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Abstract

This is just a collection of my notes on Riemann normal coordinates.

1. Introduction

The basic idea behind Riemann normal coordinates is to use the geodesics through a given

point to define the coordinates for nearby points. Let the given point be O and consider

some nearby point P . If P is close enough to O then there exists a unique geodesic joining

O to P . Let aµ be the components of the unit tangent vector to this geodesic at O and let s

be the geodesic arc length measured from O to P . Then the Riemann normal coordinates of

P are defined to be xµ = saµ. These coordinates are well defined provided the geodesics do

not cross (which we can always ensure by choosing the neighbourhood of O to be sufficiently

small).

One trivial consequence of this definition is that all geodesics through O are of the form

xµ(s) = saµ and that the aµ are constant along each geodesic. This implies, by direct

substitution into the geodesic equation, that Γα
µν = 0 at O which in turn implies that

gµν,α = 0 at O. Suppose now that we were to expand the metric as a Taylor series in xµ

about O. In that series there would only be the zero, second and higher derivatives of the

gµν . Thus the leading terms of the metric could be expressed as a sum of a constant part

plus a curvature part. If the curvature is weak this can be interpreted as an expansion of

the metric in powers (and derivatives) of the curvature. Likewise one can imagine similar

expansions of other geometrical quantities (eg. geodesics, arc length) in terms of a flat space

part plus a curvature contribution.

The purpose of these notes is develop such expansions and to apply them in the calculation

of such things as the geodesic distance between a pair of points and the angle subtended at

a vertex of a geodesic triangle.

We will start by using Taylor series expansions of the metric and geodesic equations to obtain

various useful formula between the metric, connection and Riemann tensors at O. There is

nothing new in any of these formula. What is new (well I can’t find them in the literature –



though I haven’t looked too far) are the equations for the angles, equations for the geodesics

and the derivation of the equation for the geodesic length.

2. Conformal coordinates

There is a potential fly in the ointment in that our proposed series expansion in powers

of the curvature (and its derivatives) may not formally appear to converge. This technical

difficulty can be overcome by introducing a conformal transformation of the original metric.

Let the typical length scale of the patch containing O be ǫ. Let the coordinates of the patch

be xµ and let the coordinates of O be xµ⋆ . Now define a new set of coordinates yµ by

xµ = xµ⋆ + ǫyµ

Then
ds2 = gµν(x)dx

µdxν

= ǫ2gµν(x⋆ + ǫy)dyµdyν

Define the conformal metric ds̃ by

ds̃2 = gµν(x⋆ + ǫy)dyµdyν

= g̃µν(y, ǫ)dy
µdyν

In both coordinate systems the geometry of the patch is described by the metric and the

boundary of the patch. In the original xµ coordinates only the boundary depends on ǫ.

Whereas in the conformal coordinates yµ the boundary is fixed but the metric depends on ǫ.

From the above it is easy to see that, at O,

g̃µν = gµν , g̃µν,α = ǫgµν,α , g̃µν,αβ = ǫ2gµν,αβ (2.1)

where the partial derivatives on the left are with respect to y and those on the right are with

respect to x. For each higher derivative an extra power of ǫ will appear.

Since Γα
µν = 0 at O the Rµναβ are composed of just the gµν and its second derivatives. Thus

from the above we immediately obtain

R̃µναβ = ǫ2Rµναβ

and as Rµναβ is independent of ǫ, we see that

R̃µναβ = O(ǫ2)

for ǫ << 1.

Clearly, then, as ǫ → 0 the conformal metric is flat.
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There are now two ways to look at the patch. We can view it as patch of length scale ǫ with

a curvature independent of ǫ. Or we can view it as patch of fixed size but with a curvature

that varies as ǫ2. This later view is useful since in using it we can be sure that the series

expansions around flat space are convergent (for a sufficiently small ǫ).

I will use these conformal coordinates for the majority of these notes and I will drop the tilde

and revert to xµ as the generic coordinates (even while I will am working in the conformal

frame.)

3. Riemann normal coordinates

In these coordinates the geodesics through O must all be of the form

xµ(s) = aµ
1
s

for some set of numbers aµ
1
. By direct substitution into the geodesic equation

0 =
d2xµ

ds2
+ Γµ

αβ(x)
dxα

ds

dxβ

ds
(3.1)

and its derivatives, one obtains, at the origin O,

0 = Γµ
αβ (3.2)

0 = Γµ
αβ,ν + Γµ

βν,α + Γµ
να,β (3.3)

It is easy to see, by continuing in this way, that all symmetric derivatives of the connection

vanish at the origin in Riemann normal coordinates. Some authors take this to be the

definition of Riemann normal coordinates. I prefer the definition given at the beginning of

these notes as it has a nice geometric feel to it.

There are two series expansions that we will use frequently. The first is an expansion of

various objects, such as the metric, in powers of xµ. The second expansion arises by con-

straining this first expansion to points on a typical geodesic. Each such expansion will give

us some useful relations between the metric, the connection and the Riemann tensor.

3.1. Metric

Consider a Taylor series expansion of the metric around the origin O, namely,

gµν(x) = gµν + gµν,αβ
xαxβ

2
+O(ǫ3)

There is no linear term because gµν,α = 0 at the origin. It is a simple algebraic exercise to

show, given (3.2) and (3.3), that

Γµ
αβ,ν = −

1

3

(

Rµ
αβν +Rµ

βαν

)

(3.1.1)
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from which it follows that

gµν,αβ = −
1

3

(

Rµανβ +Rµβνα

)

(3.1.2)

and finally

Rµναβ = gαν,µβ − gαµ,νβ

Substituting these into the above we obtain

gµν(x) = gµν −
1

3
Rµανβ xαxβ +O(ǫ3) (3.1.3)

From this we can also easily verify that

gµν(x) = gµν +
1

3
Rµ

α
ν
β xαxβ +O(ǫ3)

We will adopt the convention of raising and lowering indices with the flat space part of the

metric gµν . This incurs no error when applied at the origin. However, for other points,

there is an associated truncation error and this must be accounted for – thus one must tread

carefully.

3.2. Connection

We can also propose a Taylor series expansion for the connection about the origin O, namely,

Γµ
αβ(x) = Γµ

αβ + Γµ
αβ,ρx

ρ + Γµ
αβ,ρτ

xρxτ

2
+ · · · (3.2.1)

Our first observations are that
Γµ
αβ = 0

Γµ
αβ,ρ = O(ǫ2)

Γµ
αβ,ρτ = O(ǫ3)

and in general the n-th derivative of Γ will beO(ǫn+1) at O. This follows by simple inspection

of the standard formula for computing the metric connection and the previously stated

asymptotic behaviour of the conformal metric (2.1).

We are only interested in the leading term in the above expansion, and so after using (3.1.1)

we obtain

Γµ
αβ(x) = −

1

3

(

Rµ
αβν +Rµ

βαν

)

xν +O(ǫ3)
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3.3. Geodesics

For the geodesics, we employ a series expansion in s, the distance measured along the

geodesic,

xµ(s) = aµ
0
+ aµ

1
s+ aµ

2

s2

2
+ aµ

3

s3

6
+ · · · (3.3.1)

We will defer for the moment stating the nature of the truncation error. Our primary aim

here is to determine as many of the aµi as we can in terms of just gµν and Rµναβ. This can be

done by demanding that the above expansion for xµ(s) is a solution of the geodesic equation

(3.1).

The basic steps are to substitute (3.3.1) into (3.2.1) and to then substitute all of these

quantities into the geodesic equation (3.1). The result is a polynomial in s and as this must

be identically zero for all s, we equate the separate coefficients of powers of s to zero. For

the first two terms s0 and s1 we obtain, respectively,

0 = aµ
2
+ Γµ

αβ,ρa
ρ
0
aα1a

β
1
+

1

2
Γµ
αβ,ρτa

ρ
0
aτ0a

α
1a

β
1

0 = aµ
3
+ Γµ

αβ,ρ

(

aρ
1
aα1a

β
1
+ 2aρ

0
aα1a

β
2

)

+ Γµ
αβ,ρτ

(

2aρ
1
aτ0a

α
1a

β
1
+ 2aρ

0
aτ0a

α
2a

β
1

)

The term Γµ
αβ,ρa

ρ
1
aα1a

β
1
is zero in view of (3.3). Thus, to order ǫ3, we obtain

aµ
2
= −Γµ

αβ,ρa
ρ
0
aα1a

β
1
+O(ǫ3)

aµ
3
= O(ǫ3)

Clearly this process can be developed in full to obtain recurrence relations amongst all of

the remaining aµi . We will not need these but what we do require is their behaviour in ǫ. It

is not hard to see that in the generic equation for aµn the leading terms will be

0 = aµn + Γµ
αβ,ρa

ρ
n−2

aα1a
β
1
+ · · ·

Since we have already established that aµ
2
is O(ǫ2) it follows that aµn will be O(ǫn) for n ≥ 2.

Assembling the above results leads finally to

xµ(s) = aµ
0
+ aµ

1
s+

1

3
Rµ

αβρ a
ρ
0
aα1a

β
1
s2 +O(ǫ3) (3.3.2)

Notice that aµ
0
and aµ

1
remain undetermined – they can only be computed from appropriate

boundary or initial conditions.
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3.3.1. Geodesic boundary value problem

In this case we are looking for the geodesic which passes through two given points. Let the

coordinates of initial point be xµi and those for the final point be xµj . Suppose the geodesic

distance between the two points is Lij . The Lij can not be freely specified as they must be

derivable from the metric and the coordinates. A equation for Lij will be given in a later

section (3.4).

Our aim is to solve for aµ
0
and aµ

1
such that

xµ(s = 0) = xµi = aµ
0
+O(ǫ3)

xµ(s = Lij) = xµj = aµ
0
+ aµ

1
L01 +

1

3
Rµ

αβρ a
ρ
0
aα1a

β
1
L2
01 +O(ǫ3)

The first equation is easy to solve, namely, aµ
0
= xµi +O(ǫ3). However, the second equation

does appear to pose a bit of a problem – it looks like a nasty quadratic equation for each

of the aµ
1
. Fortunately this equation can be solved by an iterative method to within O(ǫ3).

The starting point is to first substitute for aµ
0
to obtain

xµj = xµi + aµ
1
L01 +

1

3
Rµ

αβρ x
ρ
i a

α
1a

β
1
L2
01 +O(ǫ3)

Since Rµ
αβρ = O(ǫ2) we obtain the first approximation

aµ
1
=

1

L01

(xµj − xµi ) +O(ǫ2)

This can now be substituted back into the previous equation leading to the second approxi-

mation

aµ
1
=

1

Lij

(

∆xµij −
1

3
Rµ

αβρ x
ρ
i∆xαij∆xβij

)

+O(ǫ3) (3.3.3)

where ∆xµij = xµj − xµi . Now this approximation, being O(ǫ3) accurate, is sufficient for our

purposes so there is no need to proceed to higher order approximations. Combining these

results for aµ
0
and aµ

1
and substituting into (3.3.2) leads to the following equation for the

geodesic passing through the two points xµi and xµj

xµ(s) = xµi + λ∆xµij −
λ(1− λ)

3
Rµ

αβρ x
ρ
i∆xαij∆xβij +O(ǫ3) (3.3.4)

where λ = s/Lij .
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3.3.2. Geodesic initial value problem

In this instance we are looking for a geodesic for which the initial position and direction of

the geodesic are given. Let the initial point have coordinates xµi and let the initial tangent

vector be mµ. We can assume that mµ is a unit vector.

The two equations from which we must solve for aµ
0
and aµ

1
are

xµ(s = 0) = xµi = aµ
0
+O(ǫ3)

dxµ

ds
(s = 0) = mµ = aµ

1
+O(ǫ3)

These equations are rather easy to solve, leading to the following equation for the geodesic

xµ(s) = xµi + smµ +
s2

3
Rµ

αβρ x
ρ
im

αmβ +O(ǫ3) (3.3.5)

Incidently, from (3.3.2) and (3.3.3), we see that to obtain a geodesic which passes through

the two points xµi and xµj one must choose

mµ =
1

Lij

(

∆xµij −
1

3
Rµ

αβρ x
ρ
i∆xαij∆xβij

)

+O(ǫ3) (3.3.6)

3.4. Geodesic distance

Consider two points with coordinates xµi and xµj . Since there exists, by assumption, a unique

geodesic joining this pair of points, the distance between them should also be uniquely defined

in terms of their coordinates and the metric.

Our aim is to evaluate, along the geodesic,

Lij =

∫ 1

0

(

gµν(x)
dxµ

dλ

dxν

dλ

)1/2

dλ

The equation for xµ(λ) is simply (3.3.4), namely

xµ(λ) = xµi + λ∆xµij −
λ(1− λ)

3
Rµ

αβρ x
ρ
i∆xαij∆xβij +O(ǫ3)

for 0 < λ < 1. This can be substituted into the expansion (3.1.3) for gµν(x) with the result

gµν(x(λ)) = gµν −
1

3
Rµανβ

(

xαi + λ∆xαij
)

(

xβi + λ∆xβij

)

+O(ǫ3)
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It is a simple matter to substitute these into the integrand, leading to

(

dL

dλ

)2

= gµν∆xµij∆xνij −
1

3
Rµανβ xαi x

β
i ∆xµij∆xνij +O(ǫ3)

The important point to note is that this result does not depend on λ. Thus the integrand is

constant and so the integration is trivial. The result follows immediately,

L2
ij = gµν∆xµij∆xνij −

1

3
Rµανβ xαi x

β
i ∆xµij∆xνij +O(ǫ3) (3.4.1)

From this result it is easy to establish, using the symmetries ofRµναβ, the following equivalent

equations for L2
ij

L2
ij = gµν∆xµij∆xνij −

1

3
Rµανβ xαi x

β
i x

µ
j x

ν
j +O(ǫ3) (3.4.2)

= (gµν −
1

3
Rµανβ xαij x

α
ij)∆xµij∆xνij +O(ǫ3) (3.4.3)

= gµν∆xµij∆xνij −
1

3
Rµανβ ∆xα0i∆xβ

0i∆xµ
0j∆xν0j +O(ǫ3) (3.4.4)

where xµij = (xµi + xµj )/2 and where xµ
0
are the coordinates of the origin (which in our case

are zero). We will make use of this last form when deriving the (generalised) cosine law.

3.5. Generalised Cosine law

Consider a geodesic triangle with vertices i, j and k. We would like to be able to compute the

angles subtended at each vertex in terms of the usual quantities, the metric, the coordinates

etc. We will develop the appropriate equations in two stages. First, we will consider the

simple case of computing the angle at a vertex coincident with the origin. We shall then

generalise this result to the case were all three vertices are distinct from the origin.

To start the ball rolling consider a geodesic triangle with vertices i, j and O, the origin. We

seek an equation for the angle between the geodesic segments joining O to i and O to j. The

unit tangent vectors to these geodesic segments are, from equation (3.3.1),

vµiO = ∆xµiO/LiO

vµjO = ∆xµjO/LjO

Now let θij be the angle subtended at O. Then

cos θij = gµνv
µ
iOv

ν
jO = gµν∆xµiO∆xνjO/(LiOLjO)
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We can obtain two useful variants of this equation by writing, first, ∆xµiO = ∆xµjO + ∆xµij
and second, ∆xµjO = ∆xµiO −∆xµij . This gives

LiOLjO cos θij = gµν

(

∆xµjO +∆xµij

)

∆xνjO

= gµν∆xµiO
(

∆xνiO −∆xνij
)

Adding these two equations leads to

2LiOLjO cos θij = L2
iO + L2

jO − gµν∆xµij∆xνij (3.5.1)

However, from equation (3.4.4) we see that

gµν∆xµij∆xνij = L2
ij +

1

3
Rµανβ ∆xµiO∆xνiO∆xαjO∆xβjO +O(ǫ3)

Thus we have

2LiOLjO cos θij = L2
iO + L2

jO − L2
ij −

1

3
Rµανβ ∆xµiO∆xνiO∆xαjO∆xβjO +O(ǫ3) (3.5.2)

With this equation we have achieved our first aim : to obtain an equation when the vertex

resides at the origin. To obtain an equation applicable to the general case, where the vertex is

not at the origin, we can imagine transforming to a second set of Riemann normal coordinates

with an origin at some other point, say O′. We can do this simply by shifting the coordinates,

eg. xµ → xµ+cµ. The coordinates, metric and Riemann components at the respective origins

will therefore be related by

x′µ = xµ + cµ

g′µν(O
′) = gµν(O)−

1

3
Rµανβ(O) cαcβ +O(ǫ3)

R′

µναβ(O
′) = Rµανβ(O) +O(ǫ1)

Now the important observation is that the above equation (3.5.2) is covariant with respect

to this transformation (whereas (3.5.1) is not). That is, it applies to any three vertices of a

geodesic triangle. Let us now relabel the vertices as i, j and k. Then the angle subtended at

vertex k can be computed from

2LikLjk cos θij = L2
ik + L2

jk − L2
ij −

1

3
Rµανβ ∆xµik∆xνik∆xαjk∆xβjk +O(ǫ3) (3.5.3)

Note added in Oct 2007 : I did these calculations sometime in 1996, but recently, (yes, it

took a while and you might wonder what was I doing) I found that J.L.Synge has reported
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the same result using the method of world functions. See references [5,6]. Synge does the

calculations upto and including O(L6).

3.6. Parallel transport

Suppose a vector vµ is to be parallel transported along a curve described by xµ(s). Can the

values of vµ along this curve be expressed in terms of primary quantities such as gµν and

Rµναβ? Clearly the answer is yes, and what follows is a simple derivation employing, once

again, series expansions.

We start by writing xµ(s) as a series in s

xµ(s) = aµ
0
+ aµ

1
s+ aµ

2

s2

2
+O(ǫ3)

We will also expand Γµ
αβ(x) around the origin xµ = 0

Γµ
αβ(x) = Γµ

αβ + Γµ
αβ,ρx

ρ +O(ǫ3)

= Γµ
αβ,ρ

(

aρ
0
+ aρ

1
s
)

+O(ǫ3)

Finally, we propose the following expansions for vµ(s)

vµ(s) = vµ
0
+ vµ

1
s+ vµ

2

s2

2
+ vµ

3

s3

6
+ · · ·

Each of these expansions can then be substituted into the parallel transport equation

0 =
dvµ

ds
+ Γµ

αβ(x)v
αdx

µ

ds

As is customary, we equate to zero the coefficients of successive powers of s. For s0 and s1

we obtain, respectively,

0 = vµ
1
+ Γµ

αβ,ρv
µ
0
aβ
1
aρ
0
+O(ǫ3)

0 = vµ
2
+ Γµ

αβ,ρ

(

vα1 a
β
1
aρ
0
+ vα0 a

β
1
aρ
1
+ vα0 a

β
2
aρ
0

)

+O(ǫ3)

Using (3.1.1) and the fact that Γµ
αβ,ρ is O(ǫ2) we obtain

vµ
1
=

1

3

(

Rµ
αβρ +Rµ

βαρ

)

vα0 a
β
1
aρ
0
+O(ǫ3)

vµ
2
=

1

3

(

Rµ
αβρ +Rµ

βαρ

)

vα0 a
β
1
aρ
1
+O(ǫ3)
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Substituting these back into the expansion for vµ(s) leads to

vµ(s) = vµ
0
+

1

3

(

Rµ
αβρ +Rµ

βαρ

)

(

vα0 a
β
1

)

(

saρ
0
+

s2

2
aρ
1

)

+O(ǫ3)

In the case where the curve is a geodesic joining the points xµi to xµj , we can use the results

of section (3.3), namely

aµ
0
= xµi +O(ǫ3)

aµ
1
=

1

Lij

(

∆xµij −
1

3
Rµ

αβρ x
ρ
i∆xαij∆xβij

)

+O(ǫ3)

to obtain

vµ(s) = vµ
0
+

1

3

(

Rµ
αβρ +Rµ

βαρ

)

(

vα0∆xβij

)

(

λxρi +
λ2

2
∆xρij

)

+O(ǫ3)

where λ = s/Lij and ∆xµij = xµj − xµi . In particular, when s = Lij we obtain

vµj = vµi +
1

3

(

Rµ
αβρ +Rµ

βαρ

)

vαi ∆xβij x
ρ
ij +O(ǫ3) (3.6.1)

where xµij = (xi + xj)/2. Note that we have also changed the notation slightly so that vµi
and vµj refer to the values of vµ at the two end points of the geodesic. The vµi and vµj should

not be confused with the terms in the original expansion for vµ(x).

3.7. From generic to Riemann normal coordinates

It is very unlikely, except for highly specialised metrics, that the coordinates will be Riemann

normal coordinates. How then can we transform a generic set of coordinates into Riemann

normal coordinates? We shall now develop such a transformation.

The first step is to apply the conformal transformations of section (2) to the generic coor-

dinates. It is easy to see that the conformal relations, (2.1), carry over to the conformally

transformed coordinates zµ.

Let the generic coordinates be zµ. As the Riemann coordinates are based upon the geodesics

passing through the origin it is appropriate to examine the same geodesics in the zµ coordi-

nates. So, consider a typical geodesic passing through the point zµ = 0. We shall now repeat

much of the calculations of section (3.3) with the one variation that now the Γµ
αβ 6= 0. Thus

we start by proposing a series expansion for zµ(s),

zµ(s) = aµ
1
s+ aµ

2

s2

2
+ aµ

3

s3

6
+ · · ·
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and a Taylor series expansion, about zµ = 0, of the connection

Γµ
αβ(z) = Γµ

αβ + Γµ
αβ,ρz

ρ +O(ǫ3)

= Γµ
αβ + Γµ

αβ,ρ

(

aρ
1
s+ aρ

2

s2

2
+ · · ·

)

+O(ǫ3)

These expansions can be substituted into the geodesic equation, (3.1), and, according to the

now familar theme of this paper, the successive powers of s are equated to zero. For the first

two terms we obtain

0 = aµ
2
+ Γµ

αβa
α
1a

β
1

0 = aµ
3
+ 2Γµ

αβa
α
1a

β
2
+ Γµ

αβ,ρa
α
1a

β
1
aρ
1

This leads to

zµ(s) = aµ
1
s− Γµ

αβa
α
1a

β
1

s2

2
+
(

2Γµ
ατΓ

τ
βρ − Γµ

αβ,ρ

)

aα1a
β
1
aρ
1

s3

6
+O(ǫ3)

The tangent vector to the geodesic has components aµ
1
at the origin. However, at the

origin, we can align the axes of the Riemann normal coordinates with those of zµ. Thus

in the Riemann normal coordinates the tangent vector would also have components aµ
1
.

Furthermore, in these Riemann normal coordinates we know that the geodesics are described

by

xµ(s) = aµ
1
s

This allows us to eliminate each aµ
1
term in the above equation for zµ. In the process we

also eliminate all explicit dependance on the parameter s,

zµ = xµ −
1

2
Γµ
αβx

αxβ +
1

6

(

2Γµ
ατΓ

τ
βρ − Γµ

αβ,ρ

)

xαxβxρ +O(ǫ3) (3.7.1)

Thus we have arrived at a transformation between the xµ and zµ coordinates. In this

form the equation is, however, not particularily useful since our aim was to construct the xµ

coordinates from the given zµ. We will invert this equation by a succession of approximations

in much the same way as we did in section (3.3).

Since Γµ
αβ = O(ǫ1) we have the first approximation

xµ = zµ +O(ǫ1)

Substitute this into (3.7.1) to obtain the second approximation

xµ = zµ +
1

2
Γµ
αβz

αzβ +O(ǫ2)
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which can then be used to obtain the third and final approximation

xµ = zµ +
1

2
Γµ
αβz

αzβ +
1

6

(

Γµ
ατΓ

τ
βρ + Γµ

αβ,ρ

)

zαzβzρ +O(ǫ3)

Note that the Γ’s in this equation are those for the original zµ coordinates.

This transformation produces a set of Riemann normal coordinates aligned to the the original

coordinate axes at their coincident origins. We would like a somewhat more general transfor-

mation, one which allows for non-coincident origins and non-aligned coordinates axes. This

is easily acheived by simple linear transformations. It is easy to see that this leads to

xµ = Λµ
η

(

∆zη +
1

2
Γη
αβ∆zα∆zβ +

1

6

(

Γη
ατΓ

τ
βρ + Γη

αβ,ρ

)

∆zα∆zβ∆zρ
)

+O(ǫ3) (3.7.2)

where ∆zη = zη − zηo and zηo coresponds to the origin of the Riemann normal coordinates.

The matrix Λµ
ν is chosen to align the axes of the Riemann normal coordinates to a preferred

set of directions. For example, we may choose an orthogonal set of axes (at the origin). The

Λµ
ν could then be computed by way of a Gramm-Schmidt orthogonalisation procedure.

3.8. Alternative Riemann normal coordinate frames

Riemann normal coordinates can be constructed in a small region of any given point. Sup-

pose we choose two distinct (but close) points and that we constructed a Riemann normal

coordinate frame for each point. What is the transformation that maps one frame into the

other? We shall develop this transformation by adapting the result of the previous section.

Let the two origins be O and O′ and let their respective Riemann normal coordinates be xµ

and x′µ. In the previous section we obtained a transformatiom from any generic coordinates

zµ into a specific set of Reimann normal coordinates xµ. Clearly we are free to choose the

zµ to be the x′µ. Thus we have

x′µ = Λµ
η

(

∆xη +
1

2
Γη
αβ∆xα∆xβ +

1

6

(

Γη
ατΓ

τ
βρ + Γη

αβ,ρ

)

∆xα∆xβ∆xρ
)

+O(ǫ3) (3.8.1)

where we have swapped the roles of xµ and x′µ simply for notational convenience (and to

accord with convention that x → x′).

Note that each of the Γµ
αβ and Γµ

αβ,ρ are evaluated at xµ = xµo′ ie. at x′µ = 0. We can

evaluate each of these by way of a Taylor series about xµ = 0. This leads to

Γη
ατ (xo′) = Γη

αβ,ρx
ρ
o′ +O(ǫ3)

Γη
αβ,ρ(xo′) = Γη

αβ,ρ +O(ǫ3)
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Since Γη
αβ,ρ is O(ǫ2) we see that the quadratic terms in (3.8.1) are O(ǫ4) and thus may be

neglected. The remaining linear terms can be expressed in terms of the Riemann tensor via

(3.1.1). The final result is

x′µ = Λµ
η

(

∆xη −
1

3
Rη

αβρ ∆xα∆xβxρo′

)

+O(ǫ3) (3.8.2)

4. Appendix

This is a little appendix to prove two key results (3.1.1) and (3.1.2). Starting with

0 = Γµ
αβ

0 = Γµ
αβ,ν + Γµ

βν,α + Γµ
να,β

and using the definition of the Riemann tensor

Rα
βµν = Γα

βν,µ − Γα
βµ,ν + Γα

ρµΓ
ρ
βν − Γα

ρνΓ
ρ
βµ

we obtain

Rα
βµν +Rα

µβν = Γα
βν,µ − Γα

βµ,ν + Γα
µν,β − Γα

µβ,ν

From which it follows that

Γα
βµ,ν = −

1

3

(

Rα
βµν +Rα

µβν

)

(3.1.1)

Now for the metric, we start first with the statement that the metric has zero covariant

derivative

0 = gµν,α − gµρΓ
ρ
να − gρνΓ

ρ
µα

which when differentiated is

0 = gµν,αβ − gµρΓ
ρ
να,β − gρνΓ

ρ
µα,β

(recall that gµν,α = 0 at the origin). Upon using the results just obtained for the connection,

we see that

gµν,αβ = −
1

3

(

Rµανβ +Rναµβ

)

= −
1

3

(

Rµανβ +Rµβνα

)

(3.1.2)

Note that each of the above expressions is applicable only at the origin.
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