Preprint: arXiv:1104.1356
Journal: Phys.Rev.D. 85 124046 (2012)

An Einstein-Bianchi system for
Smooth Lattice General Relativity. 1I.

341 vacuum spacetimes.

Leo Brewin

School of Mathematical Sciences
Monash University, 3800
Australia

12-May-2012

Abstract

We will present a complete set of equations, in the form of an Einstein-
Bianchi system, that describe the evolution of generic smooth lattices
in spacetime. All 20 independent Riemann curvatures will be evolved
in parallel with the leg-lengths of the lattice. We will show that the
evolution equations for the curvatures forms a hyperbolic system and
that the associated constraints are preserved. This work is a gener-
alisation of our previous paper [!] on the Einstein-Bianchi system for
the Schwarzschild spacetime to general 341 vacuum spacetimes.

1 Introduction

In a series of papers we have shown that the smooth lattice method works
remarkably well for simple spacetimes such as the Schwarzschild spacetime in
various slicings [1, 2], the maximally sliced Oppenheimer-Snyder spacetime
[3], the vacuum Kasner cosmologies [1] and for constructing Schwarzschild
initial data [5]. The equations are simple and require little computational
sophistication to achieve stable and accurate results. The real test of the
method however must be in the context of generic spacetimes. This paper is
a first step in that direction.

The logic behind the smooth lattice approach is quite simple. Assume we are
given a smooth spacetime and that a large number of vertices (i.e., space-
time events) have been scattered throughout the spacetime. A lattice in
the smooth spacetime can then be built by connecting, using geodesic seg-
ments, each vertex to its local set of neighbours. This construction is far
from unique, there being great freedom to distribute the vertices as well as
the choices made in connecting local pairs of vertices. Whatever choices
are made the result will be taken as a lattice approximation to the origi-
nal spacetime. Later we shall revise this construction along the lines of a
semi-discrete approximation where a 3 dimensional lattice evolves smoothly
with time. But for the moment we will focus on this 4 dimensional lattice.
The data on the lattice divides naturally into two kinds, first, a table of ver-
tices and the connections between them, second, a list of geodesic distances
between pairs of connected vertices (i.e., the legs of the lattice). In short,
the topology of the spacetime is encoded in the connectivity matrix of the
vertices while the metric is approximated by the geodesic lengths assigned
to the legs of the lattice. The question that (should) spring to mind is —
Given the leg lengths on a lattice, how do we compute the Riemann curva-
tures? We will return to this important question in just a moment, but for
now let us suppose we have a suitable algorithm by which we can accurately
compute the Riemann curvatures. It is then a simple matter to impose the
vacuum Einstein equations* which in turn will impose constraints’ on the
leg-lengths. This furnishes us with a discrete set of equations for the leg-
lengths. Solving these equations will yield a discrete solution of the vacuum
Einstein equations.

The lattice as described above is (almost) identical to that used in the Regge
calculus [6]. One obvious difference is that, unlike the Regge calculus, we
do not demand that the lattice be built from a collection of non-intersecting
4-simplicies (though we do not preclude such constructions). A far more
significant difference lies in the nature of the metric on the lattice in the
neighbourhood of any point. In the Regge calculus the local metric is required
to be piecewise flat whereas in our approach we employ a locally smooth
metric (as described below). This is an important difference, with a smooth
metric we are able to use many of the tools of differential geometry that are
not readily available in the Regge calculus (without the use of generalised
functions). For example, bounded point estimates of the Riemann curvatures
are simply not possible in the Regge calculus (where the curvatures behave

*For pure pedagogy we will restrict the discussion to vacuum spacetimes.
fNot to be confused with any constraints that may exist at the continuum level, for
example the Arnowitt-Deser-Misner (ADM) constraints.

like delta-functions). This was in fact one of the motivations that lead to the
development of the smooth lattice method.

We now return to the question of how to recover the Riemann curvatures from
a smooth lattice given the set of leg-lengths. In one of our earlier papers [5]
we argued that if the lattice was sufficiently well refined then a local Riemann
normal coordinate frame could be constructed in the neighbourhood of any
vertex extending to include, at least, the immediate neighbouring vertices.
We called this neighbourhood the computational cell for the vertex (for lat-
tices built from 4-simplicies this would consist of the 4-simplicies attached to
the vertex). In this computational cell we can expand the metric as a power
series [7] around the central vertex

1
9(2) = Gy = 3 Fpa®a” + O (L) (1.1
where L is a typical length scale for the computational cell. The requirement
that the legs are geodesic segments leads, after some detailed calculations

[7], to the following equation

v 1 v, o
ij = gWAxfijij — gRua,,ga:Z“a:i 5 %ﬁ +0 (L5) (1.2)
where Azj; = 2% — x'. The approach advocated in [5] was to use this

equation to extract the Riemann curvatures from the lattice. This may sound
simple but there are a number of troubling issues.

The first issue concerns the coordinates. How do we compute coordinates for
each vertex? Some can be set by simple gauge transformations (e.g., the ori-
gin can be tied to the central vertex) while the remainder must be computed
from the lattice data (i.e., the leg-lengths). This forces us to view the above
equations (1.2) as a coupled system for the curvatures and the coordinates.

The second issue is one of accountancy — do we have enough equations to
compute the curvatures and the coordinates? For most lattices (in 3 and
higher dimensions) the legs out number the coordinates z! and curvatures
Rovp. As an example, the computational cell used in our earlier paper [7]
contained 78 legs and 19 vertices. Thus we had 78 equations for 6 curvatures
and 57 coordinates (of which 6 can be freely chosen). There are at least two
ways to handle this over supply of information. We can either form linear
combinations of the above equations (1.2) to produce a reduced system in
which the number of equations matches the number of unknowns. Or we
can include a sufficient number of higher order terms in the Taylor series

so as to produce a consistent set of equations. This later approach has the

possible benefit of producing higher order approximations for the R,,,5 but
at considerable extra expense. In both instances we still have a large coupled
non-linear system of equations to solve at each vertex and at each time step.
This is a considerable computational challenge.

Another important issue is one of uniqueness — how many distinct solutions
can we find for the z! and R,a.,37 The equations are non-linear and thus it
is conceivable that more than one solution could be found. Do the solutions
form a continuous family or are there only a finite set of solutions? How
would we choose between these solutions? In our earlier paper [5] we resolved
these problems by extending the lattice data to include the angles between
each pair of legs attached to the central vertex. This allowed us to obtain
an explicit and unique solution for all of the coordinates in a computational
cell. It also had the added bonus of decoupling the coordinates from the
curvatures — we could calculate all of the coordinates before computing the
curvatures. The price we paid for this improvement was a significant increase
in the number of data to be evolved. Where previously we had 78 legs per
computational cell, now we had a further 33 angles.

However, there is a final issue which is much more serious than those just
mentioned. To obtain O (L) accurate estimates for the curvatures, the coor-
dinates must be computed to at least O (L*) accuracy (i.e., the errors must be
no worse than O (L*)). This follows by inspection of equation (1.2). Suppose
the error in z!" is O (L) for some a > 0. This error will couple with the first
term on the right hand side of (1.2) to introduce an error of O (L**!). But
the curvature terms are O (L*) and will dominate the error term only when
a > 4. Admittedly this is a somewhat naive analysis as it takes no account of
the smoothness of the underlying geometry which might ensure that various
lower order terms cancel (see for example the role smoothness plays in es-
tablishing the truncation errors in centred finite-difference approximations).
But in the absence of an explicit algorithm we are unable to demonstrate
that such cancellations do occur®. The upshot is that if we persist with any
of the variations suggested above we must design a solution strategy that
guarantees, without invoking smoothness, that the errors in the coordinates
are no worse than O (L?). Despite our best efforts, we have not found a
reliable solution to this problem.

These issues are not altogether new nor surprising and have proved to be a
niggling concern throughout the development of the smooth lattice method.
The only working solution that we have found (there may be others) is to

#Though the introduction of angles does produce an explicit algorithm its analysis is
too unwieldily to be of any use.

surrender some (or all) of the main equations (1.2) in favour of the Bianchi
identities. In all of our papers [I, 2, 3, 4, 5] we used a combination of the
Bianchi identities and the geodesic deviation equation in 1 + 1 spacetimes.
The results were very encouraging. This was a hybrid scheme’ and we at-
tributed its success to the introduction of the Bianchi identities. This is
the motivation for the present paper — Can we use the Bianchi identities to
compute all of the Riemann curvatures in a 3 4+ 1 spacetime? We should
emphasise that there is one important difference between what we propose
here and our previous work. In this paper we will use the full set of Bianchi
identities to evolve all 20 independent Riemann curvatures. In contrast, in
our 1 4+ 1 experiments we used one Bianchi identity to compute one spa-
tial curvature (i.e., a purely 3-dimensional computation within one Cauchy
surface).

Why should we believe that this use of the Bianchi identities will overcome
the issues described above? Simply, it allows us to use lower order approxi-
mations for the vertex coordinates (even flat space approximations) without
compromising the quality of the estimates of the curvatures. We will return
to this point after we have presented the full set of evolution equations.

Earlier in this section we gave a brief construction for a 4-dimensional lattice
while noting that we would later move to a 3-dimensional lattice that evolves
smoothly with time. There are at least two way to make this transition,
either as the result of a continuous time limit of the 4-dimensional lattice
or by starting afresh and building a 3-dimensional lattice approximation to
a typical Cauchy surface. In either case what we obtain is a smooth 3-
dimensional lattice composed of a large set of vertices each locally connected
to their nearby neighbours by short geodesic segments. These ideas were
originally developed in [1] but were given a better mathematical basis in
[8]. The evolution of the 3-dimensional lattice begins with initial data for
the leg-lengths and their first time derivatives followed by rules for the lapse
and shift functions and finally a set of evolution equations. This brings the
method much closer to a traditional Cauchy evolution problem.

In this paper we will focus on the evolution equations leaving the issue of
constructing initial data to another occasion. In section (3) we will present
evolution equations for the leg-lengths and the first time derivatives. As this
draws upon material developed previously in [1, 8], we will only cover this
aspect very briefly. In sections (4) and (5) we will develop the evolution
equations for the Riemann curvatures and demonstrate that they preserve

§The geodesic deviation equation arises as a continuum limit of the smooth lattice
equations [5].

the constrains (of Einstein’s equations). In the following sections we will
show how the coordinates of the vertices and the remaining source terms
(e.g., the Hessian) can be computed.

It should be emphasised that even though we are employing a 3-dimensional
lattice evolving smoothly in time, all of the quantities that we employ (i.e., the
coordinates, the geodesic leg-lengths, the Riemann curvatures) are all set in
4-dimensions. Thus there are 20 independent Riemann curvatures (rather
than 6). Also note that the geodesic that connects a pair of vertices is a
geodesic of the spacetime not of the 3-metric intrinsic to a typical Cauchy
surface.

2 Notation

A typical computational cell will be denoted by 2. This will be a compact
subset of the spacetime manifold. The central vertex of the cell will be
denoted by O and the subset of €2 obtained by the intersection of 2 with
the particular Cauchy surface that contains O will be denoted by w. We will
describe w as the floor of . As §2 has a finite extent there will be an image
of w that defines the future end of 2. We will refer to this as the roof of 2.
We will have little to reason to refer to the past end of €2 but calling it the
basement seems consistent.

We will assume throughout this paper that the vertex world lines are normal
to the Cauchy surfaces (i.e., zero drift, in the language of [1], or in more
common language, the shift vector vanishes at the central vertex). This may
seem restrictive but in our experiments to date it has worked very well.

Within €2 we will employ two sets of vectors essential to the evolution of
the lattice. The first set will be an orthonormal tetrad, denoted by e,
a=1,2,3,4, tied to the world line of O and aligned so that e; is the tangent
vector to the world line of O. As we have assumed that the drift vector is
everywhere zero this also ensures that e; is the future pointing unit normal
to w at O. Following convention, we will write n* as the unit normal to w
(though as just noted, this is identical to e;). The second set of vectors will
be based on the set of radial legs attached to O. Each leg will be of the form
(0i) and we will use v; to denote the vector that joins (o) to (7). Note that
the v; are neither unit nor orthogonal. Latin characters will always be used
to denote tetrad indices while the spacetime indices will be denoted by Greek
letters. Latin characters will also be used as vertex labels and where confusion

might arise we will use subsets of the Latin alphabet with a, b, ¢, - - - h reserved
for frame components while ¢, 7, k, [, m will be reserved for vertex labels.
Obviously this distinction will only be imposed for equations that contain
both types of index.

Each cell will carry a Riemann normal coordinate frame (an RNC frame),
with coordinates z* = (t,z,y, z), tied to the central vertex and aligned with
the tetrad. Note that this gives precedence to the tetrad over the coordinates.
Coordinate components will be written as 2, or for specific components as,
for example, R;, while for frame components we will use scripts characters
Rab- The coordinates for a typical vertex (i) will often be written as z£ but
on occasion we will have need to talk about the particular values for the z!'
in which case we will write (¢,z,y, z); or even x}, x7 etc.

Each RNC frame will be chosen so that at O the metric is diagonal, (g,.), =
diag(—1,1,1,1). Both spacetime and tetrad indices will be raised and low-
ered, at O, using the metric diag(—1,1,1,1). With these choices we see that
the future pointing unit normal to the Cauchy surface at the central ver-
tex O is just (n*), = (1,0,0,0)* while (n,), = (—1,0,0,0). We also see
that the tetrad e, has components e, = ¢*, in this RNC frame. Note that
erue,t = 0,0, etpet, = 0, ey = nt and e,' = —n,.

3 Evolving the leg-lengths

The legs of the lattice are required to be short geodesic segments. Thus
it should come as no surprise that the evolution of the leg-lengths can be
obtained from the equations for the second variation of arc length. In an
earlier paper [3] we showed that, for sufficiently short legs, these equations,
for zero shift, can be written as follows

a2 .
I CONK, Al Acy + O (1) (3.1)
dt (N dtj> = 2Njap Az ATy o

+ 2N (KuaKuﬁ - Rua%@nu”y) Am%Ax?j +0 (Lg)

For numerical purposes it is somewhat easier to rewrite these in the following

form
dL?j
— = —2NP; (3.3)
dP;; o
_dt = _N|a5Axiijiﬂj (34)

— N (K o K"5 — R0pnt'n”) Am%Amfj

in which we have introduced the new variables P;; := K, MVAQ:%AJ:Z. The K,
can be obtained by a suitable weighted sum of equation (3.1) as described
in section (7.1). We have also dropped the truncation terms as these are not
used during a numerical integration.

Clearly, the evolution of the leg lengths requires a knowledge of the Riemann
curvatures and to that end we now present the evolution equations for those
curvatures.

4 Evolving the Riemann curvatures. Pt. 1

We know that there are only 20 algebraically independent Riemann curva-
tures in 4 dimensions. So which should we choose? By a careful inspection
of the algebraic symmetries of R,,,.,s we settled upon the following

nyxya nyxza nyyza szxz> R:czyza Ryzyz
thzy7 Rtyzy7 thzya Rtxxz» Rtyxza tha:z; Rtyyz7 thyz (41)
tht:pu Rtytyu thtz: Rt:vt:lp Rt:th7 Rtytz

4.1 Bianchi identities

Our aim is to use the Bianchi identities to obtain evolution equations for the
Riemann curvatures. We begin by writing down the Bianchi identities at the
central vertex, where the connection vanishes,

0= Ruw/ﬁﬂ + Rwﬁmv + Ruaw,/a’ (4-2)
along with a contracted version of the same equation

0= ¢" Ryoavpry — Rapy + Raws (4.3)

8

This pair of equations, along with the vacuum Einstein field equations, and
a judicious choice of indices will provide us with all of the required evolution
equations. This leads to the following 14 differential equations

0 = Rtyacz,t - nymz,x + Rzzyz,z
0= thxz,t - szxz,a: - Ra:zyz,y
0 = Rtyyz,t - nyyz,cc + Ryzyz,z

0 = Rayyayt — Riyayz + Rizayy (4.4)
0= Royast — Rizayz + Rizay, - (4.5)
0= Ruyyzt — Rizayy + Riyay.- (4.6)
0= Roroet — Rizorg + Rizsz - (4.7)
0= Rozyrt — Rizgzy + Riyas s (4.8)
0= Ryzyet — Rizyoy + Riyys (4.9)
0 = Rigayt + Rayayy + Rayaz,» 4.10)
0 = Riyayt — Royaya + Rayyz,» 4.11)
0= Rizayt — Royzoz — Rayyzy 4.12)
)
)
)
)
)

(
(
(
0= Rigoot + Raoyazy + Rozaz 2 (4.13
(
(
(
(

0 = thyzﬂf - szyz,z - Ryzyz,y

There are of course 20 independent R,..3, 14 of which are subject to the
above evolution equations while the remaining 6 can be obtained from the
vacuum Einstein equations

0= Ryx = —Rigte + Raywy + Raza- ()
0= Ryy = —Reyty + Rayay + Ryzy: ()
0=R..=—Ri: + Rozer + Ryzyz (4.20)
0= Ry = =Rty + Ruzy- (4.21)
0= Ri = —Rigtz — Rayy- (4.22)
0= Ry. = —Riyt: + Roya- (4.23)

Though these are not differential equations they do, none the less, provide a
means to evolve the 6 curvatures Ry, Rizty - - Riyez-

The important point to note about this system of equations is that it is
closed, there are 20 evolution equations for 20 curvatures. The source terms,

such as R,yzy. 2, could be computed by importing data from the neighbouring
cells, by an appropriate combination of rotations and boosts, and using a
suitable finite difference approximation (see section (7) for more details)). In
this way the lattice serves as a scaffold on which source terms such as these
can be computed.

4.2 Constraints

In deriving the 20 evolution equations of the previous section we used only 6
of the 10 vacuum Einstein equations. Thus the 4 remaining vacuum Einstein
equations must be viewed as constraints. These equations are
0=Ry= Rtz + Rpyry + Rizez ()
0=Riz = Riyay + Riza: ()
0= Ry = —Rigay + Rizy- (4.26)
0= Ri; = —Rizar — Riyy- (4.27)

Finally, we have the following 6 constraints that arise from the Bianchi iden-

tities.
0= Ruyay,> T Royyzo — Rayazy (
0= Ruyzze,s + Razyzr — Ruzany (
0= Reyyso + Ryzyze — Razyzy (4.30
0= Riyey,> + Riyyzo — Riyazy (
0= Rizay:+ Rizyzg — Rizazy (
0= Rigay,> + Rizyzo — Rizazy (4.33

Note that the last equation refers to Ry,,. and as this is not one of our chosen

20 curvature terms it should be replaced with Ry, = Riyz: — Rizay.

So all up we have 20 evolution equations assembled from the 14 differential
equations (4.4-4.17) and 6 algebraic equations (4.18-4.23) plus 10 constraints
comprising 4 Einstein equations (4.24-4.27) and 6 Bianchi identities (4.28-
4.33). This is a such a simple system that it allows simple questions to be
explored and answered with ease. The questions that we will address are

1. Are the constraints preserved by the evolution equations?

2. Do the evolution equations constitute a hyperbolic system?

For both questions the answer is yes and we shall now demonstrate that this
is so.

10

4.3 Constraint preservation

In the following discussion we will assume that, by some means, we have
constructed an initial data set for the 20 R,,,5. That is, the 20 R,q.,p are
chosen so that the 10 constraints (4.24-4.33) vanish at the central vertex of
every computational cell in the lattice.

We will also need the trivial result that
R =2(Royay + Ruzoo + Ryzy2) (4.34)

which follows directly from equations (4.18,4.19,4.20,4.24).

Consider now the constraint 0 = R;,. By assumption, this constraint is satis-
fied on the initial slice. To demonstrate that it continues to hold throughout
the evolution we need to show that 0 = Ry, ;. From (4.27) this requires us to
show that 0 = Ryyazt + Riyyzs. Using (4.13,4.16) we see that

Rizpzt + Riyyor = —Royasy — Rozazz + Raoyyen — Ryzyz -
however on the initial slice we also have, by assumption, (4.28)
0 = Royay,> + Royyzo — Royazy
which when combined with the previous equation leads to

thxz,t + Rtyyz,t = - (Rccyzy + sza:z + }%yzyz)7

z

But by equation (4.34) we see that the right hand side is just —R /2 and
as [t = 0 across the initial slice we also have that 0 = 12, at every central
vertex. This completes the proof. The two other constraints, 0 = R, and
0 = Ry, can be dealt with in a similar fashion.

All that remains is to show that 0 = Ry is conserved. We proceed in a
manner similar to the above. First we use Ry = Ryyzy + Rpzps + [y2y. and
then use equations (4.4,4.7,4.9) to compute the time derivative

(ny:ry + Ra:zmz + Ryzyz)ﬂf = nyzy,t + szzz,t + Ryzyz,t
Rtymy,z - Rtmxy,y
+ thxz,x - Rt:m:z,z
+ thyz,y - Rtyyz,z
= Rtm,m + Rty,y + th,z

11

where the last line arose by inspection of equations (4.25-4.27). But 0 = R,,,
at every central vertex on the initial slice. Thus 0 = R,,;, i = x,y, z on the
central vertex which in turn shows that 0 = Ry, on the initial slice.

A key element in the above proofs was the use of constraints based on the
Bianchi identities. The question now must be — do the evolution equations
preserve those constraints? The answer is yes which we will now demonstrate
on a typical case. Consider the constraint (4.28)

0= Rzywy,z + Rmyyz,x - Racyzz,y

We know this to be true on the initial slice and we need to show that the
evolution equations (4.4-4.17) guarantee that it will be satisfied on all sub-
sequent slices. The calculations follow a now familiar pattern,

(Rwymy,z + R:Eyyz,a: - nyxz,y) Gt = Rmyzy,tz + Rmyyz,tw - nyzz,ty
(Rty:ry,m o Rmff%%’))2
+ (thxyvy - Rty:cy,Z) VT
- (thmy@ - Rtiﬂmy,z) Y
=0

The same analysis can be applied to the remaining constraint equations.

4.4 Hyperbolicity

Our approach to proving hyperbolicity will be quite simple. We will manip-
ulate the evolution equations (4.4-4.17) to demonstrate that each of our 20
R, satisfies the standard second order wave equation.

Let us start with a simple example, equation (4.4). We take one further time
derivative, commute the mixed partial derivatives and then use equations
(4.11,4.10) to eliminate the single time derivative. This leads to

0= Rmywy,tt - nymy,mm - Rmy:py,yy + nyyz,zr - Rzyacz,zy

However, we also have 0 = Rgyay . + Rayyz e — Rayzzy, Which allows us to
reduce the last two terms of the previous equation to just —R,y.y ... Thus
we have

0= Rrya:y,tt - Rmywy,mz - Rmymy,yy - Rmy:vy,zz
This is the standard flat space wave equation for R,,,,. A similar analysis
shows that Ry.q., Ry.yz, Rayzz, Rayy. and R, are also solutions of the wave
equation.

12

We now turn to the 8 R,q,p in which the indices pavf contain just one t.
The proof (that each such R, satisfies the wave equation) differs from the
above only in the way the Bianchi identities are used. Applying the first few
steps outlined above to equation (4.11) leads to

0= Rty:vy,tt - Rtywy,m o Rtywy,yy o Rtywy,zz
+ Rty:cy,yy + Rtmywy + th:vy,zy

in which we have deliberately introduced the pair of terms Ry, to aid in
the following exposition. The last three terms can be dealt with as follows.
First notice that

Rty:ry,yy + Rtmy,wy + thmy,zy = (Rty:ry,y + Rtmy,x + thwy,Z) Y

(_Rutfcy,u) Y
- (_Rty@ + Rtm,y) Y

where in last line we have used the contracted Bianchi identity 0 = R¥,,3,,, —
Ry o + Ryap. But we know that 0 = R, at every central vertex, thus all
of its partial derivatives will be zero and so the each term on the right hand
vanishes leading to our desired result

0 = Rtyxy,tt - Rtya:y,x:r: - Rtyxy,yy - Rtyxy,zz

Finally we note that the remaining 6 R, 3, that is those that carry two ¢’s in
their indices, are linear combinations of the previous 14 R, 3, see equations
(4.18-4.23), and thus will also be solutions of the wave equation. Thus we
have shown, as claimed, that all 20 R, satisfy the wave equation.

5 Evolving the Riemann curvatures. Pt. 2

There are two problems in the forgoing analysis. The first problem is that
we chose a unit lapse function when presenting the evolution equations (4.4—
4.17). We can easily remedy this problem by making a simple cell dependent
transformation dt = N(t')dt’ in which the lapse N is allowed to vary (dis-
cretly) from cell to cell as well as evolving (smoothly) in time. Note that
transformations of this kind do not disturb the worldline of the central ver-
tex, it remains normal to the Cauchy surface and thus the shift vector remains
zero on the central vertex. However, the shift vector for any other vertex of
the cell need not be zero (this applies even prior to the above transforma-
tion). Fortunately this is of no real concern because all of the equations in

13

this paper only use the leading order term in the metric and this conicides
with the metric on the central vertex.

The second problem is somewhat more of a challenge. It stems from the
simple fact that each computational cell is local in both space and time and
therefore no single RNC can be used to track the evolution for an extended
period of time. We will have no choice but to jump periodically to a new RNC
frame. But how might we do this? One approach goes as follows. Build, on
the world line of a typical vertex, a pair of distinct but overlapping cells, with
one cell lying slightly to the future of the other. Then evolve the curvatures
in the frame of one cell into the overlap region followed by a coordinate
transformation to import the newly evolved curvatures into the frame of the
future cell. This completes one time step of the integration whereupon the
whole process can be repeated any number of times along the vertex world
line. A useful improvement on this is to use a local tetrad to construct
scalars thus avoiding the need for explicit coordinate transformations when
passing from one cell to the next. The price we pay for this is that we have
to account for the evolution of the tetrad along the world line. As we shall
see this is rather easy to do (essentially we project the tetrad onto the legs
of the lattice). We will explore this method first on a simple example before
presenting the computations for the curvature evolution equations.

5.1 A simple example
In this example we will suppose that we have a vector W* that evolves along
the world line of the central vertex according to

aw#
dt’

— NF" (5.1)

Our aim is to obtain a related equation that describes the evolution of the
vector along the whole length of the world line, not just the short section
contained within this one cell.

Suppose that we have an orthonormal tetrad e, = €/,0,, a = 1,2,3,4 on
w with e; aligned to n*9,, the future pointing normal to w, and that we
have aligned the RNC coordinate axes with the tetrad (note how this gives
precedence to the tetrad over the coordinates). Thus at the central vertex of

14

) we have

eqg=0,, e'qg=0q, €, =0,
n=e'y, —m,= eu1
e“aeub =080, elpelt = 0,"
g = diag(—1,1,1,1), gq = diag(—1,1,1,1)
We now propose the following evolution equations along the world line of the
central vertex in €.

dt’ = MZ‘V N 5 d:;’ = —€, VZN (52)
det; de,’ ; ,
e e’ ViN , dt’j =—¢,'V'N, i=234 (5.3)

where V;N = (LN,)e¥; and VN = (LN")e,’, i = 2,3,4. What can we
say about the evolved data? First, note that the orthonormal conditions are
preserved, that is
det 4e,,’ B de* qe,*
a7 dt’
Thus the tetrad obtained by integrating the above equations will remain
orthonormal along the world line of the central vertex. Second, using

=0

(Nn*) , = N, n' — L(N*)n, — NK", (5.4)

sV

to compute dn*/dt’ = n*,, (Nn") we see that

de*y dnt de,,! dn,,
= = — 5.5
dt’ ar ’dt dt’ (5:5)
which shows that e#; = n* and e,' = —n, everywhere along the world line.

That is, e# remains tied to the world line. All that remains is to account for
how the tetrad rotates around the world line. This we shall do by evolving the
projections of the e#;, ¢ = 2,3, 4 onto the legs of the lattice. Let v, = v*,0,,
a = 1,2,3 be any three distinct legs of the lattice attached to the central
vertex. Now consider a short time step in which the vector v, sweeps out a
short quadrilateral in spacetime (see figure (2)). The upper and lower edges
will be the past and future versions of v, while the remaining two sides will
be generated by the word lines of the vertices that define v,. Since we have
assumed at the outset that all vertices evolve normal to the Cauchy surface
we see that these vertical vectors correspond to Nn*. The important point

15

is that this set of four vectors forms a closed loop, in short, the vectors v,
and Nn"0, commute, thus

vt (N") = 0", (Nn'),, (5.6)

The left hand side is simply dv*,/dt’, while the right hand side can be ex-
panded using (5.4). This leads to

dot,

dt’

= (’Z\T,l/n‘u - NKHV) Uya (57)
where we have dropped the term involving n,v*, as¥ this would be O (L™)
with m > 2 while the remaining terms are all O (L).

We are now ready to construct our scalar evolution equations. Let W, :=
W,e", and vl = v“aeub then

aw, dw, det,
- w, e
dt’ ar © ot e gy
dv,b dot, b de,’
dt' - dt' € + o', d; , b=1,2,3,4

Each of these equations can be re-cast entirely in terms of the scalars by first
using (5.2,5.3,5.7) to eliminate the time derivatives on the right hand side
followed by the substitutions W, = W,e,* and v*, = v,bety. This leads to

AW, .
zl/;f — NF, + WV'N (5.8)
dW;
dyx _ NFAWVIN, =234 (5.9)
dvyt 1dN
- 1
a N ar ' (5.10)
dvy' C i
Y NKiv2, i,j=23,4, a=1,23 (5.11)

dt’

where we have introduced the scalars W,, = W,n*, F, = F,n*, F; = Fet;,
and K'; = K#,e,'e”;. These are our final equations. They are valid along
the whole length of the world line, not just the part contained in one cell.

YThis term is not identically zero because the geodesic that has v#, as its tangent is
a geodesic of the 4-dimensional spacetime, think of a chord connecting two points in one
Cauchy surface.

16

Note that equation (5.10) is readily integrated leading to v,! = C N where C
is a constant of integration. However we also know that v,! = —n,v*, and
as noted above this last term is O (Lm22) and thus C = O (Lm22).

Equation (5.11) describes the motion of the tetrad relative to the legs of the
lattice. As we integrate forward in time we can use the values of v,° to locate
the tetrad within the computational cell. If we chose to construct an RNC
within the cell then we can go one step further and recover the values of e#;
and the WH.

5.2 Curvature evolution equations

Now we can return to the task of constructing the generalised evolution
equations for the curvatures. We start by introducing a pair of relations
between the tetrad and coordinate components of the curvature tensor

a v
7?/a,bcd = Ruauﬂeuae b€ ceﬁd

R,uauﬁ = Rabcdeuaeabeuceﬂd
and then forming a typical evolution equation

dRabcd dRMCU/,B a v B d (eﬂaeabeyceﬂd)

dt/ = dt/ euae b€ € 4 _|_ R,U,O!I/,B dtl
with each d/dt’ term on the right hand side replaced by a suitable combina-
tion of the existing evolution equations, (4.4-4.17) for the curvature terms

and (5.2,5.3) for the tetrad terms.

(5.12)

Rather than working through all 14 equations we will demonstrate the pro-
cedure on just one equation (4.4) leaving the remaining equations (but not
their working) to Appendix A. So our starting point is

AR eyey dRpyzy

av dr e
and using (4.4) we obtain
ARayay d (euxeayeyzeﬁy)
dt’ dt!
Finally we use (5.2,5.3) to eliminate the time derivative of e*,, leading to
AR zywy
dt’

d (e“xeo‘ye”weﬁy)

dat’

= N(Rtyxyw - Rtmy,y) + RuaV/J’

= N(Rtyxy,a: - Rtxacy,y)
+ Riyey Ve N — RiseyVyN + Riyey VN — Risay VN (5.13)

17

This is as far as we need go, though it is tempting to make the substitutions
Riyry = Rabcdet“eyberceyd and Rippy = Rabcdetaexbexceyd. But that is not
really necessary as we can defer those substitutions until we actually need
values for the stated partial derivatives. This is described in more detail in
section (7).

Note that when introducing the lapse function by the transformation dt =
N(t')dt' we have not made explicit the coordinate transformation on the
curvatures (though we do use distinct labels t and ¢’ in the time derivatives).
In this way we use t’ as an integration parameter on the world line of each
vertex while retaining the original coordinates (¢, x, y, z) as the local Riemann
normal coordinates (and thus at any point on the world line we continue
to have (gu), = diag(—1,1,1,1)). We choose to maintain this distinction
between t and ¢’ not only to keep the equations tidy but also because it leaves
the equations in a simple form well suited to numerical integrations.

Clearly the above procedure can be applied directly to each of the remaining
13 curvature evolution equations. The final results for all 14 equations can
be found in the Appendix.

5.3 Hyperbolicity and constraint preservation

It is natural to ask if the new system of evolution equations are hyperbolic
and also, are the new constraints preserved by the new evolution equations?
The answer to both questions is yes and we will demonstrate this as follows.

Given that Rupeq = Ruayﬁe“ae“be”ceﬁd we see that
Rabcd,ef = Ruauﬁ,m'euaeabeyceﬁdepeeTf + Vabcdef (R7 Na aRa 8N7 aQN)

where Vgpeder is a function of R,n.3, N and the indicated partial deriva-
tives. Importantly, Vapeqer does not contain any second partial derivatives
of the curvatures. We have previously shown that, at the central vertex,
cach R,..p satisfies a wave equation of the form 0 = ¢°" R, nu8,r With g™ =
diag(—1,1,1,1). Thus we find that

gefRabcd,ef = gefvabcdef (R, OR,N,ON, 82]\7)

where g¢/ = diag(—1,1,1,1). It follows that each R.q satisfies a wave equa-
tion with source terms and therefore we have shown that the new evolution
equations constitute a hyperbolic system.

18

A similar analysis can be applied to the constraints. We begin by writing a
typical differential constraint (4.28-4.33) in the form

0 = Wyap(OR)

where the right hand side depends only on the the first derivatives of R,,.3.
Introducing the lapse function is trivial (there are no time derivatives, so the
equation is unchanged). If we define the frame components Wppeq by

a v
Wabcd = Wuauﬁeuae b€ ceﬁd

then we find

Wabcd,t - Wuauﬁ,peuaeabeyceﬁdel)t + Wuoa/ﬁ (euaeabeyceﬁd)i
and as we have previously shown that W,,,3 = 0 and W45, = 0 it follows
that Wapea = 0 and Wepear = 0. It is easy to see that the same procedure can
be applied to the remaining constraints (4.18-4.24) with the same outcome.
Thus we have shown that the new constraints are conserved by the new
evolution equations.

6 Coordinates

There are at least two instances where the vertex coordinates are required.
First, when constructing the transformation matrix used when importing
data from neighbouring cells. Second, as part of the time integration of leg-
lengths, equations (3.1-3.2). They are also required when computing the
extrinsic curvatures (7.1) and the hessian (7.2).

Recall that within each cell we employ two distinct coordinate frames, one
is tied to the tetrad associated with the central vertex while the other is
aligned with the lattice. Both frames share the central vertex as the origin.
We will describe first how to construct the lattice coordinates, which we will
denote by y*, followed by the tetrad coordinates, denoted by z*. The lattice
coordinates are only ever used in the construction of the tetrad coordinates,
once these are known then the lattice coordinates can be discarded. Note
that terms such as R;y.y, Kyy . etc. are referred to the tetrad coordinates.

For a large part of this discussion we will be concerned mainly with the
scaling of the coordinates with respect to the typical lattice scale (e.g., to
establish that ¢ = O (L?)). This applies equally well to both coordinate

19

frames and so, to be specific, we will present the arguments in terms of the
tetrad coordinates. Omnce we have sorted out these scaling issues we will
compute the lattice coordinates followed by the tetrad coordinates.

Our first task will be to construct the piece of the Cauchy surface that is
covered by a typical computational cell. Recall that we view the Cauchy sur-
face to be a smooth 3-dimensional surface that passes through each vertex
of the lattice and that it shares with the lattice, at each vertex, the same
future pointing unit normal and second fundamental form (the extrinsic cur-
vatures). In our local Riemann normal coordinates we wish to construct an
equation of the form 0 = —¢ + f(z") that passes through the vertices of this
computational cell and with given extrinsic curvature at the central vertex.
For this we use the familiar definition that dn* = —K*,0x" for the small
change in the unit normal under a displacement across the Cauchy surface.
If we take the displacement to be from the central vertex (o) to a nearby

vertex (a) then we have
nt —nt = —K", x, (6.1)

But we chose the coordinates so that n# = (1,0,0,0)* while for the surface
0 = —t + f(z*) the unit normal at (a) is simply n# = ¢"(—1, f.)./M =
(1, fu)"/M where M =1+ O (L?) is a normalization factor. Thus we have
(1, fu)* = (1,0,0,0)* — K*,a% + O (L*) and this is easily integrated to give

ty = —%wagxg + 0 (L?) (6.2)

Note that since K*#,n” = 0 we can use this last equation to compute the
time coordinates for each vertex in the computational cell (given the spatial
coordinates z¥ and the extrinsic curvatures K,,).

Consider the geodesic segment that joins the central vertex (o) to a typical
nearby vertex (a). Then from the definition of Riemann normal coordinates
we have

where m# is the unit tangent vector to the geodesic at (0).! Thus it follows
that
|2zl = O (L) (6.4)

for each vertex in the computational cell. Combining this with the above
equation (6.2) for ¢, shows that

ta] = O (L?) (6.5)

I Actually, by virtue of the fact that the path is a geodesic segment expressed in Riemann
normal coordinates, the values for m# are constant along the geodesic.

20

This result could also be inferred from the simple observation that m! — 0
as L — 0 (this is a consequence of the smoothness of the Cauchy surface at

(0)).

We turn now to the simple question — How accurate do we need the coor-
dinates to be? That is, if 7' are the exact Riemann normal coordinates for
vertex i, then how large can we allow |z} — Z!'| to be? The answer can be
found by a simple inspection of the evolution equations (3.1-3.2). The trun-
cation terms in those equations are O (L?) thus we can safely get by with
O (L?) errors in the coordinates, that is

|z — & | = O (L?) (6.6)

The good news is that such coordinates are readily available — flat space will
do. To see that this is so, assume, for the moment, that we have estimates
for the K, and then look back at equations (6.2,1.2). This is a coupled
system of equations for the coordinates (t,z,y,z)" for each vertex in the
computational cell. We are fortunate to have an explicit equation for the
time coordinates, namely (6.2). This allows us, in principle, to eliminate
each time coordinate that appears in equation (1.2). The result would be a
set of equations for the spatial coordinates . In the following we will not
make this elimination explicit but take it as understood that such a process
has been applied. We will have a little more to say on this matter in a short
while.

For a typical vertex (1) we will need to compute three spatial coordinates and
thus we look to the legs of a tetrahedron. Suppose that that tetrahedron has
vertices (ijkl) and suppose that we have computed, by some means, the exact
Riemann normal coordinates ## for vertices (ijk). The exact coordinates Z}'
for vertex (1) could be obtained by solving the system of equations

L2 = g (¥ = #)(& = &) = S Rumo #0303 a=ijk (67)

but we could also construct flat space coordinates z}" for vertex ! by solving
the system
LCQLZ = gl“’(jg - x?)(fz - le) a=1,7j, k (68)
From the last equation we conclude that |z# — z}'| = O (L) for a # [. Next,
make the trivial substitution 7} = z}' + (Z}' — z}') in the first term in (6.7),
expand and use (6.8) to obtain
0= =29, (T4 —)T — @) + 9 (T —) (& — 27)

1
- gRW,,[g:ingff‘i:f a=1i,j.k

21

and as each 7# = O (L) for a = i, j, k we easily see that

7y — af = O () (6.9)

The fly in the ointment in the above analysis is the assumption that we
knew the K, (and thus we could eliminate the t,). This is not exactly
correct for the K, are found by solving equations (3.1) which in turn requires
the coordinates x% which we have yet to compute (at that stage). Luckily,
this is not a major problem. Look carefully at equation (6.7) and recall
that g,, = diag(—1,1,1,1). Thus the ¢-terms will appear only in the form
—(t~a — tl)2 and in the curvature terms of the form Ry, t.xrxfx;”. The point
to note is that since ¢ = O (L?) we see that each of these terms is O (L")
with n > 4 and thus they have no effect on the above analysis. Thus even
though we argued previously that we should eliminate the ¢, using equation
(6.2) the above argument shows that we can put ¢, = 0 without harm.

Our final calculation concerns the errors induced in ¢, by using the approxi-
mate zy and K, rather than their exact counterparts. Our analysis is very
similar to that just presented. We start with the two sets of equations, the
approximate and exact equations,

o, = —Kyprz? and 20, = —K,,3%%° (6.10)

We will assume that |K,, — K| is at least O (L) (this is one assumption
that we will not relax at a later stage). Then we make the trivial substitution
T} =z} + (z} — x}') as above to obtain

2, = 2ty — <l~(uv - KM,) 220 — 2Kt (30 — 1Y) — Koy (3% — 2) (3% — 2V)
) (6.11)
Using 2% = O (L), ¢ = O (L) and | Ky, — K| = O (L) we find that

a

fa— to] = O (1) (6.12)

6.1 The lattice coordinates

We return now to the concrete question of how to compute the vertex co-
ordinates within one computational cell. We will first compute the lattice
coordinates y* followed by the tetrad coordinates x#. Our present challenge
is to find the solutions of the coupled system of equations

L2 = gyt —y) (Wl —uy) (6.13)

22

for a suitable subset of the legs (ab) in the computational cell (equal in num-
ber to the number of unknown coordinates). The problem here is that if we
treat this as a system of equations for the spacetime coordinates (¢, x,y, 2)*
it is extremely unlikely that we will find any solutions (or if we do then the
numerics will almost certainly be extremely unstable). The reason is quite
simple — the vertices are assumed to lie within one 3-dimensional Cauchy
surface. This suggest that we should use the above equations to determine
the spatial coordinates (z,y, 2)* with the time coordinates found by other
considerations. Fortunately we already know, from the above analysis, that
each |t,| = O (L?) while |y*| = O (L). Thus we see that all terms involving
the ¢, are O (L*) and thus will be consumed by the O (L*) truncation errors
inherent in the above equation (as an approximation to equation (6.7)). So
we may safely discard all the of the ¢, terms in the above equations. The
next trick that we will use is the observation that the coordinates can be
computed one vertex at a time. This is easily shown by direct construction.
Consider a typical tetrahedron with vertices (oijk) where (o) is the central
vertex and suppose we have computed the coordinates for (0ij). Our task
now is to compute y;' by solving the following equations

Ly = gu¥ivi (6.1
Loy + Loy = Ly = 29,09y (6.15)
Loy + Lo — Ly = 29wy v (6.1
where the last pair of equations were obtained by expanding L2, = gu.(y
) (yY — yp). A simple calculation shows that the solution is given by |
yr = Py + Qy; + Rn*

where

u __ UV TYZ, T, S
n-=g Ev'rsyiyj

L2 s 2
p— mszoj MMy Q= mjkLm- — MM
L2 L2

n n

1/2

(L3 — P°Ly; — Q°Ly; — 2PQmy))
Ly
L2 = L5102 —m?,

oi“oj — Yij

R==

and where the m,;, are defined by
2my; = Li; + Lij - L?j

23

The two solutions, one for each choice of the + sign, correspond to the
two possible locations of the third vertex (k), one on each side of the plane
containing the triangle (0ij). Which choice is taken will depend on the design
of the lattice. A systematic choice can be made by noting that the vectors
yi', y; and n* form a right handed system. With R > 0 the vector y;' lives
on the same side of the plane as n".

To complete the picture we need coordinates for the first two vertices (1)
and (2). Since we chose to align our coordinates so that the z-axis passed
through vertex (1) while the vertex (2) is contained in the zy-plane we must
have yj* = (A,0,0)" and v = (B,C,0)" for some numbers A > 0, B and
C > 0 such that

Lgl = guvy%yi)
LSZ = quygyg
Ly + Ly — LYy = 29uy1y5

The solution is readily found to be A = Loy, B = (L3, + L3, — L3,)/(2Lo1)
and C = (L, — B?)'/2.

6.2 The tetrad coordinates

The transformation from the lattice to tetrad coordinates is quite simple.
Let e, be the basis for the tetrad frame and let J, be the corresponding
basis for the lattice frame. Recall that we have previously chosen the frames
so that both e; and 9, are aligned with the normal to the Cauchy surface.
Now consider a typical vector v, that joins (0) to (a). In the lattice frame
this vector has components y* while in the tetrad frame, with basis ey, its
components are just v,°. That is we have, for a = 1,2, 3

n=0o, =e (6.17)
Yo = Va' (6.18)
Ve =yho, = v ey (6.19)

In the last equation both the y* and v,” are known. Thus we have sufficient
information to compute 9, in terms of e, and vice versa. Note that the tetrad
coordinates z¥ are given by

ot = vk, = vt (6.20)

24

Finally, using equation (6.2), we can compute the time coordinate for every
vertex, not just the three vertices associated with v,?, a = 1,2, 3

1
yh =l = —EKWxgxg ., a=1,2,3,--- (6.21)

7 Source terms

We have previously mentioned, without giving details, that source terms such
as Ryyzy,. can be computed by applying a finite difference approximation to
data imported from neighbouring cells. Here we will outline how such a
procedure can be applied (the exact details will of course depend on the
structure of the lattice). The same procedure can also be used to estimate
the spatial derivatives of the e#,.

Suppose we have two neighbouring computational cells that have a non-trivial
overlap (as indicated in Figure (1)). Each cell will carry values for R, in
their own local RNC frames. Our first task would be to import the values
form the one cell to the other. This will entail a coordinate transformation,
composed of a boost (to account for the change in the unit normal between
the two cells) and a spatial rotation (to account for the different orientations
of the legs of the cells).

Let 2* be the (tetrad) coordinates in one cell and let 2/* be coordinates in the
other cell. Our plan is to import data form the ' frame to the z* frame. We
will demand that the overlap region be such that it contains at least one set
of three linearly independent vectors (i.e., legs), at O, which we will denote
by w;, © = 1,2,3. Since we know the coordinates of each vertex in each cell
we can easily compute the components of w;, ¢ = 1,2, 3 in each frame. The
normal vector ny at O’ will have components n)f = (1,0,0,0)* in the 2/*
frame. But in the z* frame we expect nf, = n# — K*,x%,. Thus we have 4
linearly independent vectors at O’, expressed in two different frames, and so
there must exist a mapping from the components in one frame to those in
the other. That is there exists a U*, such that

= U",n (7.1)

wi =U"w?, i=1,2,3 (7.2)

7 0

Since we have values for the components of n, and w;, ¢ = 1,2,3 in both
frames we can treat this as a system of equations for the U*,,.

25

With the U*, in hand, we can compute the values of R,..,p at O in the x#
frame of O by way of

(Ruaws)y = U Us"Ua’Us™ (Rpg,r) (7.3)

o/

with U, = g,ag"°U% and g, = diag(—1,1,1,1). This can be repeated for
all of the vertices that surround O. The result is a set of point estimates for
R,av3 in the neighbourhood of O which in turn can be used to estimate the
derivatives of R,q,p at O. This part of the process is similar to that required
when computing the Hessian (see below) and presumably similar methods
could be applied.

Note that for a sufficiently refined lattice, the U*, should be close to the
identity map, that is U*, = 6, + V*#,0 (L) where the V*, are each of order
O (1). This can be used to simplify some of the above computations.

See [1] for a complete example in the context of the Schwarzschild spacetime.

In section (5.2) we noted that substitutions such as Ry,,, = Rabcdetaeybexceyd

could be introduced into the curvature evolution equation (5.13). At that
time we argued that doing so was not necessary for the coordinate data, in
this instance [y, could easily be recovered when needed by using Ry, =
Rabcdet“eybexceyd. Then the scheme described above could be used to com-
pute Riyqy .. However there may be numerical advantages in making a formal
substitution before estimating any of the partial derivatives. For Ry, , this
would lead to the following

a, b, c, d
Rtyxy,x = (Rabcdet €y €z €y),x
a, b, c, d a, b, c, d
= Rabedztt €y €2y + Rabed (et €y €5 €y)x

Since the R .q are scalars, their partial derivatives can be estimated without
requiring any of the frame transformations described above (importing such
data from neighbouring cells is trivial). This leaves us with the derivatives
of the form (e,*),. Since n, = —e,' we can use (5.4) to eliminate any of
the spatial derivatives of e,', in this case (e,') .. This would introduce the
extrinsic curvatures into the evolution equations. However the remaining
partial derivatives, (e,) ., ¢ = 2, 3,4, would have to be estimated using the
methods described above (by importing data from neighbouring cells etc.).
This approach does incur a small computational overhead which may be
justified if it brings some improvement to the quality of the numerical data
(e.g., better accuracy and or stability). Judging the merits of this variation
against the simple method given in section (5.2) might best be decided by
direct numerical experimentation.

26

There is one aspect of the above discussion that has been overlooked — the
vector that connects O to O’ is, generally, not orthogonal to the normal
vector at O (except in the continuum limit, recall that the spacelike geodesic
that joins a pair of vertices should be viewed as a chord of the Cauchy
surface rather than as a curve contained within the Cauchy surface). Thus
the spatial derivatives, when constructed according to the above, will carry
an error typicaly of order O (L). However, this error could be eliminated by
an interpolation of the data along the worldline of O’ prior to estimating the
partial derivatives.

7.1 Extrinsic curvatures

A cursory glance at equation (3.1) might give the impression that it consti-
tutes a simple linear system for the K,,. But things are never as simple as
they seem. The problem, as already noted, is that there are far too many
equations for the six K,,. If we make the reasonable assumption that the
lattice data is a good approximation to the (unknown) continuum spacetime
then we can expect considerable redundancy in this overdetermined system.
How then do we pull out just six equations for the six K,,? One option is to
reject all but six of the equations and hope that this yields an invertible sys-
tem for the K,,. A better, and more flexible approach, is to take a weighted
sum of the equations, that is we create a new set of equations of the form

0="> Wy (Py— K,AzhAzy,) (7.4)
ab

where W are a set of weights of our own choosing (typical values being 0 and
+1). With n =1,2,3...6 we have six equations for the six unknowns. This
idea has been used previously [1] and worked very well. There are certainly
other options that could be explored (e.g., different choices of weights, least
squares) none of which have been tested simply because the above scheme
seems to work well.

There is yet another approach that could be taken, one that may simplify the
evolution scheme. Suppose that the K, are known at each central vertex.
We could then use the standard ADM equations (suitably adapted to the
lattice, see for example equations (4.5) and (4.6) in [1]) to evolve the K.
The lattice leg lengths would countinue to be evolved using (3.3) though this
would require some form of interpolation of the K, from the vertices to the
centre of the legs. The evolution equations for the Riemann curvatures would

27

be unchanged. This is exactly the method employed in the first paper in this
series.

The two methods just described can be characterised in terms of what con-
stitues the basic data on the lattice. In the former approach the lattice data
is taken to be the leg lengths, their time derivatives and the Riemann curva-
tures. The extrinsic curvatures would then be extracted from this data using
some weighted average, as described above. In the later scheme the lattice
data would be the leg lengths plus the extrinsic and Riemann curvatures.

7.2 The Hessian

At some point we will need to estimate the N}, at a central vertex. Since
N is a scalar function and since we are using Riemann normal coordinates
this computation is essentially that of computing all of the second partial
derivatives on an unstructured grid. There is an extensive literature on this
point in the context of finite element schemes. We mention here one approach
which we discussed in one of our earlier papers [1] (but which we have yet to
test).

Consider a typical leg (ij) in some computational cell. We can estimate N,
at the centre of the leg by the centred finite difference approximation

(N)yy = (V) +0(22) (7.5)

where

- N. — N,
Nu) === ma), 7.6
(), = =7 m (7.6)
and (m,);; is the unit vector tangent to the geodesic and oriented so that
it points from (i) to (j). We can repeat this computation for each leg in
the computational cell and then estimate N}, by a least squares fit of the

function

N|U(ZE) = N|u + thl‘v (77)

to the data generated above by equation (7.6). A suitable least squares sum
would be

S(Nus M) = ZZ((M) Ny — N @ >2 (7.8)

where 7j; is the centre of the leg (ij). Note that this least squares fit must
be made subject to the constraint Ny, = N},,. The coefficients Nlu and]\7|m,

28

would then be taken as our estimates for the corresponding quantities at the
central vertex.

8 Discussion

There are a number of aspects of this paper that could easily be debated.
For example, should we proceed with the substitutions such as Ry, =
Raveaci®e, e, in equation (5.13)? As already noted in section (7) this
would introduce a raft of new terms including the extrinsic curvatures. We
chose not to use the substitution solely for reasons of simplicity. There is also
a question over our choice of tetrad. Do we really need to demand that the
tetrad be orthonormal? Not at all. We could choose to tie the tetrad to the
legs of the lattice (and then the tetrad would no longer be needed) but that
would produce a coupling amongst all of the evolution equations (e.g., the
evolution equation for R,,, would be a linear combination of all of the evo-
lution equations for R,,,3). The resulting equations would not be anywhere
near as simple as those listed in Appendix A. Then we have the issue of
estimating partial derivatives on an irregular lattice (for the Hessian and the
source terms in the curvature evolution equations). This is non-trivial but at
least there is an extensive literature on the subject and so a workable solu-
tion should not be too hard to find (which may be the least squares method
suggested in section (7.2)). All of these issues (and most likely others) can
be explored by direct numerical exploration on a non-trivial 34 1 spacetime.
We plan to report on such investigations soon.

The previous paper in this series [1] was put forward as a proof of concept
before embarking on the general case presented in this paper. There are
details in that first paper that are only touched on in this paper, in particular
the computation of the spatial partial derivatives of the Riemann curvatures.
Computations such as those will of course depend very much on the nature
of the spacetime such as the symmetries (if any). Thus the first paper serves
not only as a proof of concept but also as detailed example that completes
specific computations not undertaken in this paper.

A The curvature evolution equations

Here we list all 14 curvature evolution equations (this follows on from section
(5.2) where we provided details of the derivation for the first equation below).

29

Keep in mind that these equations apply along the worldline of a central
vertex and that the script quantities such as Ry, are projections onto an
orthonormal tetrad while the non-script quantities such as R;y,, are the
coordinate components in a frame where the metric is diag(—1,1, 1, 1) along
the world line of the central vertex. The list is as follows:

ARz
dtz// Y = N(Rtyacy,x - Rtmmy,y)
+Rtyxyva - RtxxyvyN+Rtya;yvg;N - RtmyVyN (A]_)
dRm Tz
d—; = N(thxy,a: - Rtmcy,z)
+ Rtyxzva:N - th;xzvyN + tha:yva - Rt:ca:yva (AQ)
dRac z
dtz,!y = N (thwy,y - Rtywy,z)
+ Rtyyzva - RtxyzvyN + thxyVyN - Rtyxyva <A3)
dezxz
dt' = N(thacz,;t - Rtw:vz,z)
+ thxzver - Rt:cwzva + th:czva:N - Rta:a:zva <A4)
dRzz z
T,y = N(thxz,y - Rty:cz,z)
+ thyzva - Rta:yzva + thszyN - RtyvaZN (A5)
dR zYz
di’y - N(thyzzy - Rtyyw)
+ thyzvyN - Rtyyzva + thyZVyN - Rtyyzva (AG)
ARy
d?’j - = N(RIWW - Rwyyz,z)
+ Riyay VN + Ry VaN = Rigiy Vy N (A.7)
dR TT
d;/ s = _N(nyxy,y + R:Byzz,z)
+ Rw:ﬁyva + Rtwtyva:N - Rta:t:cvyN (AS)
ARtz
d;/ * = N(Ruyoza + Royyey)

+ RizzyviN + Rtytzva - RtxtzvyN (Ag)

30

thzxz

= N(Razzxz,m + Ra:zyz,y)

dt’
+ RizxzviN + thtzva - Rta:tzva (Al())
dR TTZ
d;, = _N(Rmymz,y + Rmzxz,z)
dR Tz
d?;’ = N(szxz,x - szyz,z)
+ Rzymzva + Rtytzva - Rtrtyva (A12)
ARy,
d:f/y - N(Rmyzvx + Ryzz/z,y)
+ RizyzviN + thtzvyN - Rtytzva (A13)
ARty
% - N(Rzyyw - Ryzyz,z)

+ RiyyzviN + RiytzVyN — Riyty V. N (A.14)

Note that in the above there are two instances of Ry, in (A.3) and (A.5),
and as Ryzy. is not part of our chosen set of R4,z it should be replaced with
Riyzz — Rizey (i-€., the first Bianchi identity).

B Riemann normal coordinates

We recall here a few basic properties of Riemann normal coordinates. A set
of coordinates x* are said to be in Riemann normal form if every geodesic
passing through a given point O (the origin) is described by z#(s) = sv*
where s is an affine parameter and v* is constant along the geodesic. It
follows from the geodesic equation and its successive derivatives, that the
connection and its higher symmetric derivatives™ all vanish at the chosen
point, that is at O

0=T# . (B.1)
0= F?oqoaz;oz;;mocn) n=3,4,5,--- (B.2)

These conditions do not uniquely determine the coordinates for we are free
to apply a transformation of the form x* +— A*, x" which clearly preserves

**Here we take a small liberty with notation, the upper index on the Christoffel symbol
should be ignored when computing covariant derivatives.

31

the property that the geodesics through O are of the form z#(s) = svt.
This freedom can be used to ensure that the metric at O is simply g, =
diag(—1,1,1,1).

Choosing the coordinates so that the connection vanishes at the origin does
introduce some nice properties, in particular covariant differentiation reduces,
at the origin, to simple partial differentiation. This fact was essential to the
analysis given in sections (4).

There are two main impediments to the existence of Riemann normal coordi-
nates. The metric must be smooth throughout the neighbourhood (i.e., away
from curvature singularities) and each point in the neighbourhood should be
connected to the origin by exactly one geodesic (i.e., no pair of geodesics
through O should cross, except at O). These conditions are easily satisfied
by simply choosing the neighbourhood around O to be sufficiently small (but
not vanishingly small).

In these coordinates the metric and connection can be expanded as a Taylor
series around O leading to
1 1

G (T) = G — gRHal,gxaxﬁ — éle,gﬁxaxﬁaﬂ + O (L4) (B.3)

1 1
g (x) =g + gR"a”/g:po‘x’B + ER"Q”/Ma:O‘xﬁx”’ + 0 (LY (B.4)

1 1
[s(7) = gR“mﬁﬂ t31 (2R* 55,0 + 4R 455 + Ryass™) 272°

+(a o B)+ 0 (17 (B.5)

If we know the Riemann normal coordinates, z!' and xé‘ , for a pair of points,
1 and j, then we can compute the length of the geodesic segment that joins
the points by

1 _o = 1 —a =03 = v
L?j = <9W — gRuaVﬁxijxiﬁj — ERMQV577$iij@j$%) Axfijij + 0O (LG) (B.6)
where Axj; = o — x and Zj; := (2 + z})/2 is the mid-point of the leg.

The unit tangent vector mfj to the geodesic at i, is given by

1 1%
Em‘“x AxfijZj RY i 3

1 1
+ gxo‘x”AxfijZjR“ﬁw,a + ﬁxax”Ax’fjA:chR’“ (B.7)

1
Lyl = Aty + L8t a8 R+

afvy

1
a AV B
T Az AxjAx) R gory

32

Finally, if we have a geodesic triangle built on the three points i, j, k then
the generalised cosine law takes the form

1
2Ly, Ly cos0;; = L+ L% — L7, — ng,ng:vkaxkax?‘kAxfk—i—O (L) (B.8)

)

in which 6;; is the angle subtended at vertex & by the geodesic that connects
1 to J.

33

Figure 1: An example of the overlap, the shaded region, between a pair of com-
putational cells. The central vertex of each computational cell is denoted by the
large dots whereas the smaller dotes denote the vertices that define the bound-
ary of the computation cells. These vertices are themselves the central vertices of
other computational cells. In this 2-dimensional example the overlap consists of
just the pair of triangles. In 3 dimensions the over lap would consist of a closed
loop of tetrahedra. In each case there is ample information available to obtain a
coordinate transformation between the pair of local Riemann normal frames.

34

0,

;\.

(Nn)got’
(Nn),ot'

O Vg a

Figure 2: Here we show the evolution of one leg (0a) within one computational
cell. Clearly the four vectors form a closed loop and thus (Nn),0t' + v, = v, +
(Nn)y)ot" which leads directly to equation (5.6).

35

References

[1]

2]

L. Brewin, An Einstein-Bianchi system for Smooth Lattice General
Relativity. I. The Schwarzschild spacetime., arXiv:1101.3171.

L. Brewin, Long term stable integration of a maximally sliced
Schwarzschild black hole using a smooth lattice method, Class.
Quantum Grav. 19 (2002) 429-455.

L. Brewin and J. Kajtar, A Smooth Lattice construction of the
Oppenheimer-Snyder spacetime, Phys. Rev. D 80 (2009) 104004,
arXiv:0903.5367. http://users.monash.edu.au/~leo/research/
papers/files/1cb09-05.html.

L. Brewin, An ADM 3+1 formulation for smooth lattice general
relativity, Class. Quantum Grav. 15 (1998) 2427-2449.

L. Brewin, Riemann normal coordinates, smooth lattices and numerical
relativity, Class. Quantum Grav. 15 (1998) 3085-3120.

T. Regge, General Relativity without coordinates, Il Nuovo Cimento
XIX (1961) no. 3, 558-571.

L. Brewin, Riemann Normal Coordinate expansions using Cadabra,
Class. Quantum Grav. 26 (2009) 175017, arXiv:0903.2087.
http://users.monash.edu.au/~leo/research/papers/files/
1cb09-03.html.

L. Brewin, Deriving the ADM 3+1 evolution equations from the second
variation of arc length, Phys. Rev. D 80 (2009) 084030,
arXiv:0903.5365. http://users.monash.edu.au/~leo/research/
papers/files/1cb09-04.html.

36

http://arxiv.org/abs/arXiv:1101.3171
http://dx.doi.org/10.1103/PhysRevD.80.104004
http://arxiv.org/abs/arXiv:0903.5367
http://users.monash.edu.au/~leo/research/papers/files/lcb09-05.html
http://users.monash.edu.au/~leo/research/papers/files/lcb09-05.html
http://dx.doi.org/10.1088/0264-9381/26/17/175017
http://arxiv.org/abs/arXiv:0903.2087
http://users.monash.edu.au/~leo/research/papers/files/lcb09-03.html
http://users.monash.edu.au/~leo/research/papers/files/lcb09-03.html
http://dx.doi.org/10.1103/PhysRevD.80.084030
http://arxiv.org/abs/arXiv:0903.5365
http://users.monash.edu.au/~leo/research/papers/files/lcb09-04.html
http://users.monash.edu.au/~leo/research/papers/files/lcb09-04.html

	Introduction
	Notation
	Evolving the leg-lengths
	Evolving the Riemann curvatures. Pt. 1
	Bianchi identities
	Constraints
	Constraint preservation
	Hyperbolicity

	Evolving the Riemann curvatures. Pt. 2
	A simple example
	Curvature evolution equations
	Hyperbolicity and constraint preservation

	Coordinates
	The lattice coordinates
	The tetrad coordinates

	Source terms
	Extrinsic curvatures
	The Hessian

	Discussion
	The curvature evolution equations
	Riemann normal coordinates

