Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems

Tim Garoni

School of Mathematical Sciences
Monash University
A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems

Lele Zhanga,b, Timothy M Garonib,*, Jan de Gierc

aARC Centre of Excellence for Mathematics and Statistics of Complex Systems, Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
bSchool of Mathematical Sciences, Monash University, Clayton, Victoria 3800, Australia
cDepartment of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
Fundamental Diagram

- Consider a one-dimensional flow (vehicles along a freeway)
- The functional relationship between flow and density is the **fundamental diagram** (Greenshields, 1935)
Fundamental Diagram

- Consider a one-dimensional flow (vehicles along a freeway)
- The functional relationship between flow and density is the **fundamental diagram** (Greenshields, 1935)
Fundamental Diagram

- Consider a one-dimensional flow (vehicles along a freeway)
- The functional relationship between flow and density is the **fundamental diagram** (Greenshields, 1935)

Intuitively makes sense to have a unimodal FD in one dimension
Fundamental Diagram

- Consider a one-dimensional flow (vehicles along a freeway)
- The functional relationship between flow and density is the **fundamental diagram** (Greenshields, 1935)

![Graph of fundamental diagram](image)

- Intuitively makes sense to have a unimodal FD in one dimension
- What should happen in a network?
Fundamental Diagram

- Consider a one-dimensional flow (vehicles along a freeway)
- The functional relationship between flow and density is the fundamental diagram (Greenshields, 1935)
- Intuitively makes sense to have a unimodal FD in one dimension
- What should happen in a network?
- How should one even define network flow? (No prescribed direction)
Macroscopic Fundamental Diagrams

- Simplest idea: relate arithmetic means of link density and flow
- If network has link set Λ:
 \[\rho = \frac{1}{|\Lambda|} \sum_{\lambda \in \Lambda} \rho_\lambda, \quad J = \frac{1}{|\Lambda|} \sum_{\lambda \in \Lambda} J_\lambda \]
- ρ_λ is density of link λ and J_λ is its flow
Two Extreme Cases

- Existence of MFDs is trivial:
 - If all links have the same FD
 - and if the distribution of congestion is always perfectly uniform
 - then network MFD coincides with common link FD

- Existence of MFDs is impossible:
 - If one has a network and is free to vary the demand on each link in any way imaginable, then no MFD can exist
 - e.g. half the links have $\rho/\lambda = 1$ and other half have $\rho/\lambda = 0$, then $\rho = 1/2$ and $J = 0$
 - e.g. all links have $\rho/\lambda = 1/2$, then $\rho = 1/2$ but $J > 0$ (could even have $J = J_{\text{max}}$)

- Existence of MFDs clearly not independent of demand

- MFDs are interesting because there is something in between

- In practice, on many networks the demand will rise and fall in a fairly constrained way during a typical day
Two Extreme Cases

- Existence of MFDs is trivial:
 - If all links have the same FD
 - and if the distribution of congestion is always perfectly uniform
 - then network MFD coincides with common link FD
 - This is not very interesting...
Two Extreme Cases

- **Existence of MFDs is trivial:**
 - If all links have the same FD
 - and if the distribution of congestion is always perfectly uniform
 - then network MFD coincides with common link FD
 - This is not very interesting...

- **Existence of MFDs is impossible:**
 - If one has a network and is free to vary the demand on each link in any way imaginable, then no MFD can exist
 - e.g. half the links have $\rho_\lambda = 1$ and other half have $\rho_\lambda = 0$, then $\rho = 1/2$ and $J = 0$
 - e.g. all links have $\rho_\lambda = 1/2$, then $\rho = 1/2$ but $J > 0$ (could even have $J = J_{\text{max}}$)
 - Existence of MFDs clearly not independent of demand
Two Extreme Cases

- **Existence of MFDs is trivial:**
 - If all links have the same FD
 - and if the distribution of congestion is always perfectly uniform
 - then network MFD coincides with common link FD
 - This is not very interesting...

- **Existence of MFDs is impossible:**
 - If one has a network and is free to vary the demand on each link in any way imaginable, then no MFD can exist
 - e.g. half the links have $\rho \lambda = 1$ and other half have $\rho \lambda = 0$, then $\rho = 1/2$ and $J = 0$
 - e.g. all links have $\rho \lambda = 1/2$, then $\rho = 1/2$ but $J > 0$
 - (could even have $J = J_{\text{max}}$)
 - Existence of MFDs clearly not independent of demand

- MFDs are interesting because there is something in between
- In practice, on many networks the demand will rise and fall in a fairly constrained way during a typical day
What are MFDs?

Consider a fixed network with link set Λ

First of all, one needs to agree on what ρ and J mean.

- $\rho_\lambda(t)$ and $J_\lambda(t)$ are stochastic processes
- Aggregate variables

$$
\rho(t) = \frac{1}{|\Lambda|} \sum_{\lambda \in \Lambda} \rho_\lambda(t) \quad J(t) = \frac{1}{|\Lambda|} \sum_{\lambda \in \Lambda} J_\lambda(t)
$$

- MFD is the relationship between $\mathbb{E} J(t)$ and $\mathbb{E} \rho(t)$
- Can be interested in instantaneous or stationary MFDs

"Heterogeneity" is also important

Helbing 2009; Mazloumian, Geroliminis & Helbing 2010; Geroliminis & Sun 2011; de Gier, G & Zhang 2013

$\rho_\lambda(t)$ and $J_\lambda(t)$ all stochastic processes

In time dependent context, heterogeneity can explain hysteresis
What are MFDs?

Consider a fixed network with link set Λ
First of all, one needs to agree on what ρ and J mean.

- $\rho_\lambda(t)$ and $J_\lambda(t)$ are stochastic processes
- Aggregate variables

$$\rho(t) = \frac{1}{|\Lambda|} \sum_{\lambda \in \Lambda} \rho_\lambda(t) \quad J(t) = \frac{1}{|\Lambda|} \sum_{\lambda \in \Lambda} J_\lambda(t)$$

- MFD is the relationship between $\mathbb{E} J(t)$ and $\mathbb{E} \rho(t)$
- Can be interested in instantaneous or stationary MFDs
- “Heterogeneity” is also important

$$h(t) = \sqrt{\frac{1}{|\Lambda|} \sum_{\lambda \in \Lambda} [\rho_\lambda(t) - \rho(t)]^2}$$

Helbing 2009; Mazloumian, Geroliminis & Helbing 2010; Geroliminis & Sun 2011; de Gier, G & Zhang 2013

- J, ρ, h all stochastic processes
- In time dependent context, heterogeneity can explain hysteresis
Asymmetric Simple Exclusion Process (ASEP)

“Everything should be made as simple as possible, but not simpler”

(Albert Einstein)

- Want an Ising model of traffic flow
- One-dimensional stochastic cellular automata very popular in statistical mechanics starting in 1990s
 - Such models do a reasonable job of explaining qualitative behaviour of freeway traffic
 - “Phantom” jams emerge as consequence of collective behaviour
- Cellular automata are discrete dynamical systems
- Space, time, and state variables are discrete
Asymmetric Simple Exclusion Process (ASEP)

“Everything should be made as simple as possible, but not simpler”

(Albert Einstein)

- Want an Ising model of traffic flow
- One-dimensional stochastic cellular automata very popular in statistical mechanics starting in 1990s
 - Such models do a reasonable job of explaining qualitative behaviour of freeway traffic
 - “Phantom” jams emerge as consequence of collective behaviour
- Cellular automata are discrete dynamical systems
- Space, time, and state variables are discrete

ASEP with open boundaries:
- If \(x_1(t) = 0 \), then with probability \(\alpha \), \(x_1(t + 1) = 1 \)
- For each cell \(i = 1, \ldots, L \) with \(x_i(t) = 1 \)
 - If \(x_{i+1}(t) = 0 \) then with probability \(p \), \(x_i(t + 1) = 0 \) and \(x_{i+1}(t + 1) = 1 \)
 - Else \(x_i(t + 1) = 1 \)
- If \(x_L(t) = 1 \), then with probability \(\beta \), \(x_L(t + 1) = 0 \)
Asymmetric Simple Exclusion Process (ASEP)

"Everything should be made as simple as possible, but not simpler"

(Albert Einstein)

▶ Want an Ising model of traffic flow
▶ One-dimensional stochastic cellular automata very popular in statistical mechanics starting in 1990s
 ▶ Such models do a reasonable job of explaining qualitative behaviour of freeway traffic
 ▶ “Phantom” jams emerge as consequence of collective behaviour
▶ Cellular automata are discrete dynamical systems
▶ Space, time, and state variables are discrete

ASEP with open boundaries:
▶ If \(x_1(t) = 0 \), then with probability \(\alpha \), \(x_1(t + 1) = 1 \)
▶ For each cell \(i = 1, \ldots, L \) with \(x_i(t) = 1 \)
 ▶ If \(x_{i+1}(t) = 0 \) then with probability \(p \), \(x_i(t + 1) = 0 \) and \(x_{i+1}(t + 1) = 1 \)
 ▶ Else \(x_i(t + 1) = 1 \)
▶ If \(x_L(t) = 1 \), then with probability \(\beta \), \(x_L(t + 1) = 0 \)
Asymmetric Simple Exclusion Process (ASEP)

“Everything should be made as simple as possible, but not simpler”

(Albert Einstein)

- Want an Ising model of traffic flow
- One-dimensional stochastic cellular automata very popular in statistical mechanics starting in 1990s
 - Such models do a reasonable job of explaining qualitative behaviour of freeway traffic
 - “Phantom” jams emerge as consequence of collective behaviour
- Cellular automata are discrete dynamical systems
- Space, time, and state variables are discrete

ASEP with open boundaries:

- If $x_1(t) = 0$, then with probability α, $x_1(t + 1) = 1$
- For each cell $i = 1, \ldots, L$ with $x_i(t) = 1$
 - If $x_{i+1}(t) = 0$ then with probability p, $x_i(t + 1) = 0$ and $x_{i+1}(t + 1) = 1$
 - Else $x_i(t + 1) = 1$
- If $x_L(t) = 1$, then with probability β, $x_L(t + 1) = 0$
Asymmetric Simple Exclusion Process (ASEP)

“Everything should be made as simple as possible, but not simpler”

(Albert Einstein)

- Want an Ising model of traffic flow
- One-dimensional stochastic cellular automata very popular in statistical mechanics starting in 1990s
 - Such models do a reasonable job of explaining qualitative behaviour of freeway traffic
 - “Phantom” jams emerge as consequence of collective behaviour
- Cellular automata are discrete dynamical systems
- Space, time, and state variables are discrete

 ASEП with open boundaries:
 - If $x_1(t) = 0$, then with probability α, $x_1(t + 1) = 1$
 - For each cell $i = 1, \ldots, L$ with $x_i(t) = 1$
 - If $x_{i+1}(t) = 0$ then with probability p, $x_i(t + 1) = 0$ and $x_{i+1}(t + 1) = 1$
 - Else $x_i(t + 1) = 1$
 - If $x_L(t) = 1$, then with probability β, $x_L(t + 1) = 0$
Asymmetric Simple Exclusion Process (ASEP)

“Everything should be made as simple as possible, but not simpler”

(Albert Einstein)

- Want an Ising model of traffic flow
- One-dimensional stochastic cellular automata very popular in statistical mechanics starting in 1990s
 - Such models do a reasonable job of explaining qualitative behaviour of freeway traffic
 - “Phantom” jams emerge as consequence of collective behaviour
- Cellular automata are discrete dynamical systems
- Space, time, and state variables are discrete

ASEP with open boundaries:
- If $x_1(t) = 0$, then with probability α, $x_1(t+1) = 1$
- For each cell $i = 1, \ldots, L$ with $x_i(t) = 1$
 - If $x_{i+1}(t) = 0$ then with probability p, $x_i(t+1) = 0$ and $x_{i+1}(t+1) = 1$
 - Else $x_i(t+1) = 1$
- If $x_L(t) = 1$, then with probability β, $x_L(t+1) = 0$
Asymmetric Simple Exclusion Process (ASEP)

“Everything should be made as simple as possible, but not simpler”

(Albert Einstein)

- Want an Ising model of traffic flow
- One-dimensional stochastic cellular automata very popular in statistical mechanics starting in 1990s
 - Such models do a reasonable job of explaining qualitative behaviour of freeway traffic
 - “Phantom” jams emerge as consequence of collective behaviour
- Cellular automata are discrete dynamical systems
- Space, time, and state variables are discrete

![Cellular Automata Diagram]

- ASEP with open boundaries:
 - If $x_1(t) = 0$, then with probability α, $x_1(t + 1) = 1$
 - For each cell $i = 1, \ldots, L$ with $x_i(t) = 1$
 - If $x_{i+1}(t) = 0$ then with probability p, $x_i(t + 1) = 0$ and $x_{i+1}(t + 1) = 1$
 - Else $x_i(t + 1) = 1$
 - If $x_L(t) = 1$, then with probability β, $x_L(t + 1) = 0$
Nagel-Schreckenberg process

- NaSch generalizes ASEP
Nagel-Schreckenberg process

- NaSch generalizes ASEP
 - Vehicles can have different speeds $0, 1, \ldots, v_{\text{max}}$
Nagel-Schreckenberg process

- NaSch generalizes ASEP
 - Vehicles can have different speeds $0, 1, \ldots, v_{\text{max}}$

Let x_n and v_n denote the position & speed of the nth vehicle
Nagel-Schreckenberg process

- NaSch generalizes ASEP
 - Vehicles can have different speeds 0, 1, ..., v_{max}

- Let x_n and v_n denote the position & speed of the nth vehicle
- Let d_n denote the gap in front of the nth vehicle
Nagel-Schreckenberg process

- NaSch generalizes ASEP
 - Vehicles can have different speeds 0, 1, \ldots, \nu_{\text{max}}

- Let \(x_n \) and \(v_n \) denote the position & speed of the \(n \text{th} \) vehicle
- Let \(d_n \) denote the gap in front of the \(n \text{th} \) vehicle
- The NaSch rules are as follows:
Nagel-Schreckenberg process

- NaSch generalizes ASEP
 - Vehicles can have different speeds $0, 1, \ldots, v_{\text{max}}$

 ![Diagram](image)

- Let x_n and v_n denote the position & speed of the nth vehicle
- Let d_n denote the gap in front of the nth vehicle
- The NaSch rules are as follows:
 - $v_n \mapsto \min(v_n + 1, v_{\text{max}})$
Nagel-Schreckenberg process

- NaSch generalizes ASEP
 - Vehicles can have different speeds $0, 1, \ldots, v_{\text{max}}$

- Let x_n and v_n denote the position & speed of the nth vehicle
- Let d_n denote the gap in front of the nth vehicle
- The NaSch rules are as follows:
 - $v_n \mapsto \min(v_n + 1, v_{\text{max}})$
 - $v_n \mapsto \min(v_n, d_n)$
Nagel-Schreckenberg process

- NaSch generalizes ASEP
 - Vehicles can have different speeds $0, 1, \ldots, v_{\text{max}}$

- Let x_n and v_n denote the position & speed of the nth vehicle
- Let d_n denote the gap in front of the nth vehicle
- The NaSch rules are as follows:
 - $v_n \mapsto \min(v_n + 1, v_{\text{max}})$
 - $v_n \mapsto \min(v_n, d_n)$
 - $v_n \mapsto \max(v_n - 1, 0)$ with probability p
Nagel-Schreckenberg process

- NaSch generalizes ASEP
 - Vehicles can have different speeds 0, 1, \ldots, \nu_{\text{max}}

- Let \(x_n \) and \(\nu_n \) denote the position & speed of the \(n \)th vehicle
- Let \(d_n \) denote the gap in front of the \(n \)th vehicle
- The NaSch rules are as follows:
 - \(\nu_n \mapsto \min(\nu_n + 1, \nu_{\text{max}}) \)
 - \(\nu_n \mapsto \min(\nu_n, d_n) \)
 - \(\nu_n \mapsto \max(\nu_n - 1, 0) \) with probability \(p \)
 - \(x_n \mapsto x_n + \nu_n \)
Nagel-Schreckenberg process

- NaSch generalizes ASEP
 - Vehicles can have different speeds $0, 1, \ldots, v_{\text{max}}$

![Diagram showing vehicle positions and speeds]

- Let x_n and v_n denote the position & speed of the nth vehicle
- Let d_n denote the gap in front of the nth vehicle
- The NaSch rules are as follows:
 - $v_n \mapsto \min(v_n + 1, v_{\text{max}})$
 - $v_n \mapsto \min(v_n, d_n)$
 - $v_n \mapsto \max(v_n - 1, 0)$ with probability p
 - $x_n \mapsto x_n + v_n$
Nagel-Schreckenberg process

- NaSch generalizes ASEP
 - Vehicles can have different speeds 0, 1, \ldots, \nu_{\text{max}}

\[
\begin{array}{cccccccc}
_ & _ & _ & 1 & 2 & _ & _ & _ \\
\end{array}
\]

- Let \(x_n \) and \(v_n \) denote the position & speed of the \(n \)th vehicle
- Let \(d_n \) denote the gap in front of the \(n \)th vehicle
- The NaSch rules are as follows:
 - \(v_n \mapsto \min(v_n + 1, v_{\text{max}}) \)
 - \(v_n \mapsto \min(v_n, d_n) \)
 - \(v_n \mapsto \max(v_n - 1, 0) \) with probability \(\rho \)
 - \(x_n \mapsto x_n + v_n \)
Nagel-Schreckenberg process

- NaSch generalizes ASEP
 - Vehicles can have different speeds $0, 1, \ldots, v_{\text{max}}$

- Let x_n and v_n denote the position & speed of the nth vehicle
- Let d_n denote the gap in front of the nth vehicle
- The NaSch rules are as follows:
 - $v_n \mapsto \min(v_n + 1, v_{\text{max}})$
 - $v_n \mapsto \min(v_n, d_n)$
 - $v_n \mapsto \max(v_n - 1, 0)$ with probability p
 - $x_n \mapsto x_n + v_n$
Nagel-Schreckenberg process

- NaSch generalizes ASEP
 - Vehicles can have different speeds $0, 1, \ldots, v_{\text{max}}$

- Let x_n and v_n denote the position & speed of the nth vehicle
- Let d_n denote the gap in front of the nth vehicle
- The NaSch rules are as follows:
 - $v_n \mapsto \min(v_n + 1, v_{\text{max}})$
 - $v_n \mapsto \min(v_n, d_n)$
 - $v_n \mapsto \max(v_n - 1, 0)$ with probability p
 - $x_n \mapsto x_n + v_n$
NetNaSch model

Goal: Minimal stat-mech model that can mimic realistic traffic signals
 ▶ Take multiple NaSch models and glue them together
 \[\alpha_1, \beta_1 \quad \alpha_2, \beta_2 \quad \alpha_3, \beta_3 \quad \alpha_4, \beta_4 \quad \alpha_5, \beta_5 \quad \alpha_6, \beta_6 \quad \alpha_7, \beta_7 \quad \alpha_8, \beta_8\]

 ▶ Need to include:
 ▶ Multiple lanes with lane changing
 ▶ Turning decisions (random)
 ▶ Input and output (endogenous/exogenous)
 ▶ Appropriate rules for how vehicles traverse intersections

Varying all the \(\alpha, \beta, \gamma, \delta, p_n\ldots\) cannot give an MFD
Varying a lower-dimensional space of parameters can
Static demand – Approach to Stationarity

Generate MFD by setting $\alpha_\lambda = \alpha$, $\beta_\lambda = \beta$, $\gamma_\lambda = \delta_\lambda = 0$ for all $\lambda \in \Lambda$.

- Intersections governed by model of SCATS with adaptive linking
- Instantaneous MFD converges to stationary curve
- Although there is uniform boundary demand, the density distribution in the network is not homogeneous
Static demand – Stationary MFDs

- Use MFDs to quantify performance of signal systems

Isotropic and time independent rates ($\gamma=0, \delta=0$), $p_T = 0.1$ at 6 hr

Anisotropic and time independent rates ($\gamma=0, \delta=0$), $p_T = 0.1$ at 6 hr
Static demand – Stationary MFDs

- Use MFDs to quantify performance of signal systems

Isotropic and time independent rates ($\gamma=0, \delta=0$), $p_T = 0.1$ at 6 hr

Anisotropic and time independent rates ($\gamma=0, \delta=0$), $p_T = 0.1$ at 6 hr

Isotropic boundary demand

Higher demand on west side
Static demand – Stationary MFDs

- Use MFDs to quantify performance of signal systems

Isotropic and time independent rates ($\gamma=0$, $\delta=0$), $p_T = 0.1$ at 6 hr

SOTL
SCATS−L
SCATS−F

Higher demand on west side
- Anisotropic demand can still produce well-defined MFD
Self-organizing traffic lights

- SOTL is a toy model of a highly adaptive acyclic signal system
- Always gives green to phase with the highest demand

SCATS–L: isotropic and time independent rates ($\gamma=0$, $\delta=0$), $p_T = 0.1$

SOTL: isotropic and time independent rates ($\gamma=0$, $\delta=0$), $p_T = 0.1$

- SOTL has lower heterogeneity than SCATS
- Accounts for its better MFD
Time-dependent demand

- Vary α, β over 24 hours to mimic am/pm peaks
- Hysteresis observed - clockwise and anticlockwise

Buisson & Ladier 2009
Empirical data from Toulouse

Zhang, G & de Gier 2013
Simulated data
Time-dependent demand

▸ Hysteresis in MFD consequence of heterogeneity

SOTL: time dependent rates, $p_T = 0.1(\gamma = 0, \delta = 0)$

SOTL: time dependent rates ($\gamma=0, \delta=0$), $p_T = 0.1$

Zhang, G & de Gier 2013
Simulated data
Two-bin model

- Consider two adjacent networks (bins) exchanging vehicles
- Each bin has same well-defined MFD $J(\rho)$

\[
\frac{d\rho_1}{dt} = \frac{a_1 - b_1 J(\rho_1) + p_2 J(\rho_2) - p_1 J(\rho_1)}{L_1}
\]

\[
\frac{d\rho_2}{dt} = \frac{a_2 - b_2 J(\rho_2) + p_1 J(\rho_1) - p_2 J(\rho_2)}{L_2}
\]
Two-bin model

- Consider two adjacent networks (bins) exchanging vehicles
- Each bin has same well-defined MFD $J(\rho)$

\[
\frac{d\rho_1}{dt} = \frac{a_1 - b_1 J(\rho_1) + p_2 J(\rho_2) - p_1 J(\rho_1)}{L_1}
\]

\[
\frac{d\rho_2}{dt} = \frac{a_2 - b_2 J(\rho_2) + p_1 J(\rho_1) - p_2 J(\rho_2)}{L_2}
\]

- Let bin 1 be boundary layer, bin 2 the interior

![Loading](image1)

![Recovery](image2)
Two-bin model

- Consider two adjacent networks (bins) exchanging vehicles
- Each bin has same well-defined MFD $J(\rho)$

$$\frac{d\rho_1}{dt} = \frac{a_1 - b_1 J(\rho_1) + p_2 J(\rho_2) - p_1 J(\rho_1)}{L_1}$$

$$\frac{d\rho_2}{dt} = \frac{a_2 - b_2 J(\rho_2) + p_1 J(\rho_1) - p_2 J(\rho_2)}{L_2}$$

- Let bin 1 be boundary layer, bin 2 the interior

Loading

Recovery

Instantaneous MFD
Open Problems

- Can we observe anticlockwise hysteresis empirically?
- Can we understand cross-correlations between flow, density and density heterogeneity?
- How does driver adaptivity affect the shape of MFDs?
Open Problems

- Can we observe anticlockwise hysteresis empirically?
- Can we understand cross-correlations between flow, density and density heterogeneity?
- How does driver adaptivity affect the shape of MFDs?
- How should one partition networks in order to produce well-defined MFDs?
- Several groups are attempting to use MFDs as a basis for perimeter control?
<table>
<thead>
<tr>
<th>Fundamental Diagrams</th>
<th>Exclusion Processes</th>
<th>Simulations</th>
<th>Hysteresis & the 2-bin model</th>
<th>Open Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Paths

Consider a particular node n in a traffic network.

Definition

A path P is an ordered pair of lanes (λ, λ') with $\lambda \in mn$ and $\lambda' \in nm'$. Vehicles can only move from one link to another along paths. Ignore the actual dynamics through the intersection. No cells in the intersection – we use paths to glue the CA on adjacent links together.
Paths

Consider a particular node n in a traffic network.

Definition
A path P is an ordered pair of lanes (λ, λ') with $\lambda \in mn$ and $\lambda' \in nm'$.
Paths

Consider a particular node n in a traffic network

Definition

A path P is an ordered pair of lanes (λ, λ') with $\lambda \in mn$ and $\lambda' \in nm'$

- Vehicles can only move from one link to another along paths
Details of the model

Paths

Consider a particular node n in a traffic network

Definition

A path P is an ordered pair of lanes (λ, λ') with $\lambda \in mn$ and $\lambda' \in nm'$

- Vehicles can only move from one link to another along paths
- Ignore the actual dynamics through the intersection
Paths

Consider a particular node n in a traffic network

Definition
A path P is an ordered pair of lanes (λ, λ') with $\lambda \in mn$ and $\lambda' \in nm'$

- Vehicles can only move from one link to another along paths
- Ignore the actual dynamics through the intersection
- No cells in the intersection – we use paths to glue the CA on adjacent links together
Phases

We can’t simply let all paths be traversed at once – vehicles would crash inside the intersection
Phases

We can’t simply let all paths be traversed at once – vehicles would crash inside the intersection.

Definition

A phase \(\mathcal{P} \) of node \(n \) is a subset of the paths belonging to \(n \).
Phases

We can’t simply let all paths be traversed at once – vehicles would crash inside the intersection

Definition

A phase \mathcal{P} of node n is a subset of the paths belonging to n

- At each instant node n has a current phase $\mathcal{P}_{\text{current}}$
We can’t simply let all paths be traversed at once – vehicles would crash inside the intersection

Definition

A phase \mathcal{P} of node n is a subset of the paths belonging to n

- At each instant node n has a current phase $\mathcal{P}_{\text{current}}$
- Only paths in $\mathcal{P}_{\text{current}}$ may be traversed
We can’t simply let all paths be traversed at once – vehicles would crash inside the intersection.

Definition

A phase \mathcal{P} of node n is a subset of the paths belonging to n.

- At each instant node n has a current phase $\mathcal{P}_{\text{current}}$.
- Only paths in $\mathcal{P}_{\text{current}}$ may be traversed.
- Implement traffic signals using phases.
Phases

We can’t simply let all paths be traversed at once – vehicles would crash inside the intersection.

Definition

A phase \mathcal{P} of node n is a subset of the paths belonging to n:

- At each instant node n has a current phase $\mathcal{P}_{\text{current}}$.
- Only paths in $\mathcal{P}_{\text{current}}$ may be traversed.
- Implement traffic signals using phases.
- Time t:
 \[\mathcal{P}_{\text{current}} = \mathcal{P}_1 = \{P_1, \ldots, P_8\} \]
Phases

We can’t simply let all paths be traversed at once – vehicles would crash inside the intersection

Definition

A phase \mathcal{P} of node n is a subset of the paths belonging to n

- At each instant node n has a current phase $\mathcal{P}_{\text{current}}$
- Only paths in $\mathcal{P}_{\text{current}}$ may be traversed
- Implement traffic signals using phases
- Time $t + \Delta t$:
 \[\mathcal{P}_{\text{current}} = \mathcal{P}_2 = \{P_9, \ldots, P_{16}\} \]
Lane changing (dynamic)

In order to model freeways or urban networks we need multiple lanes and lane changing.
Lane changing (dynamic)

In order to model freeways or urban networks we need multiple lanes and lane changing

- If \(\min(v_n + 1, d_n^{(f)}, v_{\text{max}}) > \min(v_n + 1, d_n, v_{\text{max}}) \) the lane change is desirable
Lane changing (dynamic)

In order to model freeways or urban networks we need multiple lanes and lane changing

- If \(\min(v_n + 1, d_n^{(f)}, v_{\text{max}}) > \min(v_n + 1, d_n, v_{\text{max}}) \) the lane change is desirable
- If \(d_n^{(b)} \geq v_n^{(b)} \) the lane change is safe
Lane changing (dynamic)

In order to model freeways or urban networks we need multiple lanes and lane changing

- If \(\min(v_n + 1, d_n^{(f)}, v_{\text{max}}) > \min(v_n + 1, d_n, v_{\text{max}}) \) the lane change is desirable
- If \(d_n^{(b)} \geq v_n^{(b)} \) the lane change is safe
- If desirable and safe accept with probability \(p_{\text{change}} \)
Details of the model

Lane changing (dynamic)

In order to model freeways or urban networks we need multiple lanes and lane changing

\[
\begin{align*}
\text{If } & \min(v_n + 1, d_n^{(f)}, v_{\text{max}}) > \min(v_n + 1, d_n, v_{\text{max}}) \text{ the lane change is desirable} \\
\text{If } & d_n^{(b)} \geq v_n^{(b)} \text{ the lane change is safe} \\
\text{If desirable and safe accept with probability } p_{\text{change}} \\
\end{align*}
\]
Lane changing (dynamic)

In order to model freeways or urban networks we need multiple lanes and lane changing.

If \(\min(v_n + 1, d_n^{(f)}, v_{\text{max}}) > \min(v_n + 1, d_n, v_{\text{max}}) \) the lane change is desirable.

If \(d_n^{(b)} \geq v_n^{(b)} \) the lane change is safe.

If desirable and safe accept with probability \(p_{\text{change}} \).

Allow only left→right (right→left) at odd (even) time steps.
Details of the model

Lane changing (topological)

- Red car: not needed
- Blue car: not needed, is allowed
- Green car: needed

Each vehicle wants to be in a lane for which there exists a path consistent with its desired turn.

Only allow dynamical lane changing if it doesn't contradict topological lane changing – only blue car can...
Lane changing (topological)

- Each vehicle wants to be in a lane for which there exists a path consistent with its desired turn.
Lane changing (topological)

- Red car: not needed not allowed
- Blue car: not needed is allowed
- Green car: needed

Each vehicle wants to be in a lane for which there exists a path consistent with its desired turn.

Details of the model
Details of the model

Lane changing (topological)

- Red car: not needed not allowed
- Blue car: not needed is allowed

- Each vehicle wants to be in a lane for which there exists a path consistent with its desired turn
Lane changing (topological)

- Red car: not needed, not allowed
- Blue car: not needed, is allowed
- Green car: needed

- Each vehicle wants to be in a lane for which there exists a path consistent with its desired turn
Lane changing (topological)

- Red car: not needed, not allowed
- Blue car: not needed, is allowed
- Green car: needed

- Each vehicle wants to be in a lane for which there exists a path consistent with its desired turn
- Only allow dynamical lane changing if it doesn’t contradict topological lane changing – only blue car can
Boundaries

- We must consider open systems
- So some links only have one endpoint in the network
Boundaries

- We must consider open systems
- So some links only have one endpoint in the network
- Do not model traffic flow on boundary links
Boundaries

- We must consider open systems
- So some links only have one endpoint in the network

- Do not model traffic flow on boundary links
 - Each boundary lane λ has a fixed average density $\overline{\rho_\lambda}$
Boundaries

- We must consider open systems
- So some links only have one endpoint in the network

- Do not model traffic flow on boundary links
 - Each boundary lane λ has a fixed average density $\overline{\rho}_\lambda$
 - This is a boundary condition
Turning decisions

- Each vehicle should know which link it wants to turn into when it reaches the end of its current link.
Turning decisions

- Each vehicle should know which link it wants to turn into when it reaches the end of its current link.
- In this sense the model should be agent-based.
Turning decisions

- Each vehicle should know which link it wants to turn into when it reaches the end of its current link
- In this sense the model should be agent-based
- A sophisticated approach would use origin-destination data and route planning algorithms
Turning decisions

- Each vehicle should know which link it wants to turn into when it reaches the end of its current link
- In this sense the model should be agent-based
- A sophisticated approach would use origin-destination data and route planning algorithms
- We take a simple approach
Turning decisions

- Each vehicle should know which link it wants to turn into when it reaches the end of its current link
- In this sense the model should be agent-based
- A sophisticated approach would use origin-destination data and route planning algorithms
- We take a simple approach
- For each node n, inlink $l = mn$, & outlink $l' = nm'$, we input $P(l \rightarrow l') = P(\text{vehicle on link } l \text{ wants to turn into link } l')$
Turning decisions

- Each vehicle should know which link it wants to turn into when it reaches the end of its current link.
- In this sense the model should be agent-based.
- A sophisticated approach would use origin-destination data and route planning algorithms.
- We take a simple approach.
- For each node n, inlink $l = mn$, & outlink $l' = nm'$, we input $P(l \to l') = P(\text{vehicle on link } l \text{ wants to turn into link } l')$.
- Turning decision made when vehicle first enters a link.
Turning decisions

- Each vehicle should know which link it wants to turn into when it reaches the end of its current link.
- In this sense the model should be agent-based.
- A sophisticated approach would use origin-destination data and route planning algorithms.
- We take a simple approach.
- For each node n, inlink $l = mn$, & outlink $l' = nm'$, we input $P(l \rightarrow l') = P(\text{vehicle on link } l \text{ wants to turn into link } l')$

- Turning decision made when vehicle first enters a link.
- Turning decisions affect lane changing dynamics.
Mark paths

Consider each lane λ of each link l
Mark paths

- Consider each lane λ of each link l
- Let v be the last vehicle on λ
Consider each lane λ of each link l
Let v be the last vehicle on λ
Suppose $x(v) + v(v) > \text{length}(\lambda)$
Mark paths

- Consider each lane λ of each link l
- Let v be the last vehicle on λ
- Suppose $x(v) + v(v) > \text{length}(\lambda)$
- If there exists $P \in P_{\text{current}}$ with:
Mark paths

▶ Consider each lane λ of each link l
▶ Let v be the last vehicle on λ
▶ Suppose $x(v) + v(v) > \text{length}(\lambda)$
▶ If there exists $P \in P_{\text{current}}$ with:
 ▶ $\text{inlane}(P) = \lambda$
Mark paths

- Consider each lane λ of each link l
- Let v be the last vehicle on λ
- Suppose $x(v) + v(v) > \text{length}(\lambda)$
- If there exists $P \in \mathcal{P}_{\text{current}}$ with:
 - $\text{inlane}(P) = \lambda$
 - $\text{outlane}(P)$ has unoccupied first cell
Mark paths

- Consider each lane λ of each link l
- Let v be the last vehicle on λ
- Suppose $x(v) + v > length(\lambda)$
- If there exists $P \in P_{current}$ with:
 - $inlane(P) = \lambda$
 - $outlane(P)$ has unoccupied first cell
 - $outlink(P) = turn(v)$
Mark paths

- Consider each lane λ of each link l
- Let v be the last vehicle on λ
- Suppose $x(v) + v(v) > \text{length}(\lambda)$
- If there exists $P \in \mathcal{P}_{\text{current}}$ with:
 - $\text{inlane}(P) = \lambda$
 - $\text{outlane}(P)$ has unoccupied first cell
 - $\text{outlink}(P) = \text{turn}(v)$
- Then associate $v \leftrightarrow P$ (in this case we say P is marked)
Mark paths

- Consider each lane λ of each link l
- Let v be the last vehicle on λ
- Suppose $x(v) + v(v) > \text{length}(\lambda)$
- If there exists $P \in \mathcal{P}_{\text{current}}$ with:
 - $\text{inlane}(P) = \lambda$
 - $\text{outlane}(P)$ has unoccupied first cell
 - $\text{outlink}(P) = \text{turn}(v)$
- Then associate $v \leftrightarrow P$ (in this case we say P is marked)
- Else stop v at the end of λ
Clear paths
Consider each marked path P of each node n
Clear paths
Consider each marked path P of each node n

- If P must give way to another marked path P' of n
Clear paths
Consider each marked path P of each node n

- If P must give way to another marked path P' of n
 - Stop the vehicle $v \leftrightarrow P$ on the last cell of $inlane(P)$
Clear paths
Consider each marked path P of each node n

- If P must give way to another marked path P' of n
 - Stop the vehicle $v \leftrightarrow P$ on the last cell of $inlane(P)$
 - Else move the vehicle $v \leftrightarrow P$ to the first cell of $outlane(P)$
Clear paths
Consider each marked path P of each node n

- If P must give way to another marked path P' of n
 - Stop the vehicle $v \leftrightarrow P$ on the last cell of $\text{inlane}(P)$
 - Else move the vehicle $v \leftrightarrow P$ to the first cell of $\text{outlane}(P)$