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a b s t r a c t

Spike timing-dependent plasticity (STDP) is a form of Hebbian learning which is thought to underlie
structure formation during development, and learning and memory in later life. In this paper we show
that the intrinsic properties of the postsynaptic neuron might have a deep influence on STDP dynamics
by shaping the causal correlation between the pre- and the postsynaptic spike trains. The cell-specific
effect of STDP is particularly evident in the presence of an oscillatory component in a cell input. In this
case, the cell-specific phase response to an oscillatory modulation biases the oscillating afferents towards
potentiation or depression, depending upon the intrinsic dynamics of the postsynaptic neuron and the
period of the modulation.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Experimental results have revealed a form of Hebbian learning
which is extremely sensitive to the precise timing of pre- and post-
synaptic firing patterns. In particular, in paired-pulse experiments
(where brief suprathreshold current pulses are injected in the pre-
and postsynaptic cell at a fixed temporal delay) LTP was observed
when the evoked presynaptic spike led the postsynaptic spike
(thus contributing to postsynaptic firing), while LTD was observed
when the evoked presynaptic spike lagged behind the postsynaptic
one (Markram et al., 1997; Bi and Poo, 1998; reviewed in Dan and
Poo, 2004; Bi and Poo, 2001).

In the last few years, several theoretical works have stemmed
from this experimental observations, predicting an important role
for STDP in self-organization of neural microcircuits (Lubenov and
Siapas, 2008; Kang et al., 2008; Kempter et al., 2001; Song and Ab-
bott, 2001; Câteau et al., 2008), learning of input correlations (Song
et al., 2000; Gütig et al., 2003; Meffin et al., 2006), and output firing
rate normalization (Song et al., 2000; Tegnér and Kepecs, 2002; Ru-
bin et al., 2001).

While the influence of different STDP rules upon the weight
dynamics and the stationary weight distribution has been studied
extensively (reviewed in Morrison et al., 2008; Kepecs et al., 2002),
only recently there has been some attention drawn upon the influ-
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ence of single-cell intrinsic properties in STDP dynamics (Câteau
et al., 2008). The intrinsic dynamics of the postsynaptic cell deter-
mine the integration of subthreshold stimuli and the spike gener-
ation mechanism (see, for example, Richardson et al., 2003;
Schreiber et al., 2004; Baroni and Varona, 2007; Gutkin et al.,
2005), thus directly affect the cross-correlation between the input
and the output spike trains. This consideration suggests that the
intrinsic postsynaptic dynamics can potentially have a great im-
pact upon the weight dynamics arising from a certain STDP rule.

In addition to shaping the input–output transformation per-
formed, single-cell intrinsic properties determine the response to
oscillatory stimuli. Oscillations of multiple, interacting frequencies
are very common in the nervous system (Buzsáki, 2006; Buzsáki
and Draguhn, 2004), and the phase of the response of a neuron
embedded in an oscillating network is strongly biased by its intrin-
sic properties (Tateno and Robinson, 2007; Netoff et al., 2005;
Narayanan and Johnston, 2008; Bland et al., 2005). In some neural
structures, proteic and morphological characteristics of single cells
seem to be precisely tuned in order to produce the observed net-
work dynamics (Whittington and Traub, 2003; Gloveli et al.,
2005). Since synaptic plasticity is highly sensitive to the precise
timing of pre- and postsynaptic firing, the presence of an oscilla-
tory component in a cell input is expected to reveal cell-specific
biases in the STDP dynamics which would pass unnoticed in the
absence of oscillations.

In this paper we consider a feedforward neuronal architecture
where one postsynaptic cell receives a synaptic bombardment
from several hundred presynaptic afferents, and compare the sta-
tionary weight distributions arising from the same STDP rule and
presynaptic firing statistics, but different postsynaptic intrinsic
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properties. In particular, we compare a purely passive Integrate
and Fire (IF) model with an inductive Generalized Integrate and
Fire (GIF) model with subthreshold oscillations.

Our results suggest that the intrinsic properties of the postsyn-
aptic cell quantitatively affect the stationary weight distribution
under different STDP rules when the input firing patterns are
uncorrelated. More interestingly, a sinusoidal modulation of the
firing rate of a subset of the presynaptic population reveals quali-
tative and important differences in the weight dynamics between
the IF and the GIF model, which are the focus of this work.

2. Methods

2.1. Neuron models

The first neuron model we consider is the Integrate and Fire (IF),
described by a single linear differential equation:

dv
dt
¼ �gv þ Isyn ð1Þ

The model is endowed with an after-spike reset mechanism, so
that when v crosses a threshold v thr from below a spike is emitted
and the membrane potential is reset to a value v reset , and kept there
for a refractory period trefr . In its normal form (where time has been
properly scaled) this model is described by a single parameter g,
which is the rate of the exponential decay to the rest state in the
absence of stimulation ðIsyn ¼ 0Þ.

Another simple model that linearly describes the subthreshold
dynamics, with the addition of another dynamical variable w, is
the Generalized Integrate and Fire (GIF) model, described by the
following equations:

dv
dt
¼ �av � bwþ I syn

dw
dt
¼ v �w

ð2Þ

with the same after-spike resetting as in the IF model for the v var-
iable, while no reset is applied to the additional dynamical variable
w. The system (2) has proven particularly useful in studying neuro-
nal intrinsic oscillations (Richardson et al., 2003; Verechtchaguina
et al., 2007; Izhikevich, 2001; Schreiber et al., 2004). In a certain
parameter range, the system (2) is mathematically equivalent to a
dampened linear oscillator, and thus constitutes an analytically
amenable model for the description of neuronal intrinsic oscilla-
tions, i.e., oscillations generated by intrinsic ionic mechanism as
the activation of a resonant current or the inactivation of an ampli-
fying current (Hutcheon and Yarom, 2000).

The numerical values of the parameters used here are:
v thr ¼ 20;v reset ¼ �4; trefr ¼ 0:3; g ¼ 1;a ¼ 1 and b ¼ 4 (resulting in
complex conjugate eigenvalues �1� 2i, denoting subthreshold
dampened oscillations with period p). Given the wide frequency
range of intrinsic oscillations observed in mammalian brains,
which spans at least two order of magnitude (from 0.5 Hz until
50 Hz Hutcheon and Yarom, 2000), we preferred to keep our mod-
els dimensionless.

2.2. Synaptic description

In general, synaptic dynamics interact with intrinsic neuronal
dynamics (Muresan and Savin, 2007), both at the level of a single
synaptic potential (in shaping the PSP profile), as during an intense
synaptic bombardment from many afferents (in determining the
output statistics). Calibration of the synaptic parameters in order
to achieve similar PSP profile in different neurons is possible, but
still involves a certain degree of subjectivity regarding which fea-
tures of the synaptic response should be made equal. In order to
guarantee equal postsynaptic effects in different neuron models,
we modelled PSPs as instantaneous, voltage independent shifts in
the voltage variable:

Isyn ¼
XN

n¼1

X
ts

n

gsyn
n dðt � ts

nÞ ð3Þ

where N ¼ 250 is the number of afferents, and gsyn
n is the synaptic

strength of afferent number n. If the synaptic dynamics is fast with
respect to the intrinsic neuronal dynamics, this approximation is
reasonable (see, for example, Lubenov and Siapas, 2008). Further-
more, this choice guarantees a clear separation between the synap-
tic and the intrinsic dynamics, and assures that the observed
differences between the GIF and IF neuron are due to their intrinsic
dynamics only. We discretized the simulations in time steps of size
dt ¼ 0:01 u.t., and in each time step we generated a presynaptic in-
put pattern in which each afferent which is not in its refractory per-
iod has a probability pn of firing. Once an afferent fires, it will not be
able to generate another spike for trefr ¼ 0:3 u.t.

We divided the afferent population in three subsets: Nexc ¼ 170
Poisson excitatory afferents with a constant firing probability
pexc ¼ 0:0033, corresponding to a mean ISI of 3 u.t.; Nosc ¼ 30 Pois-
son excitatory afferents with a sinusoidally modulated firing prob-
ability posc ¼ pexcð1þ Asin sin 2p

T t
� �

Þ with period T ¼ p (except in
Figs. 3 and 5, where it has been varied in a range, and in Fig. 4,
where T ¼ 1:2743 or T ¼ 7:8476) and modulation amplitude
Asin ¼ 0:5; Ninh ¼ 50 Poisson inhibitory afferents with a constant
firing probability pinh ¼ pexc ¼ 0:0033. The synaptic strengths of
the excitatory connections gsyn

n ¼ gexc
synwn are obtained by multiply-

ing the corresponding synaptic weights wn (which are bounded
in the interval [0,1] and subject to STDP) by a scaling factor
gexc

syn ¼ 4. The synaptic strengths of the inhibitory connections are
fixed at ginh

syn ¼ 6.
At the beginning of each simulation the synaptic weights wn of

the excitatory population are homogeneously initialized at their
maximal value of 1. These values result in fast and regular postsyn-
aptic firing at a frequency close to the maximal frequency allowed
by the refractory period. In this regime the STDP weight dynamics
strongly depress most synapses in a non-specific way due to the
relative predominance of depression over potentiation (Fig. 1A
and B), until the postsynaptic neuron sets in a lower frequency
irregular firing regime. The regular and the irregular firing regimes
display large differences not only in their firing statistics, but also
in their response to a sinusoidal modulation (Richardson et al.,
2003). Thus we disregarded the first 30� 103 u.t. of simulation
output and focused our analysis on the subsequent evolution of
the synaptic weights through STDP in the low frequency, irregular
firing regime, during which the mean and the standard deviation of
the output ISIs (Inter Spike Intervals) can be considered stationary,
as well as the phase of the response to the sinusoidal modulation.
This irregular firing regime is more relevant for neuronal physiol-
ogy, since neurons in many brain areas exhibit highly irregular fir-
ing patterns (Shadlen and Newsome, 1998).

All the simulations have been run for 5� 106 u.t. Convergence
has been assured by visual inspection of the output data and it
has always been reached within 2� 106 u.t. of simulation time.

The sinusoidal modulation in the input rate induces a modula-
tion of the firing probability, which we fit to a sinusoidal function
routð1þ Ag sin 2p

T t þ /
� �

Þ to obtain the modulation gain Ag and
phase / plotted in Figs. 3–5.

2.3. STDP model

The excitatory synaptic connections are plastic and evolve
according to the STDP rule described in (Gütig et al., 2003). In brief,
every pair of a presynaptic and a postsynaptic action potentials
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Fig. 1. Intrinsic neuronal properties determine the dynamics and the equilibrium distribution of the weights under STDP. Distributions of the synaptic weights for the GIF
(left) and IF (right) neuron model at the beginning of the low frequency, irregular firing regime (top) and at equilibrium (bottom). For each afferent population, the diamond
indicates the mean of the weight distribution and the horizontal line its standard deviation. In the initial high frequency, regular firing regime the synapses are depressed in a
non-specific way and reach a unimodal distribution where the oscillatory and non-oscillatory populations overlap (A and B). After learning, the weight distributions are
bimodal for both neuron types but while the two populations are still largely overlapping for the GIF neuron (C), the oscillatory population is significantly more potentiated
for the IF neuron (D).
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with time difference Dt ¼ tpost � tpre induces a weight change given
by

Dw ¼ GðDtjwÞ ¼
�kf�ðwÞKðDtÞ if Dt 6 0
kfþðwÞKðDtÞ if Dt > 0

�
ð4Þ

where KðDtÞ ¼ e�jDtj=s is the STDP window function, k is a learning
rate, and f�ðwÞ describe the weight dependence of the STDP rule:

fþ ¼ ð1�wÞl; f� ¼ awl ð5Þ

where l is a parameter included in [0,1] which determines the
weight dependence of the STDP rule. If l ¼ 0; GðDtjwÞ results is
the familiar weight independent (additive) STDP rule like in (Song
et al., 2000); if l ¼ 1 one recovers the multiplicative STDP rule like
in (Rubin et al., 2001). Note that if l > 0 the effect of potentiation
vanishes as w approaches 1, and so does the effect of depression
as w approaches 0, preventing the synaptic efficacies from leaving
the allowed range [0,1]. We chose l ¼ 0:02, a weak weight depen-
dence which corresponds to symmetry breaking in the absence of
correlations in the inputs (not shown). The details of the STDP rule
are not critical though: since our results depend on the phase re-
sponse of the model neurons, we expect any temporally asymmetric
STDP rule to yield similar results. The parameter a describes the
asymmetry between depression and potentiation; we set it at a va-
lue slightly greater than 1 ða ¼ 1:05Þ to assure than uncorrelated
pre- and postsynaptic firing yield synaptic depression. The numer-
ical values for the other parameters are k ¼ 0:002 and s ¼ 0:8. In
most simulations a higher value of k could be used, resulting in fas-
ter convergence to the steady state. Nevertheless, when the phase
response is close to zero or positive, small random fluctuations
could have a great effect upon the weight dynamics (see the next
section). In this situation a small learning rate k assures a time scale
separation between the intrinsic neuronal dynamics, which deter-
mine the response to a sinusoidal modulation embedded in a ran-
dom synaptic bombardment, and the weight dynamics.
3. Results

Over time scales shorter than 1=k, the input–output correlation
can be considered stationary and the mean weight drift can be ob-
tained from (4) by integrating over the time difference Dt,
weighted by its correspondent probability:

hDwi ¼
Z 1

�1
GðDtjwÞPtðDtjwÞdDt ð6Þ

The dependence upon the intrinsic neuronal properties of the
postsynaptic cell is included in the input–output correlation term
PtðDtjwÞ ¼ hqpreðtÞqpostðt þ Dt;wÞit , where qpreðtÞ ¼

P
kdðt � tpre

k Þ
and qpostðt;wÞ ¼

P
kdðt � tpost

k Þ are the pre- and postsynaptic spike
trains, and h�it indicates averaging over time.

The postsynaptic intrinsic properties affect the integration of
incoming stimuli, and determine the input–output transformation
performed. For instance, an EPSP evoked on a regular spiking neu-
ron at a certain point of its firing cycle can advance or delay its
phase depending upon the intrinsic properties of the postsynaptic
neuron (Gutkin et al., 2005; Galán et al., 2005; Oprisan and Cana-
vier, 2002; Ermentrout, 1996). Furthermore, the stimulus features
which most effectively result in a postsynaptic spike depend upon



0 1 2 3

0.4

0.6

0.8

t

fir
in

g 
pr

ob
ab

ilit
y

output
input

A

0 1 2 3

0.4

0.6

0.8

t

B

−0.5 0 0.5 1

0.2

0.3

0.4

Δ t=tpost−tpre

D

−0.5 0 0.5 1

0.2

0.3

0.4

Δ t=tpost−tpre

P t(Δ
 t)

osc
const

C

Fig. 2. Intrinsic neuronal properties determine the phase of the oscillating response, and hence the input–output cross-correlation. (A and B) The firing probability along the
cycle at the end of the simulation (black line) is plotted together with the sinusoidal modulation of the input firing rate (gray). While the output is in phase with the input for
the GIF neuron (left), there is a delay for the IF neuron (right). Moreover, the gain in the IF neuron is increased due to potentiation of the oscillating population. (C and D)
PtðDtÞ is plotted for the oscillatory (black) and non-oscillatory (gray) population for the GIF (solid line) and IF (dashed line) neuron at the beginning of the irregular firing
regime (left) and at the end of the simulation (right). At the beginning of the irregular firing regime the oscillating afferents are slightly more efficient in firing the
postsynaptic cell due to their common sinusoidal modulation. This can be deduced from the broader input–output correlation and the higher peak. Note that the broadening
of the input–output correlation in the oscillating population has an important component for negative Dt pairs in the GIF neuron, while it mainly affects positive Dt pairs in
the IF neuron, reflecting the different phase responses of the two neuron types. After learning the input–output correlation has clearly increased for the oscillating subgroup
in the IF neuron.
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the type of excitability and the dynamical mechanism of spike gen-
eration (Mato and Samengo, 2008).

Intrinsic neuronal properties (in particular, intrinsic oscilla-
tions) affect the neuron’s behavior in response to a sinusoidal mod-
ulation (Richardson et al., 2003). In the irregular firing regime, a
purely passive neuron like an IF always follows a sinusoidal mod-
ulation with some delay, while a GIF neuron with intrinsic oscilla-
tions can synchronize to an input modulation or even lead ahead of
it, depending upon its intrinsic frequency and the frequency of the
modulation (Richardson et al., 2003, see also Fig. 3A).

When the synaptic afferents to a neuron are composed of two
different populations, one with a constant firing frequency and an-
other with a sinusoidally modulated firing frequency, the phase
with which the postsynaptic neuron follows the sinusoidal modu-
lation determines if the oscillating population will differentiate
from the non-oscillating population, and in which direction,
through the STDP dynamics. Indeed, an IF neuron which follows
a sinusoidal modulation with a phase delay will on average fire
after most of the neurons in the oscillating population (Fig. 2B),
leading to a selective strengthening of the synapses belonging to
this group (Fig. 1D). Conversely, the GIF neuron follows the same
sinusoidal modulation without any significant phase difference
(Fig. 2A), hence its spikes will be symmetrically distributed with
respect to the oscillating population (see also Fig. 2C and D), lead-
ing to no net potentiation nor depression with respect to the non-
oscillating population (Fig. 1C).

To quantify the degree of separation between the oscillating
and the non-oscillating populations, we computed the ratio be-
tween the mean conductance in the two subgroups R ¼ hgosci=
hgconsti. Fig. 3 shows the relationship between R and the phase of
the sinusoidal response: as expected from our theoretical consider-
ations, the sign of the phase lag determines if the oscillating sub-
group will be potentiated or depressed. A negative phase (the
postsynaptic neuron lags behind the sinusoidal modulation) re-
sults in relative potentiation of the oscillating subgroup of affer-
ents ðR > 1Þ, while a positive phase leads to relative depression
of the oscillatory population ðR < 1Þ. This general relationship does
not hold for very short input periods T, for which a very negative
phase results in no differentiation or only slight potentiation of
the oscillating subgroup: at very high input frequencies a postsyn-
aptic spike lagging behind a given cycle can also be considered as
leading ahead the next cycle, so that as soon as the STDP window
becomes comparable in width with the input oscillation period the
effects of potentiation and depression tend to cancel out. Measures
of the separation between the two different populations which also
take into account the standard deviation of the two distributions
yielded similar results. In spite of this general tendency, there
are some additional differences between the GIF and the IF models
which cannot be explained solely on the basis of the phase of the
sinusoidal response. For example, for a certain range of negative
phase lags there is a stronger potentiation of the oscillating sub-
group in the GIF neuron (Fig. 3B).

The cell-specific potentiation or depression of the oscillating
population affects in turn the postsynaptic firing statistics, and in
particular the gain of the oscillatory component of the postsynaptic
response (Figs. 4 and 5). In particular, a sinusoidal modulation
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which results in negative phase lag (the postsynaptic cell lags be-
hind the sinusoidal modulation) leads to a selective strengthening
of the oscillatory population, which in turn produces an increase in
the sinusoidal gain. The opposite trend is observed for modulation
periods and postsynaptic intrinsic properties which result in posi-
tive phase lag (the postsynaptic cell leads ahead of the sinusoidal
modulation). This dynamics is shown in Fig. 4, where the ampli-
tude gain Ag and the separation index R are plotted for the GIF
and IF neurons along a typical simulation for two representative
values of the modulation period T. For short modulation periods
(T ¼ 1:2743 in the plotted example, the non-integer values are
due to the logarithmically spaced values for T) both GIF and IF
neurons lag behind the sinusoidal modulation, their oscillating
afferents are potentiated and their sinusoidal gain is consequently
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increased (Fig. 4A and C). For modulation periods slightly greater
than the intrinsic period p, the GIF and the IF neurons behave in
a qualitative different way: the IF neuron still lags behind the sinu-
soidal modulation, while the GIF neuron leads ahead of it, resulting
in an opposite trend in their separation index R and consequently
in their gain Ag (compare panels A and C). This cell-specific regula-
tion of the sinusoidal gain through STDP is also apparent in Fig. 5,
where the gain for the GIF (solid) and IF models (dashed) is plotted
at the beginning (light gray) and at the end (dark gray) of the sim-
ulations, for input periods T spanning three orders of magnitude.
For all tested input periods, the difference in gain at the beginning
of the simulations is rather small, but it increases dramatically
through the action of STDP for those input periods which result
in qualitatively different behavior in the GIF and IF neuron (with
T in the interval (3,10) approximately, the phase is positive for
the GIF neuron and negative for the IF neuron). Conversely, the dif-
ference in gain between the two neuron models remains small for
very short or very long modulation periods, for which the two
models display similar phase shifts. Note the negative peak in Ag

for the GIF neuron, which corresponds to maximal phase advance
and consequently maximal relative depression of the oscillating
subgroup (compare Fig. 5 with Fig. 3A).

To further clarify the relation between the R index and the sinu-
soidal gain, we lumped all the data obtained with different T for the
same neuron model, and plotted the percentual change in sinusoi-
dal gain Ag during learning versus R for the GIF (filled squares) and
IF models (empty circles) (Fig. 4D). This figure shows that the rela-
tionship between the sinusoidal gain change and the oscillating/
non-oscillating ratio R is almost linear, with a R value of 1 (indiffer-
entiation between the two subgroup of afferents) resulting in no
gain change. This suggests that the evolution of the sinusoidal gain
along a simulation is mainly driven by the relative potentiation or
depression of the oscillating subgroup.

The effect of STDP on the phase lag of the different model neu-
rons is somewhat subtler. When the postsynaptic neuron lags be-
hind the sinusoidal modulation, the oscillating afferents are
potentiated with respect to the other afferents, and keep the post-
synaptic cell at a constant, negative phase. Conversely, when the
postsynaptic neuron leads ahead of the sinusoidal modulation,
the oscillating afferents are depressed and their entrainment of
the postsynaptic cell is less efficient, resulting in low sinusoidal
gain and variable, positive phase (Fig. 4C).
4. Discussion

In this work we considered a simplified framework, in which a
single postsynaptic cell receives a synaptic bombardment from
several hundred presynaptic afferents in a purely feedforward con-
figuration. While the adoption of a simplified model is useful in
dissecting the minimal dynamical mechanisms required for the ob-
served behavior, the introduction of additional biological details
might significantly alter, or extend, our results. In this section we
discuss the main assumptions of our model which are not expected
to hold in biological neural networks, discuss how they might af-
fect our results, and suggest future work which will further unravel
the complex interplay between neuronal properties and synaptic
plasticity.

In our approach we did not take into account propagation de-
lays along neurites. However, the effects of linear, frequency-inde-
pendent propagation delays can easily be predicted in the current
framework. If we consider an axonal conductance delay sa from the
soma of the presynaptic neuron until the synaptic contact, and a
dendritic conductance delay sd from the synaptic contact until
the soma of the postsynaptic cell (equal among afferents for sim-
plicity), we expect the phase response to be delayed by
ðsa þ sdÞ=T , where T is the period of the sinusoidal modulation.
This will result in a shrinking of the frequency range with positive
phase response, suggesting a bias towards potentiation of the oscil-
lating population. However, this latter effect depends upon the rel-
ative magnitude of the axonal and dendritic conductance delays.
Given that synaptic modifications depends upon the relative tim-
ing of the pre- and postsynaptic activity as observed at the synaptic
site (more precisely, upon the time difference between the calcium
influx through synaptically gated postsynaptic channels and the
postsynaptic depolarization due to a backpropagating action po-
tential (Markram et al., 1997)), we could substitute Dt in Eq. (4)
with Dtsyn ¼ tsyn

post � tsyn
pre ¼ Dt þ ðsd � saÞ. Since in most cases the

propagation delay along the axon is greater than along the den-
drite, we would expect a rightward shift of the temporal depen-
dence of STDP, with zero phase lag observed at the somae
resulting in synaptic depression, thus partially compensating for
the downward shift in the phase response.

The adoption of a more realistic synaptic description, i.e. expo-
nentially decaying synaptic conductances or alpha functions, is
also expected to increase the phase lag, because the synaptic cur-
rent will peak a certain time after its onset. We performed some
exploratory simulations with exponential synapses, and indeed ob-
served a general downward shift in the phase response and conse-
quently a bias towards potentiation of the oscillating population
(not shown). As the synaptic dynamics interacts with the intrinsic
dynamics, the differences between the IF and GIF neuron which
could not be attributed to the phase response are bigger than in
the present case, and deserve further study which will be ad-
dressed in the future. The adoption of linear neuron models might
also seem unrealistically simple. However, these simple models
with parameters obtained from linearization around the steady
state of realistic, conductance-based model neurons are known to
replicate faithfully the response to a weak sinusoidal modulation
of their realistic counterparts, even when embedded in strong
background noise (Richardson et al., 2003). Still, it is possible that
a more realistic spike generation mechanism might affect the neu-
ronal response to a sinusoidal modulation, especially at high input
rates (Fourcaud-Trocmé et al., 2003). This possibility will be ad-
dressed in future work.
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In our model, the oscillating population follows a sinusoidally
modulated Poisson statistics, without any additional temporal
structure. Hence, if the postsynaptic cell is in phase with the input
modulation, one particular presynaptic neuron will sometimes
lead, sometimes lag the postsynaptic response so that the mean
synaptic drift it will experience is zero. Conversely, if the oscillat-
ing population activity were temporally structured, a differentia-
tion of the oscillating population from the rest of the afferents
could still be observed. For instance, if a subset of the oscillating
population were imposed to fire earlier on average than the other
afferents of the oscillating population, this subset would be ex-
pected to undergo potentiation.

Another assumption of our feedforward model which is not ex-
pected to hold in generic neuronal networks is the independence
between inhibition and excitation. Inhibition if often correlated
with excitation, either because of excitatory–inhibitory loops in
the same brain area, or because of common inputs from other brain
areas which target both interneurons and principal cells (Buzsáki,
1984; Pouille and Scanziani, 2001; Wang et al., 2007). This interde-
pendence might bias synapse strengthening in a cell-specific way.
For example, inhibition which shortly precedes excitation in-
creases the responsiveness and reliability of neurons with sub-
threshold oscillations, but not of purely passive neurons (Mato
and Samengo, 2008).

In our model inhibitory connections are fixed, and plasticity of
excitatory synaptic weights is the only mechanism responsible
for adjusting the spiking statistics of the postsynaptic cell from
the initial high frequency, regular spiking regime to the low fre-
quency, irregular firing regime which is commonly observed in
the brain. This results in a dependence of the output firing statistics
after learning upon the initial values of the synaptic weights. Even
if most experimental and theoretical studies have focused on syn-
aptic plasticity of excitatory (typically glutamatergic) synapses,
inhibitory connections are also known to undergo activity-depen-
dent plasticity (Gaiarsa et al., 2002), which, at least in some sys-
tems, exhibits a high sensitivity to the relative timing of pre- and
postsynaptic spiking (Haas et al., 2006). Contrary to the anti-
homeostatic effect of excitatory STDP, which tends to strenghten
the stronger synapses, the effect of inhibitory STDP is homeostatic,
increasing the inhibitory effect if it was not sufficient to prevent
the postsynaptic cell from firing. It will be worth exploring
whether the interaction of these complementary mechanisms
might result in robust self-organization of network dynamics
and, in a feedforward network like the one presented here, in con-
vergence to a given output statistics from a broad range of initial
synaptic weights.
5. Conclusions

Intrinsic neuronal properties may affect the integration of
incoming stimuli in a nontrivial way. For instance, an EPSP evoked
on a regular spiking neuron can advance or delay the occurrence of
the next spike, depending upon the intrinsic properties of the post-
synaptic neuron and the exact time in which it is delivered.

Intrinsic neuronal properties (in particular, intrinsic oscilla-
tions) affect the neuron behavior in response to a sinusoidal mod-
ulation embedded in a random synaptic bombardment
(Richardson et al., 2003). In the irregular firing regime, a purely
passive neuron like an IF always follows a sinusoidal modulation
with some delay, while a GIF neuron with intrinsic oscillations
can synchronize to an input modulation or even lead ahead of it,
depending upon its intrinsic frequency and the frequency of the
sinusoidal modulation.

The phase of the sinusoidal response determines the net drift
that will affect the weights of the oscillating population: if the
phase is positive (the postsynaptic neuron leads ahead of the pre-
synaptic sinusoidal modulation) the oscillating population will
experience a net depressing effect (most postsynaptic spikes will
lead the presynaptic spikes originating from this population), while
if the phase is negative (the postsynaptic neuron follows the sinu-
soidal modulation with some delay) the oscillating population will
be potentiated.

The net weight drift experienced by the oscillating population
affects in turn the postsynaptic firing statistics, and in particular
the sinusoidal gain response. If the postsynaptic neuron follows
the sinusoidal modulation with some delay, as in the case of the
passive IF neuron, the oscillating population will undergo potenti-
ation and will increase the gain of the sinusoidal modulation. Con-
versely, if the postsynaptic neuron is synchronized with the
sinusoidal modulation, the net weight drift on the oscillating pop-
ulation will be the same as the one experienced by the other affer-
ents, hence the sinusoidal gain will stay constant. Thus, it seems
that STDP might have a regulatory effect upon the sinusoidal gain
in the presence of oscillatory inputs, by increasing the oscillatory
input to target cells which follow the modulation with some delay,
while not affecting or even decreasing the oscillatory inputs to tar-
get cells which display intrinsic oscillations in resonance with the
frequency of the oscillatory modulation.

Since both network oscillations and intrinsic resonant neurons
are widespread in many brain areas, we believe that this mecha-
nism might be highly relevant for structure formation during both
development and mature life. For example, we could hypothesize
that the distribution of intrinsic neuronal properties in a certain
brain area might impose some restrictions upon the possible wiring
schemes, thus contributing to the specification of network connec-
tivity and possibly decreasing the amount of information about
wiring which needs to be genetically encoded. This effect is ex-
pected to be especially relevant in higher and evolutionarily more
recent neural structures, where the heterogeneity of intrinsic prop-
erties is higher (Freund and Buzsáki, 1996; Markram et al., 2004;
Somogyi and Klausberger, 2005). Intrinsic single-cell properties
might tune incoming connections in order to enhance responsive-
ness to neuronal assemblies which tend to fire at a certain phase
of network oscillations, thus fostering specialization and multiplex-
ing in network processing (Friedrich et al., 2004). According to our
numerical results, we expect passive neurons to be driven mostly
by synchronized presynaptic assemblies which fire at the peak of
the oscillatory input component, while neurons with subthreshold
oscillations might more often develop strong connections from
neurons which tend to fire earlier than their other afferents.

Finally, single-cell processing is a distributed phenomenon. Sin-
gle domains along the neuronal morphology can be characterized
by specific intrinsic properties (Johnston and Narayanan, 2008),
interneuron innervation (Klausberger and Somogyi, 2008) and lo-
cal plasticity rules (Froemke et al., 2005; Letzkus et al., 2006; Sau-
dargiene et al., 2005). The investigation about the complex
interplay between network oscillations, the heterogeneity of
intrinsic neuronal dynamics, and the local nature of synaptic plas-
ticity is likely to be of key importance for understanding informa-
tion processing in the nervous system.
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