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Abstract. Motivated by a recent study casting doubt on the correspondence
between Regge calculus and general relativity in the continuum limit, we explore
a mechanism by which the simplicial solutions can converge whilst the residual of
the Regge equations evaluated on the continuum solutions does not. By directly
constructing simplicial solutions for the Kasner cosmology we show that the
oscillatory behaviour of the discrepancy between the Einstein and Regge solutions
reconciles the apparent conflict between the results of Brewin and those of previous
studies. We conclude that solutions of Regge calculus are, in general, expected
to be second order accurate approximations to the corresponding continuum
solutions.

PACS numbers: 04.20.-q, 04.25.Dm

1. Introduction

Regge calculus [1] is a discrete theory of gravity which replaces the smoothly curved
spacetime of general relativity with a lattice. The curvature of the lattice spacetime
is concentrated entirely on the two-dimensional hinges of the four-dimensional lattice
cells.

Regge calculus holds much promise for the numerical investigation of both
classical and quantum gravity. Although the lattice approach appears well suited
to numerical applications, progress in the field has been slow. Only recently have the
first completely generic four-dimensional numerical simulations been performed [2, 3].

After the recent papers by Brewin [4] and M. Miller [5], and despite the proven
track record of the Regge calculus, a lively debate arose [6] as to whether or not
solutions of the Regge equations would converge to solutions of the Einstein equations
in some suitable limit. Neither Brewin or M. Miller directly computed solutions of
the Regge equations. Instead, they took the somewhat easier approach of evaluating
the Regge equations on an exact solution of Einstein’s equations. They did this using
sophisticated interpolation schemes, based on geodesics, to map a range of Einstein
solutions onto simplicial lattices. The residual of the resultant Regge equations,
calculated using these interpolated lattice edge lengths, was then examined in the limit
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of very fine lattice discretisations. Brewin observed that the residual scaled as O(1) as
the lattice was refined, and he inferred that solutions of the Regge equations, in generic
spacetimes, would not converge to solutions of the Einstein equations in the limit of
fine discretisations. M. Miller chose a slightly different measure for the residual of the
Regge equations, but when expressed in terms of Brewin’s measure, M. Miller’s results
are consistent with those obtained by Brewin. Despite this M. Miller does draw sharply
different conclusions, based upon further calculations associated with averages of the
Regge equations, namely that solutions of the standard Regge equations will converge
as the fourth order in the lattice spacing to solutions of the Einstein equations. Similar
behaviour, in which the residual converges only over averages of the equations, has
been observed by Sorkin [7] in the context of massless scalar fields on a 2-dimensional
simplicial space.

The situation became even more confused after the work of Gentle and W. Miller
[2], who demonstrated explicit quadratic convergence of particular solutions of Regge
calculus to a solution, the Kasner spacetime, of general relativity. This spacetime
was one of the test cases used by Brewin and M. Miller. This seems most odd — we
appear to have a convergent set of solutions from an apparently non-convergent set of
equations. How can this be?

In this paper we explore a possible explanation for this behaviour, as proposed
by Brewin [4], which is consistent with all previous numerical studies. It is important
to note that the direct solution of the Regge equations has always generated solutions
which converge to the corresponding solutions of general relativity. Although the
observed rate of convergence is dependent upon the particular lattice and symmetry
restrictions imposed, when the lattice construction allows the full expression of the
gravitational degrees of freedom, second order convergence of the lattice solutions to
the continuum has always been observed [3].

We begin with a more complete description of the problem in section 2, and then
discuss a possible explanation in section 3. Finally, in section 4, we present numerical
evidence to support our proposal.

2. Investigating the convergence of Regge calculus

There are various ways in which the convergence properties of a numerical technique
can be explored. The most rigorous approach involves the direct comparison of
the approximate equations and the full system, concentrating on the leading order
discrepancies. The underlying assumption is that the solutions of the approximate
equations will converge at the same rate as the approximate equations themselves
converge to the original system.

The Regge and Einstein equations are too complex for such a direct approach to
be beneficial. Not only are the equations inherently complex non-linear systems, but
before such an analysis can proceed one must choose a lattice upon which to express
the Regge equations, together with a coordinate system in which to write out the
Einstein equations. Once these decisions have been made, we are faced with a more
problematic choice: how are the two sets of equations to be compared? In general
there are more Regge equations (one per lattice edge) than Einstein equations (ten
per spacetime event).

There is no clear prescription for averaging the lattice equations to obtain the
correct number of Einstein equations in the continuum limit. Brewin [4] and M. Miller
[5] have both developed their own schemes for averaging the Regge equations. A
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direct assault on the convergence properties of Regge calculus is therefore likely to
be applicable only on a specific lattice, with a particular choice of averaging in the
continuum limit. That is, the results would indicate that, in some averaged sense, the
Regge equations converge to the Einstein equations. However, the result would not
constitute a proof valid for all possible lattice choices.

Given these limitations, it is natural to ask if similar results can be obtained
by directly solving the Regge equations and comparing the lattice solutions to
corresponding Einstein spacetimes. Brewin and M. Miller have investigated the inverse
problem: given a known (analytic) solution of general relativity, and interpolating that
solution onto a lattice, what can be said about the convergence of the Regge equations?

The approach taken by Brewin and M. Miller was to introduce some discretisation
process in the smooth manifold on which the Einstein equations are defined. This
provides a way to map the smooth metric solutions to a lattice, giving a set of
lattice edge lengths Lg derived from the continuum metric. Both authors used
geodesic lengths to map continuum information onto the lattice spacetime. These
new “continuum” lattice edge lengths do not in general satisfy the Regge equations,
but we can evaluate the residual

r=|R(Lg)| (1)

which is an indication of how well the interpolated Einstein solution satisfies the Regge
equations. It is this residual, using an appropriately chosen norm, which both Brewin
and M. Miller considered [4, 5].

Brewin observed that the residual of the simplicial equations remained roughly
constant as the lattice was refined on a fixed region of spacetime. This result led
Brewin to question the validity of Regge calculus, since any useful numerical scheme
must converge to the underlying solution of the partial differential equations as the
resolution is improved. M. Miller observed second order convergence of the residual,
for any smooth metric, whether or not they were solutions of Einstein’s equations.
Had he used the same norm for the residual as used by Brewin we believe he too
would have observed O(1) convergence of the residuals.

It is important to note that the experiments of Brewin and M. Miller do not
directly evaluate the convergence of the numerical solutions. Rather, they investigate
the convergence of the lattice equations to the Einstein equations. As the lattice is
refined, it is reasonable to expect that the interpolated Einstein solution will satisfy the
Regge equations increasingly accurately. This, however, is not what Brewin observed
numerically.

3. A possible explanation

The observations of Brewin are particularly puzzling in light of the many previous
applications of Regge calculus. Almost every numerical application of the method
has displayed convergence towards the corresponding continuum solution, with
most studies indicating that numerical Regge calculus is a second order accurate
approximation to general relativity.

The edge lengths measured in the Regge lattice (L) and the corresponding
interpolated Einstein edges (Lg, obtained by assigning geodesic lengths calculated
in the continuum) are related as

L=Lg+O("*th) (2)
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with previous numerical studies suggesting that p = 2 (see Gentle [3] for case studies
and a general review). Throughout this paper we assume that J is a typical length
scale in the lattice, and noting that the edges themselves are of this magnitude, we
say that edges which satisfy equation (2) are p-order accurate approximations to the
continuum solution.

Brewin [4] has proposed a mechanism whereby the solutions of the Regge
equations converge to the corresponding Einstein solutions, while at the same time the
residual of the Regge equations evaluated on the interpolated Einstein lattice edges
does not converge. The key to Brewin’s proposal is allowing the functional form of
the error terms (the discrepancy between the Einstein and Regge solutions) to depend
on the discretisation scale 6. This can be clearly seen from a toy model.

Suppose L is a second order differential operator, and y(x) is a solution of the
equation

Ly =0. (3)
Brewin considers the function
s (z) = y(x) + 6° f(x/9) (4)

for some arbitrary scalar 0 and an arbitrary, though bounded, function f(z).
Considering the difference between the solutions we find that

ly(x) — gs(2)| = O(5?), (5)
indicating that the solutions differ only by “second order” terms. Noting that gs(x)
is a solution of some other related equation Ls,

Lsys =0, (6)
where L; is also a second order differential operator (though different from L), we find
that the “residual” of gs(x) with respect to the original operator is

ILgs] = O(1). (7)
This toy model embodies precisely the properties observed by Brewin — second order
convergence of the solutions [3], with no corresponding convergence observed in the
Regge equations when they are evaluated on exact solutions interpolated from the
continuum [4]. The discrepancy between the two solutions in this toy model is seen
to be a wave-like disturbance with frequency proportional to 1/4.

In the continuum limit it is reasonable to expect that the discrete Regge equations
(or a weighted average over them) approach a system of differential equations.
Moreover, consideration of the Einstein equations leads us to expect that the limiting
form of the Regge equations is a set of second order non-linear equations. Furthermore,
previous numerical experiments suggest that Regge calculus is a second order method;
we expect p = 2. The toy model considered above leads us to expect that if the lattice
solutions differ from the continuum solutions by terms with frequencies proportional
to 1/4, it is not unreasonable that the residuals of the Regge equations remain roughly
constant as the resolution is improved.

This is precisely the behaviour observed by Brewin [4]; the solutions converge even
though the residual of the equations do not. This explanation relies on the existence
of high frequency, low amplitude waves in the simplicial solutions; a possibility not
ruled out by any of the largely low-resolution applications of Regge calculus to date.
In fact, one study hints at the existence of precisely this type of wave-like structure in
the Regge solutions [2]. In the next section we construct high resolution solutions of
the Regge equations in order to gain insight into the fine-scale behaviour of the lattice
solutions.



4. Numerical solution of the Regge equations

In this section we solve the Regge equations for the vacuum Kasner cosmology using a
(3 + 1)-dimensional formulation of Regge calculus described elsewhere [2]. The initial
value problem is solved and the lattice is evolved subject to simplicial lapse and shift
conditions.

The Kasner cosmology is a homogeneous anisotropic exact solution of the vacuum
Einstein equations, and is the prototype for generic velocity dominated cosmological
singularities. It also provides a model for epochs in the mixmaster cosmology between
bounces. The metric may be written in the form

ds® = —dt* + tP dx® + tP2dy” + tP3d2?, (8)
where the field equations reduce to a pair of algebraic constraints,
pL+p2+ps=pi+ps+ps=1 (9)

The Kasner exponents (p1,p2, p3) are a one-parameter set, and the solutions include
the flat-spacetime case (0,0, 1).

The previous application of Regge calculus to the Kasner cosmology was viewed as
a benchmark of the numerical technique, and as such the convergence of the solutions
was an important issue. It was found that the lattice solution converged to the
continuum as the second power of the typical lattice spacing [2]. This earlier study
used a fixed lattice resolution, containing 128 vertices arranged in two offset cubic
grids each consisting of 4 x 4 x 4 vertices. Reducing the overall scale of the lattice,
combined with the T2 topology of the Kasner solution, allowed the convergence rate
to be estimated.

In this paper we directly subdivide the lattice whilst fixing the size of the spatial
region. This is a more general and demanding convergence test, as any long wavelength
modes excluded in the previous study are now resolvable. Since the major issue
is convergence we refine the lattice in only one dimension, but reduce the scale
of the remaining spatial axes to avoid the creation of long skinny triangles. Such
long and skinny triangular elements are known to cause instabilities in finite element
calculations.

This effectively “one-dimensional” model allows convergence analysis to be
conducted whilst containing the computational scale of the problem. All calculations
are performed on a lattice containing two offset cubic grids which are fully subdivided
into triangles, tetrahedra and four-simplices. Each cubic grid contains 2" x 4 x 4
vertices (N = 2" = 4,8,...,1024), with the z-axis having a fixed length of X = 10,
and the remaining axes scaled to compensate; Y = Z = 40/2™. This ensures that the
spatial edges surrounding a vertex are all of the same order of magnitude. The typical
spatial resolution in each model is thus ¢ ~ 10/2™.

The full four-dimensional two-slice initial value problem is solved at t = 1, after
which the lattice is evolved to ¢t = 2 using the (3 4+ 1)-dimensional Sorkin evolution
scheme and “geodesic slicing” conditions; that is, with unit lapse and zero shift. The
time step is chosen for each resolution to give a Courant factor of dt/l ~ 0.2; for
N = 512 we chose dt = 3.9 x 1073. However, the main results of this paper were
found to be largely insensitive to the choice of timestep, provided it satisfied the
Courant condition. For full details of the evolution and initial value algorithms, see
Gentle and W. Miller [2]. The results of the Regge evolution are compared with the
continuum solution by performing a least-squares fit of the function

L(t) = LotPr (10)
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to the time evolution of each class of the axis-aligned spatial edges, L., L, and L,.
In agreement with previous studies, the lattice solution is found to remain spatially
homogeneous throughout the evolution to within roundoff error. The typical standard
deviation of the edges also remained below the limit of numerical accuracy.

Figure 1 displays the fractional difference between the early evolution of the Regge
cosmology and the exact solution for the axisymmetric case with p; = po =2/3,p3 =
—1/3. Although the average magnitude of the discrepancy is small, there is a clear
oscillation superimposed upon a general trend. The figure displays data for three
lattices consisting of 128 x 4 x 4, 256 x 4 x 4 and 512 x 4 X 4 vertices.

An estimate of the rate at which the Regge solution converges to the continuum is
given in figure 2. After performing a least squares fit of equation (10) to the simplicial
solution in the region t = [1,2], we plot the fractional difference between the fitted
power p, and the analytic value p. for each spatial axis. It is clear that this power
law fit approaches the continuum solution as the second power of the lattice spacing.
Figure 3 shows the scaled error in the least squares fit, giving an indication of how
well the power law (10) describes the Regge solution. Again, we find second order
convergence.

The data represented in figure 3 contains additional information. It is clear from
figure 1 that there is a strong wave-like oscillation superimposed upon the general
error curve. Fitting equation (10) to such data will draw out the averaged solution,
while the error in the fit will reflect the magnitude of any discrepancies from that
average behaviour. Thus we see that both the oscillations and the underlying trend
in figure 1 converge to zero as at least the second power of the grid spacing.

In light of the discussion in the previous section, the frequency of the oscillations
evident in figure 1 is also of interest. It is clear from the figure that the frequency
increases with the lattice resolution. Figure 4 shows this in a more quantitative
manner, displaying the Fourier transform of a small segment of the fractional error. It
is apparent that the frequency of the waves varies linearly with the number of vertices,
or alternatively, that the wavelength of the oscillations is proportional to 1/N.

Together, these (3 + 1)-dimensional convergence results show that the numerical
Regge solution is a second order accurate approximation to the corresponding solution
of the Einstein equations. Moreover, the leading order difference between the two
solutions contains high frequency, bounded oscillations. We have shown that the
frequency of these waves is proportional to N (or 1/§), while their magnitude reduces
as 1/N? (§2). This is precisely the variation postulated by Brewin [4], and strongly
supports his explanation of the apparent non-convergence of the Regge equations.

Finally, we note that the Kasner solution displays only temporal oscillations,
with the spatial three-geometries remaining homogeneous to high accuracy throughout
the evolution. This is likely a result of the high degree of symmetry of the Kasner
spacetime, in which the constant time spatial hypersurfaces are flat. In a more general
setting we would expect to see similar high frequency, bounded oscillations in both
space and time.

5. Conclusion

‘We have carried out a rigorous convergence study of a particular solution to the Regge
equations, and shown that the solutions do indeed converge to the corresponding
Einstein solutions in the limit of very fine discretisations.
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Following a suggestion of Brewin we examined the behaviour of the error terms,
and found convincing evidence for the existence of high frequency, low amplitude
oscillations superimposed upon the continuum solution. Brewin previously suggested
that waves of precisely this form in the simplicial solution could explain the lack of
convergence observed in the residual of the Regge equations when they are evaluated
on the interpolated continuum solution.

Together these results suggest that solutions of the Regge equations are generally
second order accurate approximations to the corresponding Einstein spacetimes, with
the discrepancy between the two solutions consisting of high frequency, low amplitude
waves. Although these waves prevent the residual of the Regge equations converging
to zero when evaluated on interpolated Einstein solutions [4], they do not affect the
overall second order accuracy of the simplicial solutions.

We expect that all generic Regge simulations in vacuum will produce similar
results. That is, all simulations will contain high frequency oscillations, linked to
the inverse of the discretisation scale, which reduce in magnitude as the second
power of that scale. These oscillations do not appear to induce instabilities in the
numerical evolution of simplicial lattices. Indeed, previous studies have indicated that
the oscillations gradually decay as the evolution proceeds [2]. However, M. Miller [8]
has reported instabilities arising in linearised Regge calculus on asymmetrical grids.
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Figure 1. The fractional error §L/L of a typical edge in the Regge lattice as
a function of time. Results are shown for spatial edges aligned with the z-axis,
using lattice resolutions of 128 x 4 x 4 (——), 256 x4 x4 (- ——), and 512 x4 x 4
(— - —) vertices. In all cases the total length of the lattice along the z-axis is
10.0 units. The magnitude of the observed oscillations are proportional to 1/N2,
while the frequency increases with .

Figure 2. A least squares fit of the function LotP" (equation 10) is performed on
the edge lengths at different resolutions. We plot the fractional error in the fitted
power p, as a function of the number of vertices. The fractional error in the fit
along the z and y-axes (A-points; p = 2/3) are indistinguishable; the z-axis fit
(x-points; p &~ —1/3) follow the power-law behaviour. The fractional error in the
average Regge solution can thus be seen to vary as 1/N2.



Least—Squares error

Figure 3. The error in the least squares fit of equation (10) to the mean edge
lengths is shown as a function of the number of vertices. The results for the
z and y-axes are again indistinguishable (A), with the z-axis showing the same
trend (x). This is a measure of both the accuracy of the functional form given
in equation (10) and the amplitude of the waves shown in figure 1. We again
find that the error measure converges to zero as 1/N?2, indicating that the wave
amplitude reduces as at least 1/N2.

Frequency

Figure 4. The Fourier transform of the data in figure 1 is shown for lattices
containing of 128 x 4 x 4 (——), 256 X 4 x 4 (———), and 512 x 4 x4 (— - —)
vertices. The frequency of the wave-like oscillations apparent in figure 1 are clearly
proportional to N (or 1/§). A quadratic drop-off in the power is also evident.



