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Observations of tropical convection from precipitation radar and the
concurring large-scale atmospheric state at two locations(Darwin and
Kwajalein) are used to establish an effective subgrid-scale parametrization for
tropical convection. Two approaches are presented which rely on the assumption
that tropical convection induces a stationary equilibrium distribution. In the
first approach we parametrize convection variables such as convective area
fraction or rain rates as an instantaneous random realisation conditioned on
the large-scale vertical velocities according to a probability density function
estimated from the observations. In the second approach convection variables
are generated in a Markov process conditioned on the large-scale vertical
velocity, allowing for non-trivial temporal correlations . Despite the different
prevalent atmospheric and oceanic regimes at the two locations, with Kwajalein
being exposed to a purely oceanic weather regime and Darwin exhibiting land-
sea interaction, we establish that the empirical measure for the convective
variables conditioned on the large-scale vertical velocities for the two locations
are close when the respective vertical velocities are shifted by a constant
amount with respect to each other. This allows us to train thestochastic
models at one location and then generate time series of convective activity
at the other location. The proposed stochastic subgrid-scale parametrizations
adequately reproduce the statistics of the observed convective variables. Special
attention is put towards capturing both the quasi-deterministic and stochastic
behavior of convection for strong and weak forcing, respectively, as well as
capturing the observed statistics (mean, variance, skewness). The subgrid-
scale parameterisation is formulated for convective area fraction and we
discuss how it may be used in future scale-independent mass-flux convection
parameterisations. Copyright c© 0000 Royal Meteorological Society
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1. Introduction

Despite a remarkable increase in complexity and resolu-
tion of general circulation models (GCMs), uncertainty in
the understanding and the response of major atmospheric
processes to anthropogenic climate change has not been

satisfactorily reduced. In particular the representationof
deep convection, which ultimately serves to drive the gen-
eral circulation, is still associated with large uncertainties
(Flato et al. 2013). Thus, numerical simulations of the
Earth’s climate are subject to considerable ambiguities.
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2 G. A. Gottwald, K. Peters and L. Davies

These become especially apparent when comparing the
inter-model mean and spread of hydrological-cycle related
variables of the CMIP5 ensemble to observations (e.g. Jiang
et al. 2012; Tianet al. 2013; Lauer and Hamilton 2013).
An improved representation of fundamental atmospheric
processes, such as convection, is therefore considered to be
of utmost priority in the model design (Stevens and Bony
2013).

In GCMs currently used for climate projections,
atmospheric convection cannot be explicitly resolved due
to its subgrid-scale nature and must thus be parameterised.
More than four decades ago, the pioneering works of
Ooyama (1964) and Manabeet al. (1965) laid the
foundations for the development of increasingly complex
convective parameterization schemes (see Arakawa (2004)
for a review and Randall (2013) for an outlook). As a result
of this development, GCMs are now capable of reliably
capturing the overall amount of precipitation. However,
spatial distributions and variance often compare poorly to
observations (e.g. Dai 2006; Pincuset al.2008).

Conventional convective parameterisations tend to be of a
deterministic nature and represent only the ensemble mean
of the small-scale convective processes. They assume that
for any given resolved large-scale state of the atmosphere-
ocean system there exists a single possible response at the
small-scale convective state feeding back upon the large-
scale state. There is, however, a mounting body of evidence
that actual observed convection does not obey deterministic
relationships between large-scale variables and convective
scales (e.g. Peppler and Lamb 1989; Sherwood 1999;
Holloway and Neelin 2009; Stechmann and Neelin 2011;
Davies et al. 2013; Peterset al. 2013). Furthermore
cloud-resolving models (CRMs) revealed a high degree of
variability of small-scale convective activity, contradicting
a deterministic relationship between convective activityand
large-scale variables (Xuet al.1992; Cohen and Craig 2006;
Shutts and Palmer 2007). The complex chaotic dynamics
of small-scale processes is widely recognised to give rise
to the observed variability. For example, Hoheneggeret al.
(2006), using an ensemble of limited-area convection
permitting simulations over the European Alps, identified
regions of diabatic forcing (i.e. moist convection) and the
associated development of gravity waves as the main source
of error growth in their simulations. A lack of variability
in the high-frequency, small-scale convective processes
can dynamically propagate upscale and cause GCMs
to misrepresent low-frequency large-scale variability
(Ricciardulli and Garcia 2000; Horinouchiet al. 2003).
The numerical simulations and observations suggest that
a stochastic approach to subgrid-scale parametrizations
is needed (Palmer 2001, 2012). The recent increase of
resolution of the numerical cores adds to the failure
of purely deterministic parametrizations: For example,
numerical200km square grids do not contain sufficient
cumulus clouds to allow for the estimation of meaningful
averages (Palmer and Williams 2008), and there is a need
for a stochastic resolution aware parametrization (Arakawa
et al.2011; Arakawa and Wu 2013).

A plethora of stochastic subgrid-scale parametrizations
for convection have been developed. Buizzaet al.
(1999) applied random perturbations to the parameterised
tendencies in the operational European Centre for Medium-
Range Weather Forecasts (ECMWF) forecast system
improving its forecast skill. Lin and Neelin (2000, 2003)

introduced random perturbations to convective available
potential energy (CAPE) and to the heating profile of
the host convective scheme improving on the statistics
of tropical intraseasonal variability. Bright and Mullen
(2002) introduced random perturbations to the trigger
function of the Kain and Fritsch (1990) convection scheme,
and Teixeira and Reynolds (2008) randomly perturbed
tendencies from a deterministic convection scheme by
sampling from a normal distribution. Plant and Craig (2008)
randomly sampled a distribution of convective plumes to
match a required grid-box mean convective mass flux. The
required convective mass flux is given by a CAPE closure
under the assumption of radiative-convective-equilibrium
over the domain. This scheme has been successfully applied
to a limited area model-ensemble over central Europe
(Groenemeijer and Craig 2012). Berneret al. (2005) used
ideas from cellular automata to introduce stochastic forcing
to the streamfunction to model the effect of mesocale
convective systems. Bengtssonet al. (2013) developed
and tested a stochastic convective parameterisation based
on cellular automata via a moisture convergence closure,
and showed that in a limited area model-ensemble
framework over Scandinavia, the parameterisation leads
to a desired increase in spread of the resolved wind
field in regions of enhanced deep convection. Majda
and Khouider (2002) and Khouideret al. (2003) drove
a mass-flux convective parametrization with a stochastic
model based on convective inhibition (CIN). Khouider
et al. (2010) developed the stochastic multi-cloud model
(SMCM) evolving a cloud population consisting of three
cloud types associated with tropical convection (congestus,
deep convective and stratiform clouds) by means of a
Markovian process conditioned on the atmospheric large-
scale state. The SMCM has been shown to adequately
simulate tropical convection and associated wave features
in a simple two-layer atmospheric model (e.g. Frenkel
et al. 2012, 2013) and to reproduce observed convective
behaviour when observation-based transition time scales
between cloud-types are adopted (Peterset al.2013). For a
more comprehensive review on current stochastic subgrid-
scale parametrizations of convection see Neelinet al.(2008)
and Palmer and Williams (2010).

Despite providing the desired high-frequency variability
stochastic subgrid-scale paramerisations are often difficult
to tune and very sensitive to the choice of the parameters as
shown for example by Lin and Neelin (2000, 2002, 2003).
There has, however, not been much effort in alleviating
this difficulty by imposing observational constraints on the
parametrization. The limited availability of high-quality,
long-term datasets of concurring large-scale and convective
scale observations surely contributes to this omission. We
list recent works in that direction. Neelinet al. (2008) and
Stechmann and Neelin (2011) used observed relationships
between column integrated water vapour (CWV) and
precipitation to inform a physics-based stochastic model to
simulate the onset and duration of very strong convection.
Their model was able to closely represent observed CWV-
precipitation relationships. Dorrestijnet al. (2013) used
data from large-eddy simulations (LES) to design a data-
driven multi-cloud model. The transitions between different
cloud types are calculated using Markov chains which are
conditioned on large-scale variables. This model reliably
reproduces LES data, in particular when spatial couplings
are incorporated. More recently Dorrestijnet al. (2014)
have successfully employed that model on observational

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc.00: 1–13 (0000)

Prepared usingqjrms4.cls



Data-driven stochastic subgrid-scale parametrization for tropical convection 3

data obtained in Darwin. Horenko (2011) developed a
framework which allows for a purely data-based Markov
chain parametrization allowing for nonstationary data to
model cloud cover.

We complement here the suite of data-driven stochastic
models of tropical convection by using observations to build
a simple entirely observation-based stochastic model. The
parametrization we propose can be built off-line and then
subsequently implemented at low computational cost. An
entirely observation-based model lacks the transparency of
physics-based models, but is potentially more accurate. We
exploit available long-term observations of the large-scale
atmospheric and the concurring small-scale convective
state over Darwin (Davieset al. 2013), complemented by
a dataset over Kwajalein. The observations are used to
inform stochastic models for the convective area fraction
and the rain rate by treating them as both uncorrelated
random variables and Markov processes, conditioned on
the large-scale vertical motion at 500 hPa,ω500. The
stochastic parametrization can be constructed at either
location and then be applied to observations of large-scale
variables from the respective other location. The stochastic
models are able to reproduce the observed statistics of the
convective activity such as mean, variance and skewness.
The underlying premise of our approach is that the
stationary stochastic process relating small-scale convective
activity and large-scale convergence is sufficiently universal
in the sense that the stochastic model can be transferred
from one geographical location to another one. Using a
Kullback-Leibler information criterion for the conditional
probabilities of convective activity as well as quantile
regression for the observational data we establish that it is
sufficient to correct for the large-scale variables by a simple
linear translation to account for the respective ambient
atmospheric and oceanic regimes at different locations.

Although most stochastic parametrizations involve
CAPE, we follow Davieset al. (2013), Peterset al.
(2013) and Dorrestijnet al. (2014) and relate the observed
convective state to the observed large-scale vertical motion
at 500 hPa,ω500. Dorrestijnet al. (2014) find that the mean
vertical velocity over Darwin is highly correlated with deep
convection starting several hours before the onset of deep
convection. This is not surprising as large scale vertical
motion in the tropics is directly related to deep convection.
Conditioning convective states on vertical motion raises the
question of cause-and-effect ambiguities (see e.g. Arakawa
2004; Peterset al.2013, for a discussion). On the one hand,
convection induces large scale ascending motion through
latent heating, which then facilitates further convection. On
the other hand, pre-existing large scale ascending motion
(or convergence) facilitates the development of convection
(Hohenegger and Stevens 2013; Birchet al. 2014) which
then further increases large scale ascending motion. We thus
argue that tropical convection and large scale ascending
motion are intimately linked via a positive feedback loop,
limited by the available energy in the atmospheric column
and its close environment. The stochastic parametrization
we propose does in fact not rely on any cause-and-effect
relationship between vertical velocities and convective
activity such as CAF, but only utilises observed statistical
features and their conditional probabilities.

We use convective area fraction (CAF) (as well as rain
rate data) to characterise convective activity (cf. Dorrestijn
et al.(2013) and Bengtssonet al.(2013)). Our motivation to
formulate the parametrization with respect to CAF is that it

can be used to close convection schemes since CAF was
found to scale with domain mean rainfall. Observational
and theoretical studies have illustrated, that measures of
convective activity such as precipitation are linearly related
to the area covered by the precipitation feature (Craig 1996;
Nuijens et al. 2009; Yano and Plant 2012; Davieset al.
2013).

Parameterisations for CAF can be by construction
included in the framework of resolution independent
parametrizations (Arakawaet al. 2011; Arakawa and
Wu 2013; Wu and Arakawa 2014). Current mass-flux
convection schemes used in operational GCMs assume
the area covered by convective updrafts to be negligible
compared to the cloud-free part of a model grid box –
the so-called assumption of “scale-separation”. They are
designed to predict changes to the environmental cloud-free
air due to convection. This assumption breaks down once
the resolution of the GCM becomes high enough such that
the area covered by convective updrafts can occupy large
parts of or even an entire grid box. Parametrizations for
CAF are naturally scalable and could be used to mitigate
this problem (Arakawa and Wu 2013; Wu and Arakawa
2014). Furthermore, most currently employed schemes are
mass-flux schemes and need to predict the vertical mass
flux at cloud base. The mass flux at cloud base could be
determined by explicitly assigning an area to the convective
updraft together with an updraft velocity. The effect of
convection on the environment could be implemented by
formulating the dependency of the vertical eddy fluxes of
thermodynamic variables on updraft fraction as defined by
Arakawa and Wu (2013) and Wu and Arakawa (2014) or
through allowing convectively induced subsidence impact
on neighbouring grid boxes (Grell and Freitas 2014).

It is pertinent to mention that although using CAF allows
for a certain scale-adaptivity, an increase in resolution
would prohibit to identify the large-scale environment
with the grid box state. In this case spatial averaging over
the region of each grid box could be used to define the
environment as done in Keane and Plant (2012).

The paper is organised as follows. We introduce
the observational datasets along with a comparison of
convective behaviour in Darwin and Kwajalein in Section
2. We then use the data to construct the stochastic subgrid-
scale convection parameterizations in Section 3. A summary
of our results and an outlook to future work are provided
in Section 4. In an Appendix we provide a more detailed
analysis of the observational data.

2. Data

2.1. Description of the datasets of tropical convection in
Kwajalein and Darwin

We utilise two datasets of observations of the large-scale
vertical velocity at 500 hPaω500 and of the concurring
CAFs and rain rates over tropical locations, averaged to
yield 6-hourly time resolution. The datasets each cover a
190× 190 km2 pentagon-shaped area centered over Darwin
(Australia) and Kwajalein (Marshall Islands), respectively.
The area is chosen as to represent the size of a typical
GCM grid-box. The Kwajalein site is located in the tropical
western Pacific and is typical for a purely tropical oceanic
climate. The Darwin site on the other hand is typical for
the monsoon climate of northern Australia and features
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4 G. A. Gottwald, K. Peters and L. Davies

a complex topography characteristic of a coastal site.
We acknowledge that by having only 6-hourly averaged
data available, some characteristics of tropical convection,
e.g. the diurnal cycle, are ill-resolved. Nevertheless, because
both the small- and the large-scale state are self-consistent
(Davieset al. 2013), the data are well suited for analysing
relationships between them at the scales considered here.

The area-mean values of atmospheric variables are
derived using the method of Xieet al. (2004), who
employ the variational analysis approach of Zhang and
Lin (1997), but use profiles of atmospheric variables
from numerical weather prediction models instead of
atmospheric soundings. Here, the variational analysis
employs analyses from ECMWF and is constrained by
observations of surface precipitation obtained from C-band
polarimetric (CPOL) research radars (Keenanet al. 1998)
and top-of-the-atmosphere radiation at both locations to
reliably balance the column budgets of mass, heat, moisture
and momentum. Davieset al.(2013) show that constraining
the variational analysis by observed rainfall substantially
improves the derived large-scale vertical velocities over
the Darwin domain compared to using just the ECMWF
analysis alone.

Over Darwin, the analysis is applied to three consecutive
wet seasons (2004/2005, 2005/2006, 2006/2007), yielding
a total of 1890 6-hour means. Over Kwajalein, the analysis
is applied to the time period of May 2008 – Jan 2009,
produced to fit into the framework of the Year Of Tropical
Convection (YOTC, Waliser and Moncrieff 2008; Waliser
et al. 2012) virtual field campaign. For Kwajalein, 1095
6-hour means are available. At both locations, the large-
scale atmospheric data are complemented by data of the
concurrent small-scale convective state derived from CPOL
radar observations. Among other precipitation related
variables, the radar observations provide rain area fractions
attributable to either stratiform or convective precipitation,
determined after Steineret al. (1995). Here, we use the
derived convective precipitation area fraction CAF as proxy
for the deep convective cloud fraction. More information
regarding the derivation of the datasets can be found in
Davieset al. (2013).

The data have already provided important new insights
into the behavior of tropical convection (Davieset al.2013;
Peterset al. 2013; Kumaret al. 2013). In particular, Peters
et al. (2013) showed that the convective response to a range
of large-scale atmospheric forcing conditions is very similar
for both regions despite their distinctly different boundary
conditions,e.g.land-sea distribution or monsoonal forcing.

2.2. Analysis of the datasets over Kwajalein and Darwin

To support our premise that the underlying stochastic
process relating the small-scale convective activity to
the large-scale variables is sufficiently independent of
the geographical location, we contrast here the observed
convection at Darwin and Kwajalein. Figure 1 shows
CAF observed at Kwajalein and at Darwin as a function
of ω500. Figure 2 shows the 2D histograms of CAF and
ω500 of the observations. The plots show strong qualitative
similarities between the two locations which are suggestive
of the existence of a universal stochastic subgrid-scale
parametrization of CAF conditioned on the large-scale
variableω500.

We remark that although CAPE is frequently used in
current convection schemes, it is not well suited as a
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Figure 1. CAF as a function of the vertical velocitiesω500 [hPa/hour]
obtained from observations over Kwajalein (open circles, red) and Darwin
(dots, blue).

macroscopic variable on which a stochastic sub-grid scale
model can be conditioned on. In Figure 3 it is seen that
strong rain events with large CAF do not strongly correlate
with a specific range of CAPE (see also Davieset al.
(2013)). Moreover, the observations of CAF obtained in
Darwin and Kwajalein do not exhibit much similarity
in their dependency on CAPE, prohibiting a “universal”
approach of training the stochastic subgrid-scale model at
one location and then applying it to a different location.
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Figure 3. CAF as a function of CAPE [J/kg] obtained from observations
over Kwajalein (open circles, red) and Darwin (dots, blue).

Let us briefly discuss some of the particularities of
the relationships between CAF andω500 in Kwajalein
and Darwin, as seen in Figures 1 and 2. The variance
of CAF is dependent on the stateω500. In particular, as
already noted in Peterset al. (2013), the variance decreases
for sufficiently negative values ofω500 suggesting that
heavy rain events are essentially deterministic with an
approximate linear dependency onω500. This is particularly
evident in the Kwajalein data (cf. Figure 1). This is
consistent with the results of Craig and Cohen (2006) and
Cohen and Craig (2006) who show that the variance of
convective activity increases with the square root of the
forcing. Preliminary analysis of coarse-grained, convection
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Data-driven stochastic subgrid-scale parametrization for tropical convection 5

Figure 2. 2D histograms of CAF andω500 obtained from observations over Darwin (left) and Kwajalein (middle). The difference of the histograms is
depicted in the right most plot.

associated parameterisation tendencies obtained from the
operational ECMWF forecast model reveals a similar
relationship (Glenn Shutts, personal communication, 2014).

The scatterplot and the histograms in Figures 1 and 2
show that in Kwajalein much more strongly negative values
of ω500 occur which are associated with high values of CAF
exceeding10%. This suggests that in Kwajalein stronger
dynamical forcing is possible than in Darwin.

Further, for weak dynamical forcing at 500hPa with
−5 < ω500 < 5, convection over Darwin (Kwajalein) gen-
erally occurs under weakly ascending (subsiding) large-
scale conditions (see Figure 2). We attribute these differ-
ences in convective behavior to the different meteorological
conditions and convection initiating mechanisms determin-
ing the convective response to a given large-scale forcing
in Kwajalein and Darwin. In particular, land-sea breeze
induced convective organization at Darwin (diurnal cycle),
and the generally more inhomogeneous surface character-
istics of the Darwin domain compared to Kwajalein are
expected to contribute to different convective responses
given a particular forcing. Land-surface heterogeneities,
such as coastlines or spatial differences in land cover,
can induce subgrid-scale mesoscale circulations leading
to organised convection (e.g. Pielke 2001; Riecket al.
2014) which then results in mean large-scale ascent due
to convective latent heating. Such significant land-surface
effects on convection however are only likely to occur for
relatively weak large-scale dynamical forcing (Riecket al.
2014, and references therein), i.e. for−5 < ω500 < 5 in our
case. Consistent with this, we see relatively more convective
activity in the range of−5 < ω500 < 0 in Darwin compared
to Kwajalein.

Figure 4 shows that CAF observed at Kwajalein and
Darwin has similar autocorrelation up to lags of 12 hours.
For lags longer than 12 hours, convection over Kwajalein
looses memory, whereas convection over Darwin exhibits
significant autocorrelation up to lags of 72 hours and
features peaks corresponding to the convective diurnal cycle
(every 24 hours).

In the Appendix we provide a more detailed analysis
of the observations; in particular we focus on the regime
classification by Popeet al. (2009) and on profiles of
equivalent potential temperature.

The differences in convective behaviour in Darwin
and Kwajalein discussed above and in the Appendix are
very intriguing. A more quantitative investigation of the
convective dynamics and thermodynamic at both locations

Figure 4. Temporal autocorrelationC(τ), with τ in hours, of the CAF
time series for Darwin (blue crosses) and Kwajalein (red circles). For
Darwin, only data snippets consisting of more than 60 time steps were
used for computingC(τ).

(e.g. thermodynamics vs. dynamics) is beyond the scope of
this paper and will be a subject of future work.

2.3. Statistical universality of convective activity

The comparison of convective behaviour in Darwin and
Kwajalein above suggests that both locations feature
notably different convective behaviour in terms of
thermodynamics; furthermore convective initiation,
triggered for example by surface fluxes, will most certainly
be different at the two locations as well. In this Section
we will nevertheless establish the universality of the
relationship between convective activity and large-scale
vertical motion which will be crucial for our stochastic
parametrization schemes.

The stochastic subgrid-scale parametrizations proposed
in the next Section utilise conditional probabilities suchas
p(CAF(t)|ω500(t)) describing the probability of convective
activity CAF occurring at timet for given vertical velocity
ω500 at that time. We therefore now compare empirical
conditional probabilities for the two locations, Darwin and
Kwajalein, which we denote bypDarwin and pKwajalein,
respectively. To construct the conditional probabilitieswe
bin the(ω500,CAF)-domain into bins of size(0.1, 0.01).
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6 G. A. Gottwald, K. Peters and L. Davies

Assuming that the different prevailing atmospheric and
oceanic regimes impact directly on the large-scale variables,
we consider as a first approximation a simple translations of
the large-scale vertical velocities. In particular, we show that
the conditional probability functionspDarwin andpKwajalein

are close when the vertical velocities of Darwin are shifted
as in

pKwajalein(CAF(t)|ω500(t)) ≈

pDarwin(CAF(t)|ω500(t)− τω) (1)

or analogously

pDarwin(CAF(t)|ω500(t)) ≈

pKwajalein(CAF(t)|ω500(t) + τω) . (2)

A standard tool to compare probability density functions
is the Kullback-Leibler distance

DKL(pDarwin||pKwajalein) =
∫

log
(

pDarwin

pKwajalein

)

pDarwin dCAF , (3)

with DKL ≥ 0 and DKL = 0 if and only if pDarwin =
pKwajalein (see for example Kantz and Schreiber (1997)).
Note that we have to determine a Kullback-Leibler distance
for eachω500-bin.

In Figure 5 we show the median of the Kullback-Leibler
distanceDKL over allω500-bins as a function of the global
shift τω . A quadratic regression yields an optimal shift of
τω = 0.21 where the minimum of the Kullback-Leibler
distance is attained. In general, the Kullback-Leibler
distance is asymmetric withDKL(p||q) 6= DKL(q||p).
We find, however, thatDKL(pKwajalein||pDarwin) has
a minimum very close to same value ofτω supporting
our approximation that the two conditional probability
functions are related by a simple translation of the vertical
velocities. We note, that due to the larger amount of
available observations for Darwin (N = 1890) when
compared to Kwajalein (N = 1095) and due to the larger
support ofpKwajalein the formulation (3) is preferred.

The universal similarities of the convective behavior at
both locations can be further examined by performing a
quantile regression forCAF (see for example Koeneker
and Bassett (1978); Grinsted (2008)). We use a2nd

order regression and determine the conditional median
for the observations of Kwajalein and Darwin. To use
conditional medians rather than conditional means (as
in least square regression) is advisable to eliminate the
impact of the few very large rain events and other statistical
outliers. The median regressions for Kwajalein and for
Darwin approximately coincide if one translates theω500

values of Kwajalein byτω = 0.2 (or those of Darwin
by −τω = −0.2, respectively), as seen in Figure 6. We
attribute this uniform shift of the large-scale vertical
velocity to the different prevailing atmospheric-oceanic
regimes at the two respective locations as discussed in
Section 2.2. In the following Section we shall useτω = 0.2.

We remark that the shiftτω is height dependent.
We also analysed observations of the vertical velocity
taken at 715 hPa; there the optimal shift for which the
respective quantile regressions were closest and for which
the Kullback-Leibler distance was minimal was forτω ≈
1.67.
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Figure 5. Kullback-Leiber distance between the conditional probability
functions pDarwin and pKwajalein as a function the shiftτω . The
minimum of the quadratic least square approximation is atτω = 0.2.
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Figure 6. CAF as a function of the vertical velocitiesω500 [hPa/hour]
obtained from observations over Kwajalein (black crosses). The
continuous line connecting the circles (online blue) showsthe results of
a 2ndorder 50th percentile regression. The continuous line connecting
the diamonds (online red) shows the result of a2ndorder50th percentile
regression for the Darwin data plotted againstω500 − 0.2.

3. Stochastic subgridscale parameterization

We will develop two stochastic subgrid-scale
parametrization schemes for CAF conditioned onω500; one
in which subgrid-scale convection variables such as CAF
are viewed as instantaneous random variables conditioned
on the current value of the large-scale vertical velocity
ω500, and a second approach in which the subgrid-scale
variables are viewed as a conditional Markov chain taking
into account non-vanishing temporal correlations of the
subgrid-scale variables. The parametrisation schemes we
propose model tropical convection at any location given
only the information of the large-scale values ofω500 at a
given time without any usage of the small-scale convection
variables such as CAF at that time.

We are given a time series consisting of 6-hourly
averaged observations of the large-scale vertical velocity
at 500 hPaω500 and of CAF obtained at Kwajalein
and Darwin, which we denote by{ω500k}k=1,··· ,N and
{yk}k=1,··· ,N with N = 1890 for Darwin andN = 1095
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Data-driven stochastic subgrid-scale parametrization for tropical convection 7

for Kwajalein, respectively (cf. Section 2). The universality
argument established in Section 2.3 suggests that we can
generate the stochastic model from observations of either
location and apply it to the other location, respectively, if
the observations ofω500 are corrected by a linear shiftτω.
We present here results for both cases, but describe the
methods for the situation when observations obtained in
Darwin are used to train the model. To apply the resulting
subgrid-scale parametrization trained in Darwin/Kwajalein,
to model convection in Kwajalein/Darwin, we correct
the values ofω500 in Kwajalein/Darwin byτω = ±0.2 as
suggested by the results in Section 2.3.

3.1. Instantaneous conditional random variables

In our first model convective activity is treated as a
memoryless random variable conditioned on the current
value of the vertical velocityω500. The algorithm for
our parametrization is as follow. Let us denote byy the
subgrid-scale variable, for example CAF or the rain rate.
We partition the range ofω500 into Nω intervalsIiω with
n = 1, · · · , Nω and the range of the subgrid-scale variables
into Ny intervalsIny with n = 1, · · · , Ny. This partitions
the (ω500, y)-plane intoNωNy bins. We assume that the
time series{ω500k}k=1,··· ,N and{yk}k=1,··· ,N stem from a
stationary process. Coarse-grained CAF values, conditioned
on the large-scale variablesω500 ∈ Iiω, are determined as
averages over bins with

ȳ(n,i) =

∑

k yk1[yk ∈ Iny ]1[ω500k ∈ Iiω ]

N
(n,i)
y

, (4)

whereN (n,i)
y =

∑

k 1[yk ∈ Iny ]1[ω500k ∈ Iiω] is the num-
ber ofyk-values belonging to the bin defined as the intersec-
tion of the intervalsIiω andIny . Here1[·] denotes the indi-
cator function with1[yk ∈ Iny ] = 1 if yk ∈ Iny and1[yk ∈
Iny ] = 0 otherwise. The conditional probabilityP (n|i) of
CAF yk being in the intervalIny conditioned onω500k being
in the intervalIiω is calculated as

P (n|i) =

∑

k 1[yk ∈ Iny ]1[ω500k ∈ Iiω ]

N i
y

, (5)

whereN i
y =

∑

k 1[ω500k ∈ Iiω ] is the number of realisa-
tions of yk for a given value of the large-scaleω500k ∈
Iiω. Note that

∑

n P (n|i) = 1. With probabilityP (n|i) the
subgrid-scale variable is assigned the coarse grained value
ȳ(n,i).

Since Kwajalein supports convective events which are
much more negative than the observations from Darwin
available for the construction of the stochastic model, we
use a deterministic relationship between CAF andω500 for
observations withω500 < −18 (cf. Peterset al. (2013)).
The deterministic relationship is found by linear regression
of the observations to beCAF = −0.0044 ω500 − 0.011.

We construct the stochastic model with observations from
Darwin. To test the effectiveness of the model we now
apply it to observations of the large-scale vertical velocity
observed in Kwajalein. We generate synthetic time series
of CAF conditioned on the large-scaleω500 observed over
Kwajalein. We partition the(ω500, y)-plane into bins of size
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Figure 7. Time series of CAF of the observations over Kwajalein (top)
and of the synthetic process conditioned on the vertical velocities ω500

described in Section 3.1 (bottom). The plots have a time resolution of 6
hours.

(0.75, 0.001). For each valueω500k − 0.2 ∈ Iiω we draw

random variables̄y(n,i)k with probabilityP (n|i) which were
determined from the observations in Darwin. In Figure 7
we show the time series of the observations of CAF in
Kwajalein and the corresponding synthetic time series. The
stochastic model reproduces observed intermittent features
of tropical convection. However, it fails to reproduce
periods of sustained convection, e.g. neart ≈ 750, and
periods of sustained non-convection, e.g. neart ≈ 900.
This failure is due to our approach not incorporating any
memory, despite non vanishing auto-correlations as seen in
Figure 4.

To establish a more quantitative comparison, we compare
in Figure 8 the empirically determined probability density
functions of CAF for the synthetic time series and the
actual observations. The correspondence is remarkable for
such a simple scheme. By performing averages over1, 000
realisations of the stochastic model we have established
that the first three moments of CAF in Kwajalein, the mean
µ, the varianceσ2 and the skewness, are well captured by
our synthetic time series. This is illustrated in Table I.

The numerical results presented in this Section used
a stochastic model which was generated using the
observations at Darwin and then subsequently applied to
observations of large-scale vertical velocities observedat
Kwajalein to produce the associated convective activity at
Kwajalein. In accordance with the universality argument
established in Section 2.3 we have also trained the stochastic
model on the data observed at Kwajalein and applied them
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Figure 8. Empirical histogram of CAF for the observations over Kwajalein
(blue) and for the synthetic process conditioned on the vertical velocities
ω500 described in Section 3.1 (magenta).

Table I. First three moments of observed CAF for Kwajalein and
of the synthetic data obtained by the subgrid-scale parametrizations
conditioned on the regime-corrected valuesω500 + 0.2 for the two
models trained with observations from Darwin.

µ σ2 skewness
observations 0.0066 1.89 10−4 4.27

random variable 0.0071 1.81 10−4 4.31
Markov chain 0.0066 3.15 10−4 4.21

Table II. First three moments of observed CAF for Darwin and of the
synthetic data obtained by the subgrid-scale parametrization conditioned
on the regime-corrected valuesω500 − 0.2 for the two models trained
with observations from Kwajalein.

µ σ2 skewness
observations 0.0080 1.29 10−4 2.38

random variable 0.0077 1.43 10−4 2.37
Markov chain 0.0086 2.36 10−4 2.46

to observations of large-scale vertical velocities observed at
Darwin with equal success. The results for the first three
moments are shown in Table II for completeness.

We have also constructed synthetic time series of rain
rate data consisting of random variables conditioned on
ω500 and found similarly good results if the values of
ω500 for Kwajalein are corrected by addingτω = 0.2
(not shown). Further, we obtained similarly good results
when parametrizing CAF conditioned on observations of
the vertical velocity at 715 hPa; in this case the vertical
velocities were shifted byτω = 1.67.

3.2. Conditional Markov chain

The observational data obtained in Kwajalein and Darwin
exhibit non-vanishing temporal autocorrelations as illus-
trated in Figure 4. This suggests that a more appropriate
parametrization should incorporate dependencies on pre-
vious observations rather than simply conditioning on the
present values of the large-scale variables. Since Kwajalein
and Darwin exhibit similar values ofC(τ) for a lag of one

time step (6 hours), we expect a Markov model trained at
one location to adequately capture the convective behaviour
at the other location if conditioned on only the observa-
tions of the previous time step. As a first step towards
incorporating memory one may construct a Markov chain
conditioned on the previous state of the system (see, for
example, Crommelin and Vanden-Eijnden (2008)) or by
fitting an AR(1) process about anω500-dependent mean as
in Wilks (2005). We follow here the approach proposed by
Crommelin and Vanden-Eijnden (2008) for a conditional
Markov chain.

To construct the Markov chain we determine a transition
probability Pm,j

n,i which denotes the probability for the
variables(ω500k , yk) to take values in the bin defined as
the intersection of the intervalsIjω andImy at time stepk
when they were in the bin defined as the intersection of
the intervalsIiω andIny at the previous time stepk − 1. To

constructPm,j
n,i as a matrix we unstack the bins covering the

two-dimensional(ω500, y)-plane into an array of bins. The
associatedNωNy ×NωNy transition matrixP β

α describing
transitions from binα = i+ (n− 1)Nω to bin β = j +
(m− 1)Nω is then estimated from the observations as

P β
α =

T β
α

∑NyNω

β=1 T β
α

, (6)

whereT β
α counts the number of transitions from the bin

labelled withα to the bin labelled withβ and is given by

T β
α =

∑

k

1[ω500k−1
∈ Iiω ]1[yk−1 ∈ Iny ]

× 1[ω500k ∈ Ijω ]1[yk ∈ Imy ] .

To construct a Markov chain conditioned onω500 taking
a particular value at present time stepk, we apply the
transition matrix to the past given stateα⋆ at timek − 1

to calculateπβ
α⋆ = (0, · · · , 1, · · · , 0)P β

α where the1 is in
the α⋆-th entry. Then we select thoseL ≤ Ny bins, i.e.
the non-zero coordinates ofπβ

α⋆ , which are consistent with
the current valueω500k . TheseL entries ofπβl

α⋆ with l =
1, · · · , L, associated with the current value ofω500, (if they
exist!), do not necessarily sum up to1 as required for a
probability. Hence we renormalise as follows

π̃βl

α⋆ =
πβl

α⋆

∑L
l=1 π

βl

α⋆

. (7)

The subgrid-scale variableyk is then randomly chosen from
L possible states with probabilitỹπβl

α⋆ . The assigned values
corresponding to the bin labelled withβl are coarse-grained
by averaging over the bins analogously to (4).

The data sparse region of large convective activity
for ω500 < −18 is again treated with a deterministic
relationship as in the instantaneous random variable model.
Since the conditional Markov chain requires conditioning
on the current value ofω500 as well as on the past
observation, we are required to use larger bin-sizes to
allow for transitions to be covered by the finite training
set. We subdivide the(ω500, y)-plane into bins of size
(0.75, 0.005), i.e. into 5 times largery-bins than for the
instantaneous random variable approach in Section 3.1.
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Figure 9. Time series of CAF of the observations over Kwajalein (top) and
of the conditional Markov process process described in Section 3(bottom).
The plots have a time resolution of 6 hours.

In Figure 9 we show a time series of the observations
of CAF in Kwajalein and the corresponding data obtained
from the conditional Markov chains which was trained with
observations obtained in Darwin. Due to insufficient amount
of data not all transitions could be captured leading to a
shorter synthetic time series. Only approximately3/4 of
the data points in Kwajalein can be reached by the Markov
chain. Dorrestijnet al. (2014) have employed a Markov
chain model for the data obtained in Darwin mitigating the
data sparseness by i), coarse-graining the convective state
into different cloud types and ii) using precipitation area
fraction data at very high temporal resolution (10 minutes).

The empirical probability density functions of CAF
are shown in Figure 10 with reasonable correspondence.
Results of an average over1, 000 realisations of the Markov
chain for the first moments are listed in Tables I and II.
Again, it is remarkable how well the statistics of the actual
observations are reproduced. The variance is overestimated
by the Markov chain. This may be due to the averaging of
CAF within the relatively coarse bins (cf. the definition of
the coarse-grained CAF values (4) which is also used in the
Markov chain).

4. Summary and Conclusions

In this study, we used observations of tropical deep
convection and the concurring large-scale atmospheric
states at two tropical locations, Darwin and Kwajalein,
to design a cheap and easy-to-implement data-driven
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Figure 10. Empirical probability density function of CAF for the
observations over Kwajalein (crosses, online blue) and forthe conditional
Markov chain model (circles, online magenta).

stochastic subgrid-scale parameterisation for tropical deep
convection. Our approach fits within the framework of the
quasi-equilibrium hypothesis introduced by Arakawa and
Schubert (1974) assuming the existence of a certain degree
of scale separation between the convective activity and the
large-scale dynamics (but is not limited to it).

We presented two diagnostic approaches to stochastically
parametrize convective activity conditioned on large-scale
vertical velocity. We did not consider here the important
aspect of convective initiation, but rather provide a
scheme allowing to determine convective activity once
triggered. The first method treated CAF as an instantaneous
random variable conditioned on the current value of
ω500. This method suffers from neglecting non-vanishing
autocorrelations present in the observations and is not
able to reproduce periods of sustained convection and
non-convection, for example. The second approach was
built around a conditional Markov chain and incorporates
auto-correlations to some degree; this method, however,
requires substantially more data to train the Markov chain
as it involves conditioning on the past observations as well
as on the current value ofω500. Given these limitations
the results are very promising. It is remarkable that the
marginal probability functions of CAF as well as its
first three moments were reasonably well reproduced
by both approaches. In general, we would expect the
conditional Markov chain to provide better diagnostics than
the parametrization consisting of instantaneous random
variables as it accounts for memory effects. To further
test the proposed parametrization schemes we will use
numerical data from high-resolution cloud resolving
models in future work (or larger observational data sets if
they become available).

We have shown that although both locations feature
differences in convective behaviour in relation to large-scale
thermodynamic profiles, a universal relationship between
convective activity and large-scale vertical motion at
500 hPa,ω500 [hPa/hour], can be exploited for constructing
our data-driven stochastic parameterisations. We showed
that the stochastic model was successful in reproducing
important statistical features of the observations at either
location if the distribution of subgrid-scale variables was
shifted towards more negative/positive values ofω500 in
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10 G. A. Gottwald, K. Peters and L. Davies

Darwin/Kwajalein, i.e. a particular CAF (or rain rate)
in Darwin/Kwajalein is associated with stronger/weaker
upward motion at500 hPa compared to the original data.
We presume that this is because over Darwin, subgrid-scale
surface inhomogeneities, like coastlines and the presence
of land surface itself, more readily lead to convective
organisation and self-enforcing mechanisms (for weak
large-scale dynamical forcing) compared to Kwajalein
which is a purely oceanic site. To more accurately calibrate
the required shifts in the vertical velocityω500 and to
take into account the respective atmospheric environments
of different geographical locations, numerical data from
high-resolution cloud resolving models could be used as
a surrogate for missing observational data in future research.

We chose to parameterise mainly subgrid-scale CAF
because i), it is directly related to domain mean rainfall
and thus total latent heating and ii), assigning a non-zero
area fraction to convective updrafts in a convection scheme
relieves the problems associated with the assumption
of “scale-separation” as employed in current convection
schemes (e.g. Arakawaet al. 2011). Current mass-flux
convection schemes need to predict the vertical mass flux
at cloud base. Therefore, explicitly assigning an area to
the convective updraft can be combined with an updraft
velocity, e.g. 1 ms−1, to yield the mass flux at cloud
base. Such a convective scheme would be fully scalable
with convective updrafts eventually covering large portions
of or even entire grid-boxes. In fact, ongoing work by
one of the authors shows that such an implementation
yields plausible results in a full GCM. Although CAF is
suited for a resolution independent parametrization, the
way the observational data have been obtained involves a
particular spatial scale (i.e. the190× 190 km2 pentagon-
shaped area considered here). The observations would have
to be adapted for the particular resolution of the GCM.
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A. Equivalent potential temperature analysis of the
observations

A detailed analysis of the influence of land-surface
characteristics on convection over Darwin is presented
in Kumar et al. (2013) who found that the influence of
land-surface heterogeneities on convection depends on the
prevailing synoptic regime over Darwin as defined by the
classification of Popeet al. (2009). In four out of the
five Pope-regimes, the spatial and temporal distribution of
convection over Darwin shows signatures associated with
land-sea breezes and the diurnal cycle over land (Kumar
et al. 2013). This is also evident from the autocorrelation
function of our observations depicted in Figure 4, which
shows pronounced peaks at multiples of 24 hour time lags
for Darwin. Only the so-called “deep-west” regime, which
is prevalent during the active monsoon period and is close

to oceanic convection regimes, shows negligible influence
of the land-surface (Kumaret al.2013).

This motivates contrasting the convection and concurring
large-scale meteorology over Kwajalein to regime-sorted
convection and large-scale meteorology over Darwin.
Scatterplots and 2D histograms of CAF as function of
ω500 as in Figures 1 and 2 sorted by synoptic regime over
Darwin (not shown) exhibit convective behaviour similar
as in Kwajalein (cf. Peterset al. 2013) in four out of five
regimes. The “dry-east” regime, a trade wind regime in
which dry continental air masses are advected over Darwin
(Popeet al. 2009), which is active in less than 9% of our
data and very infrequently exhibits deep convective events
(cf. Kumar et al. 2013), does not share the systematic
convective relationships of the other four regimes. The
vertical velocity ω500 and CAF is anti-correlated with
a value of0.38 in the “dry-east” regime, whereas anti-
correlations are generally larger than0.75 in the other
regimes.

One way of characterising the interplay between tropical
convection and the large-scale atmospheric state is by
investigating atmospheric profiles of equivalent potential
temperatureθe. Profiles ofθe in the tropics usually exhibit a
minimumθe,min in the lower troposphere at approximately
700 hPa (Peixoto and Oort 1992). We denote by∆θe the
difference between the boundary layer (or surface) value
θe,b and θe,min. ∆θe can be interpreted as a measure of
gross moist stability (Raymond 2000) and thus is suited for
characterising convective versus large-scale relationships
(Neelin and Held 1987): Large (small) values of∆θe occur
in dry (moist) environments associated with low (large)
values of moist static energy. Observations indeed show that
periods of intense convection are associated with smaller
values of∆θe than those associated with periods featuring
less intense convection (Aspliden 1976; Lucas and Zipser
2000) (cf. Figure 12). However, caution is advised when
relating ∆θe and convective activity over land, because
boundary layerθe-values over land can be very large,
favouring convection despite associated large values of
∆θe.

Figure 11 shows mean profiles and associated standard
deviations ofθe for Darwin and Kwajalein. The Darwin
dataset is sorted according to the prevailing synoptic
regimes. Since Kwajalein is only subjected to a purely
oceanic regime, we only consider the mean of the respective
variables. Values of∆θe corresponding to Figure 11 are
provided in Table III.

For Darwin, theθe-profiles clearly separate with respect
to the five synoptic regimes. This is mainly due to the
different boundary layer temperatures. Kumaret al. (2013)
conjectured that the “deep west” regime is the most
convectively active and the “dry east” is the most suppressed
regime. Consistent with this, the second largest value of
∆θe is found for the “dry east” regime and the lowest
value for the “deep west” regime. However, the largest
value of ∆θe is achieved for the “shallow west” regime
(cf. Table III), which Kumaret al. (2013) characterise as a
convectively active regime. An inspection of theθe-profiles
shown in Figure 11 suggests that this large value of∆θe
results from a relatively moist boundary layer combined
with a relatively dry mid troposphere (see also Kumaret al.
(2013), Fig. 2c). In that case, diurnally forced convection,
which prevails in the “shallow west” regime, can effectively
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Figure 11. Profiles of meanθe (left) and associated sample standard
deviation (right) for Darwin (composited by synoptic regime after Pope
et al. (2009)) and for Kwajalein. The number of observations and fraction
of the full sample per Pope regime are: dry east (163, 8.6%), deep west
(278, 14.7%), east (210, 11.1%), shallow west (390, 20.6%) and moist
east (849, 44.9%), c.f. Kumaret al. (2013). Kwajalein features 1095
observations.

feed on the moisture contained in the boundary layer. The
“dry east” regime, on the other hand, features a relatively
dry boundary layer, combined with an even drier middle
troposphere, thus making it the least convectively active
regime despite not exhibiting the largest value of∆θe.

The shape of the meanθe-profile and the mean value of
∆θe for Kwajalein are closest to those of the “deep west”
and “moist east” regimes over Darwin. Both regimes are
characterised by advection of moist, tropical air masses
over Darwin (Popeet al. 2009), which is also found in
the oceanic Kwajalein environment. The results shown
in Figure 11 and Table III also somewhat support the
conclusion of Kumaret al. (2013) that the “deep west”
regime is the one most reminiscent of oceanic conditions.

Table III. ∆θe in [K] as calculated from the profiles shown in Figures 11
and 12.∆θe is defined as the difference inθe near the surface and theθe-
minimum in the middle troposphere. To comply with the data shown in
Figure 11, we only show the mean value of∆θe for Kwajalein whereas
the data for Darwin are sorted by their synoptic regime.

∆θe(Darwin) ∆θe(Kwajalein)

regime, Fig. 11

dry east 15.8
deep west 9.9 11.3

east 15.1
shallow west 16.2

moist east 12.2

CAF, Fig. 12

0≤ CAF < 0.005 14.5 12.2
0.005≤ CAF < 0.01 12.9 9.8
0.01≤ CAF < 0.02 12 9.4
0.02≤ CAF < 0.03 10.5 9.1
0.03≤ CAF < 0.04 9.7 8.5
0.04≤ CAF < 0.05 8.8 8.1
0.05≤ CAF 8.7 6.9

Figure 12 shows profiles ofθe and associated standard
deviations sorted by CAF as a proxy for convective activity
(c.f. Aspliden 1976; Lucas and Zipser 2000). Sorting the
observations by convective activity, one would expect that
i) the smallest and largest values of∆θe occur in the
convectively most active and most suppressed periods,

respectively, ii)∆θe decreases with increasing convective
activity and iii), that i) and ii) are universal for tropical
convection independent of location.

For both locations, we find that as expected, situations
featuring the least and most convective activity show
the largest and smallest value of∆θe, respectively (cf.
Table III).

In Darwin,∆θe decreases monotonically with increasing
convective activity, as expected. In Kwajalein however,
convection seems to be less sensitive to the thermodynamic
stratification in the range of intermediate convective activity
with CAF ∈ (0.005, 0.05). Over Darwin,∆θe decreases
by 4.1 K in this range of CAF whereas Kwajalein shows
a decrease of merely1.7 K. Furthermore,∆θe is slightly
smaller over Kwajalein compared to Darwin given a
particular range of convective activity.

First, this implies that over Kwajalein, the atmosphere is
generally less stably stratified compared to Darwin.

Second, convection withCAF ∈ (0.005, 0.05) over
Kwajalein appears less sensitive to mid-level relative
humidity than convection over Darwin: We have checked
that θe depends heavily on the ambient moisture profiles
but only slightly on the temperature stratification (not
shown; see also Aspliden (1976)). It is pertinent to mention
that in the procedures involved in the data acquisition a
concerted effort has been made to account for a reliable
description of atmospheric moisture. In the variational
analysis of Xieet al. (2004) used to obtain our data, the
moisture profile of the large-scale domain is improved
by incorporating observations of rainfall rather than using
data from numerical weather prediction models alone
(ECMWF analyses in this study). Moreover, information on
atmospheric moisture as retrieved from satellite microwave
and infrared observations are already assimilated into the
ECMWF forecast system.

Third, our findings are consistent with the results of
Pielke (2001) and Riecket al. (2014) that convective
organisation and self-reinforcement is enhanced in the
presence of surface heterogeneities in situations when
environmental conditions are less favourable for convection,
i.e. those with large∆θe.

We also note that profiles ofω500 over Kwajalein
sorted by CAF show substantially stronger upward motion
compared to Darwin (not shown). This suggests, along
the lines of Raymond (2000), that environments featuring
smaller values of∆θe and thus more neutral stability
support stronger vertical motions. For weak convective
activity (CAF < 0.005), θe shows substantially higher
variability (in terms of sample standard deviations) below
500 hPa (approximately the freezing level in the tropics)
compared to the more actively convecting periods at both
locations (not shown). Over Kwajalein, this variability
strongly increases from the boundary layer upwards – an
effect attributable to the relatively constant moisture profile
of the oceanic boundary layer. This highθe-variability for
small CAF, as seen in Figure 12, can be related to the wide
range of environmental conditions, i.e.ω500, which allow
for CAF < 0.005 as shown in Figures 1 and 2 at both
locations.
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