori clear that there will only be one of them. And,
in fact, there happen to be two possible isomorphisms in this case and the other one is given by

fla)=Ry f(b)=1 f(c)=Ro.

Example. At one stage, we wrote out the Cayley table for the symmetric group Sz, which consists of the
permutations of the numbers 1, 2, 3. Another group with six elements is the group D3, which consists of the
symmetries of an equilateral triangle ABC. The Cayley tables for these two groups are listed below, where I
is the identity isometry, R; is a rotation by 120° about the centre of ABC, R; is a rotation by 120° about the
centre of ABC, M, is a reflection through a mirror passing through A, M is a reflection through a mirror
passing through B, and M is a reflection through a mirror passing through C.

o | 123 132 213 231 312 321 o | T R R My Mz Mc
123 | 123 132 213 231 312 321 I | I R R My, Mg Mc
132 | 132 123 312 321 213 231 Ri | R Ry I Mc My Mg
213 | 213 231 123 132 321 312 Ry | R, I Ry Mz Mc My
231 | 231 213 321 312 123 132 Mg | Ms4 My Mc I Ry Ry
312 | 312 321 132 123 231 213 Mg | Mg Mc M, R, I Ry
321 | 321 312 231 213 132 123 Mc | Mc My Mg Ry Ry I

It turns out that these two groups are isomorphic, but an isomorphism is a little tricky to find. And once
you've found it, there would still be thirty-six things to check to make sure that it’s an isomorphism, at least
if you try to do it the naive way.

We can actually describe the isomorphism quite easily in such a way that it should be reasonably clear that it’s
an isomorphism, without having to check all thirty-six entries of the Cayley table. Simply label the vertices of
the equilateral triangle 1, 2, 3 rather than A, B, C. Then any symmetry of the equilateral triangle permutes the
vertices and hence, corresponds to a permutation of the numbers 1, 2, 3 — in other words, an element of the
group S3. Since composition of symmetries will behave in the same way as composition of permutations, this
is an isomorphism between D3 and S3. If you really want to, you can write out the isomorphism explicitly,
and this is what you'd get.

F(I) =123 f(R) =231 f(Ry) =312 f(My)=132 f(Mg) =321 f(Mc) =213

When are Two Groups Different?

If you know what it means for two groups to be the same, then you must also know what it means for two
groups to be different. To prove that two groups are the same — remember the technical term is isomorphic
— you can just go ahead and find the isomorphism and check that it is indeed an isomorphism. On the
other hand, how do you prove that two groups are different — in other words, that there exists no possible
isomorphism? Well, there are various tricks, but here are two very simple ones.
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Example. Two groups of different sizes cannot be isomorphic. This is simply because if two groups have
different numbers of elements, then there cannot possibly exist a bijection — in other words, a one-to-one
dictionary correspondence — between them. Therefore, we can say things like C3 and C4 are not isomorphic.

Example. Two groups cannot be isomorphic if one is abelian while the other is not. We say that a group
G is abelian if for all g and h in G, it is true that g-h = h - g. So in an abelian group, it doesn’t matter in
which order you compose elements. In terms of the Cayley table, an abelian group is one where the entries
are symmetric when you flip over the main diagonal.® Therefore, we can say things like D4 and Cg are not
isomorphic, even though they have the same number of elements. This is because we know that Dy is not
abelian since the two Cayley table entries Mj, o Mpp and Mpp o My, aren’t equal. On the other hand, you can
see from the Cayley table for Cg — which I've written below — that it’s abelian.

o| I R, R Ry Ry Rs Ry Ry

Il 7 R R, R3 R, Rs Ry Ry
Ri|R; R, Ry Ry Ry Rg Ry I

Actually, it’s useful to know that the cyclic group C, is abelian for all n > 1. This is essentially because
it consists of n rotations all with the same centre, and it doesn’t matter in which order you compose such
rotations. It’s also useful to know that the dihedral group Dj, is not abelian for n > 3, a fact that you can and
should try to prove on your own.

Properties of Cayley Tables

From a group, we obtain a Cayley table and from a Cayley table, we obtain a group. So any property that
applies to all Cayley tables is really a property that applies to all groups. Here are two important facts that
apply to all Cayley tables and which we’ll prove right now.

» Sudoku property : In any row or column of a Cayley table, no element of the group appears twice.
If this were not true, then there might be a row labelled 7 in which there are two equal entries. So let’s
suppose that these two equal entries happen to be in the column labelled c; and the column labelled c5.
Of course, part of this setup is the assumption that the columns c; and c; are distinct. Now the fact that
these two entries are equal implies the equation 7 o ¢c; = r o c;. We'll use the group axioms to deduce a
contradiction from this equation in the following way.

rlo(roc)) = rlo(roc)
(rloryoc; = (rlor)oc
eocp = eocp
= o

3The main diagonal is the one which runs from top left to bottom right.
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To obtain the first line, we’ve used the inverse property to multiply both sides of the equation by the
inverse of r on the left.* To get from the first line to the second, we’ve used the associative property. To
get from the second line to the third, we’ve used the inverse property. And to get from the third line to
the fourth, we’ve used the identity property. So we have proved that c; = cp, which is in clear violation
of the assumption that the columns ¢y and c; are distinct. This contradiction means that it’s not possible
for two entries of the same row to be equal in a Cayley table. And by an analogous argument, we also
know that it’s not possible for two entries of the same column to be equal in a Cayley table.

There are two important consequences of our proof. The first is that if G is a finite group, then every
row and every column of the Cayley table of G must contain every element of G exactly once. The
second is that you can always “cancel group elements from an equation”.

m Symmetric identity property : The entries of the Cayley table in which the identity appears are symmetric when
you flip over the main diagonal.
Another way to say this is that if the identity e appears in row r and column ¢, then it also appears in
row ¢ and column r. So our goal is to show that the equation 7 o ¢ = e implies thatcor =e.

rlo(roc) = rloe
(rtor)oc = ¢t
eoc = 1!
c = rt
cor = rlor
cor = e

To obtain the first line, we’ve used the inverse property to multiply both sides of the equation by the
inverse of r on the left. To get the from the first line to the second, we’ve used the associative property.
To get from the second line to the third, we’ve used the inverse property. To get from the third line to
the fourth, we’ve used the identity property. To get from the fourth line to the fifth, we’ve multiplied
both sides of the equation by r on the right. And to get from the fifth line to the sixth, we’ve used the
inverse property. And this completes the proof of the symmetric identity property.

I've been really meticulous here and broken down these proofs into very basic steps, each one involving at
most one of the group axioms. It’s good for you to see all of the gory details of the proof now since these are
our first real proofs in group theory. However, once you get the hang of working with groups, you can take a
lot of shortcuts and not go into quite so much detail.

Finite Symmetry Groups

A while ago, we managed to define the symmetery group of a subset of the Euclidean plane. We used certain
properties which these symmetry groups obey to broaden our definition of symmetry. The resulting object is
a group, an abstract algebraic object which was constructed to behave a lot like a symmetry group. This just
begs the question. .. which groups arise as symmetry groups of subsets of the Euclidean plane?

One phenomenon which occurs in group theory — the area of mathematics dealing with groups — is the
fact that finite groups have certain qualitative differences to infinite groups. Of course, for infinite groups,

4Tt is very important here to say “on the left” because you would get a different answer if you multiplied both sides of the equation
on the right. And you are definitely not allowed to multiply one side of the equation on the left and the other side of the equation on the
right — you must do the same thing to both sides.
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you'll find it pretty hard to write down the Cayley table, but there are various other fundamental differences
between the two. So let’s start with the following simpler question... which finite groups arise as symmetry
groups of subsets of the Euclidean plane? This question was raised way back in the fifteenth century by
Leonardo da Vinci who was interested in the notion of symmetry in art, particularly in architecture.

We already know that the cyclic group C, and the dihedral group D, are finite groups which arise as the
symmetry group of a subset of the Euclidean plane. In fact, we know it because that’s precisely how they
were defined. The following result states that these are actually the only finite groups which arise as the
symmetry group of a subset of the Euclidean plane.

Theorem (Leonardo’s Theorem). If a subset of the Euclidean plane has finitely many symmetries, then its symmetry
group must be the cyclic group Cy, or the dihedral group Dy, for some positive integer n.

At this point, we should point out that our previous definition of cyclic and dihedral groups only really
worked for n > 3. However, it’s easy enough to define the cyclic and dihedral groups for n = 1 and n = 2 by
writing down their Cayley tables. The Cayley tables of C; and C; are as follows. Note that C; is the symmetry
group for the letter R while C; is the symmetry group for the letter N.

oI o1 R
1|1 1|1 R
R I

The Cayley tables of D1 and D, are as follows. Note that D; is the symmetry group for the letter M while D,
is the symmetry group for the letter O.

o| 1 M o | I R M, M,
1|1 M I | I R M M
M| M I Ri | Ry I My, M

M |M, My I Ry
My | My M, Ry I

You can hopefully see from the Cayley tables for C, and D; that they’re isomorphic. However, the groups
Cy,, and D, — despite having the same number of elements — are certainly not isomorphic for any n > 2.
For n = 2, you can prove this by nothing that every element of D, composed with itself gives the identity, a
fact which doesn’t hold for C4. For n > 3, you can prove this using our earlier observation that Cy,, is abelian
while D, is not.

Dihedral and Cyclic Symmetry

Since Leonardo’s theorem claims that every subset of the Euclidean plane has either cyclic or dihedral
symmetry, we should be able to find lots of examples of each and recognise the difference between the two
types. Just keep in mind that the main difference between dihedral and cyclic symmetry is that the former
includes reflective and rotational symmetries while the latter only includes rotational symmetries.
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Example. As examples of dihedral symmetry, we have an apple, the logo for Mercedes-Benz and The
Pentagon.”

Example. As examples of cyclic symmetry, we have the blades of a windmill, the Isle of Man flag, the

periwinkle flower, the Penrose triangle and the logo for Sun Microsystems.®

Example (Examples of ambigrams). An ambigram is a design or artform that may be read as one or more
words not only in its form as presented, but also from another viewpoint, direction or orientation. The
following shows some interesting examples of ambigrams — you should easily be able to determine which
ones have dihedral symmetry and which ones have cyclic symmetry.

Gobigay Yoraddl”
AT

5 As with any real object, the symmetry is not quite exact — no apple is going to be perfectly circular and have five equally spaced
seeds and The Pentagon doesn’t have exactly the same rooms and furniture on all five sides. Also, if you look carefully, you'll see that
the drawn logo for Mercedes-Benz does not really have dihedral symmetry — it’s the three-dimensional object which the drawing
represents which has dihedral symmetry.

The Penrose triangle is an “impossible object” named after the well-known mathematical physicist Sir Roger Penrose. The logo for
Sun Microsystems is one of my favourites.
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Ambigrams have been recently popularised through Dan Brown’s book Angels and Demons. They also
appear on the front cover of the twentieth anniversary collector’s edition of The Princess Bride.”

DS

A .
ﬂoum: S:HOLDAT10D AUVSHAAINNY 4102 !

Facts about Finite Symmetry Groups

So how does one go about proving Leonardo’s theorem? Well, you need a couple of useful little lemmas
under your belt before you can start. In the following, when we say finite symmetry group, we are referring
to the symmetry group of a subset of the Euclidean plane.

Lemma. A finite symmetry group cannot contain a translation or a glide reflection.

Proof. Of course, when we say translation here, we mean a translation which is not the identity. And when
we say glide reflection, we mean a glide reflection which is not itself a reflection. That’s because we already
know that every group of isometries necessarily contains the identity and we’ve already seen examples of
symmetry groups which contain reflections.

If a symmetry group contains the translation T, then the group must also containTo T, ToToT,ToToToT,
and so on. These isometries cannot possibly be the same, because they are translations by different distances.
Since these infinitely many isometries can’t possibly fit into a finite group, a finite symmetry group cannot
contain a translation.

If a symmetry group contains the glide reflection G, then the group must also contain the translation
T = G o G. However, we've already deduced that translations cannot occur in a finite symmetry group, so
nor can glide reflections. O

Lemma. In any finite symmetry group, either every isometry is direct or there is an equal number of direct and opposite
isometries.

Proof. Let’s call the direct isometries Ry, Ry, ..., Ry,. If there is at least one opposite isometry, then let’s call
the opposite isometries M1, My, ..., M;. So our finite symmetry group has m direct isometries and n opposite
isometries, and our goal is to prove that m = n.

"T've never read anything by Dan Brown, so I can’t comment on this book, but I can say that The Princess Bride is an excellent film, at
least in my opinion.
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Suppose that M is any one of the opposite isometries. Then M o R;, Mo Ry,..., Mo Ry, are all opposite
isometries since they are compositions of direct and opposite isometries. Furthermore, they must all be distinct
by the sudoku property of groups. Therefore, {M o Ry, Mo Ry,...,Mo R} is a subset of {M1, My, ..., My}
and this implies that m < n.

Again suppose that M is any one of the opposite isometries. Then M o M, Mo My, ..., M o M,, are all
direct isometries since they are compositions of two opposite isometries. Furthermore, they must all be
distinct because by the sudoku property of groups. Therefore, {M o My, Mo My, ..., Mo M,} is a subset of
{R1, Ry, ..., Ry} and this implies that n < m.

The two inequalities m < n and n < m obviously lead to m = n, and we’re done. O
Problems
Problem. Show that any group with three elements must be isomorphic to Cs.

Proof. Let’s call the elements of the group e, a, b, where e is the identity element. Given that e is the identity,
we can fill in most of the Cayley table, as shown below left. In fact, if we use the sudoku property, there is
only one way in which we can complete the table, as shown below right.

e a b ~le a b
ele a b ele a b
a * ala b e
b * = b|b e a
We can see that this group is isomorphic to C3 via the isomorphism
flo=1 fla)=R  f(b) =Ry
where [ is the identity isometry, R; is rotation by 120° and R; is rotation by 240°. O

Problem. The following is a groupoku puzzle — a Cayley table for the group G, where some of the entries are missing.
Use the properties which you know about Cayley tables to fill in all of the missing entries. Give full reasoning only for
the first entry of the table that you manage to fill in.

~‘abcdef
edf***
dfe***

A s MR~ T o S RN
¥ S
X
*
E'3
¥

o

[

Sy
*
*

In the lectures, we have seen two groups with six elements — the cyclic group Cg and the dihedral group D3. Prove that
G is isomorphic to one of these groups by writing down an explicit isomorphism. Prove that the cyclic group Cg and the
dihedral group D3 are not isomorphic to each other.

10
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Proof.

The first thing to notice from the Cayley table is that a . ‘ a

cannot be the identity since a - a # a. Similarly, b, ¢, d
and f cannot be the identity sinceb-a #a,c- f # f,
d-a#aand f-a # a. But every group has to have

* R

¥ Y | =

* 0
*

fayl

an identity so in this case, it must be e. This allows
us to fill in all of the entries of the Cayley table in the

*

row and column labelled by e.

b N R S NN
a 8 <
S %
o %
*

U 1 T ~ PR o SRS Y
*

Now we use the sudoku property to fill out the rest . ‘

x

(3N
~

of the table. As an example, consider the c - b entry.
Since it’s in the same row as entries equal to b and
c and in the same column as entries equal to 4, b, d
and f, the only possibility left is that c - b = e. Using
this strategy, we can fill in all of the missing entries to

QST 0 8 Y |

A QN S QLo
(Sl S T S A
[S YRS T S T~ i IR~
QU 0 = Q 0

give the complete table.

A SO s R S TR o W & Y
A SO S R S TR o S & Y

The group G is isomorphic to Cg, which is the symmetry group formed by the rotational isometries of a
regular hexagon. If we write the elements of Cq as follows, then its Cayley table will look like the one below.

m | : the identity isometry . I Ry Ry R3y Ry Rs
= R; : rotation by 60° counterclockwise I I R, Ry, Ry Ry Rs
m Rj : rotation by 120° counterclockwise Ri | Rt Ry R3 Ry Rs I

Ry |R,, Ry Ry Ry I Ry

R3 | R3 R4 Rs I R R
m Ry : rotation by 240° counterclockwise Ry |Ry; Rs I Ry Ry Ry

m R3: rotation by 180° counterclockwise

m R5 : rotation by 300° counterclockwise Rs |Rs I Ry Ry Rz R4

An explicit isomorphism F : G — Cg is given by the equations

This is certainly not the only isomorphism possible. To find one, you can use the fact that the identity in G
must map to the identity in D,. After this, the problem can be finished with a little trial and error.

Note that Cg is an abelian group and, in fact, so are all cyclic groups. On the other hand, Dj is not abelian, so
Cg cannot be isomorphic to Ds. O

Problem. Prove that a group G can only have one identity. In other words, prove that there is only one e € G such
thateog =goe=gforallg € G.

Proof. This proof is so short that it can be hard to find. The idea is to argue by contradiction — so suppose
that there is a group with two elements which could be the identity and call them ¢ and f. What we’ll do
now is show that they must actually be the same element. Since e is an identity, it follows thate o f = f and
since f is an identity, it follows that e o f = e. And there’s the proof, since this means thate = f. O

11
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Cayley

Arthur Cayley, between his birth in 1821 and his
death in 1895, was a British mathematician who also
worked as a lawyer. As a child, Cayley enjoyed
solving math problems for amusement and when he
entered Trinity College, Cambridge, he excelled in
Greek, French, German, and Italian, as well as mathe-

matics.

Cayley only became a lawyer because he had a pretty
limited fellowship, but this didn’t seem to slow his
mathematics down. Another well-known British
mathematician by the name of James Joseph Sylvester,
was in a similar position to Cayley and became an
actuary in London. The two would walk together
around the courts, discussing mathematics. It was
during this fourteen-year span of his life that Cayley
produced over two hundred mathematical papers. At
the age of 42, Cayley was offered a prestigious pro-
fessorship at Cambridge. He never regretted giving
up his lucrative practice for a modest salary because
it enabled him to end the divided allegiance between
law and mathematics, and to devote his energies to
the pursuit which he liked best.

If you've studied some linear algebra, then you may
already have come across a result of Cayley’s known
as the Cayley-Hamilton theorem. He was very inter-

12

ested in symmetries, which is why the multiplication

tables for groups are usually known as Cayley tables.




