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Summary

This paper considers ‘diffusion-driven flows’, for which a temperature flux condition
on a sloping non-slip surface in a stratified fluid generates a slow steady upward
flow along a thin ‘buoyancy layer’. The principles for this steady-flow phenomenon
are well-understood in a semi-infinite fluid and more recently have been applied to
steady flows within a contained fluid under more general conditions, including where
buoyancy layers expel or entrain fluid from their outer edge. In this paper additional
features of these flows are described in the context of a two-dimensional flow in a tilted
square box, and some of the finer details of flow structure are elucidated. In particular,
the key regions of the asymptotic structure are considered when the Wunsch-Phillips
parameter R is small, and the leading-order solutions are derived in most of those
regions. To illustrate the theory, three simple case studies of diffusion-driven motion
are solved, and the results compared with accurate numerical solutions for R = 10−4.
In some cases a ‘corner-induced’ motion is found to occur, extending across the width
of the container. The details of that feature are examined using both higher-order
solutions of the outer flow and an integral treatment across the corner regions, and a
solution for the corresponding ‘R1/3-layer flow’ is proposed. Theoretical and numerical
results are compared as the angle of inclination β is varied.
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Fig. 1 Geometry of the tilted-square configuration considered in §3, in §4 when β = π/4 and in
§6 for 0 < β < π/2.
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Fig. 2 Plots of the R1/3-layer solution when μ = 1 and L = 1 for (a) the ‘jet’ velocity x̄1/3ū2(x̄, z̄)
based on the solution (3.18); (b) the corresponding streamlines of ψ̄3(x̄, z̄); (c) the scaled second
derivative x̄T̄2z̄z̄(x̄, z̄) from (3.18), showing that T̄2z̄z̄ resolves a discontinuity of T ′′

0 across the R1/3

layer; (d) streamlines of Δψ̄3(x̄, z̄) = [ψ̄3(x̄, z̄)− ψ̄3(L− x̄,−z̄)], corresponding to a unit source at
x̄ = 0 and unit sink at x̄ = L.
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Fig. 3 Numerical solutions of the full equations for R = 10−4, ε = 1 and σ = 1. (a) Streamlines
for Case 1a; (b) plot of

√
σ ψ/R for Case 1a; (c) contour plot of the corresponding temperature T ;

(d) streamlines for Case 1b; (e) plot of
√
σ ψ/R for Case 1b; (f) streamlines for the higher-order

streamfunction ψ3 in the outer flow for Case 1a (unbroken lines) and Case 1b (dotted lines).
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Fig. 4 Numerical solutions for Case 2 when R = 10−4 and σ = 1. (a) Streamlines when β = π/6;
(b) plot of

√
σ ψ/R; (c) plot of [T −T0]; (d) maximum velocity max{|u|}, ‘mid-sectional’ maximum

max{|umid|} and mean values of (
√
σ ψ/R cot β) and Tz, showing estimated values (dashed lines);

(e) plots of c1, d1 and
√
σ I1/3(0)/R

3/2 (dashed line) from §6.6; (f) cross-section of [Tz − T ′
0]

compared to T ′
1(z) (dotted lines) when β/π = 0.15, 0.2, 0.25, 0.3 and 0.35.
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Fig. 5 Numerical solutions of the full equations for Case 3 when R = 10−4 and σ = 1. (a) Plot
of the streamfunction

√
σ ψ/R when β = π/6; (b) plot of [T − T0]. Both are to the same scale as

on Figs. 4(b)-(c).


