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Abstract: The goal of this paper is to formulate and apply a rule for mapping between
experimental designs and learning rules. We propose the use of a hierarchy of learning
rules, with rules higher on the hierarchy possessing a greater degree of cognitive
sophistication, and suggest that the learning model with the least cognitive sophistication
should be used unless certain well-specified criteria are met for moving to a more
sophisticated model. These ideas are applied to data from limit pricing experiments
(Cooper, Garvin, and Kagel, 1996, 1997, and in preparation). We compare the abilities to
characterize the data of a reinforcement-based learning model (Roth and Erev, 1995) and
a belief-based learning model (Cooper, Garvin, and Kagel, 1996 and 1997), and find that
the belief-based model outperforms the reinforcement-based model. This is not due to
some universal superiority of belief-based learning models. Rather, the belief-based
model’s greater cognitive sophistication makes it the appropriate model for the limit

pricing data.

'We would like to thank Richard Boylan, John Duffy, Ido Erev, John Kagel, Al Roth, and Bob Slonim for their
hetnful comments.



1. Introduction

In recent years, experimental economics has witnessed a boom in papers on learning in games.
A number of authors have presented results demonstrating that learning models are able to better
characterize experimental data than more standard static approaches.? Because the focus has been on the
refutation of existing theory, a plethora of learning models has been developed with little concern for
their differing predictions. Experimental economists now need to begin sorting out among the various
learning models, and to determine some sort of mapping between games and appropriate learning
models.

In this paper, we compare the ability of several different learning models to capture the main
features of a specific experimental data set. We do not intend to conduct a horse race between the
models; although we reach strong conclusions about what model works best for the data set in question,
there is no reason to believe that this is generically the best learning model (or that any such model
exists). Instead, our goal is to present a general approach for assigning learning models to data sets, to
apply this approach to a particular data set, and to explain what the superior performance of one
particular learning model tells us about the behavior of subjects in this particular set of experiments.

We believe Occam's Razor should play a central role in determining which learning model is
applied to some particular experimental data set. Commonly employed learning models fall into a clear
hierarchy when ranked by the level of cognitive sophistication required of players. While the term
“cognitive sophistication” can be given a specific definition, as will be done in Section 5, it is best
understood in an intuitive sense: one learning rule is more cognitively sophisticated than another if it

requires an individual to use more information or make more complex calculations. Our approach to

*For examples, see Miller and Andreoni (1991), Crawford (1991, 1995), Brandts and Holt (1994), McKelvey and
Palfrey (1994, 1995), Cooper, Garvin, and Kagel (1996, 1997), Cheung and Friedman (1997), Gale, Binmore, and
Samuelson (1995), Duffy and Feltovich (1996), and Roth and Erev (1995). There also exists a broad theoretical
literature on learning. For a survey of this literature, see Fudenberg and Levine (1996). For a regularly updated list
of learning references on the Worldwide Web, see http://www.pitt.edu/~alroth/alroth.html.



mapping between learning models and experimental data sets is that a small number of learning models
should be employed, each representing a different level of cognitive sophistication. The simplest model
in terms of cognitive sophistication should be used first, and more demanding models should be
employed only as the simpler ones fail. The models to be considered and a well-specified criterion for
moving up the hierarchy should be specified defore considering any specific experiment.

Our approach differs quite significantly from the standard approach of most game theorists.
When a game theorist predicts behavior in terms of equilibrium and equilibrium refinements, he/she is
implicitly assuming that players will act with the maximum possible rationality. If the data does not
support this assumption, the model is adjusted as little as possible in order to better characterize the data.
We take an approach which is almost diametrically opposed. If a simple, cognitively undemanding
model characterizes play of a game, we stop there. For many games, simple models give us all the
insight we need into how subjects play. However, if a game has features which ex ante seem to call for
greater cognitive sophistication, and if ex post a simple model is unable to characterize the data while a
more sophisticated model can, we move up the hierarchy to more cognitively demanding models. In
other words, a more sophisticated model is employed if the simpler model fails to describe what is
actually played because it attributes too little reasoning ability to players. Instead of trying to find the
maximum amount of reasoning ability which is consistent with subject behavior, we try to find the
minimum amount of reasoning ability necessary.

It is critical that both criteria, ex ante and ex post, are fulfilled. For any data set, we can no
doubt find some way of modifying a basic learning model which results in a better fit. The goal is not
simply to find which model best fits the data, but rather to find which model best explains how subjects
might reason about a game. When a feature is added to a learning model, it should imply some
significant change in how subjects reason about games, this change should be relevant for the game in

question, and adding this feature should allow us to better explain the major qualitative features of the



data set.

To determine whether a learning model does a good job of characterizing data, our methodology
is to run simulations and then visually compare simulation output with the experimental data. This
works well for the data set in question; the data have a number of striking features, and the simulations
differ in obvious ways. An alternative methodology is the use of maximum likelihood estimation (MLE)
techniques. For example, Camerer and Ho (1997) present a general learning model for which
reinforcement-based learning and belief-based learning are special cases.’ By fitting parameters for this
model, they are able to measure whether learning in a data set more closely resembles reinforcement-
based learning, belief-based learning, or neither. We could use MLE techniques, but have chosen to not
do so. While this is partially a matter of taste, our choice is mainly driven by the goals of this paper.
Rather than trying to best fit the data, we are interested in trying to identify how much reasoning ability
is needed to characterize subject’s behavior. The models we consider represent distinctly different levels
of cognitive sophistication. By selecting one particular model, we reach clear conclusions about the
level of reasoning employed by subjects. With an MLE approach, the parameter estimates typically
don’t tell any clear story about how subjects think about the game. MLE analysis is a wonderful

quantitative tool, but it is not the best tool for answering this particular question.*

’See also Boylan and El-Gamal (1993), Holt (1993), and Mookherjee and Sopher (1997).

“Roth, Erev, Slonim, and Bereby-Meyer (1997) criticize the MLE approach on two grounds. First, the results of any
MLE are sensitive to the specification. If the model being fitted is misspecified (for example by neglecting
individual effects) the results can be wildly inaccurate. Roth er af claim that the simulation approach is less sensitive
to specification. Second, MLE picks the parameters which make the observed data the most probable. As such,
unusual events can unduly affect the estimates, and subtle trends may be missed. Roth et a/ claim that the
simulation approach does a better job of capturing the major qualitative features of data sets. Our feeling is that no
conclusive evidence exists on any of these issues, but that serious problems may exist with the MLE approach.
Since neither of us is an econometrician, we are happy to leave these difficulties to others by avoiding the MLE
approach.

The simulation approach is often criticized as encouraging an ad hoc approach in which results depend
strongly on the choice of parameters and/or specification. This is a valid criticism which can only be answered
through careful sensitivity analysis. Roth and Erev (1997) have done extensive sensitivity analysis for the Roth-
Erev model in other games, and Cooper, Garvin, and Kagel (1997) have done extensive sensitivity analysis for the
CGK model with limit pricing games. For this project, we have considered numerous specifications and parameter
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We apply our approach to data from two treatments of signaling game experiments conducted by
Cooper, Garvin, and Kagel (1996, 1997, in preparation). These treatments differ primarily in how
difficult it is for subjects to recognize the existence of dominated strategies. We consider the learning
models developed by Roth and Erev (1995) and by Cooper, Garvin, and Kagel (1996 and 1997).
(Henceforth referred to as the RE and CGK models.) These are good representatives of, respectively,
reinforcement-based learning models and belief-based learning models. These particular models are
chosen due to their previous use in exploring experimental data, but comparable conclusions can be
reached using other models from the literature with similar cognitive sophistication.

The RE model makes quite low demands on the rationality and reasoning ability of players.
Players are simply required to remember what worked well in the past, and to do it more frequently in
the future. The CGK model is more cognitively demanding. Players are explicitly required to set up a
probability distribution over opponents' actions, update their beliefs, and maximize given their beliefs.
For each model, we consider unaugmented and augmented versions. The augmented versions allow for
limited strategic foresight; some players are able to recognize their opponent’s dominated strategies, and
anticipate that these strategies will never be used. Given our preceding arguments, the RE model should
be lower in a hierarchy of learning models than the CGK model, an unaugmented version of a model
should be low than an augmented version, and there is no obvious ranking between an augmented
version of the RE model and an unaugmented version of the CGK model. These statements are indeed
true given the definition of cognitive sophistication introduced in Section S.

The unaugmented RE model is able to characterize results from one of the treatments, but does

poorly with data from the second treatment. Moreover, the unaugmented RE model is only partially able

values for our analysis. At this point in time there exists no reason to believe our results are dependent on our
choices of specification for the learning models or of parameters.

It also must be noted that we are looking at the data on an aggregate level. There is obviously a great deal
of heterogeneity among subjects. While we may capture the level of cognitive sophistication for an average subject,
there will certainly be subjects who are either more or less sophisticated.
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to capture differences between the two treatments, and does so for reasons which cannot possibly be
affecting the experimental data. Augmenting the RE model does not substantially improve its
performance. The unaugmented CGK model also characterizes the experimental data quite poorly.
However, the augmented CGK model captures the major features of subject behavior in both treatments,
and captures differences between data from the two treatments.

The superior performance of the augmented CGK model in characterizing the limit pricing data
is driven by two factors closely related to cognitive sophistication. First, the dynamics in the limit
pricing game data are driven by sharp changes in behavior. The CGK model includes maximization;
small differences in payoffs between strategies can yield large changes in behavior. In contrast, the RE
model does not include maximization. The relative frequency of strategies is determined by the relative
accumulated payoffs for the strategies, and small differences in payoffs between strategies can only
slowly lead to changes in behavior. Therefore, the CGK model captures the large swings in behavior
observed in the limit pricing game data better than either version of the RE model.

Second, a key role is played in the limit pricing game by dominated strategies. In particular, the
recognition of dominated strategies plays a key role in determining whether certain strategies will induce
entry. Without augmentation, the CGK model treats dominated strategies identically in the two
treatments, and is therefore unable to capture differences between the treatments. With augmentation,
the CGK model is able to explicitly incorporate differing degrees of recognition of the dominated
strategies, and thus able to capture the differences between treatments. Augmentation does not play an
analogous role in the RE model. To get the RE model to track any of the limit pricing data, it is
necessary to include experimentation. Since players in the RE model are not optimizing,
experimentation induces persistent play of dominated strategies. This persistent play of dominated
strategies, which is never observed in the experimental data, takes on the same role as limited strategic

foresight in driving differences between treatments. Thus, augmentation is superfluous in the RE model.



We conclude that both the unaugmented CGK model, which includes maximization but not
limited strategic foresight, and the augmented RE model, which includes limited strategic foresight but
not maximization, fail to characterize the limit pricing data. Only the augmented CGK model, which
includes both maximization and limited strategic foresight, is able to do so.

We do not argue the unaugmented RE model is the "wrong" model and that the augmented CGK
model is the "right” model for describing learning. Rather, we argue that both of our criteria for moving
to a more sophisticated learning model are satisfied by the limit pricing game. Ex ante, this game evokes
a degree of cognitive sophistication which the unaugmented RE model is not designed to capture.
Dominated strategies play an obvious role in the limit pricing game, and the ability to sharply
differentiate among strategies with similar payoffs plays a more subtle role. This makes it reasonable ex
ante to move up the hierarchy, and employ the more demanding CGK model. Ex post, this move is
justified by the greater ability of the augmented CGK model to characterize the experimental data. By
using a systematic approach to assigning learning rules to experimental treatments, we can give a
coherent explanation of why this particular game should demand a more cognitively sophisticated
learning rule while other games do not.

The paper begins by presenting the limit pricing game, and summarizing the results of Cooper et
al.’s experiments with this game. We then present the alternative learning models and fit them into a
proposed hierarchy of cognitive sophistication. We demonstrate that only the augmented CGK model is

able to track the limit pricing game data. The paper concludes by discussing this result.

2. The Limit Pricing Game

The limit pricing game is loosely based on Milgrom and Roberts' (1982) model of entry limit
pricing. This model is of a two-period game involving a market with a homogeneous good and a linear

market demand curve. There are two players, a monopolist M and a (potential) entrant E. The



monopolist is either a high-cost (M,;) or low-cost (M, ) type. The probability of either type is 50%. The
monopolist observes her type before the game begins. The entrant does not know the monopolist's type,
but the probability of each type is common knowledge.

In the first period, M chooses a production level which is seen by E. E then decides whether or
not to enter in the second period. If E enters, the firms compete as Cournot oligopolists, while if E stays
out, M is an uncontested monopolist. M is always better off with no entry. Payoffs are such that if E
knew M's type, he or she would enter against M,, but stay out against M;. Since E does not know M's
type, there is an incentive for M to limit price; in other words M has an incentive to signal her type if she
is low-cost and to conceal her type if she is high-cost. Both types of signaling involve outputs above
full-information levels, and hence pricing below full-information levels.

For their experiment, Cooper et al. collapse this game into a standard signaling game by
imposing the Cournot outcome in the second stage if entry occurs, and the profit-maximizing monopoly
outcome in the second stage if no entry occurs. They also discretize the M player’s set of available first-
period actions to the set {1,2,3,4,5,6,7}. The E player's action set subject to M's choice becomes
{IN,OUT}, and payoffs are according to Tables 1 and 2. Cooper ef al. use multiple variations of the
limit pricing game, but in this paper we limit ourselves to consideration of the two most basic treatments,
the “Standard Payoff” (SP) treatment and the “Zero Anticipation” (ZA) treatment. The treatments differ
solely in the payoffs assigned to 6 and 7 for Mys. These strategies give negative payoffs in the SP
treatment and positive payoffs in the ZA treatment.

The equilibrium sets are identical for the SP and ZA treatments. There are two pure-strategy
sequential equilibria, both of which are separating equilibria. These are the Riley (1979) outcome, in
which M, chooses 2 and M, chooses 6, and an inefficient equilibrium in which M, chooses 2 and M,
chooses 7. In both of these equilibria, E chooses IN except when seeing M, s equilibrium choice. There

are also many partial-pooling (mixed-strategy) equilibria, one of which has drawing power in both the



experiments and the simulations; in this equilibrium, M, chooses 5 with probability 1, M,; chooses 5 with
probability 1/5 and 2 with probability 4/5, and E chooses IN with probability 1 after seeing anything but
5, and OUT with probability 1/9 after seeing 5. The Riley outcome is the natural equilibrium of the limit
pricing game in the sense that it is the only equilibrium which fulfills the Cho-Kreps intuitive criterion
(Cho and Kreps, 1987).

Plays of either 6 or 7 by M,,’s are strictly dominated strategies in either treatment of the limit
pricing game. These dominated strategies play a central role in our analysis of the game. If players
perform iterated removal of dominated strategies on the game, the only surviving sequential equilibrium
in the reduced game is the Riley outcome. This leads directly to the Riley outcome being the sole

equilibrium to pass the intuitive criterion.

3. Experimental Results

Cooper et al. (1997) conducted two inexperienced-subject sessions with the SP treatment, one
lasting 24 periods and one lasting 36 periods, using the payoffs in Tables 1 and 2. An additional four
inexperienced-subject SP sessions lasting 36 periods were conducted in Cooper et al. (in preparation). A
notable feature of the experimental design is that players were able to observe the outcomes of all
players' games (with anonymity). Beyond this, procedures were completely standard.* Figure 1a
reproduces pooled data from the six inexperienced subject SP sessions. We report probability
distributions over M player strategies in twelve period cycles; rounds 1 - 12 are cycle 1, rounds 13 - 24
are cycle 2 and rounds 25 - 36 are cycle 3. Entry rates are given by the numbers above the M players’
strategies. Play by M players starts off near the myopic maxima (the action an M would choose if she

did not believe that her opponent would condition his response on this action -- 4 for M, ’s and 2 for

5See Cooper et al. (1996) for details of the treatments. The treatments in Cooper ef al. (in preparation) differ only
slightly from those in Cooper ef al. (1996 and 1997), and are included to increase the sample size. See Cooper et al.

(in preparation) for details of how the treatments varied.



My’s). After a few rounds, as the entry rate on 2 rises, M,’s attempt to pool with M, ’s (even though this
game has no pooling equilibrium) by choosing 4 with greater frequency. The inexperienced-subject
sessions ended here, with 4 the modal choice by both types of M.

One session, lasting for 36 periods, was conducted with experienced subjects in Cooper et al.
(1997). Figure 1b reproduces data from this session. The qualitative features of this session have been
replicated in Cooper ef al. (in preparation) using somewhat different treatments.® At the beginning of the
experienced subject session, M,;’s start out playing 2 and 4 with approximately equal probability, and
M, ’s start out playing 4 and 6 with approximately equal probability. The high proportion of My,’s
playing 4 pushes up the entry rate on this strategy, giving M, ’s an incentive to limit price. This moves
play toward the Riley outcome. By the end of the session, 2 and 6 are the modal choices of My’s and
M, ’s, respectively.

If we consider the inexperienced- and experienced-player sessions to be two halves of a longer
session, we see players starting at their myopic maxima, attempting to pool at 4, and finally approaching
a separating equilibrium at 2 and 6. Looking at some details which play important roles in the
simulations, there are relatively few attempts by M,,’s to limit price at 3 instead of 4, and the dominated
strategies (6 and 7) are virtually never chosen by M,,’s.

Cooper et al. (1996) conducted two inexperienced subject ZA treatment sessions lasting 36
rounds. Two additional inexperienced-subject ZA sessions lasting 36 periods were conducted in Cooper
et al. (in preparation). Pooled data from these sessions are reproduced in Figure 2a. Cooper et al. (1996
and in preparation) also conducted two experienced subject ZA sessions lasting 36 rounds. Pooled data

from these sessions are reproduced in Figure 2b.

As in the SP treatment, the ZA treatment experimental data show M,;’s quickly attempting to

®In the experienced sessions from Cooper ef al. (in preparation), players played the SP treatment for the first 12 - 18
rounds. During these periods, play converges steadily to the Riley outcome. Players were then switched to an
alternative treatment of the limit pricing game to test their ability to transfer what they had learned.



pool at 4 and then gradually returning to the myopic maximum, 2. M, ’s, on the other hand, play very
differently than in the SP treatment. There is almost no play of 6, as they instead play the myopic
maximum 4 with high frequency throughout the inexperienced and experienced sessions. Attempts at
limit pricing are less frequent and occur much later in the ZA treatment than in the SP treatment. Also,
most attempts at limit pricing are choices of 5 rather than 6.

The limit pricing data are a relatively complex data set to explain. It is this complexity which
makes the limit pricing data an interesting case to consider. There exist simpler games in which similar
features play an important role; for example, subjects’ perceptions of dominated strategies play a central
role in the experiments presented by Cooper, DeJong, Forsythe, and Ross (1991). However, the
simplicity of these games make it unlikely that anything more complex than hill-climbing given by a
simple reinforcement-based model is necessary to explain the observed dynamics; any effects due to
cognitive sophistication are being observed solely in the initial distribution of strategies rather than in the
dynamics of learning. Only in a more complex setting like the limit pricing experiments is behavior
sufficiently rich that a learning model beyond simple reinforcement is likely to be required. Thus, the

limit pricing data provides an interesting case for application of our approach to selecting learning rules.

4. The Learning Models

The data from Cooper et al. (1996, 1997, and in preparation) have a clearly identifiable dynamic
pattern, and yield striking differences between the SP and ZA treatments. Using the approach to
selecting a learning rule described in the introduction and the definition of cognitive sophistication
introduced in Section 5, we will examine which of four learning models is best able to capture the
features of the experimental data. In this section, we introduce the four candidates: basic and augrpented
versions of the RE model and the CGK model.

The Basic and Augmented RE Models: The basic RE model, adapted for the limit pricing game, is as



follows: there are 16 simulated players, 8 M players and 8 E players. In round t, the i M player has
propensities q; (L) for choosing action je{1,2,...,7} in the event that she is of type M, and q; (j|H)
for choosing action j in the event that she is of type M. The i E player has propensities q; *(IN[j) and
q:,°(OUT]j) for choosing IN and OUT, respectively, after seeing his opponent choose action j. We
define the strength of propensities at an information set to be the sum of propensities for all actions at

that information set:

7
S (X) = ) g, ' (kIX) )
k=l
for the it M player, where Xe{H,L} is her type, and

S.10) = ar(HID + g5 (L) @)

for the it E player where j € {1,2,...,7} is his opponent's action. The probability of a player choosing a
particular action at a given information set is obtained by dividing the associated propensity by the
strength of propensities at that information set. For M’s,

M
q;, G 'X)
e Q)
8;: (X)

P GIX) =
for each action j € {1,2,...,7} and type X € {H,L}. An analogous formula is used for E’s. In round t,
each M is randomly assigned a type and an opponent, then chooses her action based on her round-t
probabilities (given her type). Each E then chooses his action based on his round-t probabilities (given
his opponent's action). Payoffs are determined by M’s type, M’s action, and E’s action as in Tables 1

and 2.7 Propensities are updated for each M by adding her payoff to her propensity for choosing her

‘"Because negative propensities result in probabilities outside [0,1], care must be taken in order to eliminate the
possibility of negative propensities. This has been done in these simulations by adding 292 to every payoff in the M
players' payoff table. This changes neither the game-theoretic predictions nor the CGK predictions, although it is
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realized action given her type, and for each E by adding his payoff to his propensity for choosing his
realized action given his opponent's action. Thus, if in round t, the i M player was of type X, chose
action j, and received payoff w; ™, her propensity for choosing j given that she is of type X would be

modified:

Qi GIX) = q}GI1X) + ol @)

E players' propensities are updated in a similar manner.

For our simulations, we use a variation of the basic model. This variation differs from the basic
model in that three additional parameters are present. The first is a “global experimentation” parameter
€, At the end of a round, a M player's propensity for playing the action that she chose, given her type, is
increased by the resulting payoff times 1-¢,, and her propensities for playing all other actions (again,
given her type) are increased by that payoff times €,/6. This “global experimentation” differs from the
“local experimentation” used in Roth and Erev (1995) in that the propensities for all possible actions are
increased, rather than only those neighboring the action played in the previous round. We put off until
Sections 6 discussion of why global experimentation is included in the model rather than local
experimentation or no experimentation. The second parameter added to the basic model is a "forgetting"
parameter €,: at the end of a round, all propensities are multiplied by a factor of (1 - ;). This ensures
that propensities do not become arbitrarily large with time, so that learning is still possible even after
many rounds. Finally, we added an “imitation” parameter, €;. This captures the ability of subjects in
the limit pricing experiments to observe not only their own outcomes, but also the outcomes of other
players. At the end of a round, each M’s propensity for choosing an action that was played by a different

M in the previous round is increased by the payoff that the observed M received, times €;. The primary

quite possible that experimental results based on this scaled game would differ from those in the unscaled game.



effect of adding imitation to the simulations is speeding up convergence to equilibrium.? With addition
of these three parameters, the updating rule for the unaugmented RE simulations becomes: if in round t,

the i M player was of type X, chose action j, and received payoff w; M, her propensities for the next

round are
9eGIX) = (1-6[,GIX) + d-epwly + Y gwyl,
i 5)
¢ was type X
ond chose j
4
G kIX) = (1-€lq, (k%) + 2y + ) g
6 0, (6)
¢ was type X
and chose k
for k#j, and
GnklY) = (1-e)la k[Y) + 3 eyl o
¢ was type Y
and chose k

for Y#X. Propensities for E players are updated analogously.
For each of the RE simulations, the initial strength of propensities equals 1000. Each simulation
uses the same initial propensities for both types of players, which are estimated from early-round play by

inexperienced players in the experimental sessions.” The value of &, was set to .25, the value of €, was

¥ See Roth and Erev (pp 173-176) for a description of some advantages of adding experimentation and forgetting to
the model, as well as a few disadvantages.

*We used high-cost and low-cost M player actions from rounds 1-3 of Cooper et al.'s (1996, 1997, and in
preparation) inexperienced-subject sessions to obtain My and M, initial probabilities. Data were pooled from
sessions with the SP treatment and the ZA treatment. To obtain E initial probabilities, we used E player responses
from rounds 1-3 of Cooper et al.'s inexperienced-subject sessions, and pooled some responses (as was done by Roth
and Erev (pp. 195) for their ultimatum game simulations) to ensure that initial entry rates were nonincreasing in
monopolist quantity. We did not pool data from SP treatments and ZA treatments in obtaining E initial propensities.
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set to .003, and the value of g, decreased with time according to the following formula:

g, = Max[.1 x 2199 00001) 3)
where t is the current round. Sensitivity analysis indicates that none of these parameter values are central
to our primary conclusions.

Although it is not entirely natural, the RE model can be augmented to allow for some players
possessing limited strategic foresight. We put off discussion of whether we should augment the RE
model until Section 8, and concentrate on how to augment the RE model. In doing this, it is useful to
first think about augmenting the CGK model. Because the CGK model involves optimization, players
will never choose the dominated strategies (6 or 7 for a M;;). In augmenting the CGK model to allow for
limited strategic foresight, we restrict the beliefs of E’s to put zero weight on play of 6 or 7 by My,
players. Given that E’s are always better off not entering versus a low cost monopolist, it follows from
this restriction that E’s will never enter following play of 6 or 7. Thus, limited strategic foresight could
have been modeled as a restriction on the strategies available to My’s and the strategies available to E’s.
This is the approach we follow in augmenting the RE model. In keeping with a single iteration of
elimination of dominated strategies, all M players are modified to never use the dominated strategies.
Using our preceding notation, q; M(6[H) = q; *(7[H) = 0 for all i and all t." In addition, some percentage ©
of the players possesses limited strategic foresight, and thus anticipates the elimination of dominated

strategies. Such players put zero probability on entry following play of 6 or 7 as an E. If the it E player

The first three periods were used in order to decrease the effects of random noise on initial propensities. We also
ran simulations using actions from only round 1 to obtain initial propensities and found no qualitative differences.
Using the robust rank order test (Siegel and Castellan, 1988, pp. 137-144), we found no significant differences by
either My, or M, players in rounds 1 - 3 between play in the ZA and SP treatments. Simulations which did not pool
M data from the two treatments in forming initial propensities do not yield qualitatively different results. We did
find a significant difference for E’s in rounds [-3 between play in the ZA and SP treatments (at the 5% level).
Pooling E data from the two treatments in calculating initial propensities has little effect on simulation outcomes.

®We could have made a less extreme modification to the RE model by only restricting some (rather than all) M
players to not use 6 or 7 as high cost types. The affect of making such an adjustment is discussed below.



has limited strategic foresight, q; 5(IN|6) = g, 5(IN|7) = 0 for all t. This is consistent with the E player
anticipating that no My, will ever use 6 or 7, making entry on 6 or 7 a dominated strategy.

The Basic and Augmented CGK Models: Cooper et al. (1996 and 1997) simulate a population playing
the limit pricing game using a learning model loosely based on fictitious play. As such, the CGK model
falls under the rubric of belief-based learning models. We provide only an abbreviated description of the
CGK model; for more detail, see Cooper et al. (1997). There are 20 M players and 20 E players in the
population." At time t, the i® M player has conjectures (beliefs) regarding the likelihood with which her
opponent will enter subject to M's action. Her conjectures are represented by a 7 x 2 matrix of weights
viu(t), where j is her action and k € {1,2} is her opponent's response; v;;,M(t) is the weight she places on
her opponent entering after she plays j, and v;,"(t) is the weight she places on her opponent staying out
after she plays j. The probability she assigns to her opponent entering after play of j, p;,™(t), is given by
(1). The probability she assigns to her opponent staying out after play of j, p,"(t), equals 1 - py;M(t).

. Mt
Y O ©

v () + v M)

Py () =

In round t, the i E player has beliefs regarding the likelihood that his opponent is a high- or low-
cost type conditional on her output level. These beliefs are represented by a 7 x 2 matrix of weights
v 5(t), where j is his opponent's action and k is her type; v;;,5(t) is the weight he or she places on his
opponent being high-cost conditional on her choosing action j, and v;;,%(t) is the weight he or she places

on his opponent being low-cost conditional on her choosing action j. Probabilities p,*(t) and py,(t) are

calculated analogously to those for M players.

In the CGK simulations, weights for the first round are assigned to each M player and each E

""In the actual experiments, there are fewer players and players rotate between roles. Adding these features to the
CGK simulations has no significant effect on the results.



player randomly, with the initial distribution of weights fitted to the first period data. The procedure for
fitting this distribution and generating first round weights is given in Cooper ef al. (1997). We have
followed this procedure exactly using data from Cooper et al. (1996, 1997, and in preparation). At the
beginning of round 1, each M player is assigned a type (there is a 50-50 chance of either type being
chosen). Each M player chooses the action that maximizes her expected payoff given her type and her
conjectures about her opponent's response. The E players are randomly matched to the M players. Each
E player observes his opponent's action, and then chooses the response that maximizes his expected
payoff given his beliefs and his opponent's action. At the end of round 1, players update their
expectations by adding 1 to the appropriate element of their weight matrix for each action observed. For
example, suppose an M player was matched to an E player, the M player was low-cost and played 4, and
the E player responded with OUT. Then v,,M(2)=v,;,;"(1)+1 and v;;,5(2)=v,;,5(1)+1 for all i € {1, ..., 20},
and probabilities are recalculated accordingly. Note that all players observe each action taken, so all
players update even if they were not directly involved in the pairing. This process is repeated, generally
for 60 rounds, with new types and pairings being generated each round and beliefs updated at the end of
each round.

Thus far, we have described the unaugmented CGK model. The CGK model is augmented by
adding an additional iteration of elimination of dominated strategies. Due to the use of optimization,
My’s never use the dominated strategies in the unaugmented CGK model. This gives a single iteration of
removal of dominated strategies. What augmentation adds is that (some) E’s recognize that My’s have
two dominated strategies, anticipate that these strategies will never be used, and modify their strategies
accordingly. (We refer to this as limited strategic foresight.) These E’s realize that play of either 6 or 7
could only be coming from an M, , and thus play of IN following either 6 or 7 is a strictly dominated
strategy. Since the unaugmented CGK model explicitly contains players' conjectures about the behavior

of their opponents, we incorporate the ability of some players to anticipate elimination of dominated



strategies into the model by having some E players' initial conjectures put no weight on play of 6 or 7 by
My’s. M players’ beliefs about the behavior of E players are not modified; this would imply an
additional iteration of removing dominated strategies.

In keeping with this analysis, Cooper et al. (1997) add an additional parameter to their model,
giving the augmented CGK model. They assume that some proportion of E players, =, recognize that if
6 or 7 is played, it must have been played by an M type, and thus do not enter; the parameter 7 in the
augmented RE model is analogous to the parameter 7 in the augmented CGK model. In our notation, if
the i* E player has limited strategic foresight, v,s,%(t)=v;;,%(t)=0 for all t. The augmented model with © =

0 is identical to the unaugmented model.

5. Cognitive Sophistication and a Hierarchy of Learning Rules

Our approach to selecting a learning requires a ranking of the four models introduced in Section
4 by “cognitive sophistication.” In the introduction, this term was loosely defined. The goal of the
current section is to give a more concrete definition of what it means for one learning rule to be more
cognitively sophisticated than another. The approach we take here is non-technical in nature,
concentrating on examples to illustrate our meaning. While the same concepts can be discussed in a
more technical setting, doing so adds a great deal of notation for little gain in understanding."

Loosely, a learning rule is defined as a function mapping an individual’s observed history of
play into his/her current action. Virtually the only restriction implied by this definition is that an
individual’s behavior cannot be conditioned on actions or outcomes not observed by that individual.

In general, any learning rule which requires players to perform a more complex task should have

higher cognitive sophistication. The ideal definition of cognitive sophistication would capture all

"For a technical treatment, see Cooper (1995).



possible dimensions of complexity, including what types of information and calculations were required
to implement a learning rule. Such an all-encompassing definition is well beyond what is needed for our
narrow purposes. We do not attempt to give a universal definition of cognitive sophistication, but
instead concentrate on two factors which are likely to be central considerations for learning in a game-
theoretic setting: the amount of information a player needs to know about his/her opponent to implement
a rule, and whether or not a player needs to be able to solve an optimization problem. Suppose we are
considering two learning rules, Rule A and Rule B. We apply the following definition.
Definition 1: Rule A is higher in the hierarchy of cognitive sophistication than Rule B if either of the
following two criteria holds.
Criterion 1)  Rule A requires more information about the opposing player than Rule B for
implementation. If Rule B requires optimization, Rule A also requires optimization.
Criterion2)  Rule A requires at least as much information about the opposing player as Rule B for
implementation. Rule A requires optimization while Rule B does not.

The application of Definition 1 is best illustrated by ranking the learning rules we have already
defined. The unaugmented RE model is at the very bottom of our hierarchy of cognitive sophistication.
Implementing this rule does not require any information about the opposing player -- players need not
even realize that a game is being played. The only necessary information is the history of strategies
played and realized payoffs. Optimization is not used. The unaugmented CGK model requires
optimization and requires information about what strategies the opposing players have used. By either
Criterion 1 or Criterion 2, the unaugmented CGK model is more cognitively sophisticated than the
unaugmented RE model.

Ordering the augmented and unaugmented RE models requires a careful definition of
augmentation. Cognitive sophistication can only make meaningful distinctions among learning rules if

learning rules are defined in ways which are not game-specific. For example, an important feature of the



augmented RE model is that it implicitly requires some E’s to possess limited strategic foresight; these
players recognize that play of 6 or 7 is dominated for My’s, and thus could only come from M_’s. Ona
more concrete level, some E’s never enter following play of 6 or 7. This augmentation could be made in
a very game-specific manner, without implying any rationale behind the elimination of certain strategies
or that play for any other game is altered. Thus, we could define the augmented RE model to be identical
to the unaugmented RE model except that in the limit pricing game, for some unmodeled reason, 6 and 7
are never played by M’s and some E’s never enter on these strategies. While these happen to be the
strategies which a player with limited strategic foresight would eliminate, a player need not know which
strategies are dominated for his/her opponent in order to follow a learning rule which eliminates play of
some strategies. Augmenting the RE model in this manner does not imply any increase in cognitive
sophistication over the unaugmented RE model, nor does it imply any change in behavior for other
games. We prefer to think of a learning rule as giving an algorithm for behavior in any game; a learning
rule which is an arbitrarily different rule for every game is not really a rule at all. This does not mean
that different games cannot elicit different learning rules, but rather that defining learning rules and
assigning rules to specific games are two separate issues. Learning rules are defined for all games, but
behavior in specific games may only be consistent with some learning rules. Returning to the augmented
RE model, a more general method of augmentation than simply eliminating specific strategies in the
limit pricing game is to specify that some players never use strategies removed by iterated elimination of
dominated strategies in any game. Making this modification has implications not just for how the limit
pricing game will be played, but how all games will be played. For the limit pricing game, this
augmentation implies “never enter following 6 or 7 in the limit-pricing game,” as did the less general
augmentation proposed previously However, it also implies an increased level of cognitive
sophistication -- eliminating dominated strategies requires knowledge of the opposing player’s payoffs

(and implies knowledge that the opposing player is rational). Thus, the augmented RE model is more

10



cognitively sophisticated than the unaugmented RE model.

It is not possible to order the cognitive sophistication of the unaugmented CGK model and the
augmented RE model. The unaugmented CGK model requires optimization which the augmented RE
model does not, while the augmented RE model requires information about the opposing player’s payoffs
(to determine which strategies are dominated) which the unaugmented CGK model does not.

The augmented CGK model is the most cognitively sophisticated of the models we consider. It
requires optimization, which the augmented RE model does not, and knowledge of which strategies are
dominated for the opposing player, which the unaugmented CGK model does not. The augmented CGK
model is thus more cognitively sophisticated than the augmented RE model by Criterion 2 and more
cognitively sophisticated than the unaugmented CGK model by Criterion 1.

These criteria may seem a bit arbitrary. For example, consider ranking the unaugmented CGK
and RE models. The first is more cognitively sophisticated than the second by both Criterion 1 and
Criterion 2, yet it can be argued that these rules barely differ in the amount of information required.
While the unaugmented RE model uses no information about the opposing player, it does require the
collection of information about one’s own history of play which is not required for the unaugmented
CGK model. This gathering of information in not used in our ranking the models. The inclusion of one
type of information and not the other is actually not arbitrary, but instead reflects our basic approach; we
are not trying to find all differences between learning models, but rather to find those which imply a
greater degree of reasoning ability. We argue that information about one’s opponent is more relevant for
determining cognitive sophistication. A key element of game theory is that players anticipate their
opponents’ actions and respond accordingly. In other words, a player realizes he/she is playing a game
in which his/her payoffs are not determined solely by their own actions, but by an interaction between
his/her choice and the choices of others. A critical step in making this leap from solipsism is gathering

some information about one’s opponent. Thus, we rank rules only on the amount of information
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gathered about other players.

Our criteria only give a weak ordering over the set of learning rules. We are agnostic as to
whether optimization or greater information requirements is more important in determining the level of

cognitive sophistication. Any answer is likely to depend on the situation being considered as well as

personal taste.

6. Simulation Results -- The Unaugmented Roth-Erev Model

We begin the selection process by considering the least cognitively sophisticated of our four
models, the unaugmented RE model. This section shows that while the unaugmented RE model
characterizes broad features of the SP treatment data, it fails to capture some of the finer details and,
more importantly, does a poor job of characterizing data from the ZA treatment.

Figure 3 gives a summary of results from 50 simulations of the SP treatment with the
unaugmented RE model. We report probability distributions over strategies in periods 0, 1000, 10,000,
and 50,000, with entry rates given by the numbers above the M players’ strategies. There is little
variation in results across simulations, so these graphs accurately depict play in a typical simulation.

On a broad level, the unaugmented RE simulations resemble the experimental results from the
SP treatment. In particular, the simulations exhibit the emergence of limit pricing at 6 by M, ’s seen in
the experimental data. The driving force is the same as in the experimental data: M,’s limit price at 3
and 4 in response to high initial entry rates on 1 and 2. The entry rates on 3 and 4 (and to a lesser extent
5) rise in response to this shift by M,,’s. This increase in entry rates pushes the M, ’s to limit price at 6.
The simulations converge to the Riley outcome, consistent with the experimental data.

While the unaugmented RE simulations capture the broad features of the experimental data,
some of the finer details are substantially different. First, the intermediate pooling stage is relatively

weak. While there is substantial movement toward 4, play of the myopic maximum, 2, remains the



modal choice of M,;’s in period 1000, and 3 is played with virtually the same frequency as 4. This occurs
even though 4 is the best response for My’s in period 1000, given the play of E’s. The unaugmented RE
simulations also show large amounts of play of 7 by M, players and 6 and 7 by M, players, strategies
which are virtually never observed in the experiments.”

These problems highlight one of the great weaknesses (and strengths) of the RE model -- it does
not contain optimization. Strategies which are second or third best on a consistent basis can be played
quite frequently, as long as they aren't too much worse than the expected payoff maximizing action.
Thus, play of 3, 6, and 7 by My,’s and 7 by M, ’s persists even though these strategies are rarely optimal.
The CGK model, with optimization, is more sensitive to small differences in payoffs. Turning to the ZA
treatment, this difference between the two models plays a critical role.

We ran 50 unaugmented RE simulations with the ZA treatment. These simulations converge to a
variety of final outcomes. Of the 50 simulations, 9 converge to the Riley outcome and 20 to converge to
the partial pooling equilibrium discussed in Section 2. The 21 remaining simulations do not converge to
any equilibrium; rather, they appear to converge to myopic maximum play (that is, My,’s play 2 and M, ’s
play 4)."* Figures 4, 5, and 6 show probability distributions of M player strategies in periods 0, 1000,

10,000, and 50,000, averaged over the simulations that converged to myopic-maximum play, the mixed-

“The RE simulations are very slow to converge to equilibrium, much slower than, for example, ultimatum game
simulations. (Ultimatum game simulations typically converge to a Nash equilibrium within 300 rounds, while the
limit pricing simulations take in excess of 10,000 rounds.) While this is curious, it is not in itself great grounds for
concern. Changing parameter values can have dramatic impact on the speed of convergence -- the correct
parameters for the ultimatum game may simply be very different then those for the limit pricing game.

“Because of the nature of the RE model and the specific parameters used, true convergence to myopic-maximum
play (or in fact, any non-Nash equilibrium) is a zero-probability event. However, it is possible for simulations to
remain close to this outcome for arbitrarily long lengths of time. We took one simulation that went to myopic
maximum play and ran it for 500,000 periods, and there was no apparent movement away from myopic-maximum
play. The limit pricing game has a mixed strategy equilibrium in which M, ’s always choose 4, My,’s choose 4 with
probability 1/5 and 2 with probability 4/5, and E’s enter always on everything but 4 and with probability 20/23 on 4.
It can be shown that the simulations which end with myopic maximum play will, with very high probability,
eventually converge to this mixed strategy equilibrium.
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strategy equilibrium, and the Riley outcome, respectively. Entry rates are given by the numbers above
the M players’ strategies.

It is only after period 10,000 that the ZA simulations begin to diverge significantly from each
other en route to either the myopic maximum outcome, partial pooling equilibrium, or Riley outcome.
These different outcomes are driven by subtle differences in the simulations which begin to emerge as
early as round 1000. At this point, the simulations which eventually converge to myopic maximum play
show relatively little limit pricing by M, ’s, especially at 5. Even though 6 and 7 are dominated strategies
for My;’s, global experimentation induces play of these actions in the unaugmented RE model. Because
the payoffs to My’s on 6 and 7 are not much lower than the payoffs from undominated strategies, play of
6 and 7 by M,;’s build up to significant percentages in round 1000, almost as high as play of 5 by M,;’s
(5.1%, 4.5%, and 4.0% on 5, 6 and 7 respectively). The high percentages of play of 5, 6, and 7 by M,;’s
(compared to 11.9%, 7.9%, and 6.8% for M, ’s) make entry a best response to these output levels. In
simulations which converge to myopic maximum play, the relatively low amount of limit pricing leads to
virtually 100% entry on 5, 6, and 7 by round 10,000. This pushes play toward the myopic maxima. In
simulations which go to the partial pooling equilibrium or the Riley outcome, there is enough play of 5
and 6 by M, players to keep the entry rates below 100% following these actions. Which equilibrium
emerges depends on small differences in how frequently M, ’s play these strategies, and hence on the
entry rates. Thus, very small differences in entry rates which only emerge around round 10,000 are
driving the equilibrium selection in the unaugmented RE model.

On a broad level, the unaugmented RE model does a mixed job of characterizing the data in the
ZA treatment. It does capture the most important differences between the SP and ZA treatments.
Comparing experimental data for M, ’s from the ZA and SP treatments, there is less limit pricing in the
ZA treatment at any point in time, and relatively more play of 5 versus 6. While play by M, ’s in the first

1000 periods of the ZA simulations is similar to play in the SP simulations, this breaks down between
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period 1000 and period 10,000. M_’s in the SP treatment begin to limit price extensively, with 6 being
the most frequently chosen strategy by period 10,000. In contrast, play of 4 is still the modal choice in
period 10,000 for M, ’s in the ZA treatment, with 5, 6, and 7 each being played with decreasing
frequency. While it is mildly disturbing that differences in rates of limit pricing take such a long time to
develop, the differences are eventually quite strong, as in the experimental data. Other aspects of the
simulations are less consistent with the experimental data. It is troubling that such a high percentage of
the simulations go to the myopic maximum. Nothing resembling this has ever been observed in the data,
and it strains credulity to state that such a pathological outcome could actually occur.'” Looking at the
play of E’s raises another disturbing point. In the experimental data, the ZA treatment yields somewhat
higher entry rates of 5 and substantially higher entry rates on 6 than the SP treatment. This is borne out
in the RE simulations to an extreme -- the almost 100% entry rates observed on these strategies by round
10,000 resemble nothing seen in the experiments. Finally, as in the SP treatment, we observe that the
intermediate pooling stage is relatively weak with frequent play of 3 rather than 4 by My’s.

These anomalies follow again from the lack of optimization in the RE model. Without
optimization, there is no sharp switch by My’s from 2 to 4 and there is persistent experimentation by
M,,’s with 6 and 7. Given that pooling by M,;’s is relatively weak, M, ’s are slow to limit price at 5, 6,
and 7. Combined with extensive use of these strategies by M,,’s, this leads to the surprisingly high entry
rates on 5, 6, and 7. When these entry rates are exceptionally high, the myopic maximum emerges in the
long run.

Under closer scrutiny, the unaugmented RE simulations characterize the experimental data quite
poorly. This is especially clear when the features which drive differences between SP and ZA

simulations are examined. The unaugmented RE simulations capture the lower rate of limit pricing in

'"Making the global experimentation parameter die out more slowly reduces, but does not eliminate, the likelihood
of simulated play becoming “stuck” at myopic maximum play.

~ A



$¢
‘W J9A0 35EI0U] O} SPUBLLIIP
J0j Aduapua) ‘Aure Ji ‘o] 1 9594 YOIy Ul ‘S)[nsal oureS WNjeWN|n PIEPUR)S 0) JSELUOD payJew ur spueys Siy[ ‘sum
31 JO %06 1240 paydadde ale asay) pue ‘yunowre 3|qissod 1531e| 2y} 10§ 218 SPUBWISP JO SPNYI-OM] Inoqe ‘00007
pouad £q pue ‘aum JaA0 Ajipeass asealour spuewsq ‘spouad 9000z 10J (50" Jo 1ajawered uonwudWLIAAXS [BI0]
e asn A1) 60° Jo sasowered uoneuswiLiadxa [8qo[S € yiim Suofe ‘(erep uBdLIAWY WO paleuniss sanisuadoad jepiun
‘100'=¢ ‘0=1) A213 pue 10y jo sizraurered s Suisn suonejnwis sured wnjewn)n unl SAeY A 31U} J0U ST Sy}
“JOASMOH °PILLIOM SS3] 3q PJNOM am ‘sjuswLadXa [[B U1 BiEp ay) paziisjoeIeyd 1533q uoneudwLadxa 1eq0[3 J,,

PIN0d am J1 o, "AJusnf 03 3ynoyyip st a3ueyod siy ‘vonejuswiniadxs [eso] 03 pasoddo se uoneuowIddxe
1eqo|3 a1es2uad 03 Jy3no awed Juroud ywn ay; ey sup xa aaat[aq 0) UOSEII |BII OU sI a1ay)
oulS “uonedlIsads ay) JO S[1LIAP 03 2ANISUIS 05 SI ejep Surowd Jwi| sy SZLIANORIRYD 0) Anjiqe s, japows
Y 3ys 1ey) swosaqnon si 3] “pasn st uolejuawLIadxa [8qO|S ueyy JoYIRI [BI0] JI JONEIM UDAS ST 9TB)S
3uijood ajerpounIajul sy “JSA0IOIN 00005 poriad ur usas s, T Aq £ pue ¢ Jo Aepd aarsuaixa Jumqryxs
peajsul ‘awodino A3[1y Y} 0) 331340 J0u s30p Ae[d ‘uonejuswiiadxa [es0] YA "pakojdws Ajpusoal
Jsow auo Y3 0} Juadelpe saidajens s1oapye Ajuo uoneluawLIadXa YdIYM Ul ‘A3l pue 1oy Aq pakojdwa
uoneuaWLIadXa [820] aY) WOIJ SIBYIP SIY], "saiojelis s|qe|IeAR [[e JO Anpiqeqousd ayy sasearoul
uonguswLIadxa ‘uoneuswLIadxa [8qo[8 sdojdwa japow Ty oY) JO UOISIAA Iny ‘pasn uoneyudwiIdxa
Jo uLiog 3y} 0) sARIsUS ase [apow Y pajuswidneun ayy Aq pajessuss synsa1 sansod oy,
"103]J9 aAnu309 B A[jenjoe
ST1eYMm 91310U0D saxeW / pue g yim uohejuswiiadxy ‘sa1ajens asay) jo suondsoiad niatp ur sSueys
3WOs AQ USALIp 3q Isnu Jusuneal) yZ aY) ul / pue g uo s1akeid g 4q lolaeyaq ur S3ueyd oy ‘pesisuj
"syuawiadxa ay uy Jotaeyaq Suralip aq A[qissod jou pjnod yoiym suoseas 10} syuawiadxa ayy orwnw
suoljgjnwis Ty pajuswdneun ay) ‘snyl -suawieal) yZ pue 4s Junenuaisyip ur juepodun os st yolym
s. "W 4q / pue 9 jo Ae|d snojewoue ay} 03 spes] siy | ‘KjoA1suaixa pakeld aq 0 sa13arens pajeurwop
smof[e )t ‘uonreziwndo apnjsu Jou s30p [apow Ty pajuswdneun sy asnessg "sjuawiiadxs [enyoe
U Ul 243U A7jpnyaia Paatasqo st yorym Suiylowos ¢, pue 9 yuam uoneuswitadxa yuasisiad siakejd
Al £q uaaLIp sse sajer Anua 1541y asaYy) 19ASMOY “Juduean dS a3 ul e Joy31y ase / pue 9 uo Sajel

A1jua asnesaq (Juauneal) J§ aYs SNSIaA) JusWwIEaY YZ oY) Ul “Jejnoryed ui 9 Jo S3910Yod Jo pue ‘jeiausd



show that the RE model was unaffected by eliminating experimentation altogether, the natural approach
would be to simplify the model in this way. However, the need for some type of experimentation in the
RE model is highlighted by comparing the ZA and SP treatments. Without adding experimentation to
the simulations, entry rates for 6 and 7 are very low in both types of simulation, and play converges to
the Riley outcome in either case. It is only with experimentation that the unaugmented RE model is able
to track (even partially) differences between the SP and ZA treatment data. Our approach has been to
choose the formulation which gives the RE model the best chance. As noted in Cooper et al. (1997),
Appendix C, the augmented CGK model's results are robust to changes in how initial weights are

generated, weights are updated, and the addition of various noise terms."”

7. Simulation Results -- The Unaugmented CGK Model

The unaugmented RE model’s inability to characterize major features of the experimental data
suggests the need for a more cognitively sophisticated learning model. The unaugmented CGK model
uses optimization and requires information about what strategies the opposing player has used, making it
more cognitively sophisticated than the unaugmented RE model on two counts. In this section we
examine whether our ex ante and ex post criteria are met for moving between these models.'®

Good reasons exist ex ante for considering a learning model with optimization. Dominated

strategies play a central role in the limit pricing game. Eliminating dominated strategies implies that

1"The RE model is designed to incorporate the power law of practice -- learning curves become flatter over time. A
side effect of this is that for games where convergence is slow, such as the limit pricing game, changes in strategies
due to differences in payoffs are overwhelmed by changes due to experimentation. Thus, the RE model is sensitive
to how experimentation is incorporated into the model. For a detailed discussion of this issue, see Binmore and

Samuelson (1995).

"®Our material on CGK model simulations replicate results from Cooper, Garvin, and Kagel (1996, 1997, and in
progress). As such, we have kept our description of the results brief. It should be noted that the CGK model was
designed to characterize the limit pricing game data. Because of this, it would be surprising if it did not do a good
job. What is interesting is the differences between the RE and CGK model which allow the latter to outperform the

former in this case.



subjects’ are optimizing at least to the extent of not using strategies which can’t be optimal.'” More
generally, M’s have a relatively large number of strategies which are not sharply differentiated in
payoffs. To get sharp predictions about which strategy will actually be used, optimization is needed.
Since subjects tend to use only a small subset of the available strategies, a model which mimics this
feature is likely to do better than one which does not.?°

Unfortunately, the unaugmented CGK model does not fulfill our ex post condition for moving to
a more cognitively sophisticated model. Figure 7 summarizes data from 500 simulations of the SP
treatment with the unaugmented CGK model.?' Like the experiments, the simulations move at first
toward an attempt to pool at 4. Unlike the experiments, where behavior proceeds to the Riley outcome,
play in most (80%) of the simulations converges to the partial pooling equilibrium described in section 2.

The remainder converge to the Riley outcome. The unaugmented CGK model does not capture a central

feature of the SP treatment data.

8. Simulation Results -- The Augmented CGK and Augmented Roth-Erev Model
Cooper ef al. (1997) assert that experimental subjects possess a degree of cognitive
sophistication that is captured by neither unaugmented learning model. Namely, some E players are able
to recognize that play of 6 or 7 by a high-cost monopolist is strictly dominated:
“When no Es recognize the existence of dominated outcomes, there is no difference
in the way Es treat 5 or 6 initially. In the early stages of play, only low cost Ms are

observed playing 5 or 6, with 5 typically chosen more often than 6, due to its more favorable
payoff. Due to its greater initial frequency of play, Es learn that 5 represents low cost Ms

Yaw Nyarko shows that any learning model which does not allow play of dominated strategies can be rewritten as
a Bayesian model with maximization versus some prior beliefs (personal conversation).

®Considering the other players’ behavior is justified ex ante, since this is the essence of playing a game.

*'We typically ran 500 CGK simulations in each cell, but only 50 RE simulations. This should not affect any of our
results, and merely reflects the different run times of the two types of simulation; running 500 CGK simulations
takes less time than running a single RE simulation.
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faster than they learn that 6 does. The net result is thalt Es play OUT on § earlier than on 6,

which reinforces M, s natural bias towards 5. As a result, in many simulations 6 ceases to

be played before Es learn that only low cost Ms ever choose it.”#

This is a textbook case for moving to a more cognitively sophisticated model. The limit pricing
game evokes a cognitive element which cannot be captured by the unaugmented CGK model, and the
unaugmented CGK model is unable to fully characterize the experimental results. Our ex ante criterion
for moving up the hierarchy of cognitive sophistication to the augmented CGK model is met. We now
show that the ex post criterion is also met.

Figures 8 and 9 summarize 500 simulations of the augmented CGK model with m=.5and n =
1.0 respectively for the SP treatment. Recall that the unaugmented CGK model is identical to the
augmented CGK model with = = 0. The results of the simulations show a strong dependence on =, not
only in the amount of limit pricing by M, ’s, but also the speed with which it emerges and the form which
it takes. As 7 increases, limit pricing is more prevalent and occurs sooner. Furthermore, this limit
pricing is more often accomplished by choosing 6 (as opposed to 5). This last difference has a strong
effect on which outcome is seen when convergence occurs. As previously mentioned, when &t = 0, only
20% of the simulations converge to the Riley outcome. However, when &t = 0.5, 65% of the simulations
converge to the Riley outcome, and when zt = 1.0, 89% of the simulations converge to the Riley outcome
(the rest of the simulations converge to the partial pooling equilibrium). As in the &t = 0 case, simulated
players in the w = 0.5 and 7 = 1 cases attempt to pool at 4 before eventually converging to equilibrium.

In general, the augmented CGK model with 1t = 0.5 does a good job of characterizing the main
patterns in the SP treatment experimental data. Play starts at the myopic maxima, followed by attempts
to pool at 4, and then eventual convergence to the Riley outcome. These simulations also match up well

with the details of the experimental data highlighted in Section 4 -- My’s attempt to limit price at 4 much

Z2Cooper et al. (1997) p. 14



more frequently than at 3, and there is no play of either 6 or 7 by M,;’s.

The experimental results from the ZA sessions are also consistent with predictions of the
augmented CGK model. Cooper et al. hypothesize that since the proportion of subjects with limited
strategic foresight is likely to be lower in the ZA treatment than in the SP treatment, differences in the
experimental data between these treatments should be similar to the differences between the n=0 CGK
simulations and the ©t=0.5 CGK simulations. The differences between the ZA experimental results and
the SP experimental results are indeed analogous to the difference between the =0 CGK simulations
and the ©=0.5 CGK simulations; as 7t decreases from 0.5 to 0, the likelihood of limit pricing by M,
players in the form of choices of 5 rather than 6 increases, and this limit pricing takes longer to emerge.
We therefore conclude that the augmented CGK model does a good job of characterizing data in both the
SP and ZA treatments, and captures the differences between these two treatments. Both our ex ante and
ex post criteria for moving from the unaugmented CGK model to the augmented CGK model are met.

Before we can conclude that the augmented CGK model is best suited to the limit pricing data,
the augmented RE model must be considered. Like the unaugmented CGK model, the augmented RE
model is more cognitively sophisticated than the unaugmented RE model and less cognitively
sophisticated than the augmented CGK model. If the augmented RE model is able to characterize the
major features of the data, the ex post criterion for moving to the augmented CGK model is not met.
Such a result would suggest that only limited strategic foresight, not optimization, is needed to capture
subjects’ behavior in the limit pricing game.

Note that augmenting the RE model implies a fundamental change to the model. When we refer
to limited strategic foresight, this is shorthand for a player performing two iterations of removal of
dominated strategies. Not only does the player not use any of his’her own strategies which are
dominated, but he/she also anticipates that the opposing player will never use a dominated strategy. The

second part of this statement implies that the player knows something about how the opposing player is



making choices. While this may not seem significant, it is actually a quite dramatic leap in the cognitive
sophistication of players. One of the most striking features of the CGK data is the inability of players to
anticipate their opponent’s play. Numerous subjects never choose 6 or 7 when they are high cost M’s,
and yet enter on play of 6 or 7 (recall that in the CGK design, players are randomly assigned roles in
every round, and so acquire experience as My, My, and E players). Along similar lines, play by M’s is
initially clustered around the myopic maxima, even though entry rates are far lower on 4 than 2 from the
beginning of the experiments. This implies that the same players who realize as E’s that they should
enter on 2 and not enter on 4 fail to anticipate this bchavior when they are M,;’s.

Because of this striking increase in the level of cognitive sophistication, augmenting the RE
model with limited strategic foresight yields a model which is inconsistent with the spirit of the original.
The nicest feature of the RE model and of reinforcement-based models in general is how little is required
of players. A player need not know anything about his or her opponent to act in a manner consistent with
the RE model; he or she need not even realize that a game is being played. This nice feature vanishes

with the addition of limited strategic foresight.

Cooper ez al. (1996) model the differences between the SP and ZA treatments as a change in 7,
the percentage of players with limited strategic foresight in the augmented CGK model. They run sets of
simulations with © = .5 and & = 0, postulating that differences between these sets of simulations should
mirror differences in the experimental data from the SP and ZA treatments. This hypothesis is borne out
by the simulation results. If the augmented RE characterizes the Cooper ef al. data, we should be able to
perform a similar exercise; differences between the augmented RE model with T =.5 and © = 0 should
parallel differences between the SP and ZA treatments.

As reported in Section 6, the unaugmented RE model does a reasonably good job of tracking SP
data. In considering the augmented RE model, we first confirm that augmentation does not affect the RE

model’s positive performance with the SP treatment. We ran 50 simulations of the SP treatment using



the augmented RE model with t =.5. These simulations are identical to the unaugmented RE
simulations, except for the restrictions that no M,, can use 6 or 7 and half of the E's never enter on 6 or 7.
Average outcomes from these simulations are summarized in Figure 10. Comparing with Figure 3,
which summarizes simulations of the SP treatment using the unaugmented RE model, we see that
convergence is faster with augmentation, but general patterns of play are unaffected.

Given that the augmented RE model does a good job of tracking the experimental data in the SP
treatment, we turn to the ZA treatment. We ran 50 simulations of the ZA treatment using the augmented
RE model with t = 0. These simulations only differ from the unaugmented RE simulations by restricting
M,’s to never play 6 or 7. Average results for these simulations are summarized in Figure 11.
Augmenting the RE model strongly affects simulation results for the ZA treatment. The wide variety of
outcomes observed with the unaugmented RE model vanishes with augmentation. The only outcome
observed in the augmented RE simulations of the ZA treatment is the Riley outcome -- no simulations
converge to either the myopic maxima or the mixed strategy equilibria. This by itself is not cause to
reject the augmented RE model, as we cannot argue that the long run outcome is observed in the Cooper
et al. experiments. Even though the ZA data show much more play of 5 than 6, if play had continued
indefinitely, the Riley outcome might have emerged. However, the augmented RE simulations do a poor
job of capturing differences between the ZA and SP treatment data. This is seen most easily by
comparing Figure 7 and Figure 8. By period 1000, these figures are virtually identical, and remain so
throughout the remainder of the periods. In the augmented RE simulations, limit pricing does not
emerge more slowly in the ZA treatment than in the SP treatment, and the relative frequency of limit
pricing at 5 versus 6 is not higher in the ZA treatment. Given that these are the most striking features of
the experimental data, we conclude that the augmented RE simulations fail to track the data.

It is not surprising that augmenting the RE model does little to improve tracking of the

experimental data. The only way augmentation could help the RE model is if it improved performance



in the ZA treatment. However, the reasons for the RE model’s poor performance in the ZA treatment
have little to do with limited strategic foresight -- increased play of 6 and 7 by M,,’s in the ZA
simulations vs. the SP simulations proxy for the presumably greater difficulty of recognizing dominated
strategies. The unaugmented RE model cannot characterize the ZA data because it lacks optimization.
Augmentation will not solve this problem *

Thus, both the ex ante and ex post criteria for moving from the unaugmented RE model to the
more cognitively sophisticated augmented CGK model are met. The augmented CGK model’s superior
ability to characterize the limit pricing data is driven by its greater cognitive sophistication.
Optimization strengthens attempts to pool by M,;’s and eliminates persistent play of dominated
strategies. Limited strategic foresight generates differences between ZA and SP treatment simulations of
the augmented CGK model in a manner more consistent with the experimental data than the combination

of experimentation and non-optimization which drives differences between ZA and SP treatment

simulations of the unaugmented RE model.

9. Conclusion

The goal of this paper is to formulate and apply a rule for mapping between experimental data

“By augmenting the RE model, we remove the source of difference between the SP and ZA treatments -- My
players are restricted to never choose 6 and 7. Given that we have removed the one source of difference, it follows
naturally that the results for the two treatments look virtually identical.

It can be argued that the RE model has been augmented too much. In particular, the RE model is
augmented so that all My;’s avoid play of 6 or 7. For the ZA treatment, where it is less obvious that these are
dominated strategies, we might wish to have only some M,,’s eliminate play of 6 and 7. Note that such a
modification has no effect on the cognitive sophistication of the model as defined in Section 5 -- no knowledge of
one’s opponent is required to eliminate one’s own dominated strategics. Thus, we can formulate an alternative
augmented RE model in which some proportion y of M,, players never use 6 or 7. The model is otherwise identical
to the unaugmented RE model. Extensive simulations show that this alternative augmentation adds little to the RE
model. For y > .25, the simulation results are nearly identical to results with the augmented RE model. For 0 < Ys
25, we see extensive play of 5 by M, 's and the emergence of the mixed strategy equilibrium. Unfortunately, we
also sce all of the flaws observed in unaugmented RE simulations of the ZA treatment. In particular, we observe the
myopic maximum as a long run outcome in a high frequency of trials (13 of 50 with y =.25) and see significant
departures from the experimental data at the individual level (play of 6 and 7 by My, players, too much play of 3,
little attempt to pool at 4 by M, players , etc.).

~



and learning rules. Selection takes place over a hierarchy of learning rules, with rules higher on the
hierarchy possessing a greater degree of cognitive sophistication. We select the model with the least
possible cognitive sophistication. Movement up the hierarchy of cognitive sophistication is conditional
on two criteria. First, ex ante the game should have some feature which demands a greater degree of
cognitive sophistication for analysis. Ex post, a higher degree of cognitive sophistication should be
necessary to characterize the experimental data.

The bulk of the paper applies this approach to a particular experimental data set, the CGK limit
pricing data. We establish that both the ex ante and ex post criteria hold for moving up the hierarchy of
cognitive sophistication from the least sophisticated model, the unaugmented RE model, to the most
sophisticated model, the augmented CGK model. This indicates that both optimization and limited
strategic foresight are necessary to characterize the limit pricing data.

Our purpose is not to conduct a horse race between reinforcement-based models and belief-based
models, but rather to present a method for systematically determining which learning model best
organizes a data set. Simple reinforcement-based models work wonderfully for many data sets, and in
such cases there is no reason to move up to a more cognitively sophisticated model. The limit pricing
game is not one of these situations. Even picking the most favorable specification of the RE model, it
lacks the cognitive sophistication needed to capture major elements of the limit pricing data.

The augmented CGK model hardly exhausts the limits of cognitive sophistication in learning
models. However, given that the augmented CGK model does an excellent Jjob of characterizing the
experimental data, it is hard to see the ex post criterion for moving to a more cognitively sophisticated
model being satisfied.

While we have concentrated on the limit pricing game, our results suggest that certain types of
games will require greater degrees of cognitive sophistication. Games which are very simple or have

sharp differences in payoffs are natural candidates for reinforcement based learning. Games in which
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forward induction and similar reasoning play an important role and games in which differences in
payoffs are less extreme are likely to require the greater cognitive sophistication embodied by a belief-
based learning rule.

This paper is fairly limited in its goals. Our point is simple. It has already been established that
learning models have an important role to play in the interpretation of experimental data. What is
needed is some way to sort among the available learning models. Instead of engaging in an unproductive
search for the canonical learning model, we feel it is far more important to think about how the most

appropriate learning model for describing an experimental data set should be selected. Our primary

contribution is to present a systematic approach to this problem.
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Table 1:
Monopolist Payoffs (Standard Treatment)

Low Cost Monopolist

Monopolist Entrant Response
Action
out

I High Cost Monopoli? I

Note: Italicized numbers represent changes in payoffs made for the ZA treatment.

Table 2:
Entrant Payoffs

I Monopolist’s Type '
High Cost

Entrant’s
Strategy




Figure la: Experimental Data -- Cooper et al.
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Figure 1b: Experimental Data -- Cooper et al.
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Figure 2a: Experimental Data -- Cooper et al.
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Figure 2b: Experimental Data -- Cooper et al.
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Figure 3: Simulation Data -- Unaugmented CGK Model
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Figure 4: Simulation Data -- Augmented (w=0.5)
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Figure 5: Simulation Data -- Augmented (7=1.0)
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Figure 6: Simulation Data -- RE Model (SP)
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Figure 7: Simulation Data -- RE Model
(ZA, Converging to Myopic Maximum)
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Figure 8: Simulation Data -- RE Model
(ZA, Converging to Partial Pooling)
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Figure 9: Simulation Data -- RE Model
(ZA, Converging to Riley Outcome)
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Figure 11: Simulation Data -- Augmented RE Model (ZA)
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