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1. Introduction.

It is often stated that the Regge calculus is an appropriate generalization of Einstein’s theory

of General Relativity to simplicial spacetimes. The argument goes that the Riemann tensor

behaves like a sequence of delta-functions based on the bones of the simplicial spacetime and

so certain integrals (in particular the Hilbert action integral) may be readily discretized. If

there happened to be a subtle error in this popular heuristic argument then the value of the

Regge calculus as an approximation to General Relativity must be questioned. Thus it is

of paramount importance to try to understand the relationship between the two theories.

Unfortunately this task is fraught with many mathematical difficulties. The main difficulty

arises from the non-linear structure of the Riemann tensor as a function of the metric. Thus

if one attempts to construct the metric as a distribution (rather than as a point function)

the formal calculation of the Riemann tensor will lead to non-linear combinations of various

delta-functions. Generally speaking such combinations are not acceptable in the standard

formulation of generalized functions. One may well be asking too much – it may be wise

to tackle an easier problem. Thus in this paper it will be assumed that the spacetime is

sufficiently weak that all non-linear terms may be discarded. If the two theories are to agree

then surely they must agree when the spacetimes are weak.

This idea, to compare the theories for weak spacetimes, has been investigated by others

[1,2,3,4,5] . The work of Roček and Williams [1,2] and the later work of Williams [3] was

intended to be a prelude to their attempts to form a quantum theory of the Regge calculus.

Their calculations were couched in the terminology of quantum field theory and were tied to

a specific choice of simplicial spacetime (a hyper-cubic lattice). Their method of calculation

was to perform a Fourier analysis on the linearized field equations. They then showed that

when the discretization size was sufficiently small the resulting spectrums were identical

in the long wavelength limit. The principal impediment in applying this method to other

simplicial spacetimes is the shear bulk of the calculations.

The central assumptions in the work of Friedberg and Lee [4] and also in Feinberg et al [5]

is that any smooth space may be arbitrarily approximated by a simplicial space and, fur-

thermore, that the simplicial space may be represented by a sequence of smooth geometries.

In examining the field equations for weak spacetimes they chose to look, primarily, at the
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graviton propagator. However they did not present an explicit relation for the linearized

defects in terms of the perturbed leg-lengths.

A somewhat different approach was adopted by Cheeger, Müller and Schrader [6] . They

showed that if a given sequence of discrete geometries converged to a well defined smooth

geometry then the value of the Regge action converged to that of the Hilbert action. This

result is true in the full non-linear theory. In our approach the question will be to ask

whether or not the Regge and Hilbert actions, when evaluated on one discrete geometry, are

equal.

The methods to be presented here differs from those of the above authors by employing

the theory of distributions in all calculations. By this method it will be shown that all of

the above assertions (ie. that the Riemann tensor is a sequence of delta-functions, that the

Einstein and Regge equations are equivalent) are valid. In the process one obtains certain

boundary terms. These terms may well be important in the analysis of the asymptotic

behavior of non-weak but asymptoticaly flat simplicial spacetimes.

In the following two sections a representation of the metric for weak spacetimes will be

presented. In section § 4 the relevant aspects of the theory of distributions will be introduced

and applied to the calculation of the (distributions associated with the) Riemann scalar and

Ricci tensor. In the final section § 5 an equivalence between the Einstein and Regge equations

for weak simplicial spacetimes will be established. The occurrence of null-bones in a generic

simplicial spacetime is unlikely and is therefore rather exceptional. Thus it will be assumed

throughout this paper that there are no null-bones in the simplicial spacetimes. The basic 4-

dimensional building blocks of the simplicial spacetimes will be assumed to be 4-simplicies.

The generic n-simplex will always be denoted by σn while a particular n-simplex will be

denoted by σn(i) for some specific index i.
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2. Flat simplicial spacetimes.

Globally flat simplicial spacetimes are rather easy to generate. An invertible map of the

vertices into some portion of Minkowski space induces a flat metric throughout the simplicial

spacetime. Let the various vertices of the simplicial manifold be represented by σ0(i), i =

1, 2, 3 · · ·. For each vertex σ0(i) the associated coordinates in the Minkowski space will be

denoted by xµ(i). The components of the metric are just the usual ηµν . The leg lengths Lij

are then computed as

L2
ij = ηµν {xµ(i)− xµ(j)} {xν(i)− xν(j)} . (2.1)

With this choice of leg lengths all of the defects vanish. This flat simplicial spacetime will

be denoted by M .

3. Almost flat simplicial spacetimes.

Small perturbations in the simplicial spacetime can be generated directly by perturbing the

Lij or indirectly by making small perturbations to the metric ηµν and to then re-calculate the

(perturbed) Lij . In this later approach the original coordinates of the vertices are retained

and a piecewise constant perturbation γµν is introduced in each 4-simplex of the manifold.

The resulting non-flat spacetime will be denoted by M ′. Let the perturbation in Lij be

represented by δLij . The δLij and the γµν must be chosen so that

(Lij + δLij)
2 = (ηµν + γµν) {xµ(i)− xµ(j)} {xν(i)− xν(j)} . (3.1)

It is not too hard to see that, given any set of δLij
′s, it is always possible to solve, uniquely,

for the γµν in each 4-simplex of M ′.

In the following section it will be convenient to view M ′ as being a proper subset of some

other spacetime M in which the metric external to M ′ is exactly flat (ie. a flat metric is

attached to the exterior of M ′). This construction seems plausible since the un-perturbed

simplicial spacetime M was constructed as a subset of flat Lorentzian space and thus small

perturbations within M should not alter the geometry external to M .
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Consider any one bone σ′2 in M ′ and the set of 4-simplicies σ′4(i) attached to this bone.

Their unperturbed counterparts in M are σ2 and σ4(i). As the metric in each of the σ′4(i)

is flat it is possible to construct an isometric map of each σ′4(i) into some other 4-simplex,

denoted by σ′′4(i), in M . There is considerable arbitrariness in this construction. One could

choose the map so that each σ′′4(i) is disconnected from all other σ′′4(i). This is, of course, an

extreme example. It is not too hard to see that one can always choose the map so that the

image of σ′2, denoted by σ′′2 , is unique (ie. the set of σ
′
4(i) remain attached to the bone after

the map). One can then re-orient the σ′′2 and the σ′′4(i) so that σ′′2 lies in the same plane as

σ2. This is a particularly useful choice for the map since the subsequent analysis (sections

§ 4,5) reduces to a local analysis for each bone. Thus this map will be used in all subsequent

calculations.

Consider now the two 4-simplicies σ4(1) and σ′′4(1). The map carries the coordinates of the

five vertices of σ′4(1) onto the five vertices of σ′′4(1). These are, however, just the original

coordinates on σ4(1). Thus one may view the map as establishing a passive transformation

from σ′4(1) to σ′′4(1) or as an active transformation of σ4(1) into σ′′4(1). This later viewpoint

will be used to develop some useful facts about the γµν .

Let the coordinates of the vertices of σ4(1) and σ′′4(1) be xµ(i), i = 1, · · · 5 and x′′µ(i), i =

1, · · · 5 respectively. The active transformation may written as

x′′µ(i) = Λµ
νx

ν(i) i = 1, · · · 5 (3.2a)

for some choice of constants Λµ
ν . The passive transformation is then expressed as

ηµν = Λα
µΛ

β
ν

(

ηαβ + γαβ
)

. (3.2b)

Since the perturbations are supposed to be small it follows that

Λµ
ν = δµν + ǫµν (3.3)

for some set of small constants ǫµν . Suppose that p
µ, qµ, nµ and mµ form a unit orthonormal

tetrad in σ4(1) chosen so that pµ and qµ span the bone. The ǫµν may be projected onto this
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tetrad. Any parallel-perpendicular component (ie. ǫµνnµp
ν) must vanish since the action of

Λµ
ν on any vector parallel to the bone must yield another vector parallel to the bone. Thus

the most general form for ǫµν will be

ǫµν = Aµ
ν(n

α,mα) + Bµ
ν(p

α, qα) (3.4)

where Aµ
ν and Bµ

ν represent simple bilinear combinations in their arguments.

Now consider the two 3-dimensional faces (3-simplicies), attached to the bone, of σ4(1).

Denote these faces by σ3(1) and σ3(2). Let the corresponding faces in σ′′4(1) be σ′′3(1) and

σ′′3(2). Suppose that mµ
1 and nµ1 are a pair of unit orthogonal vectors chosen so that each is

orthogonal to the bone, that mµ
1 is parallel to σ3(1) and that nµ1 is the outward unit normal

to σ3(1). Suppose for the moment that the bone is timelike. Then the metric in the 2-plane

spanned by nµ and mµ will be Euclidian. Similar arguments to that which are about to be

presented may be applied when the bone is spacelike. The exceptional case occurring when

the bone is null will not be considered here.

Since the transformation must map σ3(1) onto σ′′3(1) its action on mµ
1 must represent a

rotation of mµ
1 in the plane spanned by mµ

1 and nµ1 and also a dilation along mµ
1 (see fig.(1)).

A similar analysis applies to the action on mµ
2 . Thus one obtains

Λµ
νm

ν
1 = (1 + ∆1)m

µ
1 + δφ1 n

µ
1

Λµ
νm

ν
2 = (1 + ∆2)m

µ
2 + δφ2 n

µ
2

where δφ1 is the angle from σ3(1) to σ′′3(1), δφ2 is the angle from σ3(2) to σ′′3(2) and ∆1,∆2

represent the (fractional) dilations. To deduce the action on nµ1 and nµ2 first write

nµ1 = αmµ
1 + βmµ

2

nµ2 = α′mµ
1 + β′mµ

2

where α, α′, β and β′ are to be computed from the normalization conditions. This leads to

α = β′ = cotanφ ,

α′ = β = − cosecφ
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where φ is the angle between σ3(1) and σ3(2). Using these formulae one can easily verify

that

2δφ = ǫµν (n
ν
1m1µ +mν

1n1µ + nν2m2µ +mν
2n2µ)

where δφ = δφ1+ δφ2 is the total increment in the angle φ. Now expand (3.2b) in powers of

ǫµν and discard any terms higher than first order. This leads to

γµν = −ηανǫ
α
µ − ηµαǫ

α
ν

and consequently

2δφ = −γµν(n
µ
1m

ν
1 + nµ2m

ν
2) .

Let ∆θ be the defect on the bone. Then

∆θ = −
∑

σ4(σ2)

δφ

=
1

2

∑

σ4(σ2)

γµν(n
µ
1m

ν
1 + nµ2m

ν
2)

in which the summation includes each of the σ4(i) attached to the bone. This can be

simplified by noting that to each nµ2 ,m
µ
2 in one σ4 there is another, oppositely oriented,

nµ1 ,m
µ
1 in a neighbouring σ4. Thus one obtains the important formula, accurate to first

order,

2∆θ =
∑

σ3(σ2)

nµmν∆γµν (3.5)

for the defect ∆θ on the bone σ2. Only those interfaces (ie. 3-simplicies) attached to this

bone are included in the sum. The ∆γµν represents the change in γµν across the interface.

Similar arguments may be used to show that this expression is also valid when the bone

is spacelike. This same formula will be obtained in the following section by a completely

different procedure.
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One final point needs to be made. The simple form for ǫµν (3.4) when substituted into the

above linear expansion for γµν will lead to

γµν = Anµnν + B(nµmν + nνmµ) + Cmµmν +Dpµpν + E(pµqν + pνqµ) + Fqµqν (3.6)

for some set of constants A, · · ·F . Notice that D,E and F depend only on the choice of bone

and not on the choice of σ4 (ie. they have the same values for each of the γµν
′s associated

with this bone). To prove this recall that since pµ and qµ are parallel to the bone thus

pµ;ν = qµ;ν = 0 and consequently 0 = (γµνp
µqν);α = E,α. Thus 0 = ∆D = ∆E = ∆F across

any σ3. This result will be used in simplifying one of the results (4.4) of the following section.

4. Linearized Regge calculus.

The metric components gµν have been constructed as piecewise constants in each 4-simplex of

the spacetime M . One must therefore expect delta functions, and possibly their derivatives,

to arise from the action of a linear differential operator on the metric. There are two standard

ways of handling this situation [7,8] . In both approaches an integration over some region of

the spacetime is used to effect an inversion of the differential operator. In this way one can

obtain finite expressions. Suppose that D is some linear differential operator acting on the

piecewise constant function A. In one approach the function A is approximated by a sequence

of smooth differentiable functions Aλ. The sequence is chosen so that limλ→0Aλ = A almost

everywhere (ie. except possibly on the points where A is discontinuous). One then attempts

to fully evaluate the integral

I =

∫

M
D(A) d4V

as a function of λ and where M is some region of the spacetime. The action of D on A is

then defined as limλ→0 I (provided the limit exists). This approach will not be used here.

In the alternative approach one begins by choosing any appropriate test function. Such

functions, together with all of their derivatives, must be bounded, infinitely differentiable

and have compact support on M . One then constructs the integral

I =

∫

M
D(A)f d4V
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and attempts to re-write this as

I =

∫

M
AD∗(f) d4V

for some linear operator D∗. The integrand is now well behaved and so the region of inte-

gration may reduced to a sum over the 4-simplicies, in each of which A is constant, of M .

Thus one obtains

I =
∑

σ4(M)

A(σ4)

∫

σ4

D∗(f) d4V

where the summation includes all of the 4-simplicies inside M . The characterization of D(A)

(ie. the terms with delta functions) can then be inferred from the integral of D∗ on f . The

operator D∗ is usually found be an integration by parts with any boundary terms being

discarded (since f and its derivatives vanish on the boundary). This is the approach that

will be used throughout this paper.

These ideas will now be applied to the distributions associated with the scalar curvature and

the Ricci tensor. Thus consider the two integrals

I1(f) =

∫

M
Rf

√−g d4V , (4.1a)

I2(f
µν) =

∫

M
Rµνf

µν√−g d4V (4.2a)

where f and fµν are test functions on M . By writing

gµν = ηµν + γµν

the above integrals may be written, accurate to first order in γµν [9,10] , as

I1(f) =

∫

M

(

γαβ
,αβ − γ,α,α

)

f d4V , (4.1b)

I2(f
µν) =

1

2

∫

M

(

γαν,µα + γαµ,να − γµν,α
,α − γαα,µν

)

fµν d4V . (4.2b)
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Notice that, once again, indicies are raised and lowered using ηµν . Consider, for the moment,

the first of these integrals. By applying an integration by parts twice the integral may also

be written as

I1(f) =

∫

M

(

γαβf
,αβ − γf,α

,α
)

d4V

where γ = γαα. However γµν is piecewise constant in each of the σ4
′s in M . They also

vanish in M −M . This leads to

I1(f) =
∑

σ4(M)

∫

σ4

Hµνf,µν d
4V

where

Hµν = ηµαηνβγαβ − ηµνγ .

The Hµν are constant in each of the σ4
′s. The integral over each 4-simplex can now be

simplified by using Gauss’s theorem. Let nµ be the unit normal (ie. nαnα = ±1) to a typical

face (a σ3) of the 4-simplex. Then

I1(f) =
∑

σ4(M)

∫

σ4

Hµνf,µν d
4V

=
∑

σ4(M)

∫

σ4

(Hµνf,ν) ,µ d4V

=
∑

σ4(M)

∑

σ3(σ4)

∫

σ3

Hµνnµf,ν d
3V

where d3V is the natural volume element on σ3 and the innermost summation includes only

the five faces of σ4. Now Hµνnµ is constant on each σ3 and so it seems appropriate to

apply Gauss’s theorem once again. However (Hµνnµf),ν is not the divergence of a vector

on σ3 since it contains derivatives in all four coordinates. This problem can be resolved

by choosing a set of coordinates three of which are chosen to lie in σ3 with the remaining
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coordinate measured along the geodesic normal to σ3. Then

(Hµνnµf),ν =
d

dn
(H⊥f) +

(

Hν
‖ f

)

|ν

where

H⊥ = Hµνnµnν

Hν
‖ = Hµνnµ − (nαnα)n

νH⊥

and d/dn is the derivative measured along the normal to σ3 and the notation (...)|ν represents

partial differentiation in σ3. Substituting this into the previous integral leads to

I1(f) =
∑

σ4(M)

∑

σ3(σ4)

∫

σ3

{

H⊥
df

dn
+ (Hν

‖ f)|ν

}

d3V .

The integral of the second term may now be simplified using Gauss’s theorem. Let σ2 be a

typical face of σ3 and let mµ be the unit vector in σ3 and normal to σ2. Then

I1(f) =
∑

σ4(M)

∑

σ3(σ4)

∫

σ3

H⊥
df

dn
d3V

+
∑

σ4(M)

∑

σ3(σ4)

∑

σ2(σ3)

∫

σ2

Hµ
‖
mµf d2V

where d2V is the natural volume element on σ2 and the summation over σ2 includes only the

four faces of σ3. In the first double sum each σ3 on the interior of M is counted twice. The

unit normals nµ in each instance are anti-parallel. Thus the interior terms cancel leaving

only the terms arising from the σ3
′s on the boundary of M . This result together with a

substitution for H⊥ and Hµ
‖
and a removal of constant factors from the integrals will lead to

I1(f) =
∑

σ3(∂M)

(

γαβn
αnβ − γnαnα

)

∫

σ3

df

dn
d3V

+
∑

σ4(M)

∑

σ3(σ4)

∑

σ2(σ3)

γαβn
αmβ

∫

σ2

f d2V .
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In the triple sum each σ2 will appear many times. Our aim is to re-write this triple sum

so as to gather together all of the contributions for each σ2. Consider some typical σ2 and

choose any one of the σ3
′s attached to this σ2. This combination of σ2 and σ3 will appear

twice in the summation, once with one orientation for nµ and mµ and once with the opposite

orientation. Thus the nett contribution to this σ2 from this σ3 will be ∆γαβn
αmβ. It is not

hard to see that the expression for I1(f) may now be written as

I1(f) =
∑

σ3(∂M)

(

γαβn
αnβ − γnαnα

)

∫

σ3

df

dn
d3V

+
∑

σ2(M)

∑

σ3(σ2)

∆γαβn
αmβ

∫

σ2

f d2V

where the summation over σ2(M) includes each σ2 of M while the summation over σ3(σ2)

includes only those σ3
′s attached to this σ2. Using (3.5) this result may be simplified to

I1(f) =
∑

σ3(∂M)

(

γαβn
αnβ − γnαnα

)

∫

σ3

df

dn
d3V

+
∑

σ2(M)

2∆θ

∫

σ2

f d2V

(4.3)

This expression displays clearly the character of the (first order) Riemann scalar density.

The integrals of f over the σ2
′s are representative of delta functions on the bones inside M .

The strength of the delta function is twice the defect on the bone – a result that is well

known [11] . There are also integrals of df/dn over the faces on the boundary of M . Such

integrals represent the derivatives of delta functions. These terms have not previously been

seen in the context of the Regge calculus. A geometric interpretation of these terms can be

found in appendix A.

A similar procedure may be used in the evaluation of the second integral (4.2b). The main

difference is in the way the various terms in the integrand are re-written as divergences. For

example,

γαµf
µν

,αν =
1

2

(

(γαµf
µν

,α),ν + (γαµf
µν

,ν),α

)

.
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The two integration by parts are then applied, the boundary terms are isolated and the

penultimate result is simplified using (3.6). The final result is

I2(f
µν) =

1

2

∑

σ3(∂M)

(γαµnαnν + γανnαnµ − γnµnν − γµν)

∫

σ3

dfµν

dn
d3V

+
1

2

∑

σ2(M)

∑

σ3(σ2)

∆γαβn
αmβ (nµnν +mµmν)

∫

σ2

fµν d2V .

No further analysis will be conducted on any of the boundary terms and so all such terms

will subsequently be written as just B.T.′s.

The combination nµnν +mµmν are the components of the 2-metric in the plane spanned by

nµ and mµ. Since this plane is orthogonal to the bone it follows that these components have

the same values in each of the 4-simplicies attached to the bone. Thus these quantities may

be brought outside of the sum over the σ3
′s with the result

I2(f
µν) = B.T.′s+

1

2

∑

σ2(M)

(nµnν +mµmν)
∑

σ3(σ2)

∆γαβn
αmβ

∫

σ2

fµν d2V .

This may be further simplified using (3.5), leading to

I2(f
µν) = B.T.′s+

∑

σ2(M)

(nµnν +mµmν)∆θ

∫

σ2

fµν d2V . (4.4)

This result is not (with the exception of the boundary terms) un-expected. One knows

that for any 2-metric the metric, Ricci tensor and Riemann scalar curvature are related by

Rµν = gµνR/2. This fact may be used here since the 4-metric for any bone may be written

as the direct product of two 2-metrics (for the 2-planes parallel and perpendicular to the

bone).

The distribution associated with the (first order) Einstein tensor, Gµν = Rµν − 1
2ηµνR, can

now be constructed from the above expressions for I1 and I2. Begin by writing

ηµν = pµpν + qµqν + nµnν +mµmν
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for some unit orthonormal tetrad with pµ and qµ chosen to span the bone and use this to

simplify

I3(f
µν) =

∫

M
Gµνf

µν d4V

= I2(f
µν)− 1

2
I1(ηµνf

µν) .

The result is

I3(f
µν) = B.T.′s−

∑

σ2(M)

(pµpν + qµqν)∆θ

∫

σ2

fµν d2V . (4.5)

However pµpν + qµqν is just the 2-metric on the bone. The components will be denoted by

bµν and may be calculated from the simple formula [12,13]

bµν =
1

A

∑

σ1(σ2)

1

L

∂A

∂L
∆xµ∆xν

where A is the area of the bone, L is the length of an edge of the bone, ∆xµ is the vector

joining the end points of that edge and the sum includes all three edges of the bone. A proof

of this relation can be found in appendix B. Now for any test function fµν define f
µν
(σ2)

and f(σ2, σ1) by

f
µν
(σ2) =

1

A

∫

σ2

fµν d2V (4.6a)

and

f(σ2, σ1) = (∆xµ∆xν)σ1 f
µν
(σ2) . (4.6b)

Then

I3(f
µν) = B.T ′s−

∑

σ2(M)

∑

σ1(σ2)

∆θ

L

∂A

∂L
f(σ2, σ1) . (4.7)
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5. The Regge and Einstein field equations.

The Einstein equations can be obtained by extremizing the Hilbert action integral. Thus

one starts with

I =

∫

R
√−g d4x (5.1a)

and performs small variations in the gµν to obtain

δI = B.T.′s+

∫

Gµνδg
µν√−g d4x . (5.1b)

In the Regge calculus one starts with the action sum

I ′ = 2
∑

σ2(M)

∆θ A (5.2a)

and takes variations in the leg-lengths to obtain

δI ′ = B.T.′s+ 2
∑

σ1(M)

∑

σ2(σ1)

∆θ
∂A

∂L
δL (5.2b)

where the outer sum includes all legs inside M and the inner sum includes all bones attached

to a particular leg. Using the results of the previous sections it is now possible to understand

the relationship between this pair of approaches. The basic idea is to evaluate the above

pair of integrals (5.1a,b) only on the simplicial spacetimes M and to then show that their

values are equal to the pair of sums (5.2a,b) for an appropriate choice of test functions.

It is clear that the value of the Hilbert action I is just the value of the distribution I1(f)

when the test function is chosen to be the unit function throughout M . (One should not set

f = 1 throughout M since the integral (4.1b) may be converted to a surface integral and

thus its value would be zero since all of the γ′s vanish on that surface.) Upon setting f = 1

throughout M (and thus f and its derivatives must vanish on the boundary of M) it follows

from (4.3) that

I = I1(1) = I ′ . (5.3)
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This shows that, for weak simplicial spacetimes, the Hilbert and Regge actions are equal.

This is exactly what one would expect. The comparison of δI with δI ′ is, however, not

so easy to achieve. Since the Hilbert action integral is to be evaluated only for simplicial

spacetimes the variations δgµν must be chosen to represent well defined variations in the leg

lengths of M . Choose any one leg, σ1, and let S(σ1) be the interior of the set of 4-simplicies

attached to this leg. Each 4-simplex in S(σ1) will be denoted by σ4(i) for some specific

index i. It is shown in appendix C that arbitrary variations in the length of this leg can be

generated only when δgµν is an appropriately chosen set of constants in each of the σ4(i) of

S(σ1). The general form for δgµν(i) in σ4(i) is shown to be

δgµν(i) = (∆xµ∆xν)σ1 δL
2
σ1 + τµν(i) (5.4a)

with the constants τµν(i) chosen so that 0 = δL2 for all the other legs in S(σ1) and

0 = (∆xµ∆xν)σ1 τµν(i) . (5.4b)

The δgµν are identically zero outside of S(σ1). Any other choice will lead to unacceptable

changes in the geometry (ie. dislocations or fractures in the simplicies). Unfortunately

this set of δgµν are not infinitely differentiable and so they cannot be used directly as test

functions. However since the support of δgµν is compact it is always possible [6,7] to

construct the test functions δgµν that have the same values as δgµν in S(σ1) except at the

points where δgµν is discontinuous. However, from (5.4a,b) one has

δL2
σ1 = (∆xµ∆xν)σ1 δgµν(i) .

The left hand side is constant throughout S(σ1) and therefore

δL2
σ1 = (∆xµ∆xν)σ1 δgµν

no matter what choice is made for δgµν at the points of discontinuity of δgµν . Finally notice

that since the δgµν are constant in any neighbourhood of the σ2
′s in S(σ1) then they must

also be constant on those σ2
′s.
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Using the simple relation δgµν = −gµαgνβδgαβ the previous expression may also be written

as

δL2
σ1 = − (∆xµ∆xν)σ1 δg

µν . (5.5)

Now set fµν = δgµν and combine the above equations (4.6,5.5) to obtain

f(σ2, σ1) = −δL2
σ1 .

This shows that f is independent of σ2. This then allows one to re-arrange the terms in

(4.7) to obtain

I3(δg
µν) = 2

∑

σ2(σ1)

∆θ
∂A

∂L
δLσ1

where the sum includes only those bones that are attached to this leg. This shows clearly

that for this choice of variations in the metric

δI = I3(δg
µν) = δI ′ . (5.6)

This result is also not un-expected. Having shown that I = I ′ for any weak spacetime it

follows that δI = δI ′ for small variations in the metric.
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Appendix A.

The boundary terms in (4.3) may be simplified by first writing

H⊥ = Hµνnµnν

=
(

ηµαηνβ − ηµνηαβ
)

nµnνγαβ

=
(

nµnν − nαnαη
µν
)

γµν

=
(

nµnν − nαnαg
µν
)

γµν +O(γ2) .

But gµνnαnα−nµnν are the contravariant components of the induced metric on the face σ3.

Denote these components by hµν . Let hµν and nµ be the respective values of hµν and nµ in

the unperturbed spacetime. Then

ηµν = hµν + nµnν

and

gµν = hµν + nµnν = ηµν + γµν

Consequently

H⊥ = −hµνγµν

= −hµν∆hµν

where ∆hµν = hµν − hµν and terms second order in γ have been discarded. Now let

h = det(hµν)

∆h = det(hµν)− det(hµν)

then

H⊥ = −∆h

h
.
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This last quantity can also be obtained by computing the fractional change in the 3-volume

of this face. Let V (σ3) be the 3-volume of this face, then

V (σ3) = k
√
h

for some simple constant k (ie. k is independent of the leg-lengths). So finally one obtains

H⊥ = −1

2

∆V (σ3)

V (σ3)
.

The contribution from the boundary terms in (4.3) may now be written as

B.T.′s = −
∑

σ3(∂M)

1

2

∆V (σ3)

V (σ3)

∫

σ3

df

dn
d3V .

Appendix B.

The simple identity

bµν(σ2) =
1

A(σ2)

∑

σ1(σ2)

1

L

∂A

∂L
∆xµ∆xν (B.1)

is rather easy to prove. First write

A(σ2) = k′
√
b

where k′ is some simple constant and b = det(bµν). Then

δA

A
=

1

2

δb

b
. (B.2)

However one also has

δb = b bµνδbµν ,

δA =
∑

σ1(σ2)

∂A

∂L
δL ,

and
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δL2 = ∆xµ∆xν δbµν .

A substitution of these formulae into (B.2) and a subsequent comparison of the coefficients

of δbµν on each side of the equation will lead to the stated identity (B.1).

Appendix C.

It was claimed in section § 5 that the only acceptable δgµν were those that were constant in

each of the 4-simplicies attached to a specific leg. Rather than proving this statement directly

it is easier to prove a related statement for a pair of adjacent triangles in 2-dimensions.

For the moment consider just one triangle with the vertices σ0(i), i = 1, 2, 3. It is convenient

to choose the coordinates such that

xµ(1) = (1, 0)µ ,

xµ(2) = (0, 1)µ ,

xµ(3) = (0, 0)µ .

The associated gµν can then be calculated from (1.1). Our aim is to find a set of small

perturbations δgµν(x
α) that transforms this triangle into some other, slightly perturbed,

triangle. This will be achieved by demanding that the triangles with coordinates xµ(i), i =

1, 2, 3 and λxµ(i), i = 1, 2, 3 are congruent for any small perturbation and for any 0 ≤ λ ≤ 1.

The vertices of the introduced (ie. the interior) triangle will be denoted by σ0(i
′), i = 1, 2, 3

with σ0(3
′) = σ0(3) and with σ0(1

′) lying somewhere between σ0(1) and σ0(3). Let yµ and

y′µ be the coordinates for points on the legs with vertices σ0(1), σ0(2) and σ0(1
′), σ0(2

′)

respectively. A convenient parameterization is

yµ = t xµ(2) + (1− t) xµ(1) ,

y′µ = λyµ
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where 0 ≤ t ≤ 1. Then

L12 +∆L12 =

∫ 1

0

{(

gµν + δgµν(t, 1− t)
)

ẏµẏν
}1/2

dt ,

L1′2′ +∆L1′2′ = λ

∫ 1

0

{(

gµν + δgµν(λt, λ− λt)
)

ẏµẏν
}1/2

dt .

However, if the triangles are to be congruent then

L1′2′ = λL12 ,

L1′2′ +∆L1′2′ = λ (L12 +∆L12) .

These conditions are certainly satisfied when

δgµν(t, 1− t) = δgµν(λt, λ− λt)

whenever 0 ≤ t ≤ 1 and 0 ≤ λ ≤ 1. This requires δgµν to be constant along each radial

ray from σ0(3). Since the choice of σ0(3) is arbitrary it follows that δgµν must be constant

throughout the triangle.

Now suppose that there is a second triangle and that it is attached to the vertices σ0(1) and

σ0(2). The problem now is to find the set of δgµν
′s that correspond to variations in only one

leg-length L12. The δgµν must also be constant inside the second triangle but the constants

may differ from those in the first triangle. Let δgµν(i), i = 1, 2 be the values of δgµν in the

pair of triangles. Then it is always possible to write

δgµν(i) = (∆xµ∆xν)12 δL
2
12 + τµν(i) (C.1)

for some set of small constants τµν(i), i = 1, 2 that satisfy

0 = τµν (∆xµ∆xν)12 . (C.2)

(The remaining conditions needed to fully determine the τµν are that the variations in all

other leg-lengths must vanish). Its rather easy to see that the same equations (C.1,C.2) will
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arise when considering the full 4-dimensional case in which many 4-simplicies share the same

leg. It is important to note that the first term in (C.1) is constant throughout all of the

4-simplicies attached to this leg.
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Figures.

Fig. 1. A two dimensional cross-section of the pair of 4-simplicies σ4(1) and

σ′′4(1). The cross-section is taken in the plane perpendicular to the

bone σ2. The transformation Λµ
ν must map the points a and b into the

points a′′ and b′′ respectively. This involves a rotation and a (radial)

dilation.
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Fig. 1.
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