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Exterior differentiation in the Reg.e calculus
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Regge manifolds are piecewise continuous manifolds constructed from a finite nutnber of basic
building blocks. On such manifolds piecewise continuous forms can be defined in a way similar to
differential forms on a differentiable manifold. Regge manifolds are used extensively in the
construction ofspace-times in numerical general relativity. In this paper a definition ofexterior
differentiation suitable for use on piecewise continuous forms on a Regge manifold is presented. It
is shown that this definition leads to a version ofStokes' theorem and also to the usual result that
d 2 = O. This is preceded by a discussion ofcertain geometrical properties ofthe Regge manifolds.
It is shown that the version ofStokes' theorem presented here coincides with the usual definition
when the Regge manifold is refined, by increasing the number of cells while keeping the total
volume constant, to a smooth manifold.

with each OJ = 0, - I, or + 1. The coefficients OJ represent
whether the associated n-simplex is present or not and what
orientation it possesses in the complex. Complexes in which
certain n-simplexes are absent are referred to as sub- or sec­
ondary complexes. The original complex, when required, is
referred to as the primary complex.

where each of the ij is unique and is the label of a vertex of
qll (i). The order in which the vertices are listed is unimpor­
tant unless the simplex is oriented. One of the two possible
orientations to the simplex is defined by reading the vertices
in (2.1) from left to right. The opposite sense oforientation is
obtained if any two vertices in the sequence are swapped.
This is indicated by writing

(io'" i j ." ik'" ill) = - (io'" ik,,· ij"" ill)' (2.2)

provided that I=lk and j, k = 0, 1,2, ... ,n.
An n-complex is denoted by PII and represented by the

formal sum

The obvious method of constructing an n-dimensional
manifold is to glue together a collection of n-simplexes. The
resulting object is referred to as an n-complex. To avoid cer­
tain pathological cases the following restrictions are im­
posed: (i) the region of the n-complex common to two or
more adjacent n-simplexes is an m-simplex with O<m <n,
and (ii) any m-simplex of the complex is contained within at
least one n-simplex of the n-complex.

The following notation is drawn, primarily, from Seir­
fert and Threlfall.7

A typical n-simplex is denoted by q n (i), with the index i
being the label which distinguishes this simplex from all oth­
er n-simplexes. The set of all n-simplexes is represented by
Sn' Each n-simplex contains exactly (n + I) vertices and is
represented as follows:

(2.3)

(2.1)

PII = LOjqll (i),
j

I. INTRODUCTION

It is assumed that solutions of Regge's field equa­
tions l-S, Regge space-times, are approximations, to a degree,
ofan Einstein space-time, this being a differentiable solution
of Einstein's field equations. This assumption is based on
two facts. First, the Regge and Einstein manifolds are equi­
valent under a homeomorphism. Second, both sets of field
equations are derived from the same action principle. It is
therefore not unreasonable to expect that there should exist a
correspondence between certain properties ofthe Regge and
Einstein space-times. In particular the operation of exterior
differentiation on an Einstein manifold should lead to a re­
lated operation on a Regge manifold.

The main result to be presented here is an operation on
forms built on Regge manifolds which mimics the usual op­
eration ofexterior differentiation. This result6 is presented in
Sec. IV. In Sees. II and III the basic notation and formulas
are presented. Finally, in Sec. V, it is shown that this defini­
tion reduces to the version usually employed on smooth
manifolds.

II. SIMPLEXES AND COMPLEXES

The fundamental building blocks for the manifolds to be
considered here are known as n-simplexes. They may be de­
fined in a recursive fashion as follows.

(i) A O-simplex is a single point. This object is also called
a vertex.

(ii) An (n + I)-simplex is constructed from an-simplex
by first introducing one new vertex and then joining this
vertex to each ofthe (n + I) vertices of the n-simplex, and
second by demanding that any set of m vertices
(I<m<n + 2) of the (n + I)-simplex is an (m - I)-simplex.

(iii) A Lorentzian n-simplex is obtained by imposing a
flat Lorentzian metric throughout the n-simplex. Only those
n-simplexes in which the induced metric on each of its m­
simplexes (O<m<n) is also flat will be considered. This has
the effect of disallowing any n-simplexes with curved boun­
daries.
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Obviously u" (ilJ) is also a simplex and thus the oper­
ation (2.5) maybe applied twice. However from (2.2) and (2.4)
it is clear that

One particularly important subcomplex is the boundary
of the primary complex. It is defined as follows. First sup­
pose that u" (i) is represented as in (2.1). Then define the oper­
ation

{
( - W(ilil' .. ;. ... i ),

u,,(i/ij ) = (ilil'" iJij ) = 0 'f" J..". . (2.4)
, 1 Ij IS not In '0,' ..... ,'".

The symbol A over ij indicates that the vertex ij is ex­
cluded from the list. The boundary of an n-simplex u" (i) is
defined as

(3.3)

(3.4)

(3.5)

L~i =gjj, l<i<n,

L 7j = (gjj - 2gij + gjj), l<i,j<n and i=/:j.

In this instance there is no summation over repeated indices.
Solve these equations for the gp." to obtain

gjj=L~I' l<i<n,

gij = (L ~i +L ~j - L 7j)/2, l<i,j<n and i=/:j.

So far nothing has been said about the signature of the
metric. For a physically realistic space-time, in the sense of
general relativity, the signature must be Lorentzian (Le.,
- + + +). Thus it is clear that not all of the leg lengths

can be specified without restriction. However, this restric­
tion is somewhat weak for it is possible, in all but a few
exceptions, to make small arbitrary changes in the L ij and
yet not change the signature. Therefore assume that the sig­
nature is Lorentzian for each and every n-simplex of the
primary complex. In a later paper a technique of construct­
ing an n-simplex will be described by which the signature
may be guaranteed to be Lorentzian.

A knowledge ofthegp." also enables the computation of
areas and volumes of n-simplexes. Define the measure of an
n-simplex, u" , as the n-fold integral

M (u,,) = ( rg)1/2 d "x,
In-simPlex

where" g is the determinant ofthegp.,,' The limits ofintegra­
tion are easily deduced from (3.1). For example, for a four­
simplex, the four-dimensional measure is

P =:xJI.ep., with each :xJI.>O and I:xJI.<l. (3.2)
p.

The requirement that:Ip. xp. < 1 ensures that the vector does
not pass through the face opposite the origin. This completes
the construction of a coordinate frame for this simplex. A
metric frame will now be constructed by introducing the leg
lengths L ij and the metric components gp.,,'

Denote the proper distance between the vertices (i) and
(j) by L ij • If all the gp." are known then, using (3.1), the Lij
would be computed as

Denote the basis vectors by ep.' Then any point P in the
simplex is described by the vector

M(U4) = (4g)1/2

X i l ii-XI ii-Xl-X' il-xl-x'-x'dx4 dx3 dx2 dx l ,

since 4g is a constant. In this instance the repeated integral
has the value 1!, in the general case of (3.5) the value is lin!.
Since the signature of the metric may be indefinite it is possi­
ble to obtain an imaginary value for M (u" ). This is an unnec­
essary complication and will be avoided by using the abso­
lute value of"g in (3.5). Thus the measure of an n-simplex,
u", is

(2.5)

(2.8)

(2.6)

(2.7)

(ifo) = (0,0, '" ,0),

(v'j') = (1,0, '" ,0),

(lit) = (0,1, '" ,0),

uo(O) = (0)

uo(l) = (1)

uo(2) = (2)

au" (i) = Lu,,(iliJ
iJ

ap" = "Laiu,,(iIJ).
i,j

Similarly for an n-complex

u" (il jlk ) = - U" (ilk I J).

This leads to the usual result7

a2U,,(I) = O.

III. THE METRIC FRAME OF A SIMPLEX

A. The natural frame

One of the easiest ways of ensuring that the metric of a
simplex is flat is to demand that all ofthe metric coefficients
are constant throughout the simplex. Of course there are
other frames in which the coefficients are not constant and
yet the metric is flat. For simplicity such frames will be ig­
nored.

It will be convenient to distinguish between the terms
"coordinate frame" and "metric frame." The term "coordi­
nate frame" will be used to refer to a frame possessing co­
ordinates but not a metric. In a "metric frame" there are
both coordinates and a metric. A very useful metric frame,
the natural frame, will now be described.

Choose one n-simplex, u" (1), and label its vertices from
oto n. Adopt the vertex (0) as the origin of the coordinate
frame. The basis vectors for this n-simplex are chosen as the
n vectors that join (0) to the remaining vertices, i.e., along
those legs connected to the origin. The coordinate frame is
chosen such that the coordinates of the vertices are

{
o, if n = 0, J.t = 1,2, ... ,n,

vi,: = £u", l'fn > 0, 12u. J.t = , , ... ,n.

uo(n) = (n)

In short

(vi,:) = (0,0, ... ,1).

(3.1)

(3.6)

B. The general frame

On occasions it may be useful to employ a frame other
than the natural frame. For example, ifa study ofthe proper-
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with e1';:.','f = + I, - 1,0 when !ltv· ..p) is eitheran even,
odd, or a nonpermutation of(ij .•• k), respectively. For ex­
ample, for m = 3,

L/.I.1'P(u3)= LfL ~L f -L rLiL f +L rL fL~

-L fL~L~+L fLiL ~ -LfLfL~.

The following expressions, shown only for m = 3 but easily
generalized, are all derived from the definition (3.9):

ties of a group of simplexes is to be made then it may be
necessary to build a metric frame covering all simplexes· of
the group. Clearly the natural frame is inappropriate in this
example. The construction of a general class of metric
frames will now be discussed. Once again assume that the
glSv are constant· throughout each n-simplex and that the
basis vectors are chosen as a/ax'" .

Consider a complex with one or more n-simplexes. To
each vertex, uo(11, of this complex, associate n coordinates,
x'" (i). Provided the topology ofthis complex is not too pecu­
liar, it should be possible to choose these coordinates so that,
for each and every n-simplex, the coordinates constitute a
coordinate frame for that simplex. This condition simply
ensures that locally (Le., within one n-simplex) the coordi­
nate frame is n-dimensional. Assume that such a choice can
and has been made.

The components of the vector joining uoU) to uo(i), de­
noted by £I"'(iJ1, have the values

LIS(iJ1 = x"'(i) - x"'(j). (3.7)

The values of the glS1' are obtained by solving the equation

L;j = glS1'L lS(iJ1L 1'(iJ1. (3.8)

Since there are n(n + I)12 leg lengths in each n-simplex and
a similar number ofglS1' 's there may exist a unique solution of
(3.8). That a unique solution does exist is guaranteed by the
earlier requirement that the coordinate frame be everywhere
n-dimensional.

Noti~ that the values of the glSv need not be the same in
each n-simplex. Thus there may be discontinuous changes in
the glS1' across the interfaces between pairs of n-simplexes.
Consequently there results a possible ambiguity in the pro­
cess of raising and lowering indices. For example suppose
the leg (iJ1 is common to two n-simplexes. Then the values of
LIS (i J1 with the index lowered may depend upon the choice of
simplex in which the computation was performed. There is
of course no ambiguity in the LIS (ij). It would therefore be
inaccurate to write LIS (ij) as the lowered version of LIS (ij),
however, in most applications it will be clear which n-sim­
plex is intended.

Consider one m-simplex Um = (iJI'" im ) in an (m + 1)­
complex and now define the following quantities

L f = U.I.(iJJ ), for j = 1,2, ... ,m,
L/.I.,/.I."· '/.I.m(a ) = ev,1""'1'mL/.I.'L/.I.' ••. L /.I.m (3.9)

m 1 2 .•. m V I "2 v",,

L/.I.1'P(u3)= eg~LfL jL (,

L/.I.1'P(u3)= e~~~NfL jL (,

L /.I.1'P(u3)= eI.I.,;ftL a(ul)L PY(a2)'

L /.I.1'P(u3)= el.l.aP:Na(ul)L PY(U2),

(3. lOa)

(3. lOb)

(3.lOc)

(3.1Od)

with U2 = one face of U3' U I = one leg of U3 but not of U2,
N" (U2) = the projection ofLQ

(UI) onto the normal tOU2' and
N f = the projection of L f onto the normal of its adjacent
face.

Now let L (u,,) = the measure of the parallel n-cube
formed from the n legs

(iJI), ...,(iJ,,) of u" = (iJI''' i,,).

It is well known that

nIL 2(U,,) =L(/.I.)(u,,)L (IS)(U,,), with (/1-) = (/1-1/1-2" '/1-,,).
(3.11)

Alternatively L (u,,) can be computed by an integration like
that in (3.5). In this case the limits ofintegration must now be
chosen to cover an n-cube rather than an n-simplex. The
result of this integration is similar to (3.6) with the exclusion
of the nt, thus

M(u,,) = (lIn!)L (u,,), (3.12)

As the measure of any simplex must be a property of that
simplex alone, it follows that any ambiguity in the computa­
tion of, for example, L IS1' (U2) must be resolved in the process
of computing L (U2)' This circumstance is also evident from
the fact that (3.11) is a scalar equation.

For the remaining part ofthissection it is assumed that
the dimension ofthe complex is 3. After presenting andjusti­
fying the definition of exterior differentiation the result will
be extended to higher dimensions.

Consider a typical three-simplex u3• Suppose that U 3 has
U2as a base and thatul isa leg ofU3 but not ofU2' Then from
(3.lOc)

L P/.I.1'(u3 ) = L P(ul)L /.I.1'(u2)

- L IS(UI)L P1'(U2) + L 1'(ul)L PIS(U2)' (3.13)

Now suppose that n P (U2) is a unit vector normal to the base
u2 • Then a contraction of (3.13) with nP results in

n p(u2)L P/.I.1'(U3) = n p(U2)L P(UI)L /.I.1'(U2)'

However, n P(U2)L P(uII is the projection ofL P in the direc­
tion of nP' which is just the height of U I above U 2, which in
turn is just L (u3)/L (U2)' This leads to

L /.I.1'(u ) L P/.I.1'(u )
_....:.-:2::.,. _ n (u) 3 (3 14)

L (U2) - P 2 L (U3) . .

This expression will be used to obtain a relation between a
sum of a two-form over a two surface and a sum of a three­
form over a three-surface. A similar relation, on a smooth
manifold, will involve the exterior derivative ofa two-form.
The essence of our definition of exterior differentiation is
that it is chosen so as to mimic the usual form of Stokes'
theorem.

The expression (3.14) is easily generalized to complexes
ofdimension greater than 3. Suppose that U m _ I is one face
ofU m and that U m is one m-simplex ofan m-complex. Ifthe
unit inward normal toum _ I is nP(um _ I ) then

L /.I.oJ.I.," ·/.I.m-t(a
m

_ I) L /.I.oJ.I.," ·/.I.m(u
m

)

L (u
m

_ d = nlS ,(um - d L (u
m

) (3.15)

This expression can be proved with techniques similar to
those that led to (3.14).
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IV. EXTERIOR DIFFERENTIATION

Consider a complex P3 that has been subdivided into a
set of three-simplexes. The integral ofany two-formA • over
a two-dimensional subcomplex P2 of P3 is defined, in a coor­
dinate frame, as

I(P2,P3) = ~ iA :v(xQjdx'-' I\dxv. (4.1)
O'zm pz 0'2

Similarly, the integral ofa three-form B • over the complex is
defined as

I(P3) = u,~p,LB :VT(xQ)dx'-' I\dx
v
I\dx

T

• (4.2)

Define the quantities A/,v(u2)and B/,VT(U3) via the equations

A/,v(U2)M(U2) = LA :v(x
Q

)d 2S, (4.3a)

B/,VT(u3)M(U3) = LB:VT (X
Q

)d 3S, (4.3b)

with diSand M (Ui ) being the differential and total measures
oftheu;, respectively. The A/'v (u2)andB/,VT(u3)are the aver­
ages of their associated forms over the simplexes U 2 and U 3•

The relations (4.1) and (4.2) may now be rewritten as

and

I (P2' P3) = .L A/'v (u2)L /,V(U2)
0'2io P2

(4.4a)

I(ap3,P3) = .L A (u2)= .L dA (u3)· (4.9)
0'2io aP3 O"]io P3

In this form the similarity of this expression with the usual
continuum form of Stokes' theorem is quite apparent. The
relation (4.8a) defines the value of the two-formA on U2 and
(4.8b) defines its exterior derivative evaluated on u3•

An analysis similar to that which lead to (4.8a), (4.8b),
and (4.9) may be applied to complexes of dimension other
than 3. Consider a complex Pn of dimension n. Suppose
there is defined an m-formA (um ) on each oftheum 's of Pn'
Thus put

A ( ) - A ()L /',1-',' .. I-'m( )Um - 1-',/,," 'I-'m Um Um . (4.10)

Then the exterior derivative ofA evaluated on U m + I is de­
fined as

dA (um+ I ) = '" n (u )A (u )~ 1'0 m 1-',1-',' , . I-'m m
uminoom + I

X L(um
) LI-'cP""I-'m(u ) (4.11)

L() m+I'
um + 1

and Stokes' theorem takes the form

I(apm+ 1,Pm+ d = .L A (um)
umioaPm+ I

~ dA (um + d. (4.12)
um+1mPm+1

I(P3) = .L B/,VT(u3)L/,VT(U3)·
O']in P3

(4.4b) If the complex consists of only one U m + I then this
expression reduces to

I (a P3' P3) = .L A/,v(U2)L /,V(U2)
0'2ina p3

.L .L n p(U2)A/,v(u2)L (U2)L P/,V(u3)·
u,in p, u,inau, L (u3)

(4.7)

since all U2'S on the interior of P3 will be counted twice, each
with opposite orientations, and will therefore cancel each
other. Substitution of (3.14) in (4.15) and the resultant
expression in (4.6) leads to

(4.13)dA (um+I) = .L A (um)·
O'minaUm+1

A(um)=dB(um)= .L B(um_d· (4.14)
urn_lioMm

Now the exterior derivative ofA (um) is

This provides an alternative yet equivalent method for com­
puting the exterior derivative. In some situations this expres­
sion may be more useful than (4.11). As an example it will
now be shown that the value ofa form, twice exterior differ­
entiated, is zero. Consider a set ofnumbersB (um _ I) on the
Um_ I of Pm _ I' Suppose that each number arose as the
value of an (m - 1)-formB on each of the U m _ 1 of Pm+ I'

The exterior derivative ofB, evaluated on each U m' gives rise
to another set of numbers A (um ) distributed on the U m of
Pm+I' Thus

umin~m+l Um_~aumB(Um-I)'
However each U m _ I is counted twice, each time with oppo­
site orientations, thus

dA (um+1)=ddB(um)=0.

Exactly the same result occurs in the continuum theory of
differential forms.

As another example consider the flux ofa constant vec­
tor A, with components A/' , over the surface of one m-sim-

(4.5)

(4.6)

(4.8a)

(4.8b)

I(ap3,P3) = .L J(u3),
0"3io PJ

J(U3)= k A/,v(u2)L/'V(U2).
0'2lnaUJ

Then

This expression is greatly simplified by writing

A (u2) = A/,v(u2)L /,V(u2),

and

dA (U3) = .L n p(u2)A/,v(u2)L (u2)L P/,V(u3),
u,inau, L (U3)

for then

Suppose now that the subcomplex P2 is the boundary of P3'
Our aim is to show that I (a P3' P3) may be evaluated either
directly from (4.4a) or via an expression similar to (4.4b). The
expression (4.4a) may be rewritten as a sum over all u3 's of
the complex by introducing
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which is easily extended to complexes, thus

As this expression is true for any constant field A it follows
that

0= 2: A I'nl'(O"m_ dL (O"m_ d·
um_1iniJum

0= 2: nl'(O"m_l}L (O"m_ Jl.
U m _ lin iJurn

faces are equal apart from their directions. Thus the terms in
(4.8b) may be regrouped as

dA (0"3) = 2: np(0"2)aAI'V(0"2)L (0"2)L P!'V(0"3)' (5.2)
three adjacent L (0"3)

faces

However, from (4.3a)

aAl'v(0"2}L(0"2) = L_U2.A:v(Xa)d2S, (5.3)

with 0"2- being the face opposite 0"2' Substitution of(5.1) into
(5.3) and noting that A :v and A :v,p are constant throughout
0"3 results in

aAl'v(0"2}L (0"2) =A :v,pL_u2.OXP d
2
S.

By projecting ox P onto the normal and tangential vectors of
0"2 it is not hard to show that this last integral equals n pL (0"3)'
Thus

aAl'v(0"2}L (0"2) = A :v,pn P(0"2}L (0"3)

and consequently (4.8b) becomes

dA (0"3) = A :v,p 2: na(0"2)n P(0"2}L aJ<V(0"3) .
three adjacent

faces

~ L I'JJJ.,' . "I'm - '(0" )
~ m-l'

Um_l in8um

0=

plex in an m-complex. Clearly this quantity vanishes and is
expressed as

o= 2: L 1',1',' . '1''0 - '(0"m_ 1 ).

um _ tin 8pm

Unfortunately, since nl' need not be continuous across each
0"m_ l' this expression cannot be applied directly to com­
plexes ofmore than one m-simplex. However after a contrac­
tion with L I'I'JJJ.,' . "I'm - 1(0"m) and using (3.15) this expression
reduces to

This expression can also be proved directly from the defini­
tion (3.9).
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withAl'v,p(0"3) =A:v,p'
This last result shows clearly that this definition ofexte­

rior differentiation does reduce to the usual form when the
Regge manifold and the forms built on it are made smooth
and differentiable.

But from (3.lOa) and (3.lOb) the summation reduces to
LPI'V(0"3)' Thus

dA (0"3) = A :v,p(0"3}L P!'V(0"3)

and (4.7) becomes

I (a P3' P3) = 2: Al'v(0"2}L I'V(0"2)
U2iniJ p3

VI. CONCLUSION

It has been shown that the concept ofexterior differenti­
ation has a natural extension to the Regge calculus. Results
similar to (4.9) may be found in references 8-10. Themotiva­
tion for the development of a Regge version of exterior dif­
ferentiation arises in the attempt to show that certain Regge
expressions "converge" to their usual classical counterparts
under certain conditions. An example of this process, that
our version of Stokes' theorem reduces to its usual form
when applied to differtiable forms, has been presented in Sec.
V. A more ambitious project would be to prove (or disprove)
that the Regge field equations reduce to the Einstein field
equations when an appropriate -limiting process is applied.
This may form the basis ofa future investigation.

(5.4)= 2: Al'v,p(0"3}L P!'V(0"3)'
U3in p3

V. THE CONTINUUM LIMIT

The definitions (4.10) and (4.11) may be extended to
complexes built from blocks other than simplexes. For ex­
ample, an initial manifold could be constructed by piecing
together a sequence of three-dimensional cubes. Each such
cube could be subdivided, by the addition of extra vertices,
legs, and faces, into a set ofthree-simplexes thus producing a
three-complex. To this complex the identity (4.12) would
apply. However the terms of this expression may. be re­
grouped so that those terms involving the faces of the three­
simplexes are combined into terms involving the faces of the
cubes. Similarly the terms involving the three-simplexes
would be grouped into terms involving the cubes. In effect
the expression (4.12) is unaltered except that the objects in
the summation are now parallelograms and parallel cubes
instead of triangles and tetrahedrons.

To show that the similarity of (4.9) and (4.12) with
Stokes' theorem is not just a consequence offormal algebraic
manipulations, the nature of (4.9), over a sequence of com­
plexes, will now be investigated. The following assumptions
are necessary.

(i) The dimension of the complex is 3. A similar analysis
may be used for higher dimensions.

(ii) The sequence ofcomplexes converges, as the number
of0"3'S is increased without limit while keeping the total mea­
sure, fixed, to a smooth differentiable manifold.

(iii) The 0"3'S of each complex are sufficiently small that
the values ofA :v on the faces 0"2 of0"3 may be derived front a
Taylor series based at some point within 0"3' Thus

A :v(xa)=A:v +A :v,pox P+ o(OX)2, (5.1)

with OXa = x a - xg, and xg is the point, within 0"3' from
which the Taylor series is developed.

(iv) All 0"3'S are three-cubes (parallelepipeds).
Fora cube the inward pointing normals for two opposite
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