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A geometric expression for the Gauss-Codacci equation on a simplicial (Regge) spacetime

will be presented. It will be derived by arguing that the operator associated with the parallel

transportation of a vector around a timelike bone may also be de-composed into a product

of operators associated with the Cauchy surface and its embedding in the spacetime. It

will then be shown that this result is, for a class of weak simplicial spacetimes, term by

term equivalent with the usual continuum version of the contracted Gauss-Codacci equation.

This leads, for this class of weak simplicial spacetimes, to a simple relationship between the

4-defect, 3-defect and the extrinsic curvature terms.
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1. Introduction.

Consider a typical “3+1” formulation of the Regge calculus [1,2,3] . To each spacelike leg

in each Cauchy surface there is an associated timelike bone (obtained as the time evolution

of that leg). This leg is surrounded by a set of tetrahedra. Likewise the timelike bone is

surrounded by a set of 4-dimensional tubes being generated from the time evolution of the

tetrahedra. Given the table of leg lengths it is not hard to calculate the defects on both

the spacelike leg and the timelike bone. An interesting challenge is to seek an expression by

which the defect on the timelike bone can be related to that on the leg and the embedding

of the tetrahedra in the spacetime. Since the defects are related to the parallel transport

of vectors it is natural to consider the relationships between parallel transport in the full

4-dimensional spacetime and that in the 3-dimensional Cauchy surface. These relationships,

for a smooth spacetime, are represented by the Gauss-Codacci equations [4] . Our challenge

is to find similar relationships for a simplicial spacetime.

The approach adopted in an earlier paper [5] was to interpret the Gauss-Codacci equation

as a differential equation on the simplicial spacetime. This required certain assumptions to

be made. It would be nice if an approach could be developed which did not begin with such

assumptions. It is for this reason that a purely geometrical approach was sought.

The basic idea here will be to ask what is the relationship between the processes of parallel

transportation within the full 4-dimensional spacetime and that of parallel transportation

within the 3-dimensional Cauchy surface. Our approach will begin by constructing two

different sets of tetrads in each tetrahedron. The first set will be used to define the parallel

transport of vectors in the full 4-dimensional spacetime. The second set of tetrads will be

tailored for the purpose of parallel transport within each Cauchy surface. It will then be

shown that this second set of tetrads is easily constructed from the first set. This fact will

then lead us directly to the desired result, namely, a simplicial counterpart of the Gauss-

Codacci equations.

The notation used will be similar to that used in references [3,5] . Our attention will be

confined to one timelike bone and the set of 4-dimensional tubes attached to that bone.

The Cauchy surface will be denoted by Σ, the tetrahedra in Σ by si, i = 1, 2, 3 · · · and the

4-dimensional tube generated by si will be represented by Ti. The spacelike bone (a leg in
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Σ) will be represented by σ′ while the timelike bone generated by σ′ will be denoted by σ.

The defects on the bones, σ and σ′, will be written as α and α′ respectively. The triangular

interface between si and sj will be written as sij while the interface between the pair of

tubes Ti and Tj will be written as Tij . Where confusion may arise between a simplex index

and other indices the simplex index will be written in parenthesis. For example tµi (j) are the

components of the ith tetrad vector in the tube Tj .

The restriction to a simplicial space with just one timelike bone may seem un-reasonable.

However the metric near any bone, in any generic simplicial spacetime, will be determined

by just the set of tetrahedra surrounding that bone. Thus the generic simplicial spacetime

can be examined one bone at a time.

2. The Gauss-Codacci equation.

Our first task is to obtain a rule for the parallel transport of a general vector from Tj to

Tj+1. Our starting point will be one of the basic assumptions of the Regge calculus, namely,

that any pair of tubes can be covered by one flat metric. Parallel transport in such a frame

is then very easily expressed. Let xµ(j) and xµ(j+1) be a pair of coordinate frames for Tj and

Tj+1 respectively. Let the coordinates of the frame covering Tj and Tj+1 be x̄µjj+1. Suppose

v̄µ
(j)

and v̄µ
(j+1)

are the successive components of a vector parallel transported from Tj to

Tj+1, in the x̄µjj+1 frame, and that vµ
(j)

and vµ
(j+1)

are the corresponding components with

respect to the local coordinates xµ
(j)

and xµ
(j+1)

. Clearly

v̄µ
(j+1)

= v̄µ
(j)

which when rexepressed in terms of the coordinates xµ
(j)

and xµ
(j+1)

leads to

vµ(j+1) = Aµ
ν (jj+1)v

ν
(j) (2.1)

for an appropriate choice of Aµ
ν (jj+1). The Aµ

ν (jj+1) form a non-singular matrix and can

be computed solely from the leg-lengths and the coordinates in Tj and Tj+1. Williams and

Ellis[6] provide details of the construction of this matrix.
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Similarly, the parallel transport of vectors with respect to the metric of the Cauchy surface

is represented by

v′µ(j+1) = A′µ
ν (jj+1)v

′ν
(j) (2.2)

for an appropriate choice of the A′µ
ν (jj+1). In this expression it is normal to assume that

v′µ(j) is tangent to the Cauchy surface in sj . In this case v′µ(j+1) will also be tangent to the

Cauchy surface, this time in sj+1.

Since the metric and the connection on the Cauchy surface are inherited from the full 4-

dimensional spacetime it is natural to wonder if the A′µ
ν (jj+1) can be obtained from the

Aµ
ν (jj+1). Such a relation does exist and will be the subject of the remainder of this section.

Let v′µ(j) be any vector tangent to sj . Now consider the vector Aµ
ν (jj+1)v

′ν
(j). This is a

vector in Tj+1 which in general will not be tangent to sj+1. It can be made tangent to sj+1

by applying a boost in the plane containing nµ
(j)

and nµ
(j+1)

, the future directed timelike

unit-normals to sj and sj+1 respectively. This boost transformation maps the rest frame

of Tj into a rest frame of Tj+1. A little thought shows that the resulting vector must be

v′µ(j+1). That is

v′µ(j+1) = Bµ
ρ(jj+1)A

ρ
ν (jj+1)v

′ν
(j) (2.3)

where Bµ
ν are the components of the boost matrix.

Comparing (2.2) and (2.3) we see that

A′µ
ν (jj+1) = Bµ

ρ(jj+1)A
ρ
ν (jj+1)

This is our desired relation between the Aµ
ν (jj+1) and the A′µ

ν (jj+1). It shows explicitly how

the operator for parallel transport in the Cauchy surface can be built from the associated

operator for the full spacetime and the embedding of the Cauchy surface in the spacetime.

The parallels with the continuum are clear, the A(jj+1) can be viewed as the connection on

the spacetime, the A′
(jj+1) as the connection on the Cauchy surface and the B(jj+1) as the

extrinsic curvature of the Cauchy surface.

The preceeding analysis focused on properties local to one interface. Curvature, however,

arises from the global relationship of a sequence of interfaces. Thus now consider the parallel

transport of a vector, with respect to the metric of the 4-dimensional spacetime, around a
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simple loop starting from T1, passing once through each of the other Tj and returning to

T1. The nett effect is to rotate the vector, in a plane normal to the bone, through an angle

equal to the defect on σ. This rotation operator must equal the ordered product of each of

the A(jj+1). Thus

exp(αU)µν =
(

A(m1)A(m−1m) · · ·A(jj+1) · · ·A(23)A(12)

)µ

ν

(2.4)

where Uµ
ν is the normalized bi-vector normal to σ (ie. Uµ

νW
ν = 0 for any vector Wµ

parallel to σ) and α is the defect on σ.

In a similar fashion, the nett effect of parallel transporting a vector, with respect to the metric

of the Cauchy surface, along a non-trivial loop starting and finishing in s1 and enclosing the

leg σ′ once, will be given by

exp(α′ U ′)µν =
(

B(m1)A(m1)B(m−1m)A(m−1m) · · ·B(jj+1)A(jj+1) · · ·B(23)A(23)B(12)A(12)

)µ

ν

(2.5)

where α′ is the defect on the leg σ′ and U ′µ
ν is the normalized bi-vector normal to that leg

(ie. U ′µ
νW

ν = 0 for any vector Wµ tangent to the Cauchy surface and parallel to σ′).

It is important to notice that there is some considerable freedom in choosing the A(jj+1).

Indeed the coordinates in each of the m tubes Tj , j = 1, 2, · · ·m may be freely chosen.

This in turn will impose a choice on each of the A(jj+1). Conversely, one could choose any

coordinates in T1 and extend these coordinates throughout the remaining m − 1 tubes by

an appropriate choice of the A(jj+1), j = 1, 2, · · ·m− 1. The components of A(m1) could not

then be freely chosen but would be fully determined by the coordinate transformation from

Tm back into T1. Clearly, only m− 1 of the A(jj+1), j = 1, 2, · · ·m can be freely chosen. For

our analysis it is simplest to choose

I = A(m1) = A(m−1m) = · · ·A(jj+1) · · · = A(34) = A(23)

where I is the identity operator. This corresponds to the familar picture of cutting the

set of tubes along the interface T12 and mapping that set of tubes into a Minkowski space.
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Substituting this into the above relations, (2.4,2.5), will lead to

exp(α′U ′)µν =
(

B(m1)B(m−1m) · · ·B(jj+1) · · ·B(23)B(12)

)µ

ρ
exp(αU)ρν

(2.6)

Now let βj be the boost angle and V µ
j ν be the normalized bi-vector normal to the interface

sjj+1 (ie. V µ
j νW

ν = 0 for any vector W ν tangent to sjj+1). The Lorentz transformation

associated with the interface sjj+1 is then exp(βj Vj)
µ
ν . Consequently

exp
(

α′ U ′
)µ

ν
=







m
∏

j=1

exp (βj Vj)







µ

ρ

exp (αU)ρν (2.7)

where m equals the number of tubes surrounding the bone. This equation can also be

re-written as

exp (αU)µν =







m
∏

j=1

exp (−βj Vj)







µ

ρ

exp
(

α′ U ′
)ρ

ν
(2.8)

This is the main result of this paper. It displays an explicit decomposition of the curvature

of the spacetime in terms of the intrinsic and extrinsic curvatures of the Cauchy surface.

It seems reasonable to ask in what way can the equations (2.8) be compared with the usual

Gauss-Codacci equations [4]

(3)Rµ
αβγ = ⊥Rµ

αβγ − ǫ
{

Kµ
γKαβ −Kµ

βKαγ

}

Kµ
µ|α −Kµ

α|µ = ⊥Rµαn
µ

(2.9)

where ǫ = ±1 according to the choice of a Euclidian (ǫ = +1) or Lorentzian (ǫ = −1)

signature.

There are number of difficulties here, for example (2.8) applies to discrete metrics whereas

(2.9) is applicable only to smooth metrics. This problem can be dealt with in two ways.

The first approach would be to consider a continuous one parameter family of simplicial

spacetimes whose limit was a given smooth spacetime. The second approach takes the
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opposite point of view, to employ a continuous one parameter family of smooth spacetimes

converging to a given simplicial geometry. The first approach is highly non-trivial. It is not

hard to accept that the metrics of the smooth and simplicial spacetimes will converge but

it is much harder to see how the Riemann tensor for the simplicial spacetime (distributed

over many bones pointing in many different directions) can settle down to a smooth tensor

on the smooth spacetime. However, Cheeger, Muller and Schrader [7] have shown that this

does in fact occur (under certain conditions, eg. that the simplices do not become long and

skinny or short and squat). Their work also shows that all of the defects must vanish in the

limit of the sequence. That is, if a given smooth spacetime can be well approximated by a

simplicial spacetime, then the defects will all be very small. So for the purposes of numerical

relativity, it is sufficient to assume that all of the defects are very small.

The second approach mentioned above is much easier to pursue. Thus our aim will be to

show that when (an appropriate form of) the Gauss-Codacci equations is evaluated on the

sequence of smooth spacetimes one obtains a linearized form of (2.8). Our assumptions will

be

• that the simplicial spacetime consists of one timelike bone and its neighbouring simplices,

• that the simplicial spacetime and Cauchy surfaces are almost flat,

• that the metric of the simplicial spacetime can be arbitrarily approximated by a contin-

uous one parameter family of smooth metrics and

• that the timelike bone stands normal to the Cauchy surface in the flat space limit.

The last assumption is equivalent to requiring the shift vector to vanish. This is done only

to simplify the calculations.

Our approach will be to integrate

R = (3)R− 2ǫ (Knµ);µ − ǫ(Kµ
νK

ν
µ −K2) (2.10)

throughout a region containing the bone and to then compare the result with a linearised

version of a contracted form of (2.8). The analysis will lead to simplicial counterparts for

each of the terms in (2.10).

In the rest of this paper it will be assumed that the metric signature is Euclidian (ie. ǫ = +1).

This will simplify the parts of the discussions involving angles between various pairs of
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vectors. Of course the final results can be easily re-cast in a form suitable for spacetimes

with a Lorentzian signature. However, the terms timelike and spacelike will continue to

be used for they aid in identifying which bones are being discussed – a spacelike bone lies

within the Cauchy surface whereas the timelike bone σ is the bone generated by lifting the

(spacelike) leg σ′ off the Cauchy surface.

3. Weak simplicial spaces.

Consider a continuous one parameter family of simplicial spaces. The parameter will be

denoted by λ and will be chosen so that when λ → 0 the defects and boosts vanish. It will

be assumed that all defects, bi-vectors etc. are smooth differentiable functions of λ near

λ = 0.

Our starting point will be to expand the defects, bi-vectors etc. in powers of λ. Thus assume

that

α = α
1

λ+ α
2 λ2

2
+O(λ3) ,

α′ = α
1
′ λ+ α

2
′ λ

2

2
+O(λ3) ,

βi = β
1

i λ+ β
2

i
λ2

2
+O(λ3) ,

Uµ
ν = U

0
µ
ν + U

1
µ
ν λ+O(λ2) ,

U ′µ
ν = U

0
′µ

ν + U
1
′µ

ν λ+O(λ2) ,

V µ
i ν = V

0
µ
i ν + V

1
µ
i ν λ+O(λ2)

(3.1)

where each coefficient of the form X
n

is independent of λ. The expansion of (2.8) to order λ3
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can be written as

αU +
α2

2
U · U = α′U ′ +

α′2

2
U ′ · U ′ −

n
∑

i=1

βiVi · (I + α′U ′)

+
1

2

(

n
∑

i=1

βiVi

)

·
(

n
∑

j=1

βjVj

)

− 1

2

n
∑

i=1

i−1
∑

j=1

βiβj [Vi, Vj ] +O(λ3)

(3.2)

where terms of the form X · Y and [X, Y ] are defined as

(X · Y )µν = Xµ
ρ Y

ρ
ν

[X, Y ]µν = Xµ
ρ Y

ρ
ν − Y µ

ρX
ρ
ν .

Substituting (3.1) in (3.2), collecting common terms and setting the coefficients of λ, λ2 to

zero leads to the pair of equations

α
1

U
0

= α
1
′ U
0
′ −

n
∑

i=1

β
1

i V
0

i (3.3a)

α
2

U
0

+ 2α
1

U
1

+ (α
1

)2 U
0

· U
0

= α
2
′ U
0
′ + 2α

1
′ U
1
′ + (α

1
′)2 U

0
′ · U

0
′ (3.3b)

−
n
∑

i=1

(2β
1

i V
1

i + β
2

i V
0

i)−
n
∑

i=1

i−1
∑

j=1

β
1

i β
1

j [V
0

i, V
0

j ]

Since λ = 0 corresponds to flat space it follows that

U
0

= U
0
′

and

0 = U
0
µ
ν V

0
ν
µ
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It can also be shown that (see the Appendix)

V
1

i = ρ
1

i U
0

(3.4a)

[V
0

i, V
0

j ] = sin θ
0

ij U
0

(3.4b)

where ρi = O(λ1) is the angle, minus π/2, between the bone σ and the interface sii+1. The

angle θij = O(λ0) is the signed angle from sii+1 to sjj+1. Consequently

α
1

= α
1
′

α
2

= α
2
′ −

n
∑

i=1

2β
1

i ρ
1

i −
n
∑

i=1

i−1
∑

j=1

β
1

i β
1

j sin θij

which when substituted into

α = α
1

λ+ α
2 λ2

2
+O(λ3)

leads to

α = α′ −
n
∑

i=1

βi sin ρi −
1

2

n
∑

i=1

i−1
∑

j=1

βiβj sin θij +O(λ3) . (3.5)

It will now be shown that this important result can be compared, term by term, with an

integral version of a contracted form of (2.9), namely

(4)R = (3)R− 2ǫ (Knµ);µ − ǫ
{

Kµ
νK

ν
µ −K2

}

The following arguments are intended to provide plausible arguments, rather than a proof,

that the simplicial and continuum equations are equivalent (for weak simplicial spacetimes).

The region of integration M will be chosen so as to contain the timelike bone. This will be

done as follows. Choose an orthonormal set of coordinates (p, q, u, v) in a neighbourhood

of σ such that the points on the bone σ are described by u = v = 0. Now construct the

2-dimensional disk D by setting p, q=constant. The 2-metric on D is a conical metric whose

curvature gives rise to the defect angle α. The symmetry of the 4-dimensional metric implies

that there are two killing vectors, each parallel to σ. This means that a 4-dimensional region
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can be generated by dragging the disk D along the trajectories of this pair of Killing vectors.

The region M is then defined to be the smallest such region, for a given D, which contains

the bone σ. This generates a 2 + 2 foliation of M . Each leaf of M is a copy of D and is

characterized by the coordinates p, q of the intersection of this leaf with the bone σ.

A similar construction applies within each Cauchy surface. The orthonormal coordinates can

be chosen as (p′, u′, v′) with the points of the bone σ′ being described by u′ = v′ = 0. The

disk D′ is defined by p′ =constant and can be used to generate M ′ by dragging D′ along the

spacelike bone σ′. This construction is displayed in Figure (1). Notice that M ′ also arises

from the intersection of M with the Cauchy surface.

As the metric in M is not differentiable it is necessary to approximate the metric by smooth

functions in M (such approximations can always be made arbitrarily accurate, see eg. [8] ).

Let g be a continuous one parameter sequence of smooth metrics on M and let R(g) be the

associated curvature. Denote the parameter by γ and choose it so that γ → 0 corresponds

to the discrete metric on M . Similar definitions apply for h and R(h) in M ′. Actually these

sequences also depend implicitly on the parameter λ. However, in the following, λ will be

fixed while the limit γ → 0 is taken. It will be further assumed that the smooth metric,

lapse and curvatures are differentiable functions of γ near γ = 0. Thus assume that

R(h) = R(h)
0

+R(h)
1

γ +O(γ2) ,

R(g) = R(g)
0

+R(g)
1

γ +O(γ2) .

(3.6)

The functions R(h)
0

and R(g)
0

should properly be viewed as distributions on M . Both will

look like delta functions on the bone. These distributions will also depend smoothly on the

parameter λ and since λ → 0 corresponds to flat space it is reasonable to expect that

lim
λ→0

R(h)
0

= 0 ,

lim
λ→0

R(g)
0

= 0 .
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The integral to be evaluated may now be written as

∫

M

R(g)
√
−g d4x =

∫

M

R(h)
√
−g d4x+ 2

∫

M

(Knµ);µ
√
−g d4x (3.7)

+

∫

M

{

Kµ
νK

ν
µ −K2

} √
−g d4x

The easiest term to tackle is the single term on the left hand side. It can be expressed as a

double integral over a disk such as D and a double integral over the bone σ. However, in the

later integral, the defect angle is constant. These facts are well known (see [8,9] ) and lead

to

lim
γ→0

∫

M

R(g)
√
−g d4x = lim

γ→0

∫

σ

∫

D

R(g)
√
−g d4x

= 2αA

(3.8)

where A is the area of σ and α the defect on σ.

Now consider the integral
∫

M R(h)
√−g d4x. It too can be factored into a pair of double

integrals, thus leading to

lim
γ→0

∫

M

R(h)
√
−g d4x = lim

γ→0
A

∫

D

R(h)
√
d d2x

= lim
γ→0

A

∫

D′

R(h)
√
d′

∂(u, v)

∂(u′, v′)
d2x

where d and d′ are the induced metrics on D and D′ respectively. The map of the integral

from D to D′ was obtained by a projection along the trajectories of the vectors parallel to σ

and normal to σ′. If it were not for the Jacobian this integral would have the value α′, the

defect on the disk D′. It is not hard to see that the Jacobian equals Uµ
νU

′ν
µ/2 which from

(3.1) is seen to equal 1 +O(λ2). Thus, to second order in λ,

lim
γ→0

∫

M

R(h)
√
−g d4x = 2α′A (3.9)

The third integral in (3.7) is
∫

M (Knµ);µ d4x where nµ is the unit timelike normal to each

leaf and K is the extrinsic curvature. This can be rewritten as a surface integral over the
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three parts of the boundary of M , namely, the top and bottom leaves and the cylinder that

joins the two leaves. The contributions from the top and bottom leaves will cancel (by

construction of M) thus leaving

∫

M

(Knµ);µ
√
−g d4x =

∫

C

Knµrµ d3x

where C is the cylindrical part of ∂M and rµ is the outward pointing normal to C. It is not

hard to see that in the process of generating M from successive copies of D′ the cylinder C

is generated from successive copies of the boundary of D′. Consequently the integral over C

can be written as a double integral over σ and a single integral around ∂D′,

∫

M

(Knµ);µ
√
−g d4x =

∫

C

Knµrµ d3x

= A

∫

∂D′

Knµrµ ds (3.10)

Consider now the path ∂D′ in a neighbourhood of one of the interfaces, s12 say. Denote

this segment of ∂D′ by ∂D′
12. Along this path the normal nµ changes from its value in s1

to its value in s2 all of which takes place in passing through s12. Thus the integral on the

right hand side of (3.10) can only be evaluated by making a suitable choice for nµ, rµ and

K along ∂D′
12. The basic idea will be to construct a set of basis vectors throughout s1 ∪ s2

from which an interpolation of nµ along the path can be made.

Let tµ, uµ, vµ, wµ be an orthonormal set of unit vectors chosen so that tµ and uµ are tangent

to s12 and vµ is normal to T12. This prescription does not uniquely determine tµ and uµ

(other valid choices can be obtained by a rotation in the plane spanned by tµ and uµ).

A related set of orthonormal vectors can be constructed from the normal nµ to M ′, the

tangent vector mµ to ∂D′
12 and the pair kµ, lµ to complete the set (a 2+ 1 example appears

in Figure (2)). It is important to notice that all of these vectors can be defined throughout

s1 ∪ s2 and that they are functions of only one coordinate, namely, the distance measured

from T12 (ie. along the integral curves of vµ). Thus the integral in (3.10) is path independent

and so the path ∂D′
12 may be deformed into a straight line segment in s1 ∪ s2 normal to
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s12. Alternatively, the disk D′ could have been chosen to have a boundary consisting of such

straight line segments. It follows then that

0 = rµ;ν

on the section of C generated by ∂D′
12.

The interpolation can now be written as

kµ(v) = tµ

lµ(v) = uµ

mµ(v) = vµ cos β(v)− wµ sin β(v)

nµ(v) = wµ cos β(v) + vµ sin β(v)

(3.11)

where v is the distance measured along the integral curves of vµ with v = β(v) = 0 on T12

and with v > 0 in T2. Notice that since the metric inside s1 ∪ s2 is flat

0 = tµ;ν = uµ;ν = vµ;ν = wµ
;ν (3.12)

in s1 ∪ s2. From this and (3.11) it follows that

Kµ
ν =⊥ (nµ;ν)

= mµmν
dβ

dm
(3.13)

where m is the distance measured along ∂D′
12, m = 0 on s12 and m > 0 in s2. This result

can also be found in [9] . Consider now the term nµrµ. If ρ(v) is defined as π/2 minus the

angle from rµ to nµ then nµrµ = sin ρ(v). However, from (3.11) it is not hard to see that

ρ(v) is constant along ∂D′
12 and therefore

∫

∂D′

12

Knµrµ ds =

∫

sin ρ(v)
dβ

dm
dm

= β sin ρ
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where ρ = ρ(0) is (π/2 minus) the angle between the timelike and spacelike bones and where

β = βs2 − βs1 is the angle between the unit normals of s1 and s2 (ie. the boost from a rest

frame of Tj to a rest frame of Tj+1). There is one such result for each of the interfaces, such

as T12, attached to the timelike bone. Thus one obtains

lim
γ→0

∫

M

(Knµ);µ
√
−g d4x = A

n
∑

i=1

βi sin ρi (3.14)

There remains one pair of terms to evaluate, the integral of the squares of the extrinsic

curvature. This is not an easy task. The difficulty is that the Kµ
ν behave like delta-

functions. Thus quadratic terms in the Kµ
ν are not likely to make much sense. However it

is easy to see, from (3.13), that formally, Kµ
νK

ν
µ −K2 = 0. This shows that if any sense

is to be made from these terms then the result should depend on contributions from distinct

pairs of interfaces. This could also be gleaned from the very result that we are endeavouring

to establish, namely the last term in (3.5). Thus our approach will be to split the integral

as follows

∫

M

{

Kµ
νK

ν
µ −K2

} √
−g d4x =

n
∑

i=1

i−1
∑

j=1

∫

M

{

(Kµ
ν)i (K

ν
µ)j − (K)i(K)j

} √
−g d4x

= A
n
∑

i=1

i−1
∑

j=1

∫

M∗

{

(Kµ
ν)i (K

ν
µ)j − (K)i(K)j

} √
d′ d2x

The second equality follows from arguments similar to that used in (3.9), namely, that each

integral may be factored into a pair of double integrals, one over the bone σ and one over

the disk D′. From (3.13) it follows that

(Kµ
ν)i (K

ν
µ)j − (K)i(K)j = − sin2 θij

(

dβ

dm

)

i

(

dβ

dm

)

j

The integral can be evaluated by adopting (m)i and (m)j as coordinates for which the
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Jacobian is 1/ sin θij and therefore

∫

M

{

Kµ
νK

ν
µ −K2

} √
−g d4x = −A

n
∑

i=1

i−1
∑

j=1

∫

D′

sin θij

(

dβ

dm

)

i

(

dβ

dm

)

j

(dm)i(dm)j

= −A
n
∑

i=1

i−1
∑

j=1

sin θij

(
∫

dβ

dm
dm

)

i

(
∫

dβ

dm
dm

)

j

= −A
n
∑

i=1

i−1
∑

j=1

βiβj sin θij (3.15)

It is now easy to see that a substitution of (3.8,3.9,3.14,3.15) into (3.7) will lead directly to

(3.5) as claimed.

It is possible to further simplify (3.5) in the instance where the bone σ is normal to the

Cauchy surface as λ → 0. Consider the relation

2R(g)µνn
µnν = − (Knµ);µ −

{

Kµ
νK

ν
µ −K2

}

.

For this type of weak simplicial spacetime, nµ = qµ+O(λ) where qµ is parallel to the timelike

bone, R(g)µνq
µ = 0 and R(g) = O(λ). Thus R(g)µνn

µnν = O(λ3) and consequently

(Knµ);µ =
{

Kµ
νK

ν
µ −K2

}

+O(λ3) .

The integral version should clearly be

A

n
∑

i=1

βi sin ρi = −A

n
∑

i=1

i−1
∑

j=1

βiβj sin θij +O(λ3) (3.16)

which leads to a simplification of (3.5) to

α = α′ − 1

2

n
∑

i=1

βi sin ρi +O(λ3) . (3.17)



17

In an earlier paper [5] it was argued that

α = α′ − 1

2 <qµnµ>

∑

i

βi sin ρi (3.18)

(the notation has been changed slightly to agree with that in this paper). For this class of

weak simplicial spacetimes, where nµ = qµ +O(λ), <qµn
µ>= O(1). Thus this result agrees

exactly with our present result (3.17).

Discussion.

It is natural to ponder whether or not results similar to (3.5) and (3.17) can be obtained

without the two main assumptions, namely, that the defects are very small and that the

timelike bone stands normal to the Cauchy surface in the flat space limit. It is probably not

too hard to relax the later condition. This would correspond to having a non-zero shift vector.

The analysis would be complicated by the appearance of extra terms in the perturbation

expansions given in (3.4). However, the above procedure could possibly be carried through

without too much difficulty. In contrast, relaxing the small defect condition will lead to some

considerable difficulties. No longer would it be possible to expand the exponentials in (2.8).

Consequently it would not be possible to obtain a linear dependence on the two defects α

and α′. It is hard to see how, for a non-weak spacetime, that (2.8) and (3.18) can be made

to agree. This is not a serious problem, for, as has been stated before, accurate numerical

simulations of smooth spacetimes by way of the Regge calculus can only be obtained when

all of the defects are very small. This puts us back into the weak spacetime regime.
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Appendix.

The following analysis applies to a three dimensional space. However when the results are

generalized to four dimensional spaces (a straightforward task) the results remain unchanged.

Consider three legs of a tetrahedron, as depicted in Figure (3), and suppose that the vectors

uµ1 , u
µ
2 are spacelike and that cµ is timelike. To each pair of these vectors one can construct

a bi-vector. The angles between the faces of this tetrahedron can then be computed by

contracting pairs of these bi-vectors. The purpose of this appendix is to derive some simple

relationships amongst the various angles.

Begin by constructing orthonormal sets of vectors for each of the three legs. Thus choose

aµ, bµ and cµ as an orthonormal set of vectors derived from cµ. Similarly for uµ1 , v
µ
1 , w

µ
1 and

uµ2 , v
µ
2 , w

µ
2 . Orient aµ and bµ so that aµ lies in the face spanned by uµ1 and cµ. Likewise, orient

vµ1 , w
µ
1 so that vµ1 lies in the same face. It will be convenient to have a similar arrangement

for the second spacelike leg. Thus construct a second set of vectors a′µ, b′µ and c′µ by a

rotation of aµ, bµ and cµ around cµ. Orient these vectors so that both a′µ and vµ2 lie in the

face spanned by uµ2 and cµ. These sets of vectors are displayed in Figure (3).

It is rather easy to establish the following relationships.

a′µ = aµ cos θ + bµ sin θ

b′µ = bµ cos θ − aµ sin θ (A.1)

c′µ = cµ

uµ1 = aµ cos ρ1 − cµ sin ρ1

vµ1 = cµ cos ρ1 + aµ sin ρ1 (A.2)

wµ
1 = bµ

uµ2 = a′µ cos ρ2 − c′µ sin ρ2

vµ2 = c′µ cos ρ2 + a′µ sin ρ2 (A.3)

wµ
2 = bµ

The angles ρ1, ρ2 etc. are defined in Figure (3).
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Now consider the bi-vectors associated with the legs (parallel to) uµ1 , u
µ
2 and cµ defined by

V µν
1 = vµ1w

ν
1 − vν1w

µ
1

V µν
2 = vµ2w

ν
2 − vν2w

µ
2 (A.4)

Uµν = aµbν − aνbµ

Two important results will now be derived. One will be a proof of the claim in section § 3

that, for weak simplicial spacetimes,

V
1

i = ρ
1

i U
0

(3.4a)

[V
0

1, V
0

2] = sin θ
0

U
0

(3.4b)

and the other result will be an elementary derivation of the result

α = α′ − 1

2

n
∑

i=1

βi sin ρi +O(λ3) . (3.17)

To prove (3.4a) first notice that from (A.2-4) it follows that

V µν
1 = (cµbν − cνbµ) cos ρ1 + (aµbν − aνbµ) sin ρ1 .

For a weak spacetime ρ1 = O(λ) and V µν
1 = O(1) thus,

V µν
1 = (c

0
µ b
0
ν − c

0
ν b
0
µ) + (a

0
µ b
0
ν − a

0
ν b
0
µ) ρ

1

1 .

Comparing this with the perturbation expansion for V µν
1 ,

V µν
1 = V

0
µν
1 + V

1
µν
1 λ+O(λ2) ,

leads directly to (3.4a). One also obtains

V
0
µν
1 = (c

0
µ b
0
ν − c

0
ν b
0
µ) .



20

The corresponding result for V
0
µν
2 is

V
0
µν
2 = (c

0
µ b
0
′ν − c

0
ν b
0
′µ) .

Combining these last two results with (A.1) will lead to (3.4b).

The elementary proof of (3.5) proceeds as follows. For the two sets of basis vectors generated

from uµ1 and uµ2 the unit normal to the spacelike face spanned by uµ1 and uµ2 can be written

as

nµ = vµ1 cos β
+
1 + wµ

1 sin β
+
1

= vµ2 cos β
−
2 − wµ

2 sin β
−
2 .

Using (A.1-3) each of the right hand sides can be expressed in terms of the basis aµ, bµ and

cµ. It follows, upon comparing coefficients, that

cos β+
1 cos ρ1 = cos β−

2 cos ρ2

cos β+
1 sin ρ1 = cos β−

2 sin ρ2 cos θ + sin β−
2 sin θ

sin β+
1 = cos β−

2 sin ρ2 sin θ − sin β−
2 cos θ .

(A.5)

A simple relation for cos θ′ can be obtained by forming the scalar product uµ1u2µ, leading to

cos θ′ = cos ρ1 cos ρ2 cos θ + sin ρ1 sin ρ2 . (A.6)

Now suppose that the spacetime is weak. This means that β+
1 , β

−
2 , ρ1 and ρ2 are all O(λ).

Expanding the above relations leads to

ρ1 = (β−
2 + β+

1 cos θ)/ sin θ +O(λ2) (A.7)

ρ2 = (β+
1 + β−

2 cos θ)/ sin θ +O(λ2) (A.8)

cos θ′ = cos θ − 1

2
(ρ21 + ρ22) cos θ + ρ1ρ2 +O(λ3) (A.9)

Now write ρ21 + ρ22 as ρ1ρ1 + ρ2ρ2 and use (A.7-8) to eliminate one factor each of ρ1 and ρ2.

The result is

cos θ′ = cos θ +
1

2
(ρ1β

+
1 + ρ2β

−
2 ) sin θ +O(λ3) .
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Now since θ′ ≈ θ, it follows that

θ′ = θ − 1

2
(ρ1β

+
1 + ρ2β

−
2 ) +O(λ3) .

Finally, the defects are defined by α = 2π −
∑

i θ and α′ = 2π −
∑

i θ
′, thus

α′ = α +
1

2

∑

i

(ρiβ
+
i ) + (ρi+1β

−
i+1) +O(λ3) .

The summation includes all tetrahedra that meet on the timelike leg. A little bit of thought

reveals that this sum can be re-arranged as a sum over the triangles meeting on the leg and

therefore

α = α′ − 1

2

∑

i

ρiβi +O(λ3)

where βi = β+
i + β−

i is the boost associated with this triangle. Finally, observe that since

ρi = O(λ) and βi = O(λ) then ρiβi = βi sin ρi+O(λ3). Thus we may also write the previous

expression as

α = α′ − 1

2

∑

i

βi sin ρi +O(λ3)

which agrees exactly with the earlier result (3.17).
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Fig.1 This figure displays, for a “2+1” spacetime, the regions M,M ′

and C as defined in section § 3. The cylinder C is the set of points

generated by the boundary ∂D′. The region M ′ is the set of points

enclosed by D′ while M is the set of points inside the cylinder C. The

triangles s1 and s2 form part of the Cauchy surface. The dotted line

is the segment ∂D′
12. This segment is later deformed into a geodesic

segment, see Fig.2
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Fig.2 This figure displays the choice of the unit orthonormal basis

vectors used in the calculation of the integral (Knµ);µ. The dashed

path is the segment ∂D′
12 along which the vectors nµ and mµ are

interpolated. The vector wµ is parallel to T12 and nµ is normal to the

Cauchy surface. The figure has been drawn for a “2+1” spacetime,

hence the absence of the vectors tµ and kµ.
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Fig.3 This figure defines the various vectors and angles introduced

in equations (A.1-3).
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