A simple linear model for radiative forcing of absorbing aerosol above clouds

Karsten Peters

ARC Centre of Excellence for Climate System Science, Monash University, School of Mathematical Sciences, Clayton, VIC, Australia (karsten.peters@monash.edu)

MODIS (Terra), Aug 15, 2006

Absorbing aerosol in cloudy scenes: effects on atmospheric radiation

Satellite observations reveal importance of accounting for aerosol-cloud overlap

Latest generation of satellite platform setups enables quantification

Absorbing aerosol in cloudy scenes: effects on atmospheric radiation

Motivation

The local-planetary-albedo linear model

\[\alpha \approx a_0 + a_1 \ln(LWP) + a_2 \ln(AOD) \]

Methodology

The local-planetary-albedo linear model

Filter for abs. aerosols

UV-Aerosol Index (UVAI) from OMI instrument on EOS-AURA, daily values, 0.25°x0.25° resolution

UVAI < 0.7 < UVAI mostly scattering mostly absorbing

Regions defined for the analysis, data for Jan 2005 - Dec 2007

UV-AI off SW-Africa, July – October 2008

Results

Change of local planetary albedo \(\alpha \) with \(\ln(AOD) \)

The linear model reveals a reduction of albedo in cloudy scenes with absorbing aerosols being present

Cloud prevents aerosol-radiation interaction; small negative forcing, i.e. COOLING

Cloud enhances "surface albedo"; potentially large positive forcing, i.e. WARMING

Indirect rather than direct effect through modification of cloud properties

Filter for abs. aerosols

UV-Aerosol Index (UVAI) from OMI instrument on EOS-AURA, daily values, 0.25°x0.25° resolution

UVAI < 0.7 < UVAI mostly scattering mostly absorbing

UV-AI off SW-Africa, July – October 2008

UV-AI off SW-Africa, July – October 2008

Application to spatial data shows absorption effects of both biomass burning aerosol (seasonality !) from SW Africa, as well as dust aerosol from N Africa !

Published as: Peters, K., et al., Atmos. Chem. Phys., 11, 1393–1404, 2011 (open access)

Regions defined for the analysis, data for Jan 2005 - Dec 2007

UV-AI off SW-Africa, July – October 2008

Results

Change of local planetary albedo \(\alpha \) with \(\ln(AOD) \)

The linear model reveals a reduction of albedo in cloudy scenes with absorbing aerosols being present

Cloud prevents aerosol-radiation interaction; small negative forcing, i.e. COOLING

Cloud enhances "surface albedo"; potentially large positive forcing, i.e. WARMING

Indirect rather than direct effect through modification of cloud properties

Filter for abs. aerosols

UV-Aerosol Index (UVAI) from OMI instrument on EOS-AURA, daily values, 0.25°x0.25° resolution

UVAI < 0.7 < UVAI mostly scattering mostly absorbing

UV-AI off SW-Africa, July – October 2008

UV-AI off SW-Africa, July – October 2008

Application to spatial data shows absorption effects of both biomass burning aerosol (seasonality !) from SW Africa, as well as dust aerosol from N Africa !

Published as: Peters, K., et al., Atmos. Chem. Phys., 11, 1393–1404, 2011 (open access)