Stats fest 2007

Regression analysis

murray.logan@sci.monash.edu.au

Simple linear regression

Aims
- Description
 - Linear relationship between response variable (Y) and predictor variable (X)
- Explanation
 - How much of the variation in response variable (Y) is explained by linear relationship with predictor variable (X)
- Prediction
 - New Y values from new X values

Data
- Dependent (response) variable
 - Continuous
 - Normally distributed
- Independent (predictor) variable
 - Continuous
 - Uniform across a range
- Each recorded from n sampling units (replicates)
Estimating regression parameters

\[y = bx + a \quad y = \beta_0 + \beta_1 x + \varepsilon \]
- \(b \) = slope
- \(a \) = y-intercept

Ordinary least squares (OLS) regression line
- Minimizes residuals
- Observed – expected
- Minimizes sum of squared residuals

Null hypotheses

\[y = \beta_0 + \beta_1 x + \varepsilon \]

Null hypotheses (H0)
- **Parameter based**
 - Population intercept = 0 (\(\beta_0 = 0 \))
 - Population slope = 0 (\(\beta_1 = 0 \))
 - Use t-tests

Null hypotheses (H0)
- **Model based (variance based)**

\[
\begin{align*}
\text{Compare fit} & \quad \left\{ \begin{array}{l}
\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x + \varepsilon \\
\hat{y} = \hat{\beta}_0 + \varepsilon
\end{array} \right.
\end{align*}
\]
- Generate a statistic based on the ratio of fit of the full and reduced models
 - F-ratio
Regression

Partitioning of total variance

- Does the model (equation) explain the data?

![Graph of two linear equations: y = 1x + 2 and y = 0.7x + 1.91.]

Regression

Partitioning total variance

- Variance explained by linear model (equation)
- Variance not explained by linear model (equation)

![Graphs showing explained and unexplained variance.]

Regression

When H₀ is true F-ratio is expected to be close to zero

- Amount explained by the model (equation) is substantially less than the amount not explained

Analysis of Variance Table

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>40.707</td>
<td>40.707</td>
<td>30.125</td>
</tr>
<tr>
<td>Residuals</td>
<td>8</td>
<td>10.810</td>
<td>1.351</td>
<td></td>
</tr>
</tbody>
</table>
Regression

- F-distribution (1, ?)
 - F-ratio = 30.125
 - P-value = 0.001
 - Reject H_0
 - F-ratio = 0.4959
 - P-value = 0.501
 - Not reject H_0

- Strength of relationship (r^2)
 - $r^2 = \frac{\text{Explained variance}}{\text{Total variance}} = 0.891$ (90%)

- Puts result into perspective

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------|----------|------------|---------|----------|
| (Intercept)| 5.3899 | 0.4140 | 13.017 | < 0.001 |
| Slope | 0.2232 | 0.0679 | 3.285 | 0.00132 |

Residual standard error: 1.783 on 98 degrees of freedom
Multiple R-Squared: 0.09918, Adjusted R-squared: 0.08999
Model II regression

- When uncertainty in both response and predictor variables
- Rather than select levels of the predictor variable to be uniform throughout a range
 - Measure predictor variable
 - Predictor variable normally distributed
- E.g. relationship between tree height and DBH

Model II regression

- Major axis (MA) regression
 - Minimize perpendicular spread to regression line
 - Assumes degree of uncertainty in X and Y same
- Normality
- Homogeneity of variance

Model II regression

- Reduced major axis (RMA) regression
 - Minimize the sum of triangular areas from observed points to regression line
 - Slope = average of slope of Y on X and 1/slope of X on Y
- Normality
- Homogeneity of variance
Model II regression

- Rarely used – why?
 - Hypothesis tests unaffected
 - No good for predictive formula as we have no measure of uncertainty in new predictor values
 - Only used if need an accurate estimation of the nature of a relationship
 - Size scaling applications
 - Comparing relationship slopes

Simple linear regression

- Linear model
 \[y = \beta_0 + \beta_1 x + \varepsilon \]

- Reduced model (when \(H_0 \) is true, \(\beta_1 = 0 \))
 \[y = \beta_0 + \varepsilon \]

- \(H_0 \):
 - Population slope equals 0 (\(\beta_1 = 0 \))
 - Population y-intercept equals 0 (\(\beta_0 = 0 \))
 - Linear model fits better than reduced model
Simple linear regression

Assumptions
- Independent observations
- Normality (residuals)
 - Boxplot of response variable
- Homogeneity of variance (residuals)
 - Spread of observations around regression line
 - Residual plot
- Linearity
 - Scatterplot
 - Lowess smoother

```r
> scatterplot(RESPONSE ~ PREDICTOR, data=DATA)
```

Simple linear regression

Fit linear model
- \(y = \beta_0 + \beta_1 x + \varepsilon \)

```r
> *.lm <- lm(RESPONSE ~ PREDICTOR, data=DATA)
```

Simple linear regression

Final checks (influence measures)
- Residual
 - How much each Y value differs from expected
- Leverage
 - How much of an outlier in X space the observation is
 - Influence of each X value on predicted Y
- Cook’s D
 - Incorporates residual and leverage
 - Influence of each point on slope
 - Values near or > 1 bad

```r
> resid(*.lm)
> influence.measures(*.lm)
> influence.measures(*.lm)
```
Simple linear regression

Analysis sequence
- Design experiment/survey
- Collect data
- Test assumptions
- Fit linear model
 - Estimate parameters
 - Full vs reduced
 - Partition variability into explained & unexplained
 - r^2

Analysis sequence cont.
- Test H_0's
 - $\beta_0 = 0$
 - t-statistic $= \frac{b_0}{SE(b_0)}$
 - t-distribution ($df = n-2$)
 - $\beta_1 = 0$
 - t-statistic $= \frac{b_1}{SE(b_1)}$
 - t-distribution ($df = n-2$)
- Full vs Reduced (explained vs unexplained)
 - F-ratio statistic $= \frac{MS_{\text{Regression}}}{MS_{\text{Residual}}}$
 - F-distribution ($df = 1, n-2$)
- Conclusions
 - Reject or not reject H_0

Multiple linear regression

Aims
- Linear relationship between a response variable and two or more predictor variables
- Predictions
- Model selection

Data
- One response variable (Y)
- Multiple predictor variables (X_1, X_2, \ldots)
- Each variable measured from each sampling unit (n)
Multiple linear regression

Linear model
\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \varepsilon \]

Reduced models
\[y = \beta_0 + \varepsilon \]
\[y = \beta_0 + \beta_1 x_1 + \varepsilon \]

H₀:
- Partial population slope 1 equals 0 (\(\beta_1 = 0 \))
- Partial population slope 2 equals 0 (\(\beta_2 = 0 \))
- ...
- Population y-intercept equals 0 (\(a = 0 \))
- Linear model fits better than reduced model(s)
 - All partial population slopes = 0

Assumptions

- Independent observations
- Normality (residuals)
- Boxplot of variables
- Homogeneity of variance (residuals)
- Residual plot
- Linearity
 - Scatterplot matrix (SPLOM)
 - Partial regression plots

```r
> scatterplot.matrix(~RESPONSE+PRED1+PRED2+.., data=DATA)
```

Assumptions cont

- No collinearity – predictors correlated
 - Each predictor variable must be independent
 - If not estimates of partial slopes unreliable
 - Variance-inflation
 - Values > 5 not good, >10 very bad
    ```r
    > vif(*.lm)
    ```
 - Correlations between predictor pairs (or SPLOM)
    ```r
    > cor(~RESPONSE+PRED1+PRED2+.., data=DATA)
    ```
 - Remove one of correlated variables
 - Center variables
 - Combine via PCA
Multiple linear regression

● Analysis sequence
 ● Design experiment/survey
 ● Collect data
 ● Test assumptions
 ● Fit linear model
 ○ Estimate parameters
 ○ Full vs reduced

> *.lm <- lm(RESPONSE~PRED1+PRED2+..., data=DATA)

Multiple linear regression

● Test H0's
 ○ \(\beta_0 = 0 \)
 ○ \(\beta_1 = 0, \beta_2 = 0, ... \)
 ○ Full vs Reduced (explained vs unexplained)
 ● Many competing models

> summary(*.lm)

Multiple linear regression

● Model selection
 ● Selecting the 'best model'
 ○ Adjusted \(r^2 \)
 ○ AIC
 ○ BIC
 ● Predictor importance
 ○ Adjusted \(R^2 \), AIC, BIC
 ○ Hierarchical partitioning

> hier.part(RESPONSE,data.frame(PRED1,PRED2,...))

● Conclusions
 ○ Reject or not reject \(H_0 \)