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Abstract: We examine the effect of the matching mechanism on learning in 2x2 games. Six games 

are played repeatedly under either fixed pairs or random matching. Unlike most economics 

experiments, the games are played under limited information: subjects are never shown the games’ 

payoff matrices nor given information about opponent payoffs. We find that behavior, while 

initially similar between treatments, diverges over time. In most but not all games, fixed-pairs 

matching is associated with increased coordination on pure-strategy Nash equilibria, higher-payoff 

equilibria being reached, and faster convergence toward pure-strategy play. 
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1. Introduction 

Colin Camerer (2003), summarizing the state of experimental game theory research in his 

behavioral game theory text, said, “[t]here are no interesting games in which subjects reach a 

predicted equilibrium immediately. And there are no games so complicated that subjects do not 

converge in the direction of equilibrium (perhaps quite close to it) with enough experience” (p. 20). 

The implication of this passage is that, while game-theoretic concepts like Nash equilibrium are 

useful for characterizing how individuals behave after acquiring sufficient experience, a true 

behavioral game theory must incorporate a description of how individuals learn.2 Though the 

beginnings of a learning theory are well established (Camerer and Ho, 1999; Fudenberg and 

Levine, 1998; Roth and Erev, 1995), we are far from a consensus regarding the exact nature of 

learning in games. In order for progress toward some kind of consensus to continue, more detailed 

study must be made of factors that can influence how decision makers learn. 

The objective of this paper is to take a small step in this direction. We concentrate on the 

effects of one particular experimental design manipulation—the protocol used to match players to 

opponents—on the manner in which behavior changes over time. Many economics experiments 

comprise more rounds than there are potential opponents. For such experiments, there are two 

commonly-used matching mechanisms. Under fixed pairs, players are matched repeatedly to the 

same opponent. Under random matching, opponents are randomly assigned in every round. We 

conduct a laboratory experiment in which subjects repeatedly play several two-player games under 

one of these mechanisms. In order to focus on learning, rather than other phenomena that might be 

sensitive to the matching protocol, as well as to minimize effects arising from other-regarding 

preferences, we give subjects only limited information about the games—in contrast to most 

previous studies of matching mechanisms, which have focused on behavior under complete 

information (see Section 2.1). In our design, subjects are told they are playing a game, but are not 

given any information about payoffs before playing, and while they can learn about their own 

payoffs via end-of-round feedback, they never receive information about opponent payoffs; thus, 

even subjects who figure out the payoff matrix are unlikely to have much confidence that their 

opponents have also figured it out (let alone the common-knowledge assumption). 

Our results suggest that the matching mechanism can indeed have a sizable effect on behavior 

in general, and learning in particular. Levels of cooperation are frequently higher under fixed pairs 

than under random matching. Also, convergence to equilibrium is usually faster under fixed pairs, 

though in one game, the opposite is true. The matching mechanism also can have an effect on the 

likelihood of behavior converging to one equilibrium versus another: in one game, fixed-pairs 

matching actually increases the chance of players getting “stuck” on a low-payoff equilibrium, 

while in the others, fixed pairs makes the high-payoff equilibrium more likely.  



 3

 

2. The experiment 

Figure 1 shows the games used in the experiment.  

 

[Figure 1 about here]  

 

While each game is symmetric and 2x2, they differ in some important ways. Prisoners’ Dilemma 

has a strictly dominant strategy, D, and thus a unique Nash equilibrium. The other games have 

multiple Nash equilibria and no dominant strategies. In Battle of the Sexes, the strategies are 

strategic substitutes (a player’s strategy becomes less attractive, the more likely the opposing 

player is to choose it), so that the two pure-strategy equilibria are asymmetric; in the other four 

games with multiple equilibria, the strategies are strategic complements (a strategy becomes more 

attractive as the likelihood of the opponent playing it increases), so their pure-strategy equilibria 

are symmetric. For ease of exposition, we have ordered the two strategies in each game in such a 

way that the first strategy is “nice” in the sense that it tends to be associated with higher payoffs for 

the other player than the second strategy; we have also labeled the actions C (for “cooperate”) and 

D (for “defect”), though these terms are more literally meaningful in some games than others. 

Because each game has only two actions, a player’s strategy can be characterized by the 

associated probability of choosing C. Thus, any strategy pair (one strategy for each player) can be 

written in the form (Prob(Row player chooses C), Prob(Column player chooses C)). Table 1 shows 

the games’ equilibrium strategy pairs, along with the implied frequencies of C choices; these 

probabilities will serve as useful benchmarks for our results, even though we are not explicitly 

testing equilibrium predictions in this paper. (Note that uniform random play—the (0.5, 0.5) 

strategy pair—is not an equilibrium of any of these games.) 

 

[Table 1 about here] 

  

Versions of these games have been used in many experiments. We do not attempt a review of 

all relevant literature here; much can be found in the sections on coordination games and social 

dilemmas in Camerer (2003) and Kagel and Roth (1995).  

 

2.1 Experimental design and related literature 

As already mentioned, our primary design variable is the matching treatment. In the fixed-

pairs (F) treatment, subjects played all 40 rounds of a game against the same opponent, though 

opponents did change from game to game. In the random-matching (R) treatment, subjects were 
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randomly assigned to opponents in each round, with every potential opponent (including the 

previous-round opponent) equally likely. Since the number of rounds of each game was more than 

the number of potential opponents in an experimental session, subjects in the R treatment faced the 

same opponent more than once in the same game; however, as no identifying information about 

opponents was given to subjects, they would never have been able to tell whether—and in which 

round—they had previously been matched to their current opponent.  

There has been some work examining the effects of matching mechanisms, mostly using 

games played under complete information. Many such studies used social dilemmas, since under 

complete information, one might expect to see more cooperative behavior under fixed pairs—

where incentives for reputation building are stronger—than under random matching, and that this 

effect would be stronger in early rounds than later ones (as the value of a reputation should decline 

as the number of remaining rounds becomes small). While Andreoni and Croson (2008) found no 

systematic difference between fixed pairs and random matching in their survey of early public-

good experiments, other studies have typically found higher levels of cooperation under fixed pairs 

in the Prisoners’ Dilemma (Ahn et al., 2001; Duffy and Ochs, 2008), and in other environments 

with features of social dilemmas (Charness and Garoupa, 2001; Huck et al., 2001). Similarly, 

studies using coordination games with Pareto-ranked pure-strategy equilibria can be Pareto-ranked 

have tended to find either no difference (Schmidt et al., 2003) or higher efficiency under fixed 

pairs than random matching (Van Huyck et al., 1990; Clark and Sefton, 2001). McKelvey and 

Palfrey (2001) examined eight simple games in their “Full Information” treatment, including 

coordination games and a version of the Prisoners’ Dilemma, and found higher payoffs under fixed 

pairs than under random matching, though they didn’t report aggregate choice frequencies, so it is 

not possible to determine how learning was affected. Danz et al. (2012), on the other hand, found 

no systematic difference in learning between fixed-pairs and random-matching treatments in a 3x3 

game. 

We stress that the results reported above came from experimental treatments with complete 

information about payoffs, making it difficult to disentangle differences in learning from 

differences in attempts at reputation building, or in the prevalence of early-round signaling. In 

contrast, our experiment uses a limited-information design, with no display of the payoff matrix to 

subjects—either publicly or privately. Instead, subjects receive some payoff information as part of 

their end-of-round feedback; specifically, they are informed after each round of their opponent’s 

choice and their own payoff in the just-completed round. While this is enough information to allow 

subjects to piece together the relationship between outcomes and their own payoffs within a few 

rounds, it differs from the usual complete-information treatment in two notable ways. First, 

subjects never receive information about their opponents’ payoffs; we believe it is reasonable to 
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expect that the lack of this particular information should serve to undermine any effects on 

behavior of other-regarding preferences, even in games such as PD where one might normally 

expect such preferences to be present. Second, it is exceedingly unlikely that the structure of the 

game was common knowledge amongst the subjects; indeed, even a subject who has figured out a 

game’s payoff structure would probably have little confidence that her opponent also will have 

done so, thus all but ruling out reputation building or early-round signaling. 

There have been few experiments looking at different matching mechanisms under limited 

information, and their collective evidence of an effect is mixed. Cox et al. (2001) found that 

subjects with limited information about opponent payoffs were more likely to reach equilibrium in 

the actual game under fixed pairs than under random matching. McKelvey and Palfrey (2001), 

mentioned above, had a “No Information” treatment that was similar to ours except that subjects 

didn’t receive information about opponent action choices; their reported results suggest that the 

matching mechanism didn’t matter in more than half of their games.3 Chen’s (2003) comparison of 

pricing mechanisms for allocating shared resources within an organization also found no 

significant differences between fixed pairs and random matching.  

While our interest is in the effects of the matching mechanism, limited-information settings 

have also been used to investigate other questions. A natural topic is how individuals learn how to 

behave in a setting where relevant information such as own or opponent payoffs is, at least 

initially, unknown, so that individuals are learning simultaneously about the rules of the game and 

about how they should play the game. There has been theoretical work on this topic (e.g., Dekel et 

al., 2004; Kaneko and Kline, 2008; Hanaki et al., 2009), as well as experiments. Overall, subjects 

seem to have difficulty learning initially-unknown aspects of games (Feltovich, 2000; Oechssler 

and Schipper, 2003), but nonetheless manage to figure out the equilibrium (Cox et al., 2001; 

Shachat and Walker, 2004).4 The extent to which subjects can learn a game’s payoff structure also 

depends on characteristics of the game such as uniqueness of equilibria and symmetry (Gerber, 

2006), and on the amount of feedback given (Nicklisch, 2011).  

 

2.2 Experimental procedures 

Subjects in our experiment played all six games under either fixed pairs or random matching. 

We used a two-population design, with half of the subjects in each session designated “row 

players” and half “column players”, and with subjects of one type only matched to the other type. 

The games were always ordered CG-SH-BoS-SH-PD-SH, but we varied the order of the three Stag 

Hunt games (SHH-SHM-SHL, SHM-SHL-SHH, and SHL-SHH-SHM) as a partial attempt to 

control for order effects. We also varied the order in which the actions appeared on subjects’ 

screens: C-D (cooperative action on top or left) and D-C (cooperative action on bottom or right). 
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Our manipulations of game ordering, action ordering, and matching mechanism were between-

subjects, while our manipulation of the game was within-subject. 

Experimental sessions took place in 2003 and 2004 at the Kyoto Experimental Economics 

Laboratory (KEEL) at Kyoto Sangyo University. Subjects were primarily undergraduates, recruited 

via a database of participants in other experiments and via advertisements posted on campus. No 

one participated in more than one session. At the beginning of a session, each subject was seated 

and given a set of written instructions (an English translation is in Appendix A). After a few 

minutes, the instructions were read aloud by the monitor in an effort to make the rules common 

knowledge. Partitions prevented subjects from seeing others’ computer screens, and subjects were 

asked not to communicate with each other.  The experiment was programmed in the Japanese 

version of z-Tree (Fischbacher, 2007), and all interaction took place via the computer network. 

Subjects were asked not to write down any results or other information. 

At the beginning of a session, subjects were told their type (row or column player). Prior to 

the first round of each game, they were reminded that they were beginning a new game. In every 

round, they were prompted to choose an action; these were given generic names (R1 and R2 for 

row players, C1 and C2 for column players). After all subjects had chosen, each was told her own 

action choice, her opponent’s action choice, and her own payoff. In the R treatment, subjects were 

rematched after each round; in the F treatment, they were rematched only when the 40 rounds 

ended and a new game began. In both treatments, subjects were informed of the matching 

mechanism in both oral and written instructions. 

At the end of an session, one round of one game was randomly chosen, and each subject was 

paid 200 Japanese yen (at the time of the experiment, equivalent to roughly USD 1.90) for each 

point earned in that round. In addition, subjects were paid a showup fee of 3000 yen, from which 

negative payoffs were subtracted, if necessary.  

 

3. Experimental results 

A total of 13 sessions were conducted: 6 of the R treatment and 7 of the F treatment. The 

number of subjects varied from 6 to 28 in the F sessions, and from 10 to 26 in the R sessions. Some 

session information is shown in Table B1 in Appendix B; the raw data are available from the 

corresponding author upon request. 

 

3.1 Aggregate behavior 

Table 2 reports C-choice frequencies in each game for rounds 1-5 as a proxy for initial 

behavior, rounds 36-40 as a proxy for endgame behavior, and over all rounds. In addition to these 

levels, the table shows the results of robust rank-order tests of significance of differences between 
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the F and R treatments for each game and time period, using session-level data (see Siegel and 

Castellan, 1988, for descriptions of the nonparametric tests used in this paper, and see Feltovich, 

2005, for critical values for the robust rank-order test). 

 

[Table 2 about here]  

 

In both treatments, frequencies of C choices begin at levels comparable to those implied by 

uniform random play, as one would expect since subjects initially have no information about 

payoffs. Indeed, for rounds 1-5, nonparametric Wilcoxon signed-ranks tests find significant 

differences from uniform random play (two-tailed test, p-values of 0.05 or lower) in only two of 

the six games in the F treatment and none in the R treatment, and we find no significant differences 

between the treatments. In later rounds, on the other hand, we find many differences, and when 

significant, they always point in the same direction: more C choices in the F treatment than in the R 

treatment. These differences are usually consistent with better outcomes, and quicker convergence, 

under fixed-pairs matching; the lone exception is Prisoners’ Dilemma, where higher levels of C 

choices are associated with slower convergence to the unique Nash equilibrium (D,D). 

 

3.2 Behavior dynamics 

In Figure 2, we take a closer look at how behavior changes over time. This figure shows the 

relative frequency of each of the three types of outcome (both players choose C, both choose D, or 

exactly one chooses C) in each five-round block of each game, under each treatment. Arrows 

indicate the direction of motion of the time paths.  

 

[Figure 2 about here] 

 

As the figure shows, the dynamics of aggregate outcome frequencies vary substantially 

across games and between F and R treatments. Behavior begins near the point (1/4, 1/4) implied by 

uniform random play, but in most cases then moves in the direction of one of the pure-strategy 

pairs. In CG, both time paths move in the general direction of the Pareto efficient (C,C) Nash 

equilibrium, but the path for the R treatment ultimately gets closer, suggesting that some pairs in 

the F treatment become “stuck” at the Pareto inefficient (D,D) equilibrium.5 In BoS, convergence 

toward the Nash equilibrium (C,D) and (D,C) pairs is faster and more uniform in the F treatment, 

while in PD, convergence toward the Pareto dominated Nash equilibrium (D,D) is faster in the R 

treatment. 
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In the three Stag Hunt games, qualitative differences between treatments are more 

pronounced. In SHH and SHM, time paths under random matching converge almost completely to 

the Pareto inefficient (D,D) outcome, while under fixed pairs, play converges roughly to equal 

frequencies of the (D,D) and the Pareto efficient (C,C) outcomes (suggesting heterogeneity across 

pairs); in both treatments, miscoordination on the (C,D) and (D,C) pairs has nearly died out by the 

end of the game. In SHL, the time path for the F treatment moves in the direction of (C,C), but a 

few pairs get stuck at (D,D) instead. The path for the R treatment shows some tendency toward 

roughly equal frequencies of (D,D) and (C,C) outcomes (that is, some sessions get stuck at the 

inefficient (D,D) outcome), but the frequency of miscoordination stays comparatively high. 

By and large, therefore, Figure 2 confirms that the matching mechanism has not only a 

quantitative effect on the speed of convergence, but also a qualitative effect on the outcome to 

which the subjects converge. Miscoordination often persists even in late rounds—either due to 

incomplete convergence or to mixed-strategy play (either at the individual or population level)—

but differences between F and R treatments are still apparent. In five of the six games, play 

converges to a better aggregate outcome (the three Stag Hunt games), more quickly to the same 

good outcome (Battle of the Sexes), or more slowly to the same bad outcome (Prisoners’ Dilemma) 

under fixed pairs than under random matching. Only in one game (Coordination Game) does 

average behavior tend toward a worse outcome under fixed pairs. This happens because a 

nontrivial fraction of pairs get stuck at the lower-payoff equilibrium, as compared to random 

matching where all sessions converge to near-complete play of the higher-payoff equilibrium. 

 

3.3 Parametric statistics 

 

We next estimate a set of probit models—one for each game—with a C action choice as the 

dependent variable. Our primary explanatory variable is an indicator for the F treatment. We 

include the round number and its square, in order to control for changing behavior over time, as 

well as the number of subjects in the session, which in the R treatment influences how many times 

a subject can expect to face a given opponent (and thus potentially how past results affect choices). 

We also include all two- and three-way interaction terms among the F indicator, the time variables, 

and the session size (i.e., the number of subjects in the session). Additional controls are indicators 

for two of the three game orderings (M-L-H and L-H-M) and one of the two action orderings (C-

D). Finally, we include the subject’s previous-round own and opponent action choice, and their 

product; since each game is 2x2, these are sufficient to capture any dependence on the previous-

round outcome. Each probit is estimated on the data from rounds 2-40 (not round 1, due to the 

previous-round variables) using Stata (v. 12), with a constant term and individual-subject random 
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effects. Table 3 shows the results: estimated marginal effects (at variables’ means) and standard 

errors for each variable, and the pseudo-R2 for each model.  

 

[Table 3 about here] 

 

We see strong evidence of a treatment effect in the F-treatment marginal, which is 

significantly different from zero at the 5% level for five of the six games, and in each of these has 

the expected sign: negative in CG and positive in PD and the three SH games. Noting from earlier 

the lack of initial differences between the F and R treatments, the significance of the F-treatment 

variable implies differences in learning over time between these treatments. Figure 3 presents 

additional evidence for differences in learning, by showing additional marginal effects for the F-

treatment indicator, for each individual round rather than at the mean round number as before. In 

the figure, point estimates are shown as dark circles, and line segments represent 95% confidence 

intervals. The effect of the F treatment on C choices clearly varies across games, but it starts out 

near zero in all games, and except for BoS, becomes significant by the second half of the session. 

In CG, the effect is negative, reflecting some pairs getting stuck on the (D,D) outcome, while in the 

other four games, the effect is positive; in all five of these games, the sign and significance of the 

effect persists throughout the 40 rounds. The size of the effect peaks in the first half of the session 

in PD, around the middle of the session in SHM, and near the end of the session in SHL; in the 

other three games it continues grows over time even at the end. 

 

[Figure 3 about here] 

 

To summarize, these results broadly replicate the patterns discussed in Section 3.2. Typically, 

outcomes are better, and learning is faster, in the F treatment than in the R treatment. Differences 

between the treatments are small in early rounds (before subjects have gotten feedback about the 

games’ payoffs), but become more pronounced over time. In some cases, these differences grow 

over the course of a game; in others, they shrink in later rounds, as behavior in the R treatment 

“catches up” to that in the F treatment. 

 

4. Discussion 

In any strategic situation that is not so trivial that decision makers immediately figure out 

which actions to choose, it is important to be able to model the way their decision-making behavior 

adjusts over time (learning). In order to successfully model learning, we need to understand which 

aspects of the situation influence the way individuals learn. In this paper, we examine the one 
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aspect, the matching mechanism: either fixed-pairs matching or random matching. Unlike most 

earlier investigations of the effects of the matching mechanism, subjects in our experiment play 

under limited information. They are never shown any game’s payoff matrix, and while they receive 

information about their own payoffs in the end-of-round feedback, they never receive information 

about opponent payoffs. Besides ameliorating any effects of subjects’ other-regarding preferences, 

our design serves to isolate the effect of the matching mechanism on learning, by limiting the 

effects of other factors that affect behavior, such as signaling or reputation building.6  

In the experiment, we find sizable and systematic differences in behavior between fixed pairs 

and random matching. Outcomes are typically better under fixed pairs, as cooperative choices are 

more likely. However, the opposite can happen (as in our Coordination Game), when fixed pairs 

leads some pairs of subjects to become “stuck” on an inefficient equilibrium. We typically find 

faster convergence to pure-strategy play under fixed pairs, with the exception of Prisoners’ 

Dilemma. Treatment effects are small to nonexistent in early rounds, but grow over time, and are 

not only visible in summary statistics, but confirmed by both non-parametric tests and parametric 

regressions. As noted in Section 2.1, the literature is fairly evenly split regarding whether the 

matching mechanism matters in limited-information settings, so given our results, it is fair to say 

that the preponderance of evidence is now in favor of the matching mechanism having an effect.  

Our results can—to a fair degree—be explained by two distinct properties of fixed pairs 

relative to random matching. First, learning about opponent behavior is a simpler task when there 

is only one potential opponent (fixed-pairs matching) than when there are multiple potential 

opponents (random matching). This greater simplicity increases the likelihood of faster 

convergence to a Nash equilibrium under fixed pairs, as observed in most of the games. Second, 

groups of size two (fixed pairs) are more likely to show between-group heterogeneity in within-

group average behavior than larger groups (random matching). When a game has multiple 

equilibria, the increased heterogeneity can lead to different groups converging to different action 

pairs, with the implication that some groups become stuck on inefficient equilibria. Indeed, of the 

games with multiple pure-strategy Nash equilibria, all five saw different pairs in the F treatment 

converging to different equilibria, but only two saw different sessions in the R treatment reaching 

different equilibria.  

Our limited-information design was intended to minimize the effects of factors other than 

learning, in contrast to previous tests of matching mechanisms (see Section 2.1) that used 

complete-information designs. As a result, any differences between our results and those from 

complete-information experiments are likely to be due to these other factors. Some of our results 

(e.g., usually faster convergence to pure-strategy play under fixed pairs) have counterparts in 

complete-information experiments. However, our finding that the possibility of pairs becoming 
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stuck on inefficient equilibria can lead to worse outcomes under fixed pairs than under random 

matching is generally not observed under complete information. While researchers have found that 

behavior in complete-information experiments can also be sensitive to early-round outcomes (Van 

Huyck et al., 1990), the usual consequence is that some subjects under fixed pairs use early rounds 

to signal cooperative actions (Clark and Sefton, 2001), improving outcomes relative to random-

matching treatments, where incentives for such signaling are much weaker. Under limited payoff 

information, subjects cannot be confident that their opponents will successfully interpret signals of 

cooperative actions, making such signaling more difficult and less likely to be effective, leading to 

the possibility of worse outcomes under fixed pairs. 

Though our main result involves a comparison of learning between two matching 

mechanisms, we note also that there was a general tendency under both mechanisms for play to 

move toward equilibrium. This convergence despite limited payoff information is consistent with 

similar results in the literature (Cox et al., 2001; Oechssler and Schipper, 2003; Shachat and 

Walker, 2004). We acknowledge, however, that our setting—with subjects playing symmetric 2x2 

games with feedback including the opponent action and the own payoff—was especially conducive 

to subjects’ gaining understanding of the strategic environment. 

The most notable puzzle in our results comes from the Prisoners’ Dilemma, where there was 

actually slower convergence to equilibrium under fixed pairs than under random matching. Figure 

2 showed a persistent, non-negligible fraction of (C,C) outcomes, which in a complete-information 

setting would suggest some combination of social preferences or supergame behavior. However, 

our experiment was designed with limited information in order to avoid these possibilities, so it is 

unclear why there should be so many cooperative action choices.7 

A few other remarks are warranted. First, we wish to encourage more work on this topic. We 

consider a study of the two most widely-used matching mechanisms in six fairly well-known 

games to be good progress toward understanding the effect of matching mechanism on learning but 

there are other matching mechanisms, alternative implementations of limited information, and 

countless other games that could be studied. Additionally, our study is idiosyncratic in some ways. 

With 6 games varied within-subject, we could not use all 6!=720 possible orderings; using only 

three leaves open the risk of order effects (i.e., behavior depending on what games were previously 

played, and differently under fixed pairs versus random matching). Future work might use fewer 

games per subject and all possible orderings, or only one game per subject, removing the need for 

variation of orderings entirely. Our study also had a high fixed payment to subjects relative to the 

variable payments. Since learning can be sensitive to stake sizes (e.g., Slonim and Roth, 1998), 

researchers may wish to use higher variable stakes to test the robustness of our conclusions. 

Finally, our use of symmetric games made it possible for subjects who figured out their own 
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payoffs to make (correct) inferences about opponent payoffs; future work might focus on 

asymmetric games, so that guessing opponent payoffs would be much more difficult. 

Second, our results have implications for the design of learning models. As discussed in the 

introduction, a successful model of learning ought to be able to predict the differences in play seen 

in our results. We would welcome further research that examines the ability of learning models to 

predict the differences between fixed pairs and random matching that we observed.8 

Third, since the evolution of behavior over time is sensitive to the matching mechanism, we 

suggest that care should be taken whenever drawing conclusions based on data using only one 

matching mechanism. In cases where the only effect is on the speed of convergence, qualitative 

conclusions ought to be fairly robust. However, we’ve seen that the matching mechanism can have 

an effect on the outcome to which behavior converges, so that conclusions about equilibrium 

selection based on only one mechanism may be misleading. We are not arguing that all 

experiments should involve multiple treatments with varying matching mechanisms, as we 

recognize that experimental sessions are costly, and adding treatments with other matching 

mechanisms will generally imply a sacrifice of other potential design treatments. However, a 

possible compromise might be the use of additional pilot sessions involving different matching 

mechanisms, in order to assess the robustness of results to the mechanism used.  
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 Table 1: Characteristics of Nash equilibrium play 

Game Strategy pair Prob(C choice) Game Strategy pair Prob(C choice) 

 

CG 

 

(1, 1) 

(0, 0) 

(1/3, 1/3) 

1.000 

0.000 

0.333 

PD (0, 0) 0.000 

 

BoS 

 

(1,0) 

(0,1) 

(3/8, 3/8) 

0.500 

0.500 

0.375 

SHH, 

SHM, 

SHL 

(1, 1) 

(0, 0) 

(2/3, 2/3) 

1.000 

0.000 

0.667 

 

 

 

 

Table 2: Observed C choice frequencies from experiment 

Game Rounds F treatment R treatment 

 

CG 

 

1-5 

36-40 

All 

0.533 

0.789 

0.684 

0.530 

0.891 

0.750 

 

BoS 

 

1-5 

36-40 

All 

0.454 

0.494** 

0.466*** 

0.463 

0.441 

0.431 

 

PD 

 

1-5 

36-40 

All 

0.454 

0.206* 

0.290** 

0.424 

0.041 

0.126 

 

SHH 

 

1-5 

36-40 

All 

0.454 

0.392*** 

0.404*** 

0.478 

0.085 

0.203 

 

SHM 

 

1-5 

36-40 

All 

0.421 

0.457** 

0.446** 

0.483 

0.033 

0.125 

 

SHL 

 

1-5 

36-40 

All 

0.519 

0.784 

0.746 

0.511 

0.461 

0.499 
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Table 3: Probit estimated marginal effects and std. errors (dependent variable = C choice; N=9126) 

  

 CG BoS PD SHH SHM SHL 

F treatment −0.063** 
(0.027) 

0.028 
(0.047) 

0.100*** 
(0.019) 

0.127*** 
(0.035) 

0.240*** 
(0.028) 

0.267*** 
(0.035) 

Round 0.007*** 
(0.001) 

0.002*** 
(0.001) 

−0.004*** 
(0.000) 

−0.004*** 
(0.001) 

−0.004*** 
(0.001) 

0.001 
(0.001) 

Session size −0.003 
(0.003) 

0.000 
(0.005) 

0.003 
(0.002) 

−0.003 
(0.003) 

−0.001 
(0.002) 

0.003 
(0.003) 

MLH −0.040 
(0.032) 

−0.021 
(0.054) 

−0.022 
(0.018) 

−0.114*** 
(0.032) 

−0.064*** 
(0.021) 

−0.162*** 
(0.043) 

LHM −0.033 
(0.034) 

0.003 
(0.057) 

0.005 
(0.022) 

−0.109*** 
(0.035) 

0.050* 
(0.029) 

−0.041 
(0.041) 

CD −0.113*** 
(0.025) 

−0.010 
(0.043) 

0.033** 
(0.016) 

0.050 
(0.031) 

−0.012 
(0.020) 

−0.025 
(0.031) 

Previous C choice 0.139*** 
(0.013) 

0.281*** 
(0.015) 

0.220*** 
(0.020) 

0.304*** 
(0.022) 

0.229*** 
(0.022) 

0.281*** 
(0.017) 

Opp. prev. C choice 0.134*** 
(0.013) 

−0.313*** 
(0.015) 

0.034*** 
(0.011) 

0.242*** 
(0.021) 

0.210*** 
(0.022) 

0.362*** 
(0.017) 

Pseudo-R2 0.11 0.10 0.21 0.20 0.28 0.18 

* (**,***): Coefficient is significantly different from zero at the 10% (5%, 1%) level. 
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Appendix A: instructions from the experiment

Below is a annotated translation of the instructions given to subjects in this experiment. Copies of the

actual instructions (in Japanese) are available from the corresponding author upon request.

1 Introduction

Thank you for your participation in an experiment in the economics of decision-making. If you follow these

instructions carefully and make good decisions you might earn a considerable amount of money that will

be paid to you in cash at the end of the session.

2 Sequence of Play in a Round

This experimental session consists of six different games. Each game consists of forty rounds. At the start

of each game, you will be randomly assigned a player type, either “row player” or “column player.” Your

type will not change during the course of game. In each game of this experiment you will be randomly

matched to a player of the opposite type. You will be matched with a different player in every round [every

fortieth round in the F treatment] of a game. We will refer to the person you are paired with in a round

as your “partner.” Your score in each round will depend on your choice and the choice of your partner in

that round. You will not know the identity of your partner in any round, even after the end of the session.

• At the beginning of each game, the computer program randomly matches each player to a partner.

• You and your partner play the game. Figure 4 is displayed on your screen. If you are a row player,

you choose which row of the payoff table to play, R1 or R2. If you are a column player, you choose

which column of the payoff table to play, C1 or C2.

• After all players have chosen actions, your action, your partner’s action, and your payoff or score are

displayed. Your score is determined by your action and the action of your partner according to the

given payoff table.

• [This part is replaced according to the treatment.]

– R treatment: Provided that the last round of the game has not been reached, a new round of

the same game will then begin. You will be matched with a different partner in the new round.

– F treatment: Provided that the last round of the game has not been reached, a new round of

the same game will then begin. You will be matched with the same partner in the new round.

Nevertheless, at every forty rounds, your partner and the payoff table will be changed.

• Notice that you must not record any results of the games. If the experimenter find you are

recording them, you cannot continue your experiment. In that case, you will not be paid for this

experiment.

[Figure 4 about here]



3 The payoff tables

The payoff table for each game you play will not be shown on your computer screen. However, let us

explain the payoff table to support your decision-making. In every round of a game, both you and your

partner have a choice between two possible actions. If you are designated as the row player, you must

choose between actions R1 and R2. If you are designated as the column player, you must choose between

actions C1 and C2. Your action, together with the action chosen by your partner, determines one of the

four boxes in the payoff table. In each box, the first number represents your score and the second number

represents your partner’s score.

4 Payments

If you complete this experiment, the computer screen will reveal your score, the round that you got the

score, and the payment you obtain. The round will be randomly chosen from all rounds you played. The

payment will be calculated from your score as 200 yen for each point in that round. In addition, you will

be paid a show-up fee of 3000 yen.

Are there any questions before we begin?



Figure 4: The screen when you are a column player. (The payoff table on the left side will not be shown)



Appendix B: Session information 

 

Table B1: Session information 

 

 

Treatments: F=fixed pairs, R=random matching. 

SH orderings: second game played, fourth game played, sixth game played (CG always first, BoS 

always third, PD always fifth). 

Action orderings: CD=C on top or left, DC=C on bottom or right. 

Session Treatment 

SH game 

ordering 

Action 

ordering 

Number of 

subjects 

Aggregate C choice frequency 

BoS CG PD SHH SHM SHL 

1 F HML CD 28 0.468 0.586 0.541 0.464 0.587 0.811 

2 R HML CD 20 0.451 0.646 0.089 0.345 0.144 0.816 

3 F HML DC 22 0.473 0.864 0.253 0.457 0.374 0.740 

4 R HML DC 20 0.415 0.798 0.149 0.264 0.135 0.470 

5 F MLH CD 16 0.459 0.502 0.283 0.391 0.177 0.703 

6 F MLH DC 6 0.467 0.912 0.012 0.350 0.058 0.662 

7 R MLH CD 14 0.427 0.836 0.150 0.186 0.071 0.155 

8 R MLH DC 10 0.425 0.672 0.152 0.088 0.135 0.190 

9 F LHM CD 10 0.475 0.688 0.170 0.570 0.605 0.930 

10 F LHM DC 18 0.474 0.704 0.204 0.339 0.636 0.642 

11 R LHM CD 26 0.420 0.731 0.124 0.152 0.124 0.338 

12 R LHM DC 18 0.450 0.814 0.111 0.126 0.131 0.851 

13 F MLH DC 26 0.456 0.679 0.226 0.295 0.416 0.731 


