
Class.Q.Grav. Vol.15(1998) pp.2427–2449. 28-Feb-1998

An ADM 3+1 formulation for

Smooth Lattice General Relativity

Leo Brewin

Department of Mathematics

Monash University

Clayton, Vic. 3168

Australia

Abstract

A new hybrid algorithm for numerical relativity will be presented. We will employ a lattice in which the
metric is recorded as pure scalar quantities such as the geodesic leg lengths. The dynamics of the lattice
will be governed by the standard ADM 3+1 equations which will be given as a set of second order ordinary
differential equations for the scalar data of the lattice. The only approximation introduced in this algorithm
is in the approximation of a smooth metric by a lattice. No approximations are introduced into the field
equations nor in their application to the lattice. An example for the Kasner T 3 cosmology will be presented
and the results will be shown to be in excellent agreement with the continuum solution.

1. Introduction

It is fair to say that some of the most impressive calculations in numerical relativity (such

as Choptuik’s discovery of critical phenomena in gravitational collapse) have arisen from

the use of just one discretisation procedure, namely, finite differences. Like any numerical

problem, one can not expect that finite differences will be the ideal choice for every class of

problem in numerical relativity. It is thus wise to explore alternative procedures (some of

which are discussed by Laguna in [1]).

In a recent paper [2] a new numerical algorithm was developed and successfully applied in

the construction of time symmetric initial data for a Schwarzschild black hole. The method

was based on three key ideas, i) the approximation of a smooth spacetime by a piecewise

smooth metric on a lattice, ii) the use of short geodesic segments as the legs of the lattice

and iii) the use of Riemann normal coordinates local to each vertex. This lattice approach

was motivated by the following observations.

⋄ General relativity allows for a wide variety of topologies in spacetime. Thus it is desirable

to have a method whereby non-trivial topologies can be easily accommodated. Such is

the case with a lattice, this being a simple combinatoric assembly of vertices and legs.

This also has the feature of allowing for dynamical changes in the topology of the Cauchy

surface (eg. during the merger of two black holes).

⋄ The only physically interesting quantities in a spacetime are the scalars derived from the

spacetime. Thus it seems sensible to work with such quantities at the outset rather than

extracting them from the coordinate based data. In the lattice the metric consists of the

geodesic leg lengths and the angles between these geodesic segments.

⋄ As the Einstein equations are expressed in some coordinate form one needs a link be-

tween the scalar data (the leg lengths and angles) and the coordinate data (the Riemann

and extrinsic curvatures). For this purpose, local Riemann normal coordinates are used.

These coordinates are never singular (provided the computational cell is small relative

to the curvature length scales). In the 4-dimensional setting, the Riemann normal coor-

dinates constitute a freely falling frame of reference. These in turn are intimately related

to the Equivalence Principle and thus their use has a nice physical appeal.

Our primary aim in this paper is to demonstrate a hybrid algorithm in which a 3-dimensional

spacelike lattice can be evolved using the standard ADM vacuum 3+1 equations. It should

be note that this is not an alternative to the ADM approach – it is the ADM approach

applied directly to the 3-dimensional lattice.

The key challenges are i) to find a reliable method for computing the six Riemann and

extrinsic curvatures and ii) establishing how one can impose the ADM evolution equations

on the lattice. We will begin by reviewing and improving the smooth lattice algorithm given

in [2] for the computation of the Riemann curvatures. In section (2) we will show how the

extrinsic curvatures can be computed while in section (3) we will demonstrate how the ADM

evolution equations can be imposed on the lattice. In this paper we will not present any

workable algorithm for solving the ADM constraint equations on the lattice. In the final

section (4) we shall apply our algorithm to the full evolution of a Kasner T 3 cosmology.

2. Smooth lattice kinematics

In this section our focus will be on the computation of the Riemann and extrinsic curvature

tensors.

-2-

2.1. The Riemann curvature tensor

The algorithm for computing the Riemann curvatures on a lattice, as given in [2], can be

summarised as follows. The lattice is constructed as a network of vertices and legs and it

is fully specified by the connectivity matrix and the leg lengths. To each vertex there is an

associated computational cell defined by some local sub-set of the lattice (eg. the legs and

vertices of the tetrahedra attached to this vertex, though larger subsets could be considered).

Riemann normal coordinates are employed in each computational cell leading to a metric of

the form

gµν(x) = gµν −
1

3
Rµανβ xαxβ +O(ǫ3) (2.1.1)

where gµν may be chosen to be diag(1, 1, 1) and ǫ is a typical length scale for the computa-

tional cell. This form of the metric is nothing other than a Taylor series expansion around

xµ = 0 adapted to Riemann normal coordinates (in which gµν,α = 0 at xµ = 0).

The crucial assertion that the legs are geodesic segments of this metric leads directly to the

following equation for the leg length Lij between vertices (i) and (j)

L2

ij = gµν∆xµij∆xνij −
1

3
Rµανβ xµi x

ν
i x

α
j x

β
j +O(ǫ5) (2.1.2)

where ∆xµij = xµj − xµi . In three dimensions there are just six algebraicly independent

components of the Riemann tensor. This leads to the following equivalent equation for L2
ij

L2

ij = gµν∆xµij∆xνij −
1

3
Fµνw

µ
ijw

ν
ij +O(ǫ

5) (2.1.3)

where Fµν = Fνµ and

F11 = Rxyxy F22 = Rxzxz F33 = Ryzyz

F12 = Rxyxz F13 = Rxyyz F23 = Rxzyz

w1
ij = xxi x

y
j − xyi x

x
j w2

ij = xxi x
z
j − xzi x

x
j w3

ij = xyi x
z
j − xzi x

y
j

For each computational cell there would be a small set of such equations which could, in

principle, be solved for the Riemann tensor and any coordinates not fixed by gauge freedoms.

In [2] these where referred to as the smooth lattice equations. The computations for any one

cell are fully decoupled from those of any other cell. Thus this is a local problem and should

be amenable to Newton-Raphson methods. It is at this point that the design of the lattice

becomes crucial. It must be such that the equations in each cell yield unambiguous estimates

for the Riemann tensor. If the system is singular then there will exist continuous families

of solutions for the curvatures. This indicates that the lattice lacks sufficient information to

-3-

tie down a unique estimate (or at worst a finite discrete set of estimates) for the curvatures.

The solution then would be to add extra information to the lattice such as extra leg lengths.

Indeed, subsequent experiments have shown that many seemingly suitable lattices (such as

a dodecahedron with one interior vertex, the origin of the RNC) are singular. Following

these experiments a slight variation to the above algorithm has proved to be very successful.

It entails the addition of extra information in the form of the scalar products of pairs of

tangent vectors to the legs attached to the central vertex. This not only supplies the missing

information but it also significantly simplifies the set of smooth lattice equations – it allows

all of the xµi to be computed ahead of the curvatures.

The modified algorithm works as follows. Consider one particular computational cell and let

us denote its central vertex by the label 0 (we will continue with this notation through this

paper). We will denote by mij the scalar product associated with the pair of legs (oi) and

(oj). If the Riemann normal coordinates of the vertices (i) and (j) are known then the mij

may be computed from

mij = gµν∆xµoi∆xνoj (2.1.4)

Notice that this equation does not contain any curvature terms. In our modified scheme

we use these equations to compute the Riemann normal coordinates xµi from the given mij .

This may appear to be a non-trivial task, however, as shown in the Appendix, there is a very

simple algorithm which is no more demanding than the evaluation of one square root per

vertex. In this algorithm each vertex of the cell is visited in turn with each vertex requiring

just two mij ’s and one Loi for the calculations. It should be noted that we do not employ

an mij for every pair of legs, rather we employ the minimal number required to compute the

Riemann normal coordinates (for n radial legs this requires (2n− 3)mij ’s).

Note that mij is related to the angle αij subtended at the origin between the pair legs (oi)

and (oj) via the equation mij = LoiLoj cos(αij).

Once all the xµi have been computed then the six curvatures can be computed by solving the

leg length equations (2.1.3) applied to the legs on the surface of the computational cell (the

radial legs provide no information on the curvatures). Here we encounter a minor problem

– the set of equations (2.1.3) for the curvatures are almost certainly overdetermined, there

being more than six legs on the surface of the cell. This problem of overdetermined systems

will occur frequently in the course of this paper. Though there are a number of ways to

directly solve such systems (eg. least squares) we chose instead to select a reduced set of

equations by taking suitable linear combinations. For example, for an appropriately chosen

set of λkij , the linear combinations

0 =
∑

ij

λkij

(

L2

ij − gµν∆xµij∆xνij +
1

3
Fµνw

µ
ijw

ν
ij

)

(2.1.5)

-4-

will form six properly determined equations for the six curvature components. The choice of

the λkij will depend only on the connectivity of the smooth lattice (an example will be given

later in section (4)).

In this algorithm the basic data given on the lattice are the Lij and mij from which we

compute, by the above equations, the xµi and the Rµναβ. Similarly, given the time derivatives

of the Lij and mij one can compute the time derivatives of the xµi and the Rµναβ .

In the construction of our Riemann normal coordinates we have taken advantage of the

coordinate freedoms to tie the origin of the RNC to the central vertex ie. xµo = 0. We are

also free to choose the three coordinate axes to be orthogonal at the origin, gµν = diag(1, 1, 1).

All that remains is the freedom for rigid body rotation which we can account for by specifying

three of the Riemann normal coordinates, such as xx
1
= xy

1
= xy

2
= 0.

2.2. Lapse, shift and drift

In the familiar 3+1 formulation of general relativity a typical spacetime can be represented

as a sequence of distinct 3-dimensional hypersurfaces of the spacetime. In this picture, each

hypersurface records one instant in the evolution of the 3-metric. The information that one

must specify to fully define the 4-metric on the spacetime are the 3-metric, the lapse function

and the shift vectors on each hypersurface. In this section we shall adapt this picture to one

in which each hypersurface is a smooth 3-dimensional lattice.

The general idea will be to allow the basic data for each lattice, namely the Lij and mij ,

to be functions of time. On each hypersurface we will continue to employ Riemann normal

coordinates and the above equations for computing the curvature components. Since the

lattice data are now presumed to be functions of time, so too must the coordinates xµi and

the curvature components Rµναβ . We will also impose our previously stated gauge conditions

on each hypersurface, in particular that gµν = diag(1, 1, 1) and that the origin of the RNC

remains forever tied to the central vertex of the cell (ie. xµo = 0 for all time). One could

choose a dynamical set of gauge conditions but to do so at this stage would be an unnecessary

complication.

It is customary to use Latin indices to denote spatial components (eg. gij for the 3-metric)

and Greek indices for spacetime quantities (eg. gµν for the 4-metric). As we would like to

use Latin indices to denote vertices of the lattice we shall choose to use Greek indices for

spatial components. Thus in the following gµν , Rµναβ etc. will denote 3-tensors that live in

each 3-dimensional hypersurface.

We will be making frequent reference to the current and future hypersurfaces and the various

structures that define and link these hypersurfaces. We will use Σ0 to represent the current

hypersurface and Σδt to represent the hypersurface just slightly to the future of Σ0. The

-5-

time coordinate t is constant on each hypersurface with t = t0 on Σ0 and t = t0 + δt on Σδt.

The lapse function will be denoted by N and the shift vector by Nµ. Both the lapse function

and shift vectors will be defined on the vertices of the lattice. Note that even though we

are using Riemann normal coordinates on each hypersurface the 4-dimensional coordinates

(t, xµ) will not, in general, be in Riemann normal form.

Consider any 3-dimensional smooth lattice and focus attention on one vertex. Through this

vertex one can construct three well defined curves – the timelike worldline of the vertex, the

timelike geodesic tangent to the normal vector at the vertex and the timelike worldline of the

observer with constant spatial coordinates. These three curves are distinct and though they

share a common origin in Σ0 they will intersect Σδt at three distinct points (as depicted in

Figure (1)). In the usual 3+1 picture only two of these curves, the normal geodesic and the

observers worldline, enter into the discussion. In the smooth lattice we must also consider the

freedom for vertices to drift relative to these two curves. For this reason we will introduce

a new vector, the drift vector γµ. This vector measures the displacement of the vertex’s

worldline from that of the normal.

From Figure (1) we can clearly see that the shift and drift vectors at vertex (i) are related

by

dxµi
dt

= −γµi +Nµ
i (2.2.1)

where xµi (t) are the time dependent coordinates of vertex (i). The dxµi /dt can be easily

computed from (2.1.4) (see the Appendix for full details). Note that in our chosen gauge

xµi = dxµi /dt = 0 at the origin of the RNC and thus the shift and drift vectors coincide at

the central vertex.

One now has a choice as to which of the drift or shift vectors should be freely specified on

the lattice. Since the drift vector has a strong geometric appeal we shall choose to freely

specify it and to use the above equation (2.2.1) to compute the shift vector. A simple choice

is to set the drift vector to be zero at the origin (ie. the vertex at the origin of the RNC in

Σ0 is evolved along the timelike normal). Though, of course, there may be occasions where

such a choice is not appropriate (eg. in the case of gravitational collapse).

We will now introduce a second lattice which will help us later on in making the transition

to the standard ADM 3+1 equations. Consider one hypersurface and its associated lattice.

Consider now a second lattice coincident with the original lattice. We will refer to these as the

primary and shadow lattices respectively. The shadow lattice will be chosen so such that its

vertices are evolved along the normals to the hypersurface (ie. as if the drift vectors were set to

zero everywhere). We do this because the ADM 3+1 equations take on a particularly simple

form when expressed as time derivatives along the normals. The shadow lattice will only be

employed for one time step. Upon completion of the time step the current shadow lattice

-6-

will be discarded and a new shadow lattice created coinciding with the updated primary

lattice. Each of these shadow lattices are introduced only as an aid in the exposition of our

algorithm – they need never be created in any computer program.

Our current task is to see how we should specify the data on the shadow lattice so that it

evolves along the normals.

On the primary lattice we have various quantities such as Lij ,mij and xµi all of which we

assume to be functions of time t. Their counterparts on the shadow lattice will be denoted

by the addition of a dash (ie. L′
ij , x

′µ
i etc.). The dash on the x′µi should not be confused

with coordinate transformation – the x′µi are just the xµ coordinates of vertex (i′). On the

initial hypersurface Σ0 all of the corresponding dashed and un-dashed quantities are equal

(ie. L′
ij = Lij , x

′µ
i = xµi) though they may drift apart between successive hypersurfaces.

By inspection of Figure (1) one can easily verify that, on Σ0,

x′µi = xµi

ẋ′µi = ẋµi − γµi (2.2.2)

ẍ′µi = ẍµi − γ̇µi

where each dot denotes d/dt.

Consider now equation (2.1.3) applied to both lattices,

L2

ij(t) = gµν∆xµij∆xνij −
1

3
Fµνw

µ
ijw

ν
ij

L′2
ij(t) = gµν∆x′µij∆x′νij −

1

3
Fµνw

′µ
ijw

′ν
ij

where

w′1
ij = x′xi x

′y
j − x′yi x

′x
j w′2

ij = x′xi x
′z
j − x′zi x

′x
j w′3

ij = x′yi x
′z
j − x′zi x

′y
j

All of the terms in the above equations should be considered to be functions of time (except

the gµν which we choose to be diag(1, 1, 1)). Differentiating with respect to t and using the

above equation for dx′µi /dt we obtain on Σ0

dL′2
ij

dt
=

dL2
ij

dt
− gµν∆γµij∆xνij −

2

3
Fµν p

µ
ijw

ν
ij (2.2.3)

d2L′2
ij

dt2
=

d2L2
ij

dt2
− 2gµν

(

∆γ̇µij∆xνij + 2∆γµij∆ẋνij −∆γµij∆γνij

)

(2.2.4)

−
4

3
Ḟµνp

µ
ijw

ν
ij −

2

3
Fµν

(

qµijw
ν
ij + 2pµijẇ

ν
ij + pµijp

ν
ij

)

-7-

where ∆γµij = γµj − γµi and

p1ij = − γxi x
y
j + γyi x

x
j − xxi γ

y
j + xyi γ

x
j

p2ij = − γxi x
z
j + γzi x

x
j − xxi γ

z
j + xzi γ

x
j

p3ij = − γyi x
z
j + γzi x

y
j − xyi γ

z
j + xzi γ

y
j

q1ij = − γ̇xi x
y
j + γ̇yi x

x
j − xxi γ̇

y
j + xyi γ̇

x
j − 2(γxi ẋ

y
j − γyi ẋ

x
j + ẋxi γ

y
j − ẋyi γ

x
j + γxi γ

y
j − γyi γ

x
j)

q2ij = − γ̇xi x
z
j + γ̇zi x

x
j − xxi γ̇

z
j + xzi γ̇

x
j − 2(γxi ẋ

z
j − γzi ẋ

x
j + ẋxi γ

z
j − ẋzi γ

x
j + γxi γ

z
j − γzi γ

x
j)

q3ij = − γ̇yi x
z
j + γ̇zi x

y
j − xyi γ̇

z
j + xzi γ̇

y
j − 2(γyi ẋ

z
j − γzi ẋ

y
j + ẋyi γ

z
j − ẋzi γ

y
j + γyi γ

z
j − γzi γ

y
j)

The quantities pµij and qµij arise from an expansion of the w′µ
ij on Σ0, namely,

w′µ
ij = wµ

ij

ẇ′µ
ij = ẇµ

ij + pµij

ẅ′µ
ij = ẅµ

ij + qµij

The ẋµi and Ḟµν can be obtained by differentiation of (2.1.4) and (2.1.5) respectively.

A similar argument can be applied to the mij . Starting with

mij = gµν∆xµoi∆xνoj

m′
ij = gµν∆x′µoi∆x′νoj

we obtain, by direct differentiation, that on Σ0

dm′
ij

dt
=

dmij

dt
− gµν

(

∆γµoi∆xνoj +∆γµoj∆xνoi

)

(2.2.5)

d2m′
ij

dt2
=

d2mij

dt2
− gµν

(

∆γ̇µoi∆xνoj +∆γ̇µoj∆xνoi + 2∆γµoi∆ẋνoj + 2∆γµoj∆ẋνoi − 2∆γµoi∆γνoj

)

(2.2.6)

2.3. Extrinsic curvature

The dL′2
ij/dt and the dm′

ij/dt measure rates of change along the normals to Σ0. They should

therefore be expressible in terms of the extrinsic curvatures Kµν .

Consider the shadow lattice and the coordinates xµ. Let us introduce a second coordinate

system x′′µ such that the x′′µ are constant along each worldline of the vertices of the shadow

lattice. This clearly establishes a time dependent coordinate transformation between xµ and

-8-

x′′µ. Note that on Σ0 both coordinate systems are identical. Note also that on subsequent

hypersurfaces the x′′µ need not be in Riemann normal coordinate form.

Since the worldlines of the shadow lattice are tangent to the normals to Σ0 we must have

dg′′µν
dt

= −2NK ′′
µν

In the x′′µ coordinates the L′
ij(t) and m′

ij(t) may be estimated from

L′2
ij(t) = g′′µν(t)∆x′′µij ∆x′′νij +O(ǫ4) (2.3.1)

m′
ij(t) = g′′µν(t)∆x′′µoi ∆x′′νoj +O(ǫ4) (2.3.2)

where g′′µν is evaluated on the geodesic tangent to the normal to Σ0 at the origin of the RNC.

Since the x′′µ need not be in Riemann normal coordinate form we can expect these estimates

to be less accurate than their Riemann normal coordinate counterparts (eg. equations (2.1.3)

and (2.1.4)). This is the price we pay for not using Riemann normal coordinates. Increased

accuracy could be obtained for the L′2
ij(t) by evaluating the right hand side at the centre of

the legs. This then forces us to explicitly account for variations of Kµν throughout the cell.

It is not clear how one might make a similar ‘centred’ approximation for the m′
ij(t). Rather

than trying to resolve these issues in this paper we shall settle on the simple estimates given

above.

Differentiating the previous two equations with respect to time and using the above equation

for K ′′
µν we obtain, on Σ0,

dL′2
ij

dt
= −2(NKµν)o∆xµij∆xνij (2.3.3)

dm′
ij

dt
= −2(NKµν)o∆xµoi∆xνoj (2.3.4)

This overdetermined system of equations can be solved for the six Kµν at the origin of the

RNC either directly (eg. least squares) or by first forming suitable linear combinations, such

as

0 =
∑

ij

ηkij

(

dL′2
ij

dt
+ 2(NKµν)o∆xµij∆xνij

)

(2.3.5)

0 =
∑

ij

ρkij

(

dm′
ij

dt
+ 2(NKµν)o∆xµoi∆xνoj

)

(2.3.6)

for an appropriate set of weights ηkij and ρkij .

-9-

In a similar fashion we can obtain

d2L′2
ij

dt2
= −2

(

d

dt
(NKµν)

)

o

∆xµij∆xνij (2.3.7)

d2m′
ij

dt2
= −2

(

d

dt
(NKµν)

)

o

∆xµoi∆xνoj (2.3.8)

These equations will be used later when imposing the Einstein equations on the lattice.

At this point we are in a position to calculate both the extrinsic and Riemann curvatures

tensors, at the origin of the RNC, given just the basic lattice data, namely the Lij ,mij , their

time derivatives and for any choice of lapse function and drift vector. However we have not

discussed how Kµν|α and N|µν may be calculated. In essence this is a standard interpolation

problem – given data on a set of nodes, estimate the 1st and 2nd partial derivatives of that

data. This is a trivial problem whenthe data points are arranged on a uniformly spaced

grid. Unfortunately, this is not likely to be the case in a generic lattice. We will present one

possible method based on least squares (though other methods could be considered).

Consider first the calculation of N|µν . Since N is a scalar function we have N|µ = ∂N/∂xµ

which we can approximate at the centre of the leg (ij) by

(

N|µ

)

ij
=

Ni −Nj

L2
ij

gµν∆xνij (2.3.9)

Such an expression can be formed at the centre of each leg of the computational cell. From

this data we can form a linear approximation Ñ |µ(x
α) to N|µ(x

α)

Ñ |µ(x
α) = Ñ |µ + Ñ |µνx

ν (2.3.10)

where the constants Ñ |µ and Ñ |µν = Ñ |νµ are obtained by a least squares fit. We can take

the Ñ |µν as estimates of N|µν at the origin of the RNC. Similarly, the Ñ |µ could be used

as an approximation to N|µ at the origin of the RNC. The appropriate least squares sum is

chosen to be

S(Ñ |µ, Ñ |µν) =
∑

µ

∑

ij

(

(

N|µ

)

ij
− Ñ |µ −

1

2
Ñ |µν(x

ν
i + xνj)

)2

Note that the symmetry condition Ñ |µν = Ñ |νµ must be explicitly imposed in this sum.

Do we have enough data to compute the nine numbers Ñ |µ and Ñ |µν? The answer is yes –

each leg gives us three samples for N|µ and each computational cell is certain to have more

than three legs.

-10-

The computation of the Kµν|α can be performed in a similar manner. The first thing to do

is to compute the Kµν at the origin of each RNC for each computational cell. Now consider

one specific computational cell. The vertices on the surface of the cell will themselves be the

origins of neighbouring cells. Each of these cells carries their own estimates of the Kµν in

their own coordinates. As there is a well defined coordinate transformation between these

neighbouring frames it is possible to obtain estimates of the Kµν on each of the vertices in

our chosen cell and in the coordinates of that chosen cell (as indicated in Figure (2)). We

can then form a linear approximation to each of the six Kµν in the chosen cell. Thus we put

K̃µν(x
α) = K̃µν + K̃µν|αx

α

with the constants K̃µν and K̃µν|α obtained by another application of the least squares

method. Finally we take the K̃µν|α as our estimate of Kµν|α at the origin of our chosen cell.

Note that in this case we would solve six separate least squares problems, one for each of

the six K̃µν(x
α). In each case we need to compute just four numbers, one K̃µν and three

K̃µν|α. Once again we see that the least squares method is appropriate.

It must be emphasized that this method has not been tested. In the example presented in

section (4) the Kµν|α and N|αβ are both identically zero.

3. Smooth lattice dynamics

In the standard ADM 3+1 formulation of vacuum General Relativity there are four constraint

equations

0 = R +K2 −KµνK
µν (3.1)

0 = K|µ −Kν
µ|ν (3.2)

and six evolution equations

∂gµν
∂t

= −2NKµν +Nµ|ν +Nν|µ

∂Kµν

∂t
= −N|µν +N (Rµν +KKµν − 2KµαK

α
ν) +NαKµν|α +KµαN

α
|ν +KναN

α
|µ

where K = Kα
α , Rµν = gαβRαµβν and R = gµνRµν .

Let us concentrate, for the moment, on the evolution equations. When cast as evolution

equations along the timelike normals these equations take on a particularly simple form,

-11-

namely,

dgµν
dt

= −2NKµν (3.3)

dKµν

dt
= −N|µν +N (Rµν +KKµν − 2KµαK

α
ν) (3.4)

The easiest road to these equations is to simply put the shift vector to zero in the original

equations. However, these equations can also be easily derived by direct calculation.

We can now use the ADM equations to obtain evolution equations for the smooth lattice.

Upon eliminating the reduced data L′
ij and m′

ij , by combining equations (2.2.4, 2.2.6) and

(2.3.7, 2.3.8), we obtain

d2L2
ij

dt2
= − 2

(

d

dt
(NKµν)

)

o

∆xµij∆xνij (3.5)

+ 2gµν

(

∆γ̇µij∆xνij + 2∆γµij∆ẋνij −∆γµij∆γνij

)

+
4

3
Ḟµνp

µ
ijw

ν
ij +

2

3
Fµν

(

qµijw
ν
ij + 2pµijẇ

ν
ij + pµijp

ν
ij

)

d2mij

dt2
= − 2

(

d

dt
(NKµν)

)

o

∆xµoi∆xνoj (3.6)

+ gµν

(

∆γ̇µoi∆xνoj +∆γ̇µoj∆xνoi + 2∆γµoi∆ẋνoj + 2∆γµoj∆ẋνoi − 2∆γµoi∆γνoj

)

We will take as initial data on Σ0 the Lij ,mij , dLij/dt and dmij/dt and we will assume that

this data is a valid solution of the constraint equations (though in this paper we will not

propose any algorithm for obtaining such data). We will also assume that well defined rules

are given for choosing the N and γµ on each vertex of the lattice for all time.

The set of equations (2.1.3–2.1.4, 2.2.3, 2.2.5, 2.3.3, 2.3.4, 3.4–3.6) can then be used (via a

suitable numerical algorithm such as predictor-corrector, leapfrog or Runge-Kutta methods)

to evolve this data.

The are a number of points that need to be made. As each leg will appear in one or more

computational cells there is an ambiguity in how Lij and should be updated. For example,

in the cubic lattice used in the example in section (4), each leg is attached to the central

vertices of exactly two different computational cells. In this case the Lij could be updated

as the average from both cells. Other options are possible and should be explored by direct

numerical experimentation. Notice that there is no such ambiguity in updating the mij since

these are defined at the origin of each computational cell.

-12-

The drift vectors are prescribed only at the central vertex of each RNC cell. Their values

on the vertices on the surface of the cell must be imported from neighbouring cells. As each

such vertex is the central vertex of a neighbouring cell this procedure will be well defined.

One way to do this is as follows. Let the γ′µ be the drift vector defined at the central vertex

o′ and suppose we seek its values γµ in the RNC frame of a neighbouring cell with central

vertex o. At o′ we can form scalar products of γ′µ with three of the legs shared by the cells

(there must be at least three legs since the pair of cells have a non-trivial overlap). These

scalar products can then be inverted to yield the γµ in the coordinates of o. This procedure

would then be applied for each of the remaining surface vertices.

Another important issue is to what extent does the use of least squares approximations effect

the accuracy and stability of the evolution? The least squares approximations are bound to

introduce some degree of smoothing in the estimates of N|µν , Kµν|α etc. Does this wash out

unimportant numerical noise or important short scale variations in the lattice data? Most

likely both important and unimportant information is lost. The question is : does this effect

the long term stability of the evolution? Again, this can be investigated by way of a number

of numerical experiments on a series of successively refined lattices.

The discussion so far has dealt entirely with the evolution of the lattice. Some words are

in order regarding the construction of initial data on the lattice. We have already seen how

all of the quantities needed for the constraint equations can be extracted from the lattice.

Thus we are able to evaluate the right hand side of the constraint equations. Should this be

non-zero then clearly we do not have valid initial data and some corrections must be made.

How this might be achieved is far from clear. Can an approach similar to York’s conformal

method be used? Part of that method is to propose a 3-metric of the form gµν = φ4 g̃µν
where g̃µν is a given 3-metric (commonly chosen to be flat) and φ is a conformal factor.

With two metrics one has a choice as to which should be expressed in Riemann normal form.

If we choose g̃ then we can imagine also having a conformal lattice with leg lengths L̃ij . The

Lij of the physical lattice could then be estimated as Lij = φiφjL̃ij (as suggested by Piran

and Williams [3] in the context of the Regge calculus). It is unclear at present how York’s

transverse traceless tensor can be represented on the conformal lattice. On the other hand

if one chooses to express the physical metric gµν in Riemann normal form then what form

does a flat g̃µν take in these coordinates? We conclude that it may not be a simple task

to apply York’s method to a smooth lattice while simultaneously employing local Riemann

normal coordinates.

In the example in section (4) we will take a totally different approach. There we shall

explicitly choose the Riemann and extrinsic curvatures and then construct the lattice data

consistent with this choice of curvatures.

Another important question concerns the order of the discretisation errors. Previous cal-

-13-

culations (see [2]) showed that the smooth lattice method yielded O(ǫ2) accurate estimates

for both the metric and the Riemann tensors. However, this is unlikely to be the case for

generic lattices. The formal truncation error in the Taylor series expansion of the metric,

equation (2.1.1), is O(ǫ3) and thus we can expect the discretisation error in the curvatures

to be of O(ǫ1). This will couple to the smooth lattice equations leading to an expected error

in the metric of O(ǫ1). This is less than optimal – we would prefer an O(ǫ2) error for generic

lattices. The challenge then is to find ways in which second order accurate estimates for the

curvatures on the lattice can be obtained. This also applies to other terms such as N|µν and

Kµν|α. We hope to report on this in a later paper.

3.1. Variations

There is one particular variation to our algorithm that deserves special mention.

It was noted in [2] that the Bianchi identities are a necessary condition for the Riemann

curvatures to be derivable from a metric. It may seem from equations (2.1.1) that such

conditions must be automatically met by any smooth lattice metric. It is true that within

any single RNC the Bianchi identities will be satisfied. However, the question of whether or

not the set of curvatures from across the whole lattice can be derived from a global metric

is not so obvious. One could test the Bianchi identities by importing the Riemann tensors

from neighbouring cells and using them to form finite difference estimates of the derivatives

of the curvatures. Demanding that the Bianchi identities be satisfied imposes constraints

on the leg lengths of local groups of cells. In our study of the Schwarzschild initial data [2]

we found that imposing the Bianchi identities was essential in obtaining the correct initial

data. We did so by imposing an integral form of the Bianchi identities alongside the smooth

lattice equations.

An alternative approach is to include derivatives of the curvatures in the Riemann normal

coordinate expansion of the metric, namely,

gµν(x) = gµν −
1

3
Rµανβx

αxβ −
1

6
Rµανβ,λx

αxβxλ +O(ǫ4)

If we fit this form of the metric to the lattice, while observing the Bianchi identities, we

will have produced estimates for the curvatures which are derivable from a global metric. In

the process we will also obtain a second order accurate estimate for the curvatures for any

smooth lattice. It is straightforward, using the same techniques as used in [4], to establish

that the basic smooth lattice equations (2.1.2) must be replaced by

L2

ij = gµν(xij)∆xµij∆xνij +O(ǫ
6)

-14-

where xµij = (xµi + xµj)/2. From these one can proceed to develop equivalent versions of

the remaining smooth lattice equations (2.1.3, 2.2.3, 2.2.4, 3.5, 3.6). We shall defer such a

development to a later paper.

This variation was not tested in our numerical investigations.

4. An example : The Kasner cosmology

The Kasner metric

ds2 = −(dt)2 + f2x(t)(dx
′)2 + f2y (t)(dy

′)2 + f2z (t)(dz
′)2

describes a homogeneous cosmology with a T 3 topology. This metric, for the particular

choice fx(t) = tpx , fy(t) = tpy , fz(t) = tpz , is a solution of the vacuum Einstein equations

when

0 = 1− (px + py + pz) (4.1)

0 = 1− (p2x + p2y + p2z) (4.2)

The second equation is equivalent to the Hamiltonian constraint while the first equation

arises from both the dynamical equations and the Hamiltonian constraint.

A trivial transformation of the spatial coordinates

x = fx(t)(x
′ − x′o)

y = fy(t)(y
′ − y′o)

z = fz(t)(z
′ − z′o)

where (x, y, z)′o is any nominated point, leads to a 3-metric which, at the chosen point, is

in Riemann normal form with gij = diag(1, 1, 1). This fact and the clear simplicity of the

metric suggests that the 3+1 smooth lattice approach should yield accurate approximations

to the Kasner metric.

We will try to avoid importing knowledge from the continuum solution in our attempts to

construct the smooth lattice spacetime. We will proceed in the usual manner of making

various anzats for the metric (and relaxing those anzats should a contradiction arise when

solving the field equations).

We will make the following anzats

⋄ The smooth lattice has a T 3 topology.

⋄ On the initial hypersurface, the smooth lattice is homogeneous.

-15-

⋄ On the initial hypersurface, all spatial derivatives vanish.

⋄ On the initial hypersurface, the extrinsic curvature is diagonal.

Some of these anzats can be built directly into the lattice. For example, the T 3 topology

can be imposed by employing a cubic lattice with opposite faces identified. Homogeneity

can be achieved by demanding that each vertex is equivalent to every other vertex. For the

cubic lattice this can be achieved by requiring each cell to look identical to any other cell.

This forces the pattern by which the legs are connected as well as the Lij and mij to be

the same from cell to cell. This implementation of homogeneity (there are others) will be

imposed only on the initial data. We know (from the continuum) that the lattice should

remain homogeneous. Thus by observing the future free evolution we can test how well our

smooth lattice algorithm is performing.

One important consequence of the third anzats is that 0 = Rµανβ and 0 = Kµν|α and thus

the four constraint equations reduce to the one equation

0 = KxxKyy +KxxKzz +KyyKzz (4.3)

We will return to this equation latter when we describe how the initial data were chosen.

However, before we do so, some further details of the lattice must be presented.

The basic structure of a typical RNC cell is shown in Figures (3) and (4). This cell consists

of the central vertex and the eight cubes attached to that central vertex minus the 8 cor-

ner vertices and their associated legs. The complete lattice looks like a cubic lattice with

the addition of two diagonal legs on each 2-dimensional face (note that there are no body

diagonals, though they could be included).

In passing, we note that this cell is well suited to generic spaces and that it can be easily

used in an adaptive refinement scheme.

4.1. Initial data

The initial data for each cell consists of the 18 L2
ij , dL

2
ij/dt for each leg attached to the

central vertex and all of the 33 mij , dmij/dt’s in the cell. The remaining L2
ij , dL

2
ij/dt are

assigned their values from the radial legs of the neighbouring cells. The initial data for one

cell were assigned as follows. First, a consistent solution of the one remaining constraint

equation (4.3) was obtained by freely choosing Kxx, Kyy and then solving for Kzz. Next,

coordinates were assigned to each vertex of the cell in the form

xµi = (α∆x, β∆y, γ∆z)µ

-16-

where α, β and γ are chosen from the set −1, 0,+1 (and at least one of the α, β, γ is zero).

This places the 18 vertices either directly on the coordinate axes or on the coordinate planes.

The initial data for this cell were then computed from

L2

ij = gµν∆xµij∆xνij
dL2

ij

dt
= −2(NKµν)o∆xµij∆xνij

mij = gµν∆xµoi∆xνoj
dmij

dt
= −2(NKµν)o∆xµoi∆xνoj

This data was then replicated throughout the remainder of the lattice.

The above process amounts to choosing the curvatures and then searching for a lattice which

supports these curvatures. Fortunately, for this spacetime, this is rather easy to do. It is

not clear whether or not this is a reasonable approach for other spacetimes.

4.2. Evolution

The various mij ’s and the sequence in which the vertices were visited when computing the

coordinates xµi is given in Table 1. The 6 extrinsic and 6 Riemann curvatures were computed

from two sets of equations, 6 in each, formed as linear combinations of the smooth lattice

equations (2.1.5, 2.3.5, 2.3.6). The weights for these equations are listed in Table 2.

The following gauge conditions were imposed throughout the evolution,

⋄ A unit lapse function, Ni = 1.

⋄ A zero shift vector at the origin of each RNC, 0 = Nµ
o .

⋄ A zero drift vector everywhere, 0 = γµi .

⋄ Coordinate axes aligned such that 0 = m12 = m13 = m23.

The homogeneity anzats was not explicitly enforced during the evolution of the lattice as

we allowed each leg to evolve independently of every other leg. We can thus check the

stability and/or accuracy of our smooth lattice evolution by monitoring any deviations from

homogeneity.

4.3. Results

In each time step we performed two sweeps of the lattice. In the first sweep we computed the

2nd derivatives for each radial leg of each cell. In the second sweep, each leg was updated by

employing 2nd derivatives computed as the average of the values obtained in the first sweep.

The mij were updated in the first sweep since they are not shared across cells. In the first

sweep the 2nd derivatives were calculated only for the radial legs since that was sufficient to

cover every leg of the lattice.

-17-

In all of our calculations we updated the data via a naive Euler integration x ← x + ẋ∆t.

The time step was chosen to be ∆t = 0.01 and we set 1 = ∆x = ∆y = ∆z when constructing

the initial data.

The simplest test of our method is to compare the metric of the lattice against that of

the continuum. From the continuum metric we can easily establish that, in local Riemann

normal coordinates,

Rµανβ = 0

Kxy = Kxz = Kyz = 0

dxi
dt

=
pxxi
t

dyi
dt

=
pyyi
t

dzi
dt

=
pzzi
t

Kxx =
−px
t

Kyy =
−py
t

Kzz =
−pz
t

L2

xx = t2px(∆x)2 L2

yy = t2py(∆y)2 L2

zz = t2pz(∆z)2

dL2
xx

dt
= 2px

L2
xx

t

dL2
yy

dt
= 2py

L2
yy

t

dL2
zz

dt
= 2pz

L2
zz

t

If the parameters, px, py, pz and t where known then the above quantities could be com-

pared with their numerical counterparts obtained from the smooth lattice. However, on the

smooth lattice we do not have immediate knowledge of these four parameters – they must be

extracted from the lattice data (ie. the L2
ij ’s, mij ’s and their derivatives). This may be done

as follows. By assigning to L2
xx and dL2

xx/dt their corresponding values from the lattice one

can use the above equations as a pair of simultaneous equations for px and t which can be

easily solved via a Newton-Raphson method. In this manner we can obtain estimates for the

px, py and pz as well as three estimates for the time (which we reduced to a single estimate

by forming an average).

In all of our results (except those in the Figure (11)) we formed an initial estimate of the

Kasner parameters which we retained throughout the evolution while updating t by simply

incrementing it by the known time step.

The results are shown in Figures (6–12). The errors in the Riemann curvatures Figure

(8) and the off diagonal extrinsic curvatures Figure (10) are clearly zero to within machine

precision while the errors in the remaining lattice data can be attributed solely to the use

of an in-exact numerical time integration method. To demonstrate this, we have plotted in

Figure (12) the errors in the lattice data at t = 11 obtained for various values of ∆t. The

curves are all very close to being straight lines (as expected of Euler) and, most importantly,

each curve would appear, upon extrapolation to ∆t = 0, to pass through the origin. Thus

in the limit as ∆t → 0 there will be no error in the leg lengths nor in the curvatures. We

-18-

conclude that there is no spatial discretisation error in this lattice method (for this particular

spacetime and for this particular lattice).

In Figure (11) we have plotted the residuals of the Kasner equations (4.1–4.2) along with

the residual of the Hamiltonian constraint (4.3). Though they are not close to zero, at this

time step ∆t = 0.01, they are stable and their values do vanish, throughout the evolution,

as ∆t→ 0 (as demonstrated in Figure (12)).

Another useful test of the method is to examine how far the lattice drifted from its initially

homogeneous state. This we did by computing the fractional difference between pairs of

similar quantities (ie. quantities which in the continuum are exactly equal, for example, the

values of Kxx in two neighbouring RNC cells). In all cases we found the differences to be

zero to within machine precision.

We also ran our code on a sequence of lattices, from a coarse lattice with only 3 distinct cells

along each of the orthogonal axes (for a total of 27 vertices) through to a fine lattice with 10

cells along each axis (and a total of 1000 vertices). The T 3 cosmology was imposed simply

by assigning the same vertex labels to vertices on opposite faces of the lattice. We found no

significant variation between the evolutions of the fine and coarse lattices. In fact the data

from a typical cell in the coarse lattice (which cell does not really matter as the lattice is

homogeneous) agreed to within machine precision with the data of a typical cell of the fine

lattice.

Both of these observations must in part be attributed to the symmetric way in which the

lattice was evolved. Recall that in each time step every cell is processed in identical fashion

thus it is not a surprise that the lattice remained homogeneous throughout its evolution.

This may not have been the case had we chosen a different integration scheme. For example,

we could have employed just one sweep of the lattice with immediate updating of the legs

via x ← x + ẋ∆t/2. After one sweep each leg would have been visited twice, each with a

time step of ∆t/2. This is not a symmetric scheme and it is possible that the evolution

may develop instabilities. Fortunately this is not a scheme which we would ever use so it

is a moot point whether or not it would lead to instabilities. However, it does demonstrate

the important role the updating scheme can play in the stability of the evolution. Other

(reasonable) schemes should be tried though as yet we have not done so.

Though we have demonstrated that the smooth lattice gives results which are in excellent

agreement with the continuum it must be noted that this is a simple example and that it

does not touch upon some of the more delicate aspects of the method. For example, in

section (2.3), we noted that the computation of the Kµν ’s could be improved by evaluating

the equations at the centre of the legs. However, in this example, the continuum metric

is homogeneous and so we can expect the same Kµν regardless of where we evaluate the

equations on the leg. Furthermore, we were fortunate in that the lapse could be set equal

-19-

to 1 everywhere leading to the exact estimate N|µν = 0. In other cases, such as for a

Schwarzschild spacetime with maximal slicing, there would be some (presumably small)

errors in estimating N|µν . What effect these errors might have on the evolution remains to

be seen. A similar problem will arise when trying to compute the Kµν|α (though this will

only be required when solving the initial data problem, by an as yet unspecified algorithm).

This same spacetime, vacuum T 3 Kasner, has also been studied by Gentle and Miller [5].

Their calculations differ significantly from ours in that they chose a cubic lattice with one

diagonal per face and one body diagonal per cube, and they evolved the lattice using a

form of the Regge calculus due to Sorkin [6]. In their paper they solved both the initial

and evolution problems. There are two principle differences between their results and those

presented here. Firstly, their lattice carried a quadratic discretisation error in contrast to the

zero discretisation error in our lattice. Secondly, and more importantly, their solutions for the

Lij ’s demonstrated some high frequency wiggles. For legs of length order L, the amplitude

and wavelengths of the wiggles were observed to vary as O(L2) and O(L) respectively.

Neither the amplitude nor the wavelength varied with the the time step. The source of these

wiggles is unknown. It may be an artifact of the Regge calculus or it may be tied to the

Sorkin evolution scheme (this is a single sweep asymmetric integration method). Another

possibility is that the seeds of the wiggles are introduced during the solution of the initial

data problem. Joint work is currently under way to investigate this behaviour.

5. Discussion

There have been other attempts to adapt the ADM 3+1 equations to a lattice. In particular

there are the works of Piran and Williams [3] and Friedmann and Jack [7]. In both cases the

equations were presented in the context of the Regge calculus. This is another lattice method

in which the metric is assumed to be flat inside each pair of adjacent tetrahedra. The principle

difference between their approach and ours is in the way in which the ADM equations were

imposed on the lattice. In Piran+Williams and Friedmann+Jack the equations of motion for

the lattice were obtained from the ADM 3+1 action principle. They were unable to evaluate

the action directly because in the Regge calculus one does not have direct access to quantities

such as Rµν , N|µν etc. Instead one has pure scalar quantities such as the defect angle, the

areas and volumes of simplices. Thus in developing their equations both pairs of authors

needed to make many (reasonable) assumptions about how various terms in the standard

ADM action could be translated into a Regge form. This is a somewhat ad hoc method and

thus casts some doubt on the validity of the final equations. Indeed the equations given by

Friedmann and Jack differ from those given by Piran and Williams (though they do agree

for appropriate choices of lapse and shift).

-20-

In contrast our equations have been derived in a systematic manner. The use of Riemann

normal coordinates has allowed us to extract in a very natural way all of the relevant co-

ordinate data from the lattice data. This in turn has lead to a very natural adaptation of

the ADM 3+1 equations to the lattice. Despite this there are still many variations that

need to be explored (eg. are the estimates of the curvatures sensitive to choice of weights?,

should the Lij be updated by an arithmetic or geometric mean?, how well does the method

perform with different integrators?). There is also the major question of how one can solve

the initial value constraint equations. Despite these concerns, we believe that the basics of

our algorithm are well founded and should survive in any subsequent lattice methods for

numerical relativity.

However, the proof of the pudding is always in the eating. The method has been shown to

give excellent results for the Kasner cosmology. This is encouraging but it must be noted that

this example avoided many of the potential problems associated with this method. So it is

imperative that the proposed method be put to further tests. We have already successfully

constructed the initial data for a time symmetric initial data slice in the Schwarzschild

spacetime [2]. We are currently applying our proposed method to evolve that data. The

results will be reported in a later paper.

6. Appendix

The purpose of this appendix is to provide full details of how the Riemann normal coordinates

of each vertex in a computational cell can be computed from the L2
ij and mij .

Consider three radial legs of the RNC cell and suppose the xµi are known for two of the

vertices (eg. vertices 1 and 2 of Figure 5). Our aim is to compute the coordinates xµ
3
of the

third vertex by solving the following equations

m13 = gµνx
µ
1
xν3

m23 = gµνx
µ
2
xν3

L2

03 = gµνx
µ
3
xν3

Fortunately this system is rather easy to solve. One can easily verify that the solution is

given by

xµ
3
= Pxµ

1
+Qxµ

2
+Rxµ⋆

where

xµ⋆ = gµνe123ναβx
α
1x

β
2

P =
m13L

2
02
−m23m12

L2
⋆

Q =
m23L

2
01
−m13m12

L2
⋆

L2

⋆ = L2

01L
2

02 −m2

12

-21-

R = ±

(

L2
03
− P 2L2

01
−Q2L2

02
− 2PQm12

)1/2

L⋆

The two solutions, one for each choice of the ± sign, correspond to the two possible locations

of the third vertex, one on each side of the plane containing the three vertices 0,1 and 2.

Which choice is taken will depend on the design of the lattice. A systematic choice can be

made by noting that that the vectors xµ
1
, xµ

2
and xµ⋆ form a right handed system. With R > 0

the vector xµ
3
lives on the same side of the plane as xµ⋆ .

The dxµ
3
/dt can be computed by direct differentiation of the above equations provided R 6= 0.

This later case arises when the third vertex lies in the plane containing the three vertices 0, 1

and 2 (ie. the tetrahedron formed by the 4 vertices has zero volume). This is an exceptional

case which can always be avoided by a careful choice of the vertices 1 and 2.

All that remains is show how the coordinates of the first two vertices may be computed. This

is rather straightforward as we can make strong use of our coordinate gauge freedoms. The

central vertex can always be assigned the coordinates xµ = 0. For vertex 1 we can align the

RNC axes so that xµ = (0, 0, L01)
µ. Finally, by appropriate rotations, we can force vertex 2

to lie in the x − z plane, ie. xµ
2
= (A, 0, B)µ for some pair of numbers A > 0 and B. The

numbers A,B are found by solving

m12 = gµνx
µ
1
xν2

L2

02 = gµνx
µ
2
xν2

leading to B = m12/L01, A = (L2
02
−B2)1/2

7. Acknowledgements

An earlier version of this paper appeared as the preprint gr-qc/9708039 on the Los Alamos

preprint server.

8. References

[1] Laguna, P.

Numerical relativity without finite differences.

To appear in Living Reviews in relativity.

-22-

[2] Brewin, L.C.

Riemann normal coordinates, smooth lattices and numerical relativity.

Applied Mathematics Preprint. 97/3 also available at gr-qc/9701057 and

http://newton.maths.monash.edu.au:8000/preprints/slgr.ps.gz

Submitted to Class.Q.Grav.

[4] Brewin, L.C.

Is the Regge Calculus a consistent approximation to General Relativity?

Applied Mathematics Preprint. 95/3 also available at gr-qc/9502043 and

http://newton.maths.monash.edu.au:8000/preprints/truncation.ps.gz

Submitted to Class.Q.Grav.

[3] Piran, T. and Williams, R.M.

Three-plus-one formulation of Regge calculus.

Phys.Rev.D. Vol.33(1986) pp.1622-1633.

[7] Friedmann, J.L. and Jack, I.

3+1 Regge calculus with conserved momentum and Hamiltonian constraints.

J.Math.Phys. Vol.27(1986) pp.2973-2986.

[5] Gentle, A.P. and Miller, W.A.

A fully (3+1)-dimensiuonal Regge calculus model of the Kasner cosmology.

Class.Q.Grav. Vol.15(1998) pp.389-405.

[6] Barret, J.W., Galassi, M., Miller, W.A., Sorkin, R.D., Tuckey, P.A. and Williams, R.M.

A parallelizable implicit evolution scheme for Regge Calculus.

Int.J.Theor.Phys. Vol.36(1997) pp.815-839.

-23-

0 : (⋆,⋆) 1 : (⋆,⋆) 2 : (1,⋆) 3 : (1,2) 4 : (1,2)

5 : (1,4) 6 : (2,5) 7 : (1,2) 8 : (1,5) 9 : (3,1)

10 : (3,2) 11 : (1,3) 12 : (1,4) 13 : (3,4) 14 : (3,6)

15 : (2,3) 16 : (2,6) 17 : (2,1) 18 : (2,5)

Table 1. This table records the pairs of vertices employed in the computation of

the xµi for each vertex. An entry such as i : (j, k) means that the coordinates for

vertex i are computed from the data mij ,mik and Loi. The order of j and k in

(j, k) is crucial – it has been chosen so that the vectors (oi) and (oj)× (ok) lie on

the same side of the plane spanned by (oj) and (ok) (ie. the + root is always taken

for R, see the appendix). The ⋆’s denote data that are set by guage conditions.

Equation
∑

Weights(equation)

λ1 +(1, 2) + (2, 6) + (6, 4) + (4, 1)

λ2 +(1, 5) + (5, 6) + (6, 3) + (3, 1)

λ3 +(2, 3) + (3, 4) + (4, 5) + (5, 2)

λ4 +(9, 8)− (8, 10) + (10, 7)− (7, 9) + (13, 12)− (12, 14) + (14, 11)− (11, 13)

λ5 +(17, 8)− (8, 18) + (18, 12)− (12, 17) + (15, 7)− (7, 16) + (16, 11)− (11, 15)

λ6 +(17, 9)− (9, 15) + (15, 13)− (13, 17) + (18, 10)− (10, 16) + (16, 14)− (14, 18)

η1 +(0, 2) + (0, 4)

η2 +(0, 3) + (0, 5)

η3 +(0, 1) + (0, 6)

ρ4 +(1, 2)− (2, 6) + (6, 4)− (4, 1)

ρ5 +(1, 5)− (5, 6) + (6, 3)− (3, 1)

ρ6 +(2, 3)− (3, 4) + (4, 5)− (5, 2)

Table 2. This table records the weights and terms used to form the reduced smooth

lattice equations (2.1.5, 2.3.5, 2.3.6). An entry such as τ(i, j) denotes one term in

the sum. This term is based on the equation for leg (i, j) with weight τ = ±1. The

first six equations are used to compute the Riemann curvatures, while the second

six are used for the extrinsic curvatures. The η entries correspond to equations

(2.3.5) while the ρ entries correspond to equations (2.3.6). These equations, on this

lattice, can be used to calculate the curvatures for any space, not just the Kasner

space considered in the text.

-24-

Figure 1. This figures displays the drift vector γµi and the relationships between

the coordinates on the primary and shadow lattices. Clearly δxµi = (−γµ + Nµ
i)δt

leading directly to equation (2.2.1). We also have, by construction, that xµi = x′µi
on Σ0. Thus δx

µ
i = δx′µi + γµi δt which in turn leads to equation (2.2.2).

xµi = x′µi

x′µi + δx′µi

Nnµδt

(i)

(i′)

Nµ
i δtγµi δt

xµixµi + δxµi

δxµi(i)

t = t0

t = t0 + δt

Σ0

Σδt

Figure 2. In the first pass over the lattice, Kµν is computed at each vertex (•). In

a second pass, Kµν|α at the central vertex is estimated by fitting the linear approx-

imation K̃µν(x) = K̃µν + K̃µν|αx
α to the data on each vertex. This will require a

coordinate transformation from neighbouring cells to get data on the boundary of

the cell. The N|µν at the central vertex can be estimated by first forming estimates

for N|µ at the centre of each leg (). That data is then approximated by a linear

function Ñ |µ(x) = Ñ |µ + Ñ |µνx
ν . We can then use Ñ |µν as an estimate of N|µν at

the central vertex.

Figure 3. A typical octant of one computational cell of the cubic lattice. Vertex 0

is the central vertex. Each face should have two diagonals, however, for clarity we

have suppressed one of the diagonals. The diagonals shown are those used in the

computation of the Riemann curvatures. The vertex labels correspond exactly to

those in Figure (4).

0

1

2

3

7

9

15

Figure 4. This figure displays the vertices and their labels for a typical RNC cell.

The complete lattice can be generated by replicating this structure, and the associ-

ated diagonals, such as those in Figure (3), along the three coordinate axes. Note

that this leads to RNC cells which overlap. Note also that each rectangle, such as

(0192), should contain two diagonals but for clarity they have been excluded from

this figure.

0

1

2

3

45

6

7

8

9

10

11

12

13

14

15

16

17

18

Figure 5. This figure displays the various data and vertices used in the computation

of xµ
3
. The dashed line denotes the second solution arising from the negative root

for R. The full details are given in the Appendix.

0

1

2

3

m12

m13

m23

L03

Figure 6. This figure displays the evolution of three leg lengths, one each along

the three coordinate axes. In this and the following plots, ∆t = 0.01, px = py =

2/3, pz = −1/3 and the initial data was constructed with ∆x = ∆y = ∆z = 1. The

curves for Lx and Ly are coincident.

L
eg

le
n
g
th
s
a
lo
n
g
x
,y
,z

a
x
es

Time

Lz

Lx, Ly

Figure 7. This figure displays the fractional errors associated with the three leg

lengths. Once again there is no difference between the curves for Lx and Ly. These

errors arise solely from the numerical time integration (as demonstrated in Figure

(12)).

F
ra
ct
io
n
a
l
er
ro
rs

in
le
g
le
n
g
th
s

Time

Lz

Lx, Ly

Figure 8. This figure displays the Rxyxy component of the Riemann tensor as a

function of time. Rxzxz and Ryzyz behave in a similar fashion while the remaining

three curvatures remain at approximately 10−30 throughout the evolution. The

typical leg lengths are of order 1 and thus from the smooth lattice equations (2.1.2)

we can see that the Riemann curvatures are zero to within machine precision (with

64-bit arithmetic this is of order 15 decimal digits).

R
ie
m
a
n
n
cu
rv
a
tu
re

co
m
p
o
n
en
t
R

x
y
x
y

Time

Figure 9. This figure displays the evolution of the fractional errors in the diagonal

components of the extrinsic curvatures. The off diagonal components are zero to

within machine precision (see Figure (10)). The fractional errors for Kxx and Kyy

are equal (to within machine precision).

F
ra
ct
io
n
a
l
er
ro
rs

in
th
e
K

µ
ν

Time

Kxx, Kyy

Kzz

Figure 10. As per Figure (8) but for the off-diagonal extrinsic curvature compo-

nents. Note that in this case there is an asymmetry between the x and y axes though

at this level the differences are insignificant (they are equal to within machine pre-

cision when compared to the diagonal terms).

O
ff
-d
ia
g
o
n
a
l
E
x
tr
in
si
c
cu
rv
a
tu
re

er
ro
rs

Time

Kxy

Kxz

Kyz

Figure 11. The figure displays the residuals in the two Kasner constraints, equations

(4.1–4.2), and the Hamiltonian constraint, equation (4.3).

R
es
id
u
a
l
in

th
e
co
n
st
ra
in
t

Time step

1−
∑

p2i

1−
∑

pi

Hamiltonian

Figure 12. This figure displays the various errors at t = 11 as a function of the

time step. Each curve is straight, as expected for an Euler integration, and each

curve can be extrapolated through the origin proving that the sole source of error

in the evolution of the lattice is due solely to the use of an in-exact numerical time

integration. The curves are 1) 1 −
∑

p2i , 2) the fractional errors (f.e.’s) in Lx, Ly,

3) the Hamiltonian, 4) 1 −
∑

pi, 5) the f.e.’s in Kxx, Kyy, 6) the f.e.’s in Lzz and

7) the f.e.’s in Kzz. Six evenly spaced time steps between 0.01 and 0.51 were used.

The data points were not plotted so as to make it easier to see the convergence to

zero.

F
ra
ct
io
n
a
l
er
ro
rs

a
t
t
=
1
1

Time step

1

2

3
4

5

6

7

