

#### INSPECT

#### NIC tutorial on Interactive NLTE **Spect**roscopy

#### Karin Lind

Maria Bergemann, Martin Asplund

## Motivation

- Numerical techniques for solving the restricted NLTE problem in late-type star atmospheres have existed for decades.
- Many have demonstrated the failure of the LTE assumption for typical abundance diagnostics under typical atmospheric conditions.
- LTE is still adopted in the vast majority of all abundance analysis to date, largely because of the prohibitive complexity of NLTE.
  - How can NLTE be made more user-friendly?

# **NLTE** implementation

- Your options if you wish to use results of NLTE analysis, without running a NLTE code yourself?
  - Use pre-computed NLTE curves-of-growth for your equivalent width analysis.
  - Use pre-computed NLTE departure coefficients to perform on-the-fly synthesis and recover the NLTE line profile shape.
- Both require large, dense grids for efficient use, because NLTE effects depend on stellar parameters as well as line properties.

Curves-of-growth



 Non-LTE cogs exist for a large number of lines over a wide range of stellar parameters

## NLTE synthesis



 SME (Valenti & Piskunov 1996) developed for automated NLTE spectrum synthesis

#### The INSPECT interface

| 00 1      |           |    | aunig L   | de  | 03-chei   |           |           |           | Tourus | ie ini | apeula | Hews       | (1,500) | • ropu |     |     |     |
|-----------|-----------|----|-----------|-----|-----------|-----------|-----------|-----------|--------|--------|--------|------------|---------|--------|-----|-----|-----|
| 1         |           |    |           |     |           |           |           |           |        |        |        |            |         |        |     |     | 2   |
| Η         |           |    |           |     |           |           |           |           |        |        |        |            |         |        |     |     | He  |
| <u>3</u>  | 4         |    |           |     |           |           |           |           |        |        |        | 5          | 6       | 7      | 8   | 9   | 10  |
| Li        | Be        |    |           |     |           |           |           |           |        |        |        | B          | С       | Ν      | 0   | F   | Ne  |
| <u>11</u> | <u>12</u> |    |           |     |           |           |           |           |        |        |        | 13         | 14      | 15     | 16  | 17  | 18  |
| Na        | Mg        |    |           |     |           |           |           |           |        |        |        | Al         | Si      | P      | S   | Cl  | Ar  |
| 19        | <u>20</u> | 21 | <u>22</u> | 23  | <u>24</u> | <u>25</u> | <u>26</u> | <u>27</u> | 28     | 29     | 30     | 31         | 32      | 33     | 34  | 35  | 36  |
| K         | <u>Ca</u> | Sc | <u>Ti</u> | V   | <u>Cr</u> | <u>Mn</u> | <u>Fe</u> | <u>Co</u> | Ni     | Cu     | Zn     | Ga         | Ge      | As     | Se  | Br  | Kr  |
| 37        | <u>38</u> | 39 | 40        | 41  | 42        | 43        | 44        | 45        | 46     | 47     | 48     | 49         | 50      | 51     | 52  | 53  | 54  |
| Rb        | <u>Sr</u> | Y  | Zr        | Nb  | Мо        | Tc        | Ru        | Rh        | Pd     | Ag     | Cd     | In         | Sn      | Sb     | Te  | Ι   | Xe  |
| 55        | <u>56</u> | 57 | 72        | 73  | 74        | 75        | 76        | 77        | 78     | 79     | 80     | 81         | 82      | 83     | 84  | 85  | 86  |
| Cs        | <u>Ba</u> | La | Hf        | Та  | W         | Re        | Os        | Ir        | Pt     | Au     | Hg     | <b>T</b> 1 | Pb      | Bi     | Po  | At  | Rn  |
| 87        | 88        | 89 | 104       | 105 | 106       | 107       | 108       | 109       | 110    | 111    | 112    | 113        | 114     | 115    | 116 | 117 | 118 |
| Fr        | Ra        | Ac | Rf        | Db  | Sg        | Bh        | Hs        | Mt        | Ds     | Rg     | Cn     | Uut        | Uuq     | Uup    | Uuh | Uus | Uuo |

INSPECT contains grids of pre-computed curves-of-growth and can interpolate to given stellar parameters and line strengths

#### Example 1: Na in the Sun

( Reading bin... Geos-chem Apple Yahoo! YouTube Wikipedia News (1,545) \* Popular \*

<< PERIODIC TABLE | Selected: Na | Interpolate (equivalent width) / Interpolate (LTE abundance)

Lind, Asplund, Barklem, & Belyaev, 2011, A&A, 528, 103

Line data

| Abundance A(Na) [LTE]:              | 6.40    | [-0.75,8.75]    |
|-------------------------------------|---------|-----------------|
| Temperature [K]:                    | 5777    | [3800.0,8000.0] |
| Logarithm of surface gravity [cgs]: | 4.44    | [0.0,5.0]       |
| Metallicity [Fe/H]:                 | 0.0     | [-5.0,0.5]      |
| Microturbulence [km/s]:             | 1.0     | [1.0,5.0]       |
| Wavelength [nm]:                    | 818.325 |                 |
| OK                                  |         |                 |

#### NLTE correction returned

| 60 [] 🏭 Reading bin Geos-ch                                                                     | em Apple Yahoo!    | YouTube Wikipedia | News (1,545) ▼ Popular ▼ |                                                                             |  |  |
|-------------------------------------------------------------------------------------------------|--------------------|-------------------|--------------------------|-----------------------------------------------------------------------------|--|--|
| << PERIODIC TABLE   Selected: Na   Interpolate (equivalent width) / Interpolate (LTE abundance) |                    |                   |                          |                                                                             |  |  |
| Lind, Asplund, Barklem, & Belyaev, 2011, A&A, 528, 103                                          |                    |                   |                          |                                                                             |  |  |
| Line data                                                                                       |                    |                   |                          |                                                                             |  |  |
| Abundance A(Na) [LTE]:                                                                          | 6.40               | [-0.75,8.75]      |                          |                                                                             |  |  |
| Temperature [K]:                                                                                | 5777               | [3800.0,8000.0]   |                          |                                                                             |  |  |
| Logarithm of surface gravity [cgs]:                                                             | 4.44               | [0.0,5.0]         |                          |                                                                             |  |  |
| Metallicity [Fe/H]:                                                                             | 0.0                | [-5.0,0.5]        |                          |                                                                             |  |  |
| Microturbulence [km/s]:                                                                         | 1.0                | [1.0,5.0]         |                          |                                                                             |  |  |
| Wavelength [nm]:                                                                                | 818.325            |                   |                          |                                                                             |  |  |
| EW [pm] A(Na) LTE<br>27.27 6.40                                                                 | A(Na) NLTE<br>6.17 | Delta<br>-0.23    |                          |                                                                             |  |  |
|                                                                                                 |                    | K                 |                          | Large negative NLTE corrections for saturated Na lines due to photon losses |  |  |
| (                                                                                               | Compa              | re equiv          | valent w                 | idth to your measured value                                                 |  |  |

#### Compare line data

6-0 []] IIII Reading bin... Geos-chem Apple Yahoo! YouTube Wikipedia News (1,545)▼ Popular▼

log(gf)

-2.08

-0.41

-0.71

-2.04

0.11

-0.19

0.54

-1.25

0.24

-1.55

-1.30

0.00

0.00

2.10

2.10

2.10

2.10

3.19

| Na line | table              |                              |  |  |  |  |
|---------|--------------------|------------------------------|--|--|--|--|
| Species | Wavelength<br>[nm] | Excitation<br>potential [eV] |  |  |  |  |
| Na1     | 475.182            | 2.10                         |  |  |  |  |
| Na1     | 514.883            | 2.10                         |  |  |  |  |
| Na1     | 568.263            | 2.10                         |  |  |  |  |
| Na1     | 568.820            | 2.10                         |  |  |  |  |

588.995

589.592

615.422

616.074

818.325

819.480

1074.644

Na1

Na1

Na1

Na1 Na1

Na1

Na1

More information about fs/hfs, broadening data, model atmospheres etc can be found in the reference article!

#### Example 2: Fe in HE0107-5240

🔂 🛄 🏭 Reading bin... Geos-chem Apple Yahoo! YouTube Wikipedia News (1,579) 🔻 Popular

<< PERIODIC TABLE | Selected: Fe | Interpolate (equivalent width) / Interpolate (LTE abundance)</p>

Bergemann, Lind, Collet, Asplund, & Magic, 2012, MNRAS Lind, Bergemann, & Asplund, 2012, MNRAS

#### Line data

| Equivalent width [pm]:              | 6.0       | [0.1,100]       |
|-------------------------------------|-----------|-----------------|
| Temperature [K]:                    | 5150.     | [4000.0,8000.0] |
| Logarithm of surface gravity [cgs]: | 2.2       | [1.0,5.0]       |
| Microturbulence [km/s]:             | 2.0       | [1.0,5.0]       |
| Wavelength [nm]:                    | 344.099 🛟 |                 |
| OK                                  |           |                 |

For Fe and Fe-peak elements:

Calculations always adopt model atmospheric composition, which reduces the grid dimensions by one

#### NLTE correction returned

| 6-ə 니니 🗰 Reading bin Geos-chem Apple Yahoo! YouTube Wikipedia News (1,579) * Popular *            |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| << PERIODIC TABLE   Selected: Fe   Interpolate (equivalent width) / Interpolate (LTE abundance)   |  |  |  |  |  |  |  |
| Bergemann, Lind, Collet, Asplund, & Magic, 2012, MNRAS<br>Lind, Bergemann, & Asplund, 2012, MNRAS |  |  |  |  |  |  |  |
| <u>ne data</u>                                                                                    |  |  |  |  |  |  |  |
| uivalent width [pm]: 6.0 [0.1,100]                                                                |  |  |  |  |  |  |  |
| mperature [K]: 5150. [4000.0,8000.0]                                                              |  |  |  |  |  |  |  |
| Logarithm of surface gravity [cgs]: 2.2 [1.0,5.0]                                                 |  |  |  |  |  |  |  |
| icroturbulence [km/s]: 2.0 [1.0,5.0]                                                              |  |  |  |  |  |  |  |
| avelength [nm]: 344.099 :                                                                         |  |  |  |  |  |  |  |
| [pm] A(Fe) LTE A(Fe) NLTE Delta<br>00 2.49 2.92 0.43                                              |  |  |  |  |  |  |  |
| Large positive NLTE corrections<br>for all line strengths due to<br>Fel over-ionization           |  |  |  |  |  |  |  |
| Compare to the LTE abundance obtained with own code                                               |  |  |  |  |  |  |  |

#### Conclusions

- INSPECT offers an easy way to compute NLTE abundances for given stellar parameters and chemical composition.
  - Current version is applicable to equivalent width analysis
  - Consistency with your own spectrum analysis codes can be checked with the returned LTE values
  - Reference to cite is specified
- Planned improvements
  - Upload a full line list format?
  - More elements: C, O, AI, Si, Ni, Zn, Cu ... priority?
  - NLTE calculations for a grid of <3D> models
  - Grid extensions, e.g. lower surface gravity, more IR lines.