A simple linear model for radiative forcing of absorbing aerosol above clouds

Karsten Peters

ARC Centre of Excellence for Climate System Science, Monash University, School of Mathematical Sciences, Clayton, VIC, Australia (karsten.peters@monash.edu)

Motivation

Absorbing aerosol in cloudy scenes: effects on atmospheric radiation

Satellite observations reveal importance of accounting for aerosol-cloud overlap

Latest generation of satellite platform setups enables quantification

Measurements by instruments of the A-Train constellation yield excellent temporal and spatial coincidence and are thus practical for investigating aerosol-cloud interactions

Methodology

The local-planetary-albedo linear model

$$\alpha \approx a_0 + a_1 \ln(LWP) + a_2 \ln(AOD)$$

Local planetary albedo from CERES instrument on EOS-AQUA, daily values, 0.25°x0.25° re-solution **Cloud liquid water path (g/m²)** from AMSR-E instrument on EOS-AQUA, daily values, 0.25°x0.25° resolution

Aerosol optical depth from MODIS instrument on EOS-AQUA, daily values, 1°x1° resolution Filter for abs. aerosols UV-Aerosol Index (UVAI) from OMI instrument on EOS-AURA, daily values, 0.25°x0.25° resolution

Results

Change of local planetary albedo α with In(AOD)

0.04

The linear model reveals **a reduction of albedo** in cloudy scenes with absorbing aerosols being present

Application to spatial data shows absorption effects of both **biomass burning aerosol** (seasonality !) from SW Africa, as well as **dust aerosol** from N Africa ! Published as: Peters, K., et al., Atmos. Chem. Phys., 11, 1393–1404, 2011 (open access)

MPE 2013, Melbourne, 8 – 12 July 2013

