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Abstract: We report results from a human-subjects experiment that examines the effect on learning 

of the mechanism used to match individuals to opponents in two-player games. Several games are 

played repeatedly under either a fixed-pairs or a random matching treatment. Unlike most 

economics experiments, the games are played under limited information: subjects are never shown 

a payoff matrix nor given information about opponent payoffs. We find that behavior in the 

treatments, while similar in early rounds, diverges over time. Depending on the game, the matching 

mechanism can affect which of multiple equilibria is likely to be reached, the speed of 

convergence, or other aspects of outcomes. Usually, fixed-pairs matching is associated with more 

likely coordination on a pure-strategy Nash equilibrium, more likely play of a higher-payoff Nash 

equilibrium, and faster convergence toward pure-strategy play. The differences we find are 

consistent with those implied by learning model simulations, and a follow-up experiment with a 

new game confirms our main findings.
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1. Introduction 

Colin Camerer (2003), summarizing the state of experimental game theory research in his 

behavioral game theory text, said, “[t]here are no interesting games in which subjects reach a 

predicted equilibrium immediately. And there are no games so complicated that subjects do not 

converge in the direction of equilibrium (perhaps quite close to it) with enough experience” (p. 20). 

The implication of this passage is that, while game-theoretic concepts like Nash equilibrium can be 

useful for characterizing how individuals behave after acquiring sufficient experience, a true 

behavioral game theory must incorporate a description of how individuals learn.1 Though the 

beginnings of a learning theory are well established (Camerer & Ho, 1999; Fudenberg & Levine, 

1998; Roth & Erev, 1995), we are far from a consensus regarding the exact nature of learning in 

games. In order for progress toward some kind of consensus to continue, more detailed study must 

be made of factors that can influence how decision makers learn. 

The objective of this paper is to take a small step in this direction. We concentrate on the 

effects of one particular experimental design manipulation—the protocol used to match players to 

opponents—on the manner in which behavior changes over time. Many economics experiments 

comprise more rounds than there are potential opponents. For such experiments, there are two 

commonly-used matching mechanisms: fixed pairs, with players matched repeatedly to the same 

opponent, and random matching, with players randomly rematched after every round. We design 

and run an experiment in which human subjects repeatedly play each of six two-player games 

under one of these two matching mechanisms. In order to focus on learning, rather than other 

phenomena that might be sensitive to the matching protocol, as well as to minimize effects arising 

from other-regarding preferences, we give subjects only limited information about the games—in 

contrast to nearly all previous studies of matching mechanisms, which have focused on behavior 

under complete information (see Section 2.1). In our design, subjects are told they are playing a 

game, but are not given any information about payoffs before playing, and while they can learn 

about their own payoffs via end-of-round feedback, they never receive information about opponent 

payoffs.  

Our results suggest that the matching mechanism can indeed have a sizable effect on 

observed outcomes in general, and learning in particular. Levels of cooperation are frequently 

higher under fixed pairs than under random matching. Also, convergence to an equilibrium is 

usually faster under fixed pairs, though in one game, the opposite is true. The matching mechanism 

also can have an effect on the likelihood of behavior converging to one equilibrium versus another: 

in one game, fixed-pairs matching actually increases the chance of players getting “stuck” on a 

                                                 
1 Throughout this paper, we use the term “learning” to encompass any systematic change in behavior over time. This 
includes changes in play due to improved understanding of the structure of the game, as well as behavioral responses to 
changes in beliefs about how others play. 
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low-payoff equilibrium, while in the others, fixed pairs makes the high-payoff equilibrium more 

likely. The differences we find between fixed pairs and random matching are similar to those 

predicted by a modified version of Erev and Barron’s (2005) RELACS learning model, the original 

of which has been shown previously to do a good job of characterizing behavior in repeated 

individual decision-making tasks under limited information. A follow-up experiment, in which we 

preserve the main features of our design but use a new game and change some of the experimental 

procedures, largely replicates the results of the original experiment, also consistently with the 

modified RELACS model. 

 

2. The experiment 

Figure 1 shows the games used in the original experiment. (The follow-up experiment is 

described in Section 5.) 

 

While each game is symmetric and 2x2, they differ in some important ways. Prisoners’ Dilemma 

has a strictly dominant strategy, D, and thus a unique Nash equilibrium. The other five games have 

multiple Nash equilibria and no dominant strategies. In Battle of the Sexes, the strategies are 

strategic substitutes (a player’s strategy becomes less attractive, the more likely the opposing 

player is to choose it), so that the two pure-strategy Nash equilibria are asymmetric; in the other 

four games with multiple equilibria, the strategies are strategic complements (a strategy becomes 

more attractive as the likelihood of the opponent playing it increases), so that their pure-strategy 

Nash equilibria are symmetric. For ease of exposition, we have ordered the two strategies in each 

game in such a way that the first strategy is “nice” in the sense that it tends to be associated with 

higher payoffs for the other player than the second strategy; similarly, we have labeled the actions 
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C (for “cooperate”) and D (for “defect”), though these terms are more literally meaningful in some 

games (such as Prisoners’ Dilemma) than in others. 

Because each game has only two actions, a player’s strategy can be characterized by the 

associated probability of choosing C. Thus, any strategy pair (one strategy for each player) can be 

written in the form (Prob(Row player chooses C), Prob(Column player chooses C)). The standard 

game-theoretic prediction for these games is Nash equilibrium: a strategy pair in which both 

players’ simultaneously maximize their own payoff, given the other player’s strategy. Table 1 

shows the games’ Nash equilibria, along with the associated probabilities of C choices and action 

changes from one round to the next; these probabilities will serve as useful benchmarks for our 

results, even though we are not explicitly testing the equilibrium predictions in this paper. (Note 

that uniform random play—the (0.5, 0.5) strategy pair—is not a Nash equilibrium of any of these 

games.) 

 

Table 1: Characteristics of Nash equilibrium play  

Game 
Strategy 

pair 

Prob(C 

choice) 

Prob(action 

change) 
Game 

Strategy 

pair 

Prob(C 

choice) 

Prob(action 

change) 

 

CG 

 

(1, 1) 

(0, 0) 

(1/3, 1/3) 

1.000 

0.000 

0.333 

0.000 

0.000 

0.444 

PD (0, 0) 0.000 0.000 

 

BoS 

 

(1,0) 

(0,1) 

(3/8, 3/8) 

0.500 

0.500 

0.375 

0.000 

0.000 

0.469 

SHH, 

SHM, 

SHL 

(1, 1) 

(0, 0) 

(2/3, 2/3) 

1.000 

0.000 

0.667 

0.000 

0.000 

0.444 

 

 

Versions of these games have been used in many experiments. We do not attempt a review of 

all relevant literature here; much can be found in the sections on coordination games and social 

dilemmas in Camerer (2003) and Kagel and Roth (1995).  

 

2.1 Experimental design and related literature 

As already mentioned, our primary design variable is the matching treatment. In the fixed-

pairs (F) treatment, subjects played all rounds of a game against the same opponent, though 

opponents did change from game to game. In the random-matching (R) treatment, subjects were 

randomly assigned to opponents in each round, with every potential opponent (including the 

previous-round opponent) equally likely. Since the number of rounds of each game was more than 

the number of potential opponents in an experimental session, subjects in the R treatment faced the 

same opponent more than once in the same game; however, as no identifying information about 
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opponents was given to subjects, they would never have been able to tell whether—and in which 

round—they had previously been matched to their current opponent.  

In contrast to many experiments, we use a limited-information design, under which there is 

no display of the game’s payoffs to subjects—either publicly or privately. Instead, subjects receive 

some payoff information as part of their end-of-round feedback; specifically, they are informed 

after each round of their opponent’s choice and their own payoff in the just-completed round. 

While this is enough information to allow subjects to piece together the relationship between 

outcomes and their own payoffs within a few rounds, it differs from the usual complete-

information treatment in two notable ways. First, subjects never receive information about their 

opponents’ payoffs; we believe it is reasonable to expect that the lack of this particular information 

should serve to undermine any effects on behavior of other-regarding preferences, even in games 

such as PD where one might normally expect such preferences to be present. Second, it is 

exceedingly unlikely that the structure of the game was common knowledge amongst the subjects. 

There has been some previous work examining the effects of matching mechanisms. Much of 

this work has involved social dilemmas such as Prisoners’ Dilemma and public-good games, 

played under complete information. These experiments typically did not look for effects on 

learning, but rather for effects on cooperative behavior; under complete information, one might 

expect to see more cooperation under fixed pairs—where incentives for reputation building are 

stronger—than under random matching, and that this effect would be stronger in early rounds than 

later ones (as the value of a reputation should decline as the number of remaining rounds of play 

becomes small). However, Andreoni and Croson (2008), summarizing the early literature on 

comparisons of fixed pairs versus random matching in public-good games, found no consistent 

relationship between the two: in some experiments, contributions were higher under fixed pairs, 

while in others, they were higher under random matching. Studies of the Prisoners’ Dilemma, on 

the other hand, have typically found higher levels of cooperation under fixed pairs (Ahn et al., 

2001; Duffy & Ochs, 2008), and similar results have been found in other environments that have 

features of social dilemmas (Abbink, 2004; Charness & Garoupa, 2001; Huck et al., 2001). Mixed 

results were also found in coordination games whose pure-strategy Nash equilibria can be Pareto-

ranked; Van Huyck et al. (1990) and Clark and Sefton (2001) found higher efficiency under fixed 

pairs than random matching, while Schmidt et al. (2003) found no difference in aggregate play 

between these mechanisms. 

We stress that in all of the studies mentioned above, subjects were given complete 

information about the games’ payoffs. It is thus difficult to disentangle differences in learning 

between treatments from differences in attempts at reputation building, or in the prevalence of 

early-round signaling. There have been far fewer experiments looking at different matching 
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mechanisms under limited information. One such experiment was that of Chen (2003), who 

compared two pricing mechanisms for allocating shared resources within an organization. Subjects 

made decisions under one of these mechanisms, under either fixed pairs or random matching, and 

under either synchronous or asynchronous decisions. Subjects were given only “extremely limited” 

information; they were not informed of the structure of the game before it began, and at the end of 

each round, they were told their own action and own payoff, but received no feedback at all about 

opponent actions or payoffs. (There was also one treatment with complete information.) Chen’s 

goal was to compare the pricing mechanisms, not the matching treatments, but examination of her 

results suggests that there were no substantial or significant differences between the matching 

mechanisms. 

 

2.2 Experimental procedures 

Subjects in our experiment played all six games under either fixed pairs or random matching. 

We used a two-population design, with half of the subjects in each session designated “row 

players” and half “column players”. Subjects of one type were only matched to subjects of the 

other type. The ordering of the games was always CG-SH-BOS-SH-PD-SH, but we varied the 

order in which the three Stag Hunt games were played, in an attempt to control for any sensitivity 

of behavior to the order in which the games are played. The orderings we used were SHH-SHM-

SHL, SHM-SHL-SHH, and SHL-SHH-SHM. We also varied the order in which the actions 

appeared: C-D (cooperative action on top or left) and D-C (cooperative action on bottom or right). 

Our manipulations of game ordering, action ordering, and matching mechanism were between-

subjects, while our manipulation of the game was within-subject. 

Experimental sessions took place at the Kyoto Experimental Economics Laboratory (KEEL) 

at Kyoto Sangyo University. Subjects were primarily undergraduate students, recruited via a 

database of participants in other experiments and via advertisements posted on campus. No subject 

participated in more than one session. At the beginning of a session, each subject was seated at a 

computer and given a set of written instructions (an English translation, and the raw data from the 

experiment, are available from the corresponding author upon request). After a few minutes, the 

written instructions were read aloud by the monitor in an effort to make the rules common 

knowledge. All subjects were seated in the same room, but partitions prevented them from seeing 

others’ computer screens, and subjects were asked not to communicate with each other during the 

session.  The experiment was programmed in the Japanese version of the z-Tree experimental 

software package (Fischbacher, 2007), and all interaction took place via the computer network. 

Subjects were asked not to write down any results or other information. 
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At the beginning of an experimental session, subjects were told their type (row or column 

player), and how many rounds of each game they would be playing. Prior to the first round of each 

game, they were reminded that they were beginning a new game. In every round, subjects were 

prompted to choose one of the two possible actions, which were given generic names (R1 and R2 

for row players, C1 and C2 for column players). After all subjects had made their choices, each 

was told her own action choice, her opponent’s action choice, and her own payoff. In the R 

treatment, subjects were matched to a new opponent after each round, whereas in the F treatment, 

subjects were matched to a new opponent when the 40 rounds of one game ended and they began a 

new game; in both treatments, subjects were informed of the matching mechanism in both oral and 

written instructions. 

At the end of an experimental session, one round of one game was randomly chosen, and 

each subject was paid 200 yen (at the time of the experiment, equivalent to roughly $1.90) for each 

point earned in that round. In addition, subjects were paid a showup fee of 3000 yen, from which 

negative payoffs were subtracted, if necessary.  

 

3. Experimental results 

A total of 13 sessions were conducted: 6 of the R treatment and 7 of the F treatment. The 

number of subjects varied from 6 to 28 in the F sessions, and from 10 to 26 in the R sessions. 

 

3.1 Aggregate behavior 

We begin by providing summary statistics of subject behavior in our experiment. Table 2 

reports the frequencies of C choices and action changes from the previous round. The first of these 

variables will be used as a measure of how “good” outcomes are in a particular game, treatment, 

and round, while the second will be used as a measure of the extent to which individual-subject 

behavior has converged to pure-strategy play. Since we are primarily interested in how play 

changes over time, we disaggregate the data by blocks of rounds. For each game, one row of the 

table shows the data from rounds 1-5 of each game, as a proxy for initial behavior. A second row 

shows the corresponding data from rounds 36-40 of each game, which we use as a proxy for 

endgame behavior, and a third row shows the corresponding data over all rounds. In addition to the 

levels of these statistics, the table shows the results of robust rank-order tests of significance of 

differences between the F and R treatments for each game, criterion, and time period, using 

session-level data (see Siegel and Castellan, 1988, for descriptions of the nonparametric tests used 

in this paper). 

In both treatments, frequencies of C choices begin at levels comparable to those implied by 

uniform random play, as one would expect since subjects initially have no information about 
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payoffs. Indeed, for rounds 1-5, nonparametric Wilcoxon signed-ranks tests find significant 

differences from uniform random play (two-tailed test, p-values of 0.05 or lower) in only two of 

the six games in the F treatment and none in the R treatment, and we find no significant differences 

between the treatments. In later rounds, on the other hand, we find many differences, and when 

significant, they always point in the same direction: more C choices, and fewer action changes, in 

the F treatment than in the R treatment. These differences are usually consistent with better 

outcomes, and quicker convergence, under fixed-pairs matching; the lone exception is Prisoners’ 

Dilemma, where higher levels of C choices are associated with slower convergence to the unique 

Nash equilibrium (D,D). 

 

Table 2: Observed frequencies from experiment 

Game Rounds C choices Action changes 

F R F R 

 

CG 

 

1-5 

36-40 

All 

0.533 

0.789 

0.684 

0.530 

0.891 

0.750 

0.463 

0.183 

0.261 

0.467 

0.156 

0.269 

 

BoS 

 

1-5 

36-40 

All 

0.454 

0.494** 

0.466*** 

0.463 

0.441 

0.431 

0.417 

0.105 

0.171*** 

0.469 

0.161 

0.268 

 

PD 

 

1-5 

36-40 

All 

0.454 

0.206* 

0.290** 

0.424 

0.041 

0.126 

0.273 

0.057 

0.122 

0.322 

0.037 

0.123 

 

SHH 

 

1-5 

36-40 

All 

0.454 

0.392*** 

0.404*** 

0.478 

0.085 

0.203 

0.295 

0.060 

0.108 

0.274 

0.091 

0.147 

 

SHM 

 

1-5 

36-40 

All 

0.421 

0.457** 

0.446** 

0.483 

0.033 

0.125 

0.344 

0.030 

0.093* 

0.406 

0.041 

0.117 

 

SHL 

 

1-5 

36-40 

All 

0.519 

0.784 

0.746 

0.511 

0.461 

0.499 

0.537 

0.051 

0.150** 

0.515 

0.096 

0.233 

* (**,***): For given game, criterion, and rounds, the value of this statistic is significantly different from 

the corresponding R treatment statistic at the 10% (5%, 1%) level (two-tailed robust rank-order test, 

session-level data, pooled action and game orderings). 

 

3.2 Behavior dynamics 

In Figures 2 and 3, we take a closer look at how behavior changes over time. Figure 2 shows 

the relative frequency of each of the three types of outcome (both players choose C, both choose D, 
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or exactly one chooses C) in each five-round block of each game, under each treatment. 

 

Arrows indicate the direction of motion of the time paths. As the figure shows, the dynamics of 

aggregate outcome frequencies vary substantially across games and between F and R treatments. In 

all games and both treatments, these frequencies begin near the point (1/4, 1/4) implied by uniform 

random play, then move in the direction of one of the pure-strategy pairs. In CG, both time paths 

move in the general direction of the Pareto efficient (C,C) Nash equilibrium, but the path for the R 

treatment ultimately gets closer, suggesting that some pairs in the F treatment become “stuck” at 
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the Pareto inefficient (D,D) equilibrium.2 In BoS, convergence toward the Nash equilibrium (C,D) 

and (D,C) pairs is faster and more uniform in the F treatment, while in PD, convergence toward the 

Pareto dominated Nash equilibrium (D,D) is faster in the R treatment. 

 

In the three Stag Hunt games, qualitative differences between the two matching mechanisms 

are more pronounced. In SHH and SHM, time paths under random matching converge almost 

completely to the Pareto inefficient (D,D) outcome, while under fixed pairs, play converges 
                                                 
2 Of the 126 pairs of subjects in the F treatment, ten pairs play the (D,D) pair in each of the last 5 rounds, while two 
others do so in 4 of those rounds, suggesting that among a small but non-negligible number of pairs, behavior has 
converged to the (D,D) outcome. 
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roughly to equal frequencies of the (D,D) and the Pareto efficient (C,C) outcomes; in both 

treatments, miscoordination on the (C,D) and (D,C) pairs has nearly died out by the end of the 

game. In SHL, the time path for the F treatment moves in the direction of (C,C), but a few pairs get 

stuck at (D,D) instead. The path for the R treatment shows some tendency toward roughly equal 

frequencies of (D,D) and (C,C) outcomes (that is, some sessions get stuck at the inefficient (D,D) 

outcome), but the frequency of miscoordination stays comparatively high. 

Figure 3 shows the relative frequency of action changes in each round. Consistent with Table 

2, subjects in all games and both treatments change actions with a frequency that is initially 

relatively high, but decreases throughout the game as subjects learn about the payoff structure and 

how others play. In some games, there is little apparent difference between treatments, but when a 

difference is seen (for example, in BoS, SHH, and SHL), we see fewer strategy changes in the F 

treatment than in the R treatment, suggesting that in the former, subjects are quicker to settle upon 

one of the action choices. 

By and large, therefore, these figures confirm that the manner in which behavior changes 

over time is often sensitive to the matching mechanism. Individual subjects’ decisions converge 

toward pure-strategy play, as evidenced by the steadily decreasing frequency of action changes. In 

some games, the rate of decline is similar in both treatments, while in others, it is faster in the F 

treatment. In five of the six games, play either converges to a better aggregate outcome (the three 

Stag Hunt games), converges more quickly to a good outcome (Battle of the Sexes), or converges 

more slowly to a bad outcome (Prisoners’ Dilemma) under fixed pairs than under random 

matching. In the remaining game (Coordination Game), average behavior tends toward a somewhat 

worse outcome under fixed pairs, as a nontrivial fraction of pairs get stuck at the lower-payoff 

equilibrium, as compared to random matching, where all sessions converge to near-complete play 

of the higher-payoff equilibrium. 

 

3.3 Parametric statistics 

In this section, we report the results and implications of several regressions. This gives us the 

opportunity not only to assess the significance of the suggestive results seen in the previous 

sections, but also to increase the power of our hypothesis tests by using the entire data set for each 

game rather than limiting ourselves to data from individual treatments of each game.  

We run two sets of probits with individual-subject random effects. In the first, the dependent 

variable is an indicator for a C action choice, while in the second, the dependent variable is an 

indicator for a change in action choice from the previous round. In order to determine the effect of 

the matching mechanism, we use as our primary explanatory variables an indicator for the F 

treatment and its product with the round number (so that the baseline is the R treatment). As 
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controls, we include a variable for the round number itself and indicators for two of the three game 

orderings (M-L-H and L-H-M) and one of the two action orderings (D-C). We estimate coefficients 

separately for each regression, using Stata (v. 10). 

 

Table 3: Probit coefficients, standard errors, and p-values for significance of coefficients 

 CG SHH 

Variable(s) C choices Action changes C choices Action changes 

F indicator 0.080 

(0.114) 

−0.203** 

(0.098) 

−0.129 

(0.214) 

−0.089 

(0.118) 

F*round −0.013*** 

(0.003) 

0.008*** 

(0.003) 

0.047*** 

(0.004) 

−0.016*** 

(0.004) 

Joint signif. p<0.001 p≈0.019 p<0.001 p<0.001 

 BoS SHM 

F indicator −0.071 

(0.195) 

−0.235*** 

(0.112) 

−0.046 

(0.197) 

−0.242** 

(0.106) 

F*round 0.006** 

(0.003) 

−0.016*** 

(0.003) 

0.084*** 

(0.004) 

0.002 

(0.005) 

Joint signif. p≈0.082 p<0.001 p<0.001 p≈0.039 

 PD SHL 

F indicator 0.323* 

(0.177) 

−0.299*** 

(0.110) 

0.388*** 

(0.149) 

−0.008 

(0.097) 

F*round 0.023*** 

(0.004) 

0.016*** 

(0.004) 

0.033*** 

(0.003) 

−0.023*** 

(0.004) 

Joint signif. p<0.001 p<0.001 p<0.001 p<0.001 

* (**,***): Coefficient is significantly different from zero at the 10% (5%, 1%) level. 

 

For brevity, we do not report all coefficient estimates here (the full results are available from 

the corresponding author upon request). Rather, we concentrate on the two F-treatment variables—

their coefficient estimates, standard errors, and significance—as well as p-values associated with 

tests of their joint significance. Table 3 shows these results, and provides strong evidence that the 

matching mechanism has an effect on learning. In all eighteen of the probits, at least one of the F-

treatment variables is significant at the 5% level or better. Also, the two variables are always 

jointly significant at the 10% level, and most pairs are significant even at the 1% level.  

We next concentrate specifically on the incremental effect of switching from the R to the F 

treatment: the sum of the shift effect (based on the variable F treatment ) and the time-dependent 

effect (based on the expression F*round t  ), where x is the coefficient of the variable x and t is the 

round number.  
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Figure 4 shows these estimated incremental effects on C choices and action changes. The 

figure shows point estimates (as closed circles or boxes) and 95% confidence intervals (as line 

segments) for these effects, as well as the horizontal segment corresponding to a zero effect. The 

figure shows that the effect of the F treatment versus the R treatment on C choices varies across 

games. In CG, it decreases over time, becoming negative and significant by the second half of the 

session (reflecting the pairs that get stuck at the (D,D) outcome). In BoS, the effect is never 

significant, though it is usually positive. In PD and the three Stag Hunt games, the effect becomes 

positive and significant early on, and remains so throughout. The size of the effect peaks in the 

middle of the session in PD and near the end of the session in SHH, but continues growing over 

time in the other two Stag Hunt games. By the last round of SHM and SHL, this incremental effect 

is almost one-half, which is quite substantial for a variable bounded by 0 and 1. 

The effect of the F treatment versus the R treatment on the frequency of action changes is 

reasonably consistent across games. It is nearly always negative (that is, fewer action changes in 

the F treatment than in the R treatment)—and usually significantly so—in early rounds, with the 

magnitude of the effect declining over time, as subjects in both F and R treatments tend toward 

pure-strategy play. 

To summarize, these results replicate the patterns discussed in Section 3.2. Typically, 

outcomes are better, and learning is faster, in the F treatment than in the R treatment. Differences 

between the treatments are small in early rounds (before subjects have gotten feedback about the 
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games’ payoffs), but become more pronounced over time. In some cases, these differences grow 

over the course of a game; in others, they shrink in later rounds, as behavior in the R treatment 

“catches up” to that in the F treatment. 

 

4. Learning model analysis 

In this section, we present simulation results based on a model of individual learning, in an 

attempt to explain the differences we have seen between fixed pairs and random matching. Since 

our experiment involved limited information, the model we use is adapted from Erev and Barron’s 

(2005) RELACS (reinforcement learning among cognitive strategies) model. The RELACS model 

has been found to perform well in characterizing behavior in a variety of individual decision tasks 

under limited information (Erev et al., 2008; Grosskopf et al., 2002; Munichor et al., 2006). Our 

aims here are more modest; we wish merely to show that there exists a learning model with 

implications qualitatively similar to our experimental results. 

 

4.1 Description of the model 

According to the RELACS model, a player chooses an action in a given round according to a 

two-step process (see Erev and Barron, 2005, pp. 919-922, for a fuller description). In the first step, 

the player chooses one of several available decision rules (“cognitive strategies”), and in the 

second step, follows the chosen decision rule to determine the action that will be played. After the 

game is played, the feedback received by the player is used to update the likelihood of choosing 

each cognitive strategy, as well as the action choices themselves.  

We use the same three cognitive strategies used by Erev and Barron, and add one additional 

one to yield our modified RELACS model. According to the fast best reply rule, a player chooses 

the action with the higher “recent payoff” (approximately a weighted average of past payoffs). For 

an action j = C, D, the recent payoff Rj(t) is initially the expected payoff from uniform random 

choice by both players (e.g., 5 in PD), and is updated (in rounds it is chosen) according to 

( 1)  (1 ) ( )  ( ),j jR t R t v t     where v(t) is the payoff obtained from action j in round t, 

and (0,1)  is a “recency” parameter that captures how recent payoffs are weighted relative to 

earlier ones. If both actions have the same recent payoff, the player chooses randomly between 

them. 

According to the slow best reply rule, a player chooses an action according to a probability 

distribution. The probability of choosing action j in round t is given by 

 
   
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where Wj(t) is a weighted average of past payoffs, S(t) is a measure of payoff variability, and λ≥0 is 

an index of sensitivity to payoff differences. Wj(t) is similar in nature to the recent payoff measure 

Rj(t); W1(t) is the expected payoff from uniform random choice by both players, and Wj(t) is 

updated in rounds when j is chosen according to the rule ( 1) (1 ) ( ) ( )j jW t W t v t     , 

where (0, )  is another recency parameter. The payoff variability measure S(t) also adjusts over 

time; S(1) is the expected absolute difference of payoffs from the payoff implied by random choice 

(e.g., (|7-5|+|1-5|+|8-5|+|4-5|)/4 = 2.5 in PD), and  

( 1) (1 ) ( ) | ( ) Max{ , } |,C DS t S t v t Last Last      

where LastC and LastD are the most recent payoffs from the two actions. 

According to the case-based reasoning with loss aversion rule, a player samples from her 

past results, and chooses the action that (based on the sample chosen) resulted in higher payoffs, 

subject to not incurring more and deeper losses. Specifically, a two-stage process is involved. In 

the first stage, one previous result is randomly drawn for each action. If the actions led to the same 

payoffs, the player draws again for each action, and continues this random sampling until the tie is 

broken. (If the player has never played one of the actions, or if all previous outcomes yielded the 

same payoffs, the process ends with the player randomly choosing one of the actions.) In the 

second stage, the player samples an additional k previous results for each action, and determines (i) 

the number of times a negative payoff (loss) was incurred, and (ii) the sum of losses incurred, in 

those k+1 outcomes observed for each action. The player then chooses the action that had the 

higher payoff in the first stage, unless it performed worse in both part (i) and part (ii) of the second 

stage, in which case the other action is chosen. 

The new cognitive strategy we consider is the tit-for-tat rule, according to which the player 

chooses the same action as her previous-round opponent did (in the first round, the player 

randomizes). We add this cognitive strategy for two reasons: (1) to reflect the fact that subjects in 

our experiment are playing games (and are aware of this fact), in contrast with the single-person 

decision tasks faced by subjects in the situations studied by Erev and Barron; and (2) to account for 

previous research showing that tit-for-tat is both a commonly-played and a successful strategy in 

repeated versions of Prisoners’ Dilemma (Axelrod, 1984). While our limited-information setup 

makes it less likely that subjects in the experiment recognized the structure of our PD game, adding 

tit-for-tat as a cognitive strategy allows us to observe whether it is chosen by simulated subjects. 

Finally, the cognitive strategies themselves are chosen in each round according to the same 

slow best reply rule that formed the second cognitive strategy above. 

 

4.2 Simulation design and results 
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The simulations were programmed in GAUSS; the programs are available from the 

corresponding author upon request. Following Erev and Barron (2005), we use the following 

model parameters: α=0.00125, β=0.2, λ=8, and k=4. For each game and matching mechanism, we 

run 10,000 40-round simulated experimental sessions. For the random-matching treatment, each 

session is made up of 20 automated subjects, randomly paired in each round. For the fixed-pairs 

treatment, each session is again made up of 20 subjects, but they are randomly paired only at the 
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beginning of the first round, and remain paired to the same opponent throughout all 40 rounds of 

the game.  

Figure 5 shows the relative frequency of each type of outcome (both choose C, both choose 

D, or exactly one chooses C) in the simulations, similarly to Figure 2 for the experiment. By 

contrast with Figure 2, the trajectories in this figure primarily show differences in speed of 

convergence, rather than differences in the likely asymptote. However, the differences between 

treatments are qualitatively similar to those observed in Figure 2. In CG, convergence to the (C,C) 

outcome is faster in the R treatment than in the F treatment, as some pairs in the latter get “stuck” 

on the Pareto inefficient (D,D) outcome. In BoS, differences are quite small and difficult to see, but 

the F treatment simulations show slightly more movement toward (C,D), and less play of (C,C) and 

(D,D), than the R treatment. In PD, both treatments show movement toward the unique equilibrium 

(D,D), but this movement is faster in the R treatment. In all three of the Stag Hunt games, the 

simulations tend toward the Pareto inefficient (D,D) outcome, but as in PD, this tendency is always 

somewhat stronger in the R treatment. 

Thus, the results of our simulations show that although the version of RELACS we use does 

not perfectly characterize behavior in the experiment, it does pick up our main result: the 

qualitative differences between fixed pairs and random matching.3 This is significant, since it 

suggests that the model might be useful for forming predictions about the effects of fixed pairs 

versus random matching in additional games. In particular, the model provides an explanation for 

the seemingly counter-intuitive PD result of slower convergence in the F treatment than in the R 

treatment. To see how this can happen, consider a population using only the fast best reply 

cognitive strategy. Initially, the recent payoff for both C and D actions is 5, so in the first round, 

each action is chosen with probability one-half. If the outcome of the first round is (C,C)—which 

happens with probability one-fourth—then both players in the pair earn a payoff of 7, which 

increases the recent payoff to C, while the recent payoff to D remains at 5. If the outcome is 

(D,D)—which also happens with probability one-fourth—the payoff of 4 means that the recent 

payoff to D falls while the recent payoff to C stays constant. In either of these cases, under fixed 

pairs both players will choose C in all rounds thereafter. In the other two cases, (C,D) and (D,C), 

both players would choose D from the second round onwards. There is thus a one-half probability 

under fixed pairs that a pair gets “stuck” on the good (C,C) outcome. Under random matching, by 

                                                 
3 One can conjecture several reasons for the inability of this version of the model to characterize the data even better, but 
we should point out that our implementation of RELACS did not give it its best chance. Rather than fitting model 
parameters to the data, or looking for reasonable ones using a grid search, we limited our analysis to the parameters used 
by Erev and Barron. While their parameters were found to work well for individual decision tasks, which by their nature 
are stationary, it may be that strategic games, which are non-stationary due to the effect of changing opponent behavior, 
require different parameters. It may also be that subjects simply learn in a different manner when they know they are 
playing a game, in which case adding or removing cognitive strategies—along the lines of our addition of tit-for-tat—
might be warranted. 
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contrast, a player whose first-round outcome was (C,C)—and hence chooses C in the second 

round—has about a one-half chance of meeting someone who plays D in the second round, rather 

than the zero chance of this under fixed pairs. In that case, the player’s recent payoff to C would 

fall below 5 (the recent payoff to D), so that she would choose D in the next round. Since D strictly 

dominates C, over time the recent payoff to D will typically be higher than that to C, so eventually 

C will die out under random matching. (Indeed, simulations of a variant of the RELACS model 

with fast best reply as the only available cognitive strategy yield C choices persisting with 

probability one-half under fixed pairs, but dying out under random matching.) To the extent that 

individuals have other cognitive strategies available besides fast best reply, the differences between 

F and R treatments will be less stark, but the direction of the effect will be the same: faster 

convergence to the (D,D) outcome under random matching than under fixed pairs. 

 

Table 4: Mean cognitive strategy probabilities, round 1000 of simulations 

 

Game 

Random matching Fixed pairs 

Fast 

BR 

Case-

based 

Slow 

BR 
TfT 

Fast 

BR 

Case-

based 
Slow BR TfT 

CG 0.571 0.145 0.027 0.257 0.579 0.133 0.021 0.267 

BoS 0.915 0.001 0.084 0.000 0.907 0.016 0.076 0.000 

PD 0.853 0.080 0.030 0.038 0.769 0.138 0.047 0.046 

SHH 0.788 0.049 0.045 0.118 0.651 0.145 0.040 0.164 

SHM 0.464 0.408 0.002 0.125 0.515 0.365 0.001 0.119 

SHL 0.249 0.259 0.266 0.226 0.249 0.260 0.267 0.223 

 

 

In order to further understand the behavior of our modified RELACS model, we look at how 

cognitive strategies evolve over time. Initially, each of the four is chosen with equal probability, 

but over time the probability of a given cognitive strategy reflects its success. Over only 40 rounds, 

there is little opportunity for these probabilities to change by large amounts—over all games and 

both treatments, they range only from 0.224 to 0.279 in the 40th round. We therefore extend the 

simulations to 1000 rounds, and look at the cognitive strategy probabilities after the 1000th round. 

The results are shown in Table 4. In all games except SHL (where the predominance of negative 

payoffs means that most reinforcement is negative, so that chosen strategies tend to become less 

frequent), there are substantial differences across cognitive strategies by round 1000. Fast best 

reply is by far the most successful cognitive strategy: it is chosen with a plurality of the probability 

in all games but SHL. Case-based reasoning does relatively well in the two games with losses 

possible (as it aids coordination when the opponent is using the same cognitive strategy). Slow best 

reply does badly in all games except SHL, likely because it causes the less successful action to be 
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chosen with substantial probability (it would likely have fared better in a game with strictly 

opposed preferences, such as matching pennies, where less historical success might indicate better 

present success). Tit-for-tat is most successful in the games with strategic substitutes, where it is 

equivalent to best reply to the previous action; in BoS and (interestingly, given the previous 

literature) PD, it does badly. 

There are no striking differences in cognitive strategy probabilities between the F and R 

treatments—even after 1000 rounds—which partly explains why the only differences observed in 

Figure 5 were in speed of convergence. The largest differences we do see occur in PD and SHH, 

where fast best reply is less successful under fixed pairs than under random matching, with case-

based reasoning correspondingly more successful. We surmise that this effect is due to the main 

difference between the two cognitive strategies in these games (with negative payoffs impossible): 

case-based reasoning chooses the action that earned a higher payoff in one random draw, while fast 

best reply chooses the action that has earned a higher weighted average payoff over all rounds. 

Ordinarily, it would seem desirable to use the latter cognitive strategy, since it is less sensitive to 

outliers. This is indeed what we see under random matching, but under fixed pairs, both cognitive 

strategies are more likely to yield the same choice (since there is less variation in choices within an 

individual than across individuals within a session), so that fast best reply has more difficulty in 

driving case-based reasoning out of the population of cognitive strategies. The implication of this 

reasoning is that even though we continue observing differences between F and R treatments in the 

probabilities of cognitive strategies, the probabilities of the actions themselves differ much less 

between these treatments—exactly what was seen in Figure 5. 

 

5. A new experiment 

As a robustness test for both our experimental results and our simulation predictions, we 

conducted a follow-up experiment using another game. The game is chosen from the three games 

used in Battalio et al.’s (2001) experiment (see Figure 6). These games are most similar to our 

coordination game (CG) and our high-payoff stag hunt game (SHH), in that strategies are strategic 

complements and payoffs are non-negative. However, unlike CG, players’ interests are not 

perfectly aligned in these new games, and unlike SHH, neither strategy is risk-free. All three games 

have the same set of Nash equilibria: (C,C), (D,D), and a mixed-strategy equilibrium in which each 

player chooses C with probability 0.8. 
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In order to form predictions for the experiment, we simulate subject behavior using the 

modified RELACS model from Section 4. The simulation design was broadly the same as before. 

We used the same parameters (α=0.00125, β=0.2, λ=8, and k=4), and the same number of 

simulated sessions of each game and treatment (10,000). The only changes from the earlier 

simulations are: (1) we ran our new simulations for 50 rounds instead of 40, and (2) we used one-

population matching for the random-matching treatment. (Both of these changes reflect procedures 

we follow in our new experiment, as described in the next section.) Average outcome frequencies 

from the simulations are shown in Figure 7. In all three games, there is more tendency toward the 

Pareto inefficient (D,D) equilibrium under random matching than under fixed pairs, but the size of 

this difference varies across the games: it is largest in the 0.6ρ game and smallest in the 2ρ game. 

We therefore use the 0.6ρ game in our new experiment. 

 

 

 

5.1 Experimental design and procedures 

In the new experiment, we kept the main features of our previous experimental design, but 

changed some of the experimental procedures. As before, we varied the matching mechanism 

(fixed pairs or random matching) and the order in which the actions were presented (C-D or D-C). 

Subjects played only one game, the 0.6ρ game. Following Battalio et al. (2001), our random-

matching treatment used a one-population mechanism (all other subjects in the session were 
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equally likely to be the opponent), rather than the two-population mechanism from our original 

experiment. As in our previous experiment, but unlike Battalio et al., subjects play under limited 

information; while they are told that they are playing a game, and how the matching is done, they 

are never shown a payoff matrix, nor are they ever given feedback about opponent action choices 

or payoffs. Thus, subjects in this new experiment receive even less information than those in our 

original experiment, who were informed of opponent action choices. (The implementation of 

limited information used here is thus very similar to that of Chen (2003)). 

  The experiment took place at the Scottish Experimental Economics Laboratory (SEEL) at 

University of Aberdeen, and was programmed in z-Tree (Fischbacher, 2007). Subjects were 

primarily undergraduate students. None took part more than once in this new experiment, nor did 

anyone participate who participated in our original experiment. At the beginning of a session, 

subjects were seated and given written instructions, which were read aloud before play began. 

These instructions, as well as the z-Tree programs and the raw data, are available from the 

corresponding author upon request. After any questions were answered, the first round began. As 

in the original experiment, partitions prevented viewing of others’ computer screens, and subjects 

were asked not to communicate with each other. Each round consisted of simultaneous action 

choices, then feedback consisting of own choice, own payoff, and total earnings up to that round. 

After the first round, a subject’s history of past feedback was available on her computer screen. 

After subjects played fifty rounds, they were paid their total earnings, converted to GBP at an 

exchange rate of £1 (approximately $1.60 at the time of the experiment) per 100 points. There was 

no showup fee. Sessions lasted 45-75 minutes, and average payments were roughly £15. 

 

5.2 Experimental results 

We conducted 8 sessions (4 each of the F and R treatments) of the new experiment, with a 

total of 108 subjects. Table 5 shows aggregate frequencies of C choices and action changes for the 

first five, last five, and all rounds of both treatments. There is little apparent difference between the 

two treatments in the first five rounds, which is unsurprising since our limited-information design 

ought to lead to nearly uniform random initial play. (Wilcoxon tests confirm that frequencies of C 

choices in rounds 1-5 are not significantly different from uniform in either treatment, or even for 

both treatments pooled together; p > 0.1 in all cases.) By the last five rounds, however, striking 

differences emerge: C choices are much more likely, and action changes much less likely, under 

fixed pairs than under random matching. These differences are significant at the 5% level, except 

for action changes in the last 5 rounds, where the difference is only significant at the 10% level. 

The picture is nearly identical for the aggregate data: significantly more C choices, and fewer 
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action changes, in the F treatment compared to the R treatment. The differences seen here are 

similar in nature to some of the results in our original experiment. 

 

Table 5: Observed frequencies from new experiment (0.6ρ game) 

Rounds C choices Action changes 

F R F R 

1-5 

46-50 

All 

0.560 

0.624** 

0.595** 

0.524 

0.255 

0.362 

0.532 

0.148* 

0.236** 

0.569 

0.317 

0.367 

* (**,***): For given game, criterion, and rounds, the value of this statistic is significantly 

different from the corresponding R treatment statistic at the 10% (5%, 1%) level (two-tailed 

robust rank-order test, session-level data, pooled action and game orderings). 

 

We next compare the experimental data to the results from the RELACS learning model 

simulations in Figure 8. This figure shows the frequency of the possible outcomes in both 

simulation and experiment, for both treatments and each five-round block. As in Section 4, we are 

less interested in the learning model’s point predictions than in its prediction about the treatment 

effect. Once again, the difference between the fixed-pairs and random-matching treatments in the 

experiment is the same as for the simulations: we see here that both experiment and simulation 

have more (C,C) outcomes, and fewer (D,D) outcomes, in the F treatment than in the R treatment. 

We therefore conclude that the modified RELACS model can be useful as a source of predictions 

about the difference between fixed pairs and random matching, though we make no claim about the 

usefulness of its point predictions. 

 

 

6. Discussion 

In any strategic situation that is not so trivial that decision makers immediately figure out 

which actions to choose, it is important to be able to model the way their decision-making behavior 
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adjusts over time (which we have been calling “learning”). In order to successfully model learning, 

we need to understand which aspects of the situation influence the way individuals learn. In this 

paper, we examine the effect on learning of the manner in which players are matched with 

opponents, using six simple two-player games. Each game is played forty times, under either of 

two commonly-used matching mechanisms. In fixed-pairs matching, a player is matched to the 

same opponent for all rounds of a game. In random matching, a player is rematched after every 

round. The games are played under limited information: subjects are never shown any game’s 

payoff matrix, and while they receive information about their own payoffs in the end-of-round 

feedback, they never receive any information about opponent payoffs. Besides ameliorating any 

effects of subjects’ other-regarding preferences on behavior, our design serves to isolate the effect 

of the matching mechanism on learning, by limiting the effects of other factors that affect behavior, 

such as signaling or reputation building.4  

In the experiment, we find sizable and systematic differences in behavior between fixed-pairs 

and random matching. Outcomes are typically better under fixed-pairs matching, as cooperative 

choices are more likely. However, the opposite can happen (as in our Coordination Game), when 

some pairs of subjects become “stuck” on an inefficient Nash equilibrium under fixed-pairs 

matching. We typically find faster convergence to pure-strategy play under fixed-pairs matching 

(with the exception of Prisoners’ Dilemma), in that action changes from one round to the next are 

less frequent than under random matching. The differences between treatments are often small in 

early rounds, but grow over time, and are not only visible in summary statistics, but confirmed by 

both non-parametric and parametric statistical tests. We find similar results in a follow-up 

experiment, using a different game and with some aspects of the experimental procedures altered 

as a robustness check. The differences we find between fixed pairs and random matching are 

consistent with the results of simulations based on a variation of Erev and Barron’s (2005) 

RELACS learning model, modified to allow for tit-for-tat play. Notably, while the original 

RELACS model had been found by other researchers to explain individual decision-making 

behavior well, to our knowledge it has never previously been used to characterize behavior in 

strategic games.  

The differences we observe are also consistent with previous work comparing fixed pairs and 

random matching. Specifically, our finding of better outcomes in Prisoners’ Dilemma under fixed 

pairs is similar to the findings of several other researchers in complete-information social dilemmas 

(Abbink, 2004; Ahn et al., 2001; Charness & Garoupa, 2001; Duffy & Ochs, 2008; Huck et al., 

                                                 
4 Because we did give subjects information about opponent action choices in the end-of-round feedback in our main 
experiment, we cannot completely rule out the possibility that some of the more sophisticated subjects were able to signal 
in early rounds via their action choices, and that these signals had an effect on opponent choices and coordination. In our 
follow-up experiment, by contrast, subjects did not receive this information, so such signaling would have been nearly 
impossible. 
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2001), though not Andreoni and Croson (2008), who found no systematic difference. Our finding 

of better outcomes in Stag Hunt games under fixed pairs is similar to what was observed by Van 

Huyck et al. (1990) and Clark and Sefton (2001) in coordination games with complete information, 

but not Schmidt et al. (2003), who did not find such a difference. Unlike Chen’s (2003) limited-

information experiment, our experiment did yield differences between fixed-pairs and random-

matching treatments, though it should be noted that none of our games were closely related to the 

games she used (see Section 2.1 for details). To sum up, then, when a previous experiment has 

found a difference between fixed pairs and random matching in some game, we have found a 

difference in the same direction in our most closely related game (though the converse does not 

always hold, since not all previous experiments found differences). 

Our results can—to a fair degree—be explained by two distinct properties of fixed pairs 

relative to random matching. First, learning about opponent behavior is a simpler task when there 

is only one potential opponent (fixed-pairs matching) than when there are multiple potential 

opponents (random matching). This greater simplicity increases the likelihood of faster 

convergence to a Nash equilibrium under fixed pairs, as observed in most of the games. Second, 

groups of size two (fixed pairs) are more likely to show heterogeneity in group averages than 

larger-sized groups (random matching). When the game has multiple equilibria, this increased 

heterogeneity can lead to different groups converging to different action pairs, with the implication 

that some groups become stuck on inefficient equilibria. Indeed, of the games with multiple pure-

strategy Nash equilibria, all five saw different pairs in the F treatment converging to different 

equilibria, but only two saw different sessions in the R treatment reaching different equilibria.  

Our limited-information design was intended to minimize the effects of factors other than 

learning, in contrast to previous tests of matching mechanisms (see Section 2.1) that used 

complete-information designs. As a result, any differences between our results and those from 

complete-information experiments are likely to be due to these other factors. Many of our results 

(e.g., usually faster convergence to pure-strategy play under fixed pairs than under random 

matching) have counterparts in complete-information experiments. However, our finding that the 

possibility of pairs becoming stuck on inefficient equilibria can lead to worse outcomes under fixed 

pairs than under random matching is generally not observed under complete information. While 

researchers have found that behavior in complete-information experiments can also be sensitive to 

early-round outcomes (Van Huyck et al., 1990), the usual consequence is that some subjects under 

fixed pairs use early rounds to signal cooperative actions (Clark & Sefton, 2001), improving 

outcomes relative to random-matching treatments (where incentives for such signaling are much 

weaker). Under limited payoff information, such signaling is much less likely to work, leading to 

the possibility of worse outcomes under fixed pairs. 
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The main puzzle in our results comes from the Prisoners’ Dilemma in our original 

experiment, where there was actually slower convergence to equilibrium under fixed pairs than 

under random matching. Figure 2 showed a persistent, non-negligible fraction of (C,C) outcomes, 

which in a complete-information setting would suggest some combination of social preferences or 

supergame behavior. However, our experiment was designed with limited information in order to 

avoid these possibilities, so it is unclear why there should be so many cooperative action choices.5 

A few other remarks are warranted at this point. First, since the evolution of behavior over 

time is sensitive to the matching mechanism used, we suggest that care should be taken whenever 

drawing conclusions based on data using only one matching mechanism. In cases where the only 

effect of the matching mechanism is on the speed of convergence, qualitative conclusions will 

probably be fairly robust. However, in some games, the choice of matching mechanism actually 

had an effect on the outcome to which behavior converged. In these cases, especially, conclusions 

about equilibrium selection based on only one mechanism may be misleading. We are not arguing 

that all experiments should involve multiple treatments with varying matching mechanisms, as we 

recognize that experimental sessions are costly, and adding treatments with other matching 

mechanisms will generally imply a sacrifice of other potential design treatments. However, a 

possible compromise might be the use of additional pilot sessions involving different matching 

mechanisms, in order to assess the robustness of results to the mechanism used.  

Second, as discussed in the introduction, a successful model of learning ought to be able to 

predict the differences in play seen in our results. It is not immediately clear what features a 

learning model must have in order to characterize all of our results, but our simulations using the 

modified RELACS model suggest that it has some potential. A “horse race” comparison of 

learning models is beyond the scope of this paper, but the possibility certainly exists that other 

models (or even a different modification of RELACS) can do an even better job. We would 

welcome further research that examines the ability of other learning models to predict the 

differences between fixed pairs and random matching that we observed. 

Finally, we acknowledge that we have thus far barely scratched the surface in this area. We 

consider a study of the two most widely-used matching mechanisms in seven fairly well-known 

games to be a good start, but there are other matching mechanisms, and countless other games in 

which the choice of matching mechanism could have an effect. Additionally, many 

implementations of limited information are possible besides those used here; one possible 

                                                 
5 One possibility is that some of the subjects either assumed or inferred (based on the feedback they received) that the 
games were symmetric. In that case, they could then determine their opponents’ payoffs once they had worked out their 
own part of the payoff matrix. If both subjects in a pair did so, then the chance of effects from social preferences or 
supergame behavior could increase substantially. One bit of evidence that suggests this might have happened is that of 
the 126 pairs in the F treatment of our original experiment, 18 played the (C,C) outcome in at least 9 of the final 10 
rounds; that is, much of the (C,C) play was concentrated in a few pairs. (An alternative possibility arises from the 
RELACS model; see Section 4.2.) 
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alternative design would not even inform subjects that they are playing a strategic game. We wish 

to encourage more work in this direction as well. 
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Appendix A: instructions from original experiment

Below is a annotated translation of the instructions given to subjects in this experiment. Copies of the

actual instructions (in Japanese) are available from the corresponding author upon request.

1 Introduction

Thank you for your participation in an experiment in the economics of decision-making. If you follow these

instructions carefully and make good decisions you might earn a considerable amount of money that will

be paid to you in cash at the end of the session.

2 Sequence of Play in a Round

This experimental session consists of six different games. Each game consists of forty rounds. At the start

of each game, you will be randomly assigned a player type, either “row player” or “column player.” Your

type will not change during the course of game. In each game of this experiment you will be randomly

matched to a player of the opposite type. You will be matched with a different player in every round [every

fortieth round in the F treatment] of a game. We will refer to the person you are paired with in a round

as your “partner.” Your score in each round will depend on your choice and the choice of your partner in

that round. You will not know the identity of your partner in any round, even after the end of the session.

• At the beginning of each game, the computer program randomly matches each player to a partner.

• You and your partner play the game. Figure 1 is displayed on your screen. If you are a row player,

you choose which row of the payoff table to play, R1 or R2. If you are a column player, you choose

which column of the payoff table to play, C1 or C2.

• After all players have chosen actions, your action, your partner’s action, and your payoff or score are

displayed. Your score is determined by your action and the action of your partner according to the

given payoff table.

• [This part is replaced according to the treatment.]

– R treatment: Provided that the last round of the game has not been reached, a new round of

the same game will then begin. You will be matched with a different partner in the new round.

– F treatment: Provided that the last round of the game has not been reached, a new round of

the same game will then begin. You will be matched with the same partner in the new round.

Nevertheless, at every forty rounds, your partner and the payoff table will be changed.

• Notice that you must not record any results of the games. If the experimenter find you are

recording them, you cannot continue your experiment. In that case, you will not be paid for this

experiment.



Figure 1: The screen when you are a column player. (The payoff table on the left side will not be shown)

3 The payoff tables

The payoff table for each game you play will not be shown on your computer screen. However, let us

explain the payoff table to support your decision-making. In every round of a game, both you and your

partner have a choice between two possible actions. If you are designated as the row player, you must

choose between actions R1 and R2. If you are designated as the column player, you must choose between

actions C1 and C2. Your action, together with the action chosen by your partner, determines one of the

four boxes in the payoff table. In each box, the first number represents your score and the second number

represents your partner’s score.

4 Payments

If you complete this experiment, the computer screen will reveal your score, the round that you got the

score, and the payment you obtain. The round will be randomly chosen from all rounds you played. The

payment will be calculated from your score as 200 yen for each point in that round. In addition, you will

be paid a show-up fee of 3000 yen.

Are there any questions before we begin?



Appendix B: Instructions from follow-up experiment 

Below are the instructions used in the follow-up experiment. Text in square brackets appeared only 
in the F treatment, text in curly brackets appeared only in the R treatment, and text not in brackets 
appeared in both treatments. 

You are about to participate in a decision-making experiment. Please read these instructions 
carefully, as the amount of money you earn may depend on how well you understand them. If you 
have a question at any time, please feel free to ask the experimenter. We ask that you not talk with 
the other participants during the experiment.  

This experimental session consists of a game that is played for 50 rounds via your computer. In 
each round, you are matched to another participant, with whom you play the game. [The person 
matched to you will be chosen randomly by the computer program at the beginning of the 
experiment, and will remain the same for all rounds.] {The person matched to you will be chosen 
randomly by the computer program at the beginning of each round.} You will not be told the 
identity of the person matched to you, nor will he/she be told your identity – even after the end of 
the session.  

The payoff table: In each round, both you and the person matched to you will have a choice 
between two possible actions, which will be called X and Y. Your action and the other person’s 
action determine your earnings (in pence) for that round, according to a payoff table. The other 
person’s earnings may be different from yours.  

Example: This is an example of a payoff table. You will be using a different payoff table in the 
experiment, but it will have a similar structure. The payoff table you actually use will be shown 
on your computer screen, but you will not see the numbers – they will be replaced by question 
marks. 
 

Other person action  
X Y 

X Your earnings: 15 Your earnings: 25 Your 
action Y Your earnings: 40 Your earnings: 0 

 
Sequence of play in a round: The sequence of play in a round is as follows.  
(1) [If it is the first round, the computer randomly matches you to another participant.] {The 

computer randomly matches you to another participant.} 
(2) You and the person matched to you play the game. You choose an action, either X or Y. The 

person matched to you also chooses an action, either X or Y. Both of you make your choice 
without knowing the other’s choice. 

(3) The round ends. Your computer screen will display your choice, your earnings for the round, 
and your total earnings up to the current round. You are not shown the choice or earnings of 
the person matched to you. 

 
Payments: At the end of the experimental session, you will be paid (in pence) the sum of your 
earnings in all rounds. Payments are made privately and in cash at the end of the session.  
 




