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Abstract

Economists and psychologists have documented patterns of individual decision–making behavior (e.g.,
loss aversion) whereby losses and gains are treated differently. However, there has been little evidence
of such patterns in multi–player games. We report results showing the strongest evidence we know of
that this phenomenon is present in games. Experimental subjects play two hawk–dove games that are
identical up to a constant; in one, all payoffs are positive, while in the other, payoffs are negative iff both
players choose “hawk”. Under both fixed–pairs and random matching, differences between the games
are substantial, significant, and consistent with loss aversion.
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1 Background

Game–theoretic solution concepts imply that a change in payoff levels—modifying a game by adding a
constant to all payoffs—should not affect behavior as long as payoffs reflect players’ preferences (i.e., they
are equivalent to expected utilities). However, when the entries in a “payoff matrix” are actually monetary
gains or losses, as in economics experiments with human subjects, the robustness of behavior to such
changes becomes an empirical question. Research has found that payoff levels can indeed have an effect
on behavior, particularly when the signs of payoffs change as a result: gains turn to losses or vice versa.
Kahneman and Tversky (1979) document survey evidence suggesting that losses weigh more heavily than
equal–sized gains, and name this phenomenon “loss aversion”. Many examples of loss aversion in laboratory
experiments and in the field have since been found (Camerer 2004). However, nearly all have involved
individual decision–making tasks; by contrast, evidence of loss aversion in strategic decision making has
been hard to find (see Section 2 for a review).

The objective of this paper is to add to the discussion of whether, and how, strategic behavior is
affected by differential treatment of gains and losses, by reporting the strongest evidence we have seen
thus far of such an effect in a strategic situation—specifically, results of a human–subjects experiment
involving two hawk–dove games (see Figure 1) played under either a fixed–pairs or a random–matching
protocol. We are agnostic about the source of the effect we find—whether it comes from loss aversion or

Figure 1: The hawk–dove games used in the experiment

Player 2 Player 2
Dove Hawk Dove Hawk

Player Dove 160,160 80,200 Dove 120,120 40,160
1 Hawk 200,80 20,20 Hawk 160,40 –20,–20

High payoffs (HIGH) Low payoffs (LOW)

some other phenomenon (such as loss avoidance, described in Section 2)—so to save space, we will often
abuse terminology somewhat by using “loss aversion” as a shorthand term for any pattern of behavior in
which losses weigh more heavily than gains, irrespective of the underlying cause.1

2 Previous literature

Here, we present a brief review of previous research into the effects of changing payoff levels (for a more
thorough review, see Feltovich, Iwasaki, and Oda (2008)). Ido Erev and colleagues have conducted several
studies examining payoff–level effects in repeated individual–decision problems, typically finding that sub-
jects are quicker to learn an optimal choice under limited payoff information when both gains and losses are

1We stress that we are not arguing that all such patterns of behavior are equivalent to loss aversion (e.g., Feltovich, Iwasaki,

and Oda (2008) show that neither loss aversion nor loss avoidance implies the other, although they sometimes make the same

prediction), but rather that we did not design our experiment to distinguish among these various alternatives.
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possible than when only gains or only losses are possible.2 Erev, Bereby–Meyer, and Roth (1999) examined
behavior in two versions of a repeated 2x2 constant–sum stage game with a unique Nash equilibrium in
mixed strategies. Payoffs in the games differed only by subtraction of a constant, but one game had losses
possible while the other did not. Erev, Bereby–Meyer, and Roth found that subject choices were more
consistent with fictitious–play learning (that is, more likely to optimize against the historical distribution
of opponent choices) when losses were possible than when they were not. On the other hand, Rapoport
and Boebel (1992) failed to find a payoff–level effect in two versions of a repeated 5x5 constant–sum game
with a unique mixed–strategy equilibrium. Unlike Erev, Bereby–Meyer, and Roth, though, Rapoport and
Boebel do not affect the signs of any payoffs with their manipulation of payoff levels, suggesting that not
all payoff–level changes matter for behavior—only those that change the signs of payoffs.

Another way of examining payoff–level effects is in market experiments, in which subjects play the
role of firms facing sunk costs that vary across treatments. Results in these experiments have depended
sensitively on characteristics of the market institution that was used: when the institution is one that
tends strongly toward equilibrium, sunk costs have typically had no effect (e.g., Kachelmeier (1996) for
a double auction and Waller, Shapiro, and Sevcik (1999), for a multi–firm posted–price market), while
for institutions with weaker tendencies toward equilibrium, sunk costs can have an effect (e.g., Offerman
and Potters (2003) and Buchheit and Feltovich (2010), both of which used price–setting duopolies with
capacity constraints).

Several researchers have used coordination games with Pareto–ranked Nash equilibria to study the
effects of changing the payoff level. Cachon and Camerer (1996) implemented payoff–level changes in a
multi–player median–effort game by varying a (mandatory) sunk cost, and found that subjects behaved
differently when some actions led to guaranteed losses compared with a baseline case where all could yield
gains; they named this tendency “loss avoidance”. However, Cachon and Camerer found no evidence of
loss avoidance in a third treatment where subjects were told their own sunk cost but not those of the
other players, so they concluded that the effect arose only indirectly, from subjects choosing actions under
the belief that their opponents exhibited loss avoidance—that is, due to the strategic complementarities
in the game.3 Rydval and Ortmann (2005) examined two pairs of stag–hunt games, with one member of
each pair differing from the other by a constant. They found behavior consistent with loss avoidance in
one pair, but not in the other.4 Feltovich, Iwasaki, and Oda (2010) draw a distinction between the loss
avoidance studied by these previous researchers (which they term “certain–loss avoidance”) and “possible–
loss avoidance”, which is a tendency to avoid actions leading to possible losses when alternatives yielding
certain gains are available. Feltovich, Iwasaki, and Oda found evidence of both types of loss avoidance in
repeated stag–hunt games, but the effect was small when subjects had complete information about payoffs.
Finally, Johnson, Myagkov, and Orbell (2005) found that decisions to enter a prisoners’ dilemma game were

2See, for example, Barkan, Zohar, and Erev (1998), Bereby–Meyer and Erev (1998), and Erev, Bereby–Meyer, and Roth

(1999). There was also earlier work that didn’t look specifically at payoff–level effects, but gave results suggesting that changes

in payoff levels might affect behavior (e.g., Siegel and Goldstein (1959) and Siegel, Siegel, and Andrews (1964)). Finally, we

note here that while Kahneman and Tversky (1979)’s prospect theory includes loss aversion—thus allowing for payoff–level

changes to affect behavior—they do not specifically test the effects of such changes.
3Indeed, Camerer (2003) concludes that “loss–avoidance is a selection principle applied to infer what others will do...not a

principle of individual choice” (p. 393).
4Rydval and Ortmann suggest that the higher scale of payoffs in the latter pair led to the effects of loss aversion counteracting

those of loss avoidance.
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sensitive to whether payoffs were framed as gains or losses, but that decisions within the game—conditional
on choosing to play—were unaffected.

3 Methods

Our examination of loss aversion involves the two games shown in Figure 1. These games are identical
up to a constant; the low–payoff game is obtained from the high–payoff game by subtracting the same
number (40) from all payoffs. Nash equilibria in both games are (Hawk, Dove), (Dove, Hawk), and a
mixed–strategy equilibrium in which each player chooses Dove with probability p = 3

5 .
Hawk–dove games have a noteworthy advantage over other games that have been used for examining

loss aversion, most of which had the property of strategic complementarities: a strategy becomes more
attractive (relative to alternatives) as the likelihood of other players choosing it increases. One drawback
of using games with strategic complementarities is that they make it difficult to disentangle choices of a
strategy due to preference for that strategy (e.g., loss aversion) from choices due to a belief that one’s
opponent prefers that strategy (e.g., belief that others are loss averse). A second issue arises from the fact
that loss aversion can only have an effect on behavior when genuine strategic uncertainty is present, that
is, when players believe that multiple opponent actions have non–negligible likelihood. When strategic
complementarities are present, pure–strategy Nash equilibria will be symmetric, so in the neighborhood of
an equilibrium, there will not be genuine strategic uncertainty in the game (since nearly everyone will be
choosing the same pure strategy). As a result, it becomes difficult to detect any effect from loss aversion,
especially after subjects have gained experience playing the game; at best, the researcher might hope to
find a second–order effect in differential likelihoods of the various pure–strategy equilibria.5

In the hawk–dove game, by contrast, the two strategies are strategic substitutes: a strategy becomes
less attractive as the likelihood of opponents choosing it increases. This property, in conjunction with
other features of our experimental design, allows us to avoid both of the shortcomings mentioned above.
First, it becomes straightforward to distinguish between direct effects via preferences and indirect effects
via beliefs; if (for example) a player believes her opponent due to loss aversion is relatively likely to choose
Dove, she should be less, not more, likely to choose Dove herself, whereas her own loss aversion would make
her more likely to choose Dove. Second, one of our treatments uses a one–population random–matching
design (in a given round, a subject is equally likely to be matched with any other subject). Since the
three Nash equilibria involve population aggregate choice probabilities of Dove of 1

2 , 1
2 , and 3

5 (for the two
pure and one mixed equilibria respectively)—quite far from unanimous choice of a single strategy in each
case—it should nearly always be true that there is genuine strategic uncertainty in that treatment, and
thus that loss aversion should have visible effects.6

5We are not claiming that loss aversion cannot affect riskless choice in general; indeed, there is some evidence that it does

(see, for example, Tversky and Kahneman (1991) and Gächter, Johnson, and Herrmann (2007)). We are simply noting that in

the particular riskless decisions that can arise in these particular games (for example, the choice of safe versus risky strategy

in a stag hunt, when the opponent is believed to be choosing the safe strategy with certainty), loss aversion will have no effect

on behavior.
6The one–population random–matching protocol, combined with symmetry of the games and our lack of subject labels

(e.g., all subjects saw themselves as Player 1 in the experiment), makes it unlikely that pairs could successfully coordinate

on either of the asymmetric pure–strategy Nash equilibria, and thus that the population could converge to either of these

equilibria. One could thus argue that the relevant solution concept is evolutionarily stable strategy (Maynard Smith (1974)),

not Nash equilibrium. The only evolutionarily stable strategy of either game is the mixed–strategy Nash equilibrium.
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As an example of how loss aversion might affect behavior in these games, suppose a player’s payoff is
equivalent to her monetary payment in all cases except in the low–payoff game’s (Hawk, Hawk) outcome,
whose monetary payment of –20 is instead treated as a payoff of −20λ, where λ ≥ 0. In that case, λ can be
regarded as a measure of that individual’s attitude toward losses; λ = 1 means losses and gains are treated
the same, while larger values represent loss aversion. Then, the mixed–strategy equilibrium probability of
choosing Dove is p(λ) = 2+λ

4+λ , which is strictly increasing in λ. For λ = 1, we have p = 3
5 , so that behavior

is the same as in the high–payoff game (where loss aversion does not come into play), whereas for λ > 1,
there will be a higher equilibrium probability of Dove in the low–payoff game than in the high–payoff game.
This logic motivates our hypothesis:

Hypothesis 1 Choices of Dove should be more likely in the low–payoff version of the hawk–dove game
than in the high–payoff version.

Subjects in the experiment played each hawk–dove game twenty times; that is, the game was varied
within–subject. We used two matching mechanisms—random matching and fixed pairs—which we varied
between–subjects. Under random matching, subjects were matched randomly in each round, with any
other subject equally likely to be the opponent in a given round. Under fixed pairs, subjects were matched
randomly in the first round of each game, but played versus the same subject for all rounds of a game.

The use of fixed pairs leads to more complex theoretical predictions, compared to random matching, in
two ways. First, under fixed pairs, the one–population argument made in Note 6 does not apply, so that
the pure–strategy stage–game equilibria become more likely outcomes. Second, folk theorems for finitely–
repeated games allow play of the (Dove, Dove) action profile in all but the last two rounds of a game
in subgame perfect equilibrium.7 However, these points are equally valid in both high– and low–payoff
versions of the game.

Subjects were given complete payoff information in the experiment. In order to disguise the similarity
between the two hawk–dove games, subjects played three additional games, all of which were versions of a
stag–hunt game. (See Figure 2.) The ordering of games always had the form SH–HD–SH–HD–SH, but we

Figure 2: The stag–hunt games used in the experiment

Player 2 Player 2 Player 2
Risky Safe Risky Safe Risky Safe

Player Risky 360,360 40,260 Risky 220,220 –100,120 Risky 80,80 –240,–20
1 Safe 260,40 260,260 Safe 120,–100 120,120 Safe –20,–240 –20,–20

High payoffs (SHH) Medium payoffs (SHM) Low payoffs (SHL)

varied the ordering of the three stag–hunt games and the two hawk–dove games across sessions. (See the
text surrounding Table 2 for a discussion of order effects.)

The experimental sessions were conducted at the Scottish Experimental Economics Laboratory (SEEL)
at the University of Aberdeen. Sessions typically comprised 10–20 subjects. Some larger sessions were split

7Other subgame perfect equilibria exist with (Dove, Dove) profiles sustained for fewer rounds. For a discussion of folk

theorem results for finitely–repeated games, see Fudenberg and Tirole (1992), pp. 165–168.
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into sub–sessions—so that subjects in one sub–session did not interact with those in others—in order to
increase the number of independent observations. Subjects were primarily undergraduate students from
University of Aberdeen, and were recruited from a database of people expressing interest in participating
in experiments. No one took part in more than one session.

The experiment was run on networked computer terminals, using the z–Tree experiment software
package (Fischbacher 2007).8 At the beginning of a session, subjects were seated in a single room and
given a set of written instructions (samples are provided in the appendix). The instructions were also read
aloud to the subjects, in an attempt to make the rules common knowledge, after which the first round of play
began. The instructions stated that twenty rounds of each game would be played; when the twentieth round
was completed, it was publicly announced that the game was going to change, and that subjects would
be re–matched (even in the fixed–pairs treatment). Subjects were asked not to communicate with other
subjects, so the only interactions took place via the computer program. Subjects were given no identifying
information about the opposing player, in an attempt to minimize incentives for reputation building and
other supergame effects in the random–matching treatment. Also, rather than using potentially biasing
terms like “opponent” or “partner” for the other player, we used the neutral though somewhat cumbersome
“player matched to you” and similar phrases.

Each round began with a screen announcing that a new round is beginning, and when appropriate,
that the game and/or opponent has changed. At that time, subjects were prompted to make their choices
for that round; to avoid demand effects, the actions were displayed in neutral terms as “X” and “Y”. After
all subjects had made their choices, each was given the following feedback: own choice, opponent choice,
and own payoff. Subjects were not told the opponent’s payoff, though they did receive enough information
to easily determine this if they wished. After all subjects clicked a button on the screen to continue, the
session proceeded to the next round.

At the end of a session, subjects were paid in cash, privately and individually. Each subject’s payment
included a £8 show–up fee; additionally, one round from each game was randomly chosen, and the subject
was paid his/her earnings in those rounds, at an exchange rate of £1 per 100 points.9 Total earnings for
subjects participating in a session averaged about £14, with most earning £9–£18, for a session that lasted
45–75 minutes.

4 Experimental results

Thirteen sessions were conducted: 6 sessions (7 sub–sessions) with a total of 90 subjects for the random–
matching treatment, and 7 sessions (8 sub–sessions) with 86 subjects for the fixed–pairs treatment. Table 1
shows some aggregate results: frequencies of Dove choices in round 1, in rounds 16–20 (the last five rounds),
and over all rounds of a game. Also shown are significance results from nonparametric statistical tests of

8The experiment programs, as well as the raw data, are available from the author upon request.
9An implication of our payment scheme is that subjects cannot lose money overall, as was required for human–subjects

approval (though it was possible to earn less than the show–up fee). As a result, there might be some question as to whether

negative entries in payoffs should be expected to be viewed by subjects as actual losses, as opposed to reduced gains. We

simply note that, to the extent that subjects did not perceive these as “real” losses, our experiment is a conservative test for

loss aversion.
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Table 1: Aggregate Dove choice frequency, by game (HIGH or LOW) and matching treatment

Random matching Fixed pairs
Rounds HIGH LOW HIGH LOW

1 .676 .822∗∗∗ .721 .837∗∗

16–20 .533 .605∗∗ .700 .737∗

All .562 .650∗∗∗ .724 .798∗

* (**, ***): Higher in LOW than HIGH at the 10% (5%, 1%) level. See text for details.

differences between the high– and low–payoff game.10 The table shows clearly higher frequencies of Dove
choices in the low–payoff game than in the high–payoff game, consistent with our hypothesis. The difference
between the games is apparent in the first round, over the last five rounds, and overall, and is statistically
significant in all cases (at the 5% level or better in the random–matching treatment and at the 10% level
or better in the fixed–pairs treatment).11

More information about aggregate behavior is given by Figure 3, which shows the time paths of Dove
choice frequencies in the experiment. While the strength of strategic considerations in this environment are

Figure 3: Round–by–round frequency of Dove choice

Round

Random matching Fixed pairs

sc HIGH
LOW
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evident, the figure also shows systematic differences between the two hawk–dove games. In the random–
matching treatment, Dove choice frequencies are initially higher than the equilibrium levels: substantially
so for the low–payoff game, less so for the high–payoff game. These frequencies trend downward in both
games, approaching the mixed–strategy equilibrium level in the low–payoff game, while actually staying
below that level throughout the last ten rounds of the high–payoff game.

Under fixed pairs, on the other hand, Dove choices in both games occur substantially more often than
in equilibrium—with no visible time trend—until nearly the end, when Dove choice frequencies sharply

10When testing first–round choices, we use the chi–square test for paired replicates with individual–level data. For the last

five rounds and the 20–round averages, we use a one–tailed Wilcoxon signed–ranks test for paired replicates with sub–session–

level data. See Siegel and Castellan (1988) for descriptions of these tests.
11The difference over all rounds of the fixed–pairs treatment just misses being significant at the 5% level (p ≈ 0.0547).
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decline, reaching roughly equilibrium levels in the last round. These trajectories seem to reflect partially
successful attempts by players to cooperate, along the lines of folk theorems for finitely–repeated games
(as noted in Section 3).

We next look at some probit regression results, allowing us to ascertain the treatment effect while
controlling for other factors that may affect behavior, such as the order in which the games were played.
We estimate two models, one for the fixed–pairs treatment and one for the random–matching treatment.
The dependent variable in each regression is an indicator for a Dove choice in the current round. In order to
determine the effect of the payoff level (and thus test for loss aversion), we use as our primary explanatory
variable an indicator for the LOW game; in addition, we include the products of this indicator with the
round number and its square to allow for the possibility of a time–varying effect. As controls for possible
order effects, we include an indicator for the LOW–HIGH ordering of the two hawk–dove games, as well as
indicators for which particular stag–hunt game preceded the current hawk–dove game (in case the previous
game played has any effect on behavior in the current game). Finally, we included indicators for the round
number and its square. The regressions were performed on the sub–sample of hawk–dove plays (we left
out the stag–hunt data) using Stata (version 10), and incorporated individual–subject random effects.

Table 2: Results of probit regressions with random effects (std. errors in parentheses)
Dependent variable: Dove random–matching treatment fixed–pairs treatment

choice (round t) (N = 3600) (N = 3440)

constant 0.482∗∗∗ 0.686

(0.157) (0.420)

LOW 0.419∗∗ 0.290

(0.165) (0.185)

LOW · Round –0.021 0.047

(0.034) (0.040)

LOW · Round2 –0.0006 −0.003∗

(0.0016) (0.002)

p–value (joint significance of three LOW variables) < 0.001∗∗∗ < 0.001∗∗∗

Round −0.060∗∗ 0.050∗

(0.23) (0.027)

Round2 −0.002∗ −0.002∗∗

(0.001) (0.001)

LOW–HIGH game ordering –0.005 –0.099

(0.077) (0.330)

prev. game was SHM 0.088 0.238

(0.068) (0.328)

prev. game was SHL 0.047 –0.065

(0.082) (0.640)

–ln(L) 2073.862 1438.546

* (**,***): Coefficient significantly different from zero at the 10% (5%, 1%) level.

Table 2 shows coefficients and standard errors for each variable, as well as log likelihoods for each
regression. The results suggest that subject behavior is nonstationary; indeed, the coefficients for the four
variables containing the round number or its square are jointly significant in both treatments (p < 0.001).
On the other hand, only equivocal evidence exists for order effects: none of the order–effects variables are
individually significant, though in the fixed–pairs treatment, these three variables are jointly significant at
the 1% level.

Regarding loss aversion, we note first that one of its implications—joint significance of the three LOW
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variables (LOW, LOW·Round, and LOW·Round2)—is seen in the table for both regressions. Next, in order
to measure how loss aversion affects choice frequencies, we estimate the incremental effect of switching the
game from HIGH to LOW. In round t, the total effect of the LOW variables on the argument of the normal
c.d.f. used in the probit model is given by βLOW + βLOW·Round · t + βLOW·Round2 · t2 (where βY is the
coefficient of the variable Y ). So, the incremental effect of the LOW game rather than the HIGH game in
round t has the form

Φ
(
X̄ ·B + βLOW + βLOW·Round · t + βLOW·Round2 · t2

)
− Φ

(
X̄ ·B

)
, (1)

where Φ is the normal c.d.f., X̄ is the row vector of the other right–hand–side variables’ values (which
we set to an appropriate sample or subsample mean), and B is the column vector of their coefficients. If
subjects exhibit loss aversion in round t, the sign of this expression should be positive for that value of t.

Graphs of this expression, for both treatments, are displayed in Figure 4, with point estimates for
each round shown as circles and corresponding 90% confidence intervals shown as line segments.12 The

Figure 4: Estimates of the effect of LOW game on Dove choice probability (vs. HIGH game)
(Circles represent point estimates; line segments represent 90% confidence intervals)

Round

Random matching Fixed pairs
+0.3

+0.2

+0.1

0

–0.1
1 110 1020 20

r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r

figure confirms what we had seen in the aggregate results. The point estimate for the incremental effect
of the LOW game is always positive, and the corresponding 90% confidence interval lies entirely above
zero (so that a one–sided hypothesis test would yield significance at the 5% level) for all rounds of the
random–matching treatment, and all but the last three rounds of the fixed–pairs treatment. The positive
effect of the LOW game in both treatments is in the direction predicted by loss aversion.

5 Summary

We have conducted an experiment involving two versions of a hawk–dove stage game, in order to examine
the possibility of differential treatment of gains and losses in strategic decision making. The games we use
are strategically identical to each other, differing only by a constant. The constant was chosen in such a

12Note that we use 90% confidence intervals rather than the usual 95% confidence intervals here. Since loss aversion makes

a directional prediction, our rejection regions are one–tailed. Use of 90% confidence intervals gives us 5% rejection regions on

the appropriate side.
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way that in our “high–payoff” game, all payoffs are gains, while in our “low–payoff” game, the (Hawk,
Hawk) outcome yields a loss, with all other outcomes still yielding gains. Loss aversion (or Feltovich,
Iwasaki, and Oda’s (2008) possible–loss avoidance) predicts a higher probability of Dove choices in the
low–payoff game relative to the high–payoff game. This prediction is borne out in the experimental results,
where a statistically significant effect is observed under both random–matching and fixed–pairs matching
protocols. Under random matching, the overall frequency of Dove choices is slightly lower in the high–
payoff game than in the mixed–strategy Nash equilibrium, but this frequency rises by about 15% (about
9 percentage points) in the low–payoff game. Under fixed pairs, frequencies of Dove choices are higher
in both games than under random matching (probably reflecting attempts at cooperation), but again,
higher in the low–payoff game than in the high–payoff game, by about 10% (about 7 percentage points).
The differences between high– and low–payoff games are visible—for both treatments—in the first round
(before subjects have had any experience in the game), in late rounds (after subjects have learned about
the strategic environment and the behavior of others in the game), and in session aggregates.

It is worth emphasizing the striking nature of this result. Previous research into the differential treat-
ment of gains and losses has found strong evidence of an effect in individual decision making, but little
such evidence in strategic behavior. If such a pattern of results were consistently seen, it would be possible
to argue that loss aversion and its ilk are rather fragile phenomena, and easily weeded out when market
discipline is present—even if the discipline is as weak as that in a two–player game. We see, however,
that this is not the case. Not only have we observed behavior consistent with loss aversion, but we have
seen it persisting in an environment where strategic considerations appear to be strong (as evidenced by
the time paths seen in Figure 3). Indeed, the evidence we find for loss aversion in this experiment likely
understates the true effect; as already mentioned, while an individual’s own loss aversion will make Dove
choices more likely in the low–payoff game than in the high–payoff game, a belief that her opponent avoids
losses will push her behavior in the opposite direction (because Hawk and Dove choices are strategic sub-
stitutes), leading to a overall effect smaller than would have come from the individual’s loss aversion by
itself. In conclusion, we urge researchers to consider loss aversion when formulating predictions in strategic
environments where losses are possible.
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Appendix: experiment instructions  

Note: Text in square brackets: shown only in fixed-pairs treatment. Text in parentheses: shown only 
in random-matching treatment. 

Instructions 
 
You are about to participate in an experiment in the economics of decision-making. Please read 
these instructions carefully, as the amount of money you earn will depend on how well you 
understand them. All money you earn will be paid to you privately in cash at the end of the 
experimental session. If you have a question at any time, please feel free to ask the experimenter. 
We ask that you not talk with the other participants during the experiment.  

This experimental session consists of five different games. Each game will be played for 20 rounds. 
Each game will be played by you and another player. The player matched to you will be assigned 
randomly at the beginning of each [game, but will remain the same for all rounds of a game] 
(round). You will not be told the identity of the player matched to you, nor will he/she be told your 
identity—even after the end of the session.  

The payoff tables: The number of points you earn in each round will depend on the choice you 
make and the choice made by the player matched to you. The payoff table for each game you play 
will be shown on your computer screen. In each round, both you and the player matched to you will 
have a choice between two possible actions, which will be called X and Y. Your action, together 
with the action chosen by the player matched to you, determines one of the four boxes in the payoff 
table. That box will show both your payoff and the payoff of the player matched to you.  

Example: This is an example of a payoff table. You will not use this actual payoff table in the 
experiment, but the tables you will use will have a similar structure.  

Other player action  
X Y 

X Your payoff: 25 
Other player payoff: 50 

Your payoff: 125 
Other player payoff: 150 

 
Your  
action Y Your payoff: 150 

Other player payoff: 125 
Your payoff: 50 

Other player payoff: 25 
 
Sequence of play in a round: The sequence of play in a round is as follows.  
(1) [If it is the first round of a game, the] (The) computer randomly matches you to another 

participant. 
(2) You and the player matched to you play the game. You choose an action, either X or Y. The 

player matched to you also chooses an action, either X or Y. Both of you make your choice 
without knowing the other’s choice. 

(3) The round ends. You receive the following information: your own choice, the choice made by 
the player matched to you, and your own payoff. 

 
Payments: At the end of the experimental session, one of the rounds is chosen randomly from 
each game you have played, for a total of five rounds. You will be paid the total number of 
points you earned in those five rounds, at an exchange rate of £0.01 per point. Each participant 
additionally receives £8 for completing the session. Payments are made in cash at the end of the 
session.  
 
Are there any questions? 


