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Observations of tropical convection from precipitation radar and the
concurring large-scale atmospheric state at two locations(Darwin and

Kwajalein) are used to establish an effective subgrid-scalparametrization for
tropical convection. Two approaches are presented which hg on the assumption
that tropical convection induces a stationary equilibrium distribution. In the

first approach we parametrize convection variables such asonvective area
fraction or rain rates as an instantaneous random realisaton conditioned on
the large-scale vertical velocities according to a probabty density function

estimated from the observations. In the second approach ceaction variables
are generated in a Markov process conditioned on the largeeale vertical
velocity, allowing for non-trivial temporal correlations. Despite the different
prevalent atmospheric and oceanic regimes at the two locatns, with Kwajalein

being exposed to a purely oceanic weather regime and Darwirxkibiting land-

sea interaction, we establish that the empirical measure fothe convective
variables conditioned on the large-scale vertical velodis for the two locations
are close when the respective vertical velocities are sheftl by a constant
amount with respect to each other. This allows us to train thestochastic
models at one location and then generate time series of comiwe activity
at the other location. The proposed stochastic subgrid-séa parametrizations
adequately reproduce the statistics of the observed conviee variables. Special
attention is put towards capturing both the quasi-deterministic and stochastic
behavior of convection for strong and weak forcing, respedtely, as well as
capturing the observed statistics (mean, variance, skewss). The subgrid-
scale parameterisation is formulated for convective arearaction and we
discuss how it may be used in future scale-independent ma#isx convection
parameterisations. Copyright(C) 0000 Royal Meteorological Society
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1. Introduction satisfactorily reduced. In particular the representatién

. . . . ?eep convection, which ultimately serves to drive the gen-
Despite a remarkable increase in complexity and resolu-"" | o . . .
tion of general circulation models (GCMs), uncertainty igral circulation, is still associated with large uncertiais

the understanding and the response of major atmosphéfrigto et al. 2013). Thus, numerical simulations of the
processes to anthropogenic climate change has not bEarth’'s climate are subject to considerable ambiguities.
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2 G. A. Gottwald, K. Peters and L. Davies

These become especially apparent when comparing ititeoduced random perturbations to convective available
inter-model mean and spread of hydrological-cycle relatpdtential energy (CAPE) and to the heating profile of
variables of the CMIP5 ensemble to observations (e.g. Jiahg host convective scheme improving on the statistics
et al. 2012; Tianet al. 2013; Lauer and Hamilton 2013).of tropical intraseasonal variability. Bright and Mullen
An improved representation of fundamental atmosphe(®002) introduced random perturbations to the trigger
processes, such as convection, is therefore considered téubction of the Kain and Fritsch (1990) convection scheme,
of utmost priority in the model design (Stevens and Bomand Teixeira and Reynolds (2008) randomly perturbed
2013). tendencies from a deterministic convection scheme by
In GCMs currently used for climate projectionssampling from a normal distribution. Plantand Craig (2008)
atmospheric convection cannot be explicitly resolved duendomly sampled a distribution of convective plumes to
to its subgrid-scale nature and must thus be parameterisedtch a required grid-box mean convective mass flux. The
More than four decades ago, the pioneering works mfquired convective mass flux is given by a CAPE closure
Ooyama (1964) and Manabet al. (1965) laid the under the assumption of radiative-convective-equililoriu
foundations for the development of increasingly compl@wer the domain. This scheme has been successfully applied
convective parameterization schemes (see Arakawa (20@4) limited area model-ensemble over central Europe
for a review and Randall (2013) for an outlook). As a resuyiGroenemeijer and Craig 2012). Berredral. (2005) used
of this development, GCMs are now capable of reliabigieas from cellular automata to introduce stochastic fayci
capturing the overall amount of precipitation. Howeveto the streamfunction to model the effect of mesocale
spatial distributions and variance often compare poorly ¢tonvective systems. Bengtssat al. (2013) developed
observations (e.g. Dai 2006; Pinceisal. 2008). and tested a stochastic convective parameterisation based
Conventional convective parameterisations tend to be ajm cellular automata via a moisture convergence closure,
deterministic nature and represent only the ensemble maad showed that in a limited area model-ensemble
of the small-scale convective processes. They assume fremhework over Scandinavia, the parameterisation leads
for any given resolved large-scale state of the atmosphere-a desired increase in spread of the resolved wind
ocean system there exists a single possible response afiéh@ in regions of enhanced deep convection. Majda
small-scale convective state feeding back upon the larged Khouider (2002) and Khouidest al. (2003) drove
scale state. There is, however, a mounting body of evidercenass-flux convective parametrization with a stochastic
that actual observed convection does not obey deterntinistiodel based on convective inhibition (CIN). Khouider
relationships between large-scale variables and comeecét al. (2010) developed the stochastic multi-cloud model
scales (e.g. Peppler and Lamb 1989; Sherwood 19¢89MCM) evolving a cloud population consisting of three
Holloway and Neelin 2009; Stechmann and Neelin 201dlpud types associated with tropical convection (congegstu
Davies et al. 2013; Peterset al. 2013). Furthermore deep convective and stratiform clouds) by means of a
cloud-resolving models (CRMs) revealed a high degreeMarkovian process conditioned on the atmospheric large-
variability of small-scale convective activity, contrating scale state. The SMCM has been shown to adequately
a deterministic relationship between convective actigitg simulate tropical convection and associated wave features
large-scale variables (Xet al. 1992; Cohen and Craig 2006jn a simple two-layer atmospheric model (e.g. Frenkel
Shutts and Palmer 2007). The complex chaotic dynamétsal. 2012, 2013) and to reproduce observed convective
of small-scale processes is widely recognised to give risehaviour when observation-based transition time scales
to the observed variability. For example, Hoheneggeaal. between cloud-types are adopted (Pegétral. 2013). For a
(2006), using an ensemble of limited-area convectiomre comprehensive review on current stochastic subgrid-
permitting simulations over the European Alps, identifiextale parametrizations of convection see Nestial. (2008)
regions of diabatic forcing (i.e. moist convection) and thend Palmer and Williams (2010).
associated development of gravity waves as the main sourcBespite providing the desired high-frequency variability
of error growth in their simulations. A lack of variabilitystochastic subgrid-scale paramerisations are often wliffic
in the high-frequency, small-scale convective processegune and very sensitive to the choice of the parameters as
can dynamically propagate upscale and cause GC#iewn for example by Lin and Neelin (2000, 2002, 2003).
to misrepresent low-frequency large-scale variabililjhere has, however, not been much effort in alleviating
(Ricciardulli and Garcia 2000; Horinouctdt al. 2003). this difficulty by imposing observational constraints oe th
The numerical simulations and observations suggest thatametrization. The limited availability of high-quglit
a stochastic approach to subgrid-scale parametrizatitoregg-term datasets of concurring large-scale and corecti
is needed (Palmer 2001, 2012). The recent increasescéle observations surely contributes to this omission. We
resolution of the numerical cores adds to the failutist recent works in that direction. Neelat al. (2008) and
of purely deterministic parametrizations: For exampl8techmann and Neelin (2011) used observed relationships
numerical 200km square grids do not contain sufficienbetween column integrated water vapour (CWV) and
cumulus clouds to allow for the estimation of meaningfprecipitation to inform a physics-based stochastic maalel t
averages (Palmer and Williams 2008), and there is a nesgdulate the onset and duration of very strong convection.
for a stochastic resolution aware parametrization (Arakawheir model was able to closely represent observed CWV-
etal.2011; Arakawa and Wu 2013). precipitation relationships. Dorrestijat al. (2013) used
data from large-eddy simulations (LES) to design a data-
A plethora of stochastic subgrid-scale parametrizatiodsven multi-cloud model. The transitions between différe
for convection have been developed. Buizea al. cloud types are calculated using Markov chains which are
(1999) applied random perturbations to the parameterisehditioned on large-scale variables. This model reliably
tendencies in the operational European Centre for Mediuraproduces LES data, in particular when spatial couplings
Range Weather Forecasts (ECMWEF) forecast systame incorporated. More recently Dorrestig al. (2014)
improving its forecast skill. Lin and Neelin (2000, 2003have successfully employed that model on observational
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data obtained in Darwin. Horenko (2011) developedcan be used to close convection schemes since CAF was
framework which allows for a purely data-based Markdeound to scale with domain mean rainfall. Observational
chain parametrization allowing for nonstationary data #nd theoretical studies have illustrated, that measures of
model cloud cover. convective activity such as precipitation are linearlated

We complement here the suite of data-driven stochagtiche area covered by the precipitation feature (Craig 1996
models of tropical convection by using observations toduiNuijens et al. 2009; Yano and Plant 2012; Davie$ al.
a simple entirely observation-based stochastic model. T2G13).
parametrization we propose can be built off-line and thenParameterisations for CAF can be by construction
subsequently implemented at low computational cost. Antluded in the framework of resolution independent
entirely observation-based model lacks the transparehcyarametrizations (Arakawat al. 2011; Arakawa and
physics-based models, but is potentially more accurate. Wa 2013; Wu and Arakawa 2014). Current mass-flux
exploit available long-term observations of the largelescaonvection schemes used in operational GCMs assume
atmospheric and the concurring small-scale convectiv@ area covered by convective updrafts to be negligible
state over Darwin (Daviest al. 2013), complemented bycompared to the cloud-free part of a model grid box —
a dataset over Kwajalein. The observations are usedthe so-called assumption of “scale-separation”. They are
inform stochastic models for the convective area fractioesigned to predict changes to the environmental clousl-fre
and the rain rate by treating them as both uncorrelataid due to convection. This assumption breaks down once
random variables and Markov processes, conditioned the resolution of the GCM becomes high enough such that
the large-scale vertical motion at 500 hRaso. The the area covered by convective updrafts can occupy large
stochastic parametrization can be constructed at eitparts of or even an entire grid box. Parametrizations for
location and then be applied to observations of large-sca@l&F are naturally scalable and could be used to mitigate
variables from the respective other location. The stoahashis problem (Arakawa and Wu 2013; Wu and Arakawa
models are able to reproduce the observed statistics of 20e4). Furthermore, most currently employed schemes are
convective activity such as mean, variance and skewnesass-flux schemes and need to predict the vertical mass
The underlying premise of our approach is that tifRix at cloud base. The mass flux at cloud base could be
stationary stochastic process relating small-scale @iivee determined by explicitly assigning an area to the convectiv
activity and large-scale convergence is sufficiently urseé updraft together with an updraft velocity. The effect of
in the sense that the stochastic model can be transfegggvection on the environment could be implemented by
from one geographical location to another one. Usingf@mulating the dependency of the vertical eddy fluxes of
Kullback-Leibler information criterion for the conditiah thermodynamic variables on updraft fraction as defined by
probabilities of convective activity as well as quantiidrakawa and Wu (2013) and Wu and Arakawa (2014) or
regression for the observational data we establish that itirough allowing convectively induced subsidence impact
sufficient to correct for the large-scale variables by a #mpn neighbouring grid boxes (Grell and Freitas 2014).
linear translation to account for the respective ambient|t s pertinent to mention that although using CAF allows
atmospheric and oceanic regimes at different locations. for a certain scale-adaptivity, an increase in resolution

Although most stochastic parametrizations involygould prohibit to identify the large-scale environment
CAPE, we follow Davieset al. (2013), Peterset al. with the grid box state. In this case spatial averaging over
(2013) and Dorrestijet al. (2014) and relate the observeghe region of each grid box could be used to define the
convective state to the observed large-scale verticalanotenvironment as done in Keane and Plant (2012).
at 500 hPayws0o. Dorrestijnet al. (2014) find that the mean
vertical velocity over Darwin is highly correlated with gee  The paper is organised as follows. We introduce
convection starting several hours before the onset of dege observational datasets along with a comparison of
convection. This is not surprising as large scale vertic@nvective behaviour in Darwin and Kwajalein in Section
motion in the tropics is directly related to deep convectiop. We then use the data to construct the stochastic subgrid-
Conditioning convective states on vertical motion rai$es tscale convection parameterizations in Section 3. A summary
question of cause-and-effect ambiguities (see e.g. Arakayy our results and an outlook to future work are provided

2004; Peterst al. 2013, for a discussion). On the one hangh Section 4. In an Appendix we provide a more detailed
convection induces large scale ascending motion throqg{mysis of the observational data.

latent heating, which then facilitates further convection

the other hand, pre-existing large scale ascending motipn pata

(or convergence) facilitates the development of convectio

(Hohenegger and Stevens 2013; Birthal. 2014) which 2.1. Description of the datasets of tropical convection in

then further increases large scale ascending motion. Vée tkwajalein and Darwin

argue that tropical convection and large scale ascending

motion are intimately linked via a positive feedback loop\e utilise two datasets of observations of the large-scale

limited by the available energy in the atmospheric colunwertical velocity at 500 hPaso, and of the concurring

and its close environment. The stochastic parametrizati@AFs and rain rates over tropical locations, averaged to

we propose does in fact not rely on any cause-and-effgigtld 6-hourly time resolution. The datasets each cover a

relationship between vertical velocities and convectit®0 x 190 km? pentagon-shaped area centered over Darwin

activity such as CAF, but only utilises observed statisticBAustralia) and Kwajalein (Marshall Islands), respediive

features and their conditional probabilities. The area is chosen as to represent the size of a typical
We use convective area fraction (CAF) (as well as ra®CM grid-box. The Kwajalein site is located in the tropical

rate data) to characterise convective activity (cf. Ddijres western Pacific and is typical for a purely tropical oceanic

etal.(2013) and Bengtssagt al. (2013)). Our motivation to climate. The Darwin site on the other hand is typical for

formulate the parametrization with respect to CAF is thattlie monsoon climate of northern Australia and features
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a complex topography characteristic of a coastal si
We acknowledge that by having only 6-hourly average 0.15
data available, some characteristics of tropical congacti ' ©
e.g.thediurnal cycle, are ill-resolved. Neverthelessabse
both the small- and the large-scale state are self-consis
(Davieset al. 2013), the data are well suited for analysin 0.1t
relationships between them at the scales considered her r, ™ ) °
The area-mean values of atmospheric variables i <g
derived using the method of Xiet al. (2004), who ©
employ the variational analysis approach of Zhang a
Lin (1997), but use profiles of atmospheric variable
from numerical weather prediction models instead
atmospheric soundings. Here, the variational analy
employs analyses from ECMWF and is constrained |
observations of surface precipitation obtained from Ceba _910
polarimetric (CPOL) research radars (Keergral. 1998)
an.d top-of-the-atmosphere radiation at both Iocatlor]s Ftloure 1. CAF as a function of the vertical velocitiessoo [hPa/hour]
reliably balance the C_Olumn budgets of mass, heat, mQ'StHf%ined from observations over Kwajalein (open circled) end Darwin
and momentum. Daviest al. (2013) show that constraining(dots, blue).
the variational analysis by observed rainfall substalgtial
improves the derived large-scale vertical velocities over
the Darwin domain compared to using just the ECMWiRacroscopic variable on which a stochastic sub-grid scale
analysis alone. model can be conditioned on. In Figure 3 it is seen that
Over Darwin, the analysis is applied to three consecutisong rain events with large CAF do not strongly correlate
wet seasons (2004/2005, 2005/2006, 2006/2007), yieldingh a specific range of CAPE (see also Davigtsal.
a total of 1890 6-hour means. Over Kwajalein, the analy¢2013)). Moreover, the observations of CAF obtained in
is applied to the time period of May 2008 — Jan 200®arwin and Kwajalein do not exhibit much similarity
produced to fit into the framework of the Year Of Tropicah their dependency on CAPE, prohibiting a “universal”
Convection (YOTC, Waliser and Moncrieff 2008; Waliseapproach of training the stochastic subgrid-scale model at
et al. 2012) virtual field campaign. For Kwajalein, 109%ne location and then applying it to a different location.
6-hour means are available. At both locations, the large-
scale atmospheric data are complemented by data of the
concurrent small-scale convective state derived from CPt
radar observations. Among other precipitation relat

o Kwajalein
- Darwin

0.057

10 0
w500

10

variables, the radar observations provide rain area tnasti 0151 & " Darwin
attributable to either stratiform or convective precipda, © © Kwajalein
determined after Steinest al. (1995). Here, we use the

derived convective precipitation area fraction CAF as gro: 0.1 :

for the deep convective cloud fraction. More informatio

regarding the derivation of the datasets can be found <

Davieset al. (2013). o
The data have already provided important new insigt

into the behavior of tropical convection (Daviesal. 2013;

Peterset al. 2013; Kumatret al. 2013). In particular, Peters

et al.(2013) showed that the convective response to a rat

of large-scale atmospheric forcing conditions is very Emi

for both regions despite their distinctly different bounda

conditions.e.g.land-sea distribution or monsoonal forcing

2.2. Analysis of the datasets over Kwajalein and Darwilﬁ

To support our premise that the underlying stochastic

0.05f "

%

500

L et

00 2000

1000 15
CAPE

igure 3. CAF as a function of CAPE [J/kg] obtained from observations
ver Kwajalein (open circles, red) and Darwin (dots, blue).

process relating the small-scale convective activity toLet us briefly discuss some of the particularities of
the large-scale variables is sufficiently independent e relationships between CAF ang, in Kwajalein
the geographical location, we contrast here the obserasul Darwin, as seen in Figures 1 and 2. The variance

convection at Darwin and Kwajalein.

Figure 1 showsf CAF is dependent on the staig. In particular, as

CAF observed at Kwajalein and at Darwin as a functi@iready noted in Petees al. (2013), the variance decreases
of wsgg. Figure 2 shows the 2D histograms of CAF anbr sufficiently negative values obso9 suggesting that
wsoo Of the observations. The plots show strong qualitatiieavy rain events are essentially deterministic with an
similarities between the two locations which are suggesti&pproximate linear dependency®sy. This is particularly

of the existence of a universal stochastic subgrid-scalddent in the Kwajalein data (cf. Figure 1). This is
parametrization of CAF conditioned on the large-scatensistent with the results of Craig and Cohen (2006) and

variablewsg.

Cohen and Craig (2006) who show that the variance of

We remark that although CAPE is frequently used tonvective activity increases with the square root of the
current convection schemes, it is not well suited asfarcing. Preliminary analysis of coarse-grained, conesct
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Figure 2. 2D histograms of CAF and s obtained from observations over Darwin (left) and Kwajalgniddle). The difference of the histograms is
depicted in the right most plot.

associated parameterisation tendencies obtained fron 1 ‘ ‘ ‘ ‘ ‘ ‘

operational ECMWEF forecast model reveals a simi ——Darwin
relationship (Glenn Shutts, personal communication, 20 0.8 ——Kwajalein|

The scatterplot and the histograms in Figures 1 an
show that in Kwajalein much more strongly negative valt
of wspo 0ccur which are associated with high values of C,
exceedingl0%. This suggests that in Kwajalein strong
dynamical forcing is possible than in Darwin.

Further, for weak dynamical forcing at 500hPa wi
—5 < wspp < 5, convection over Darwin (Kwajalein) ger 02 |
erally occurs under weakly ascending (subsiding) lar
scale conditions (see Figure 2). We attribute these di

0.6 r

—
= |
o 04 ¢

ences in convective behavior to the different meteoroklg 0 r

conditions and convection initiating mechanisms detefn

ing the convective response to a given large-scale for 0 24 48 72 96 120 144
in Kwajalein and Darwin. In particular, land-sea bree T

induced convective organization at Darwin (diurnal cycl , o
and the generally more inhomogeneous surface characfét® * Temporal autocorrelatio’(7), with 7 in haurs, of the CAF

C. . . . ime series for Darwin (blue crosses) and Kwajalein (redle#). For
istics of the Darwin domain compared to Kwajalein AlSarwin, only data snippets consisting of more than 60 tinepstwere
expected to contribute to different convective responsaesd for computing(r).

given a particular forcing. Land-surface heterogeneities

such as coastlines or spatial differences in land cover,

can induce subgrid-scale mesoscale circulations lead{egy. thermodynamics vs. dynamics) is beyond the scope of
to organised convection (e.g. Pielke 2001; Rieztkal. this paper and will be a subject of future work.

2014) which then results in mean large-scale ascent due

to convective latent heating. Such significant land-s@rfac o ) ) ) o

effects on convection however are only likely to occur fgr-3-  Statistical universality of convective activity

relatively weak large-scale dynamical forcing (Rieztkal.

2014, and references therein), i.e. fof < wsoo < 5in our The comparison of convective behaviour in Darwin and
case. Consistent with this, we see relatively more convectkwajalein above suggests that both locations feature
activity in the range of-5 < wsgo < 0in Darwin compared hotably different convective behaviour in terms of
to Kwajalein. thermodynamics; furthermore convective initiation,

Figure 4 shows that CAF observed at Kwajalein aritiggered for example by surface fluxes, will most certainly
Darwin has similar autocorrelation up to lags of 12 hourge different at the two locations as well. In this Section
For lags longer than 12 hours, convection over Kwajaleiye will nevertheless establish the universality of the
looses memory, whereas convection over Darwin exhibigdationship between convective activity and large-scale
significant autocorrelation up to lags of 72 hours arwgrtical motion which will be crucial for our stochastic
features peaks corresponding to the convective diurnée cygarametrization schemes.

(every 24 hours).

In the Appendix we provide a more detailed analysis The stochastic subgrid-scale parametrizations proposed
of the observations; in particular we focus on the reginiethe next Section utilise conditional probabilities sush
classification by Popeet al. (2009) and on profiles of p(CAF(t)|wsoo(t)) describing the probability of convective
equivalent potential temperature. activity CAF occurring at time for given vertical velocity

wsoo at that time. We therefore now compare empirical

The differences in convective behaviour in Darwinonditional probabilities for the two locations, Darwindan
and Kwajalein discussed above and in the Appendix devajalein, which we denote byparwin aNd prwajalein,
very intriguing. A more quantitative investigation of theespectively. To construct the conditional probabilities
convective dynamics and thermodynamic at both locatiois the (wsg0, CAF)-domain into bins of siz€0.1,0.01).
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Assuming that the different prevailing atmospheric ar

oceanic regimes impact directly on the large-scale vag&gbl 0.25
we consider as a first approximation a simple translations T‘
the large-scale vertical velocities. In particular, wewstoat 0.2t l
the conditional probablli.ty functioquarwm andewajaleiD_ \ ‘\“
are close when the vertical velocities of Darwin are shift “‘
as In 0.157 \ |
= At
- 3 N |
pRwajalein (AR (¢) |lwsoo (t)) ~ Q 0.1l 5 H“
pPaVIn(CAF () |wsoo(t) — 1) (1) ‘\‘ Hg)i? fo /
TN e/
j\ [ ol
or analogously 0.05} W\‘\‘ ‘*g@% f‘Hﬁ/
| \Rsft ® ?@%f’ |
' | U8R N g A\FIA g8
PP (CAF (D) wson() = s i
PRI (CAF () wsoo(t) + 7)) - (2) 0= 0 2
7
A standard tool to compare probability density functions v
is the Kullback-Leibler distance Figure 5. Kullback-Leiber distance between the conditional proligbi
functions pparwin @Nd pwajalein @S @ function the shiftr,. The
DKL(pDarwin| |pKwaja1ein) — minimum of the quadratic least square approximation is.at 0.2.
flOg (m) PDarwin dCAF ) (3)
with Dgp, > 0 and Dy, = 0 if and only if pparwin = 0.15 [ Kvajalein
PKwajalein (S€€ fOr example Kantz and Schreiber (1997 Toauantileregression for Kwajalein
Note that we have to determine a Kullback-Leibler distan —é— quantile restession Jor Darwin with 1w = 0.
for eachwsgo-bin. x
In Figure 5 we show the median of the Kullback-Leible ~ 0.1} .
. _hi . L‘Q
distanceDxr, over allwsgo-bins as a function of the global = X

shift 7,,. A quadratic regression yields an optimal shift ¢ ©
7., = 0.21 where the minimum of the Kullback-Leibler
distance is attained. In general, the Kullback-Leibli 0.05f
distance is asymmetric withDx1,(p||q) # Dxw(ql|p).

We find, however, thatDkr,(pkwajalein||PDarwin) has

a minimum very close to same value of supporting

our approximation that the two conditional probabilit % ‘
functions are related by a simple translation of the velrtic -30 —20
velocities. We note, that due to the larger amount of

available observations for Darwin N(= 1890) when Figure 6. CAF as a function of the vertical velocitiessoo [hPa/hour]
compared to Kwajalein{ = 1095) and due to the |argerobta|ned from observations over Kwajalein (black crosseshe

t of the f lati 3) i f d continuous line connecting the circles (online blue) shtwesresults of
SUPPOIt OlpKwajalein N€ TOrMuia ion (3) is preferred. a 2"dorder 50*" percentile regression. The continuous line connecting

the diamonds (online red) shows the result @dorder50t" percentile
The universal similarities of the convective behavior &tgression for the Darwin data plotted againsgo — 0.2.

both locations can be further examined by performing a
quantile regression fo€AF (see for example Koeneker
and Bassett (1978); Grinsted (2008)). We use2'd 3. Stochastic subgridscale parameterization
order regression and determine the conditional median
for the observations of Kwajalein and Darwin. To us@e will develop two stochastic subgrid-scale
conditional medians rather than conditional means (@&rametrization schemes for CAF conditioned.ggy; one
in least square regression) is advisable to eliminate thewhich subgrid-scale convection variables such as CAF
impact of the few very large rain events and other statistié&e viewed as instantaneous random variables conditioned
outliers. The median regressions for Kwajalein and fen the current value of the large-scale vertical velocity
Darwin approximately coincide if one translates thg, wso0, and a second approach in which the subgrid-scale
values of Kwajalein byr, = 0.2 (or those of Darwin variables are viewed as a conditional Markov chain taking
by —7, = —0.2, respectively), as seen in Figure 6. W&to account non-vanishing temporal correlations of the
attribute this uniform shift of the large-scale verticagubgrid-scale variables. The parametrisation schemes we
velocity to the different prevailing atmospheric-oceanf@opose model tropical convection at any location given
regimes at the two respective locations as discussedoinly the information of the large-scale valuesugfy, at a
Section 2.2. In the following Section we shall uge= 0.2. given time without any usage of the small-scale convection

variables such as CAF at that time.

We remark that the shiftr, is height dependent.

We also analysed observations of the vertical velocityWe are given a time series consisting of 6-hourly
taken at 715 hPa; there the optimal shift for which theveraged observations of the large-scale vertical vglocit
respective quantile regressions were closest and for whi¢th500 hPawsoy and of CAF obtained at Kwajalein
the Kullback-Leibler distance was minimal was fof ~ and Darwin, which we denote bywsg, }x=1,....~ and
1.67. {yr}k=1,.. n With N = 1890 for Darwin andN = 1095

w500
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Data-driven stochastic subgrid-scale parametrization fotropical convection 7

for Kwajalein, respectively (cf. Section 2). The univeisal  0.15
argument established in Section 2.3 suggests that we

generate the stochastic model from observations of ei

location and apply it to the other location, respectively, 01
the observations ab5q, are corrected by a linear shiff,. :
We present here results for both cases, but describe <
methods for the situation when observations obtainec O
Darwin are used to train the model. To apply the result .05} :
subgrid-scale parametrization trained in Darwin/Kwajale

to model convection in Kwajalein/Darwin, we corre l “
the values ofuvsgo in Kwajalein/Darwin byr, = +0.2 as I “ “
Suggested by the results in Section 2.3. 0 [ JLH] ‘“JJ‘AH tﬂm 1\ Jm ‘m ML I 1 L k L

0 200 400 15600 800 1000

3.1. Instantaneous conditional random variables

0.15

In our first model convective activity is treated as
memoryless random variable conditioned on the curt
value of the vertical velocitywsgy. The algorithm for
our parametrization is as follow. Let us denote $pyhe 0.1} 1
subgrid-scale variable, for example CAF or the rain re

We partition the range obsq into N, intervals I with

n=1,---, N, and the range of the subgrid-scale variab 0.05! ]
into N, intervals I} with n =1,---, N,. This partitions \

the (w500, y)-plane into N, N,, bins. We assume that th ‘ \ X ” ” ‘ } \
time series{wsook}kzcly..._w and{_ykzkék.léwlstem fron;ma 0 M i/ ”U l L LA URILY ‘ ,,“\ L \H I .‘H
stationary process. Coarse-graine values, coneitiic A am
on the large-scale variables,, € I}, are determined a 0 200 400 EOO 800 1000
averages over bins with

Figure 7. Time series of CAF of the observations over Kwajalein (top)

) Ay € 1™ 1w c It and of the synthetic process conditioned on the verticaboibs wsoo
g("”) = Zk yllye L] ] [ 200s W] , (4) described in Section 3.1 (bottom). The plots have a timelugen of 6
N;"’l) hours.

where N\ = 3, 1[yx € 17 1[wseo, € I.] is the num- ;
ber ofy,-values belonging to the bin defined as the intersd:75: 0.001). For each valuevsp, —0.2 € I, we draw

tion of the intervalsl’, and . Here1[:] denotes the indi- random variables| """ with probability P(n|i) which were
cator function withl[yy, € I"] = 1 if y, € I and1[y, € determined from the observations in Darwin. In Figure 7
Yy Yy

we show the time series of the observations of CAF in
Kwajalein and the corresponding synthetic time series. The
stochastic model reproduces observed intermittent featur
of tropical convection. However, it fails to reproduce
. . periods of sustained convection, e.g. neéae 750, and
P(nli) = 2 Ly € 1] ?l[wf’ook € 1] : (5) periods of sustained non-convection, e.g. near 900.
Ny This failure is due to our approach not incorporating any
memory, despite non vanishing auto-correlations as seen in
where N, = >~ 1[wsoo, € 1] is the number of realisa-Figure 4.
tions of y, for a given value of the large-scaleso,, € To establish a more quantitative comparison, we compare
I'. Note that ", P(n|i) = 1. With probability P(n|i) the in Figure 8 the empirically determined probability density
subgrid-scale variable is assigned the coarse graineé vdilinctions of CAF for the synthetic time series and the
g, actual observations. The correspondence is remarkable for
Since Kwajalein supports convective events which asech a simple scheme. By performing averages oyen0
much more negative than the observations from Darwigalisations of the stochastic model we have established
available for the construction of the stochastic model, wleat the first three moments of CAF in Kwajalein, the mean
use a deterministic relationship between CAF aggl for 1, the variancer? and the skewness, are well captured by
observations withuvsgg < —18 (cf. Peterset al. (2013)). our synthetic time series. This is illustrated in Table I.
The deterministic relationship is found by linear regressi
of the observations to lBAF = —0.0044 wsgo — 0.011. The numerical results presented in this Section used
a stochastic model which was generated using the
We construct the stochastic model with observations frasbhservations at Darwin and then subsequently applied to
Darwin. To test the effectiveness of the model we nowbservations of large-scale vertical velocities obseraed
apply it to observations of the large-scale vertical vejociKwajalein to produce the associated convective activity at
observed in Kwajalein. We generate synthetic time seriéwajalein. In accordance with the universality argument
of CAF conditioned on the large-scalgy, observed over established in Section 2.3 we have also trained the stachast
Kwajalein. We partition théwso, y)-plane into bins of size model on the data observed at Kwajalein and applied them

I;)] = 0 otherwise. The conditional probabiliti(n|i) of
CAF y;, being in the interval;’ conditioned onwso, being

in the intervall!, is calculated as
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8 G. A. Gottwald, K. Peters and L. Davies

time step (6 hours), we expect a Markov model trained at

50t ‘ ‘ ‘ ‘ ] one location to adequately capture the convective behaviou
——Observations at the other location if conditioned on only the observa-
40 -o Synthetic data] | tions of the previous time step. As a first step towards

incorporating memory one may construct a Markov chain
conditioned on the previous state of the system (see, for

X 30/ ] example, Crommelin and Vanden-Eijnden (2008)) or by

g fitting an AR(1) process about anyo-dependent mean as
g 20 in Wilks (2005). We follow here the approach proposed by
Crommelin and Vanden-Eijnden (2008) for a conditional

Markov chain.

107 ] To construct the Markov chain we determine a transition

e probability P,";’ which denotes the probability for the

0 R SO variables(wsgo, , yr) to take values in the bin defined as

0 001 0.2 0.03 004 0.05 the intersection of the intervalg, and I;" at time stepk
CAF when they were in the bin defined as the intersection of
Figure 8. Empirical histogram of CAF for the observations over Kwejal the mtervals[j_) a”dfg at the previous time step— 1. To
(blue) and for the synthetic process conditioned on theéoatrvelocities constructP””” as a matrix we unstack the bins covering the
ws0o described in Section 3.1 (magenta). . ol . .
two-dimensionalwsoo, y)-plane into an array of bins. The

. .. B o
Table I. First three moments of observed CAF for Kwajaleird anaSSOCIated\]‘*’Ny x Ny, Ny transition matrixiz, describing

of the synthetic data obtained by the subgrid-scale paragons transitions from bina =i+ (n —1)N,, to bin § = j +
conditioned on the regime-corrected valuesy + 0.2 for the two (m — 1)V, is then estimated from the observations as
models trained with observations from Darwin.

Ty
Pf = m, (6)
U o2 skewness 25:1 @
observations 0.0066 1.8910~ 7 4.27
random variable 0.0071 1.8110~% 4.31 whereT# counts the number of transitions from the bin
Markov chain  0.0066 3.1510~% 4.91 labelled witha to the bin labelled withs and is given by

T = 1wsoo,_, € 1] 1[yk—1 € I}]
Table Il. First three moments of observed CAF for Darwin ahthe A
synthetic data obtained by the subgrid-scale parametizednditioned j m
on the regime-corrected valuesoo — 0.2 for the two models trained X 1wsoo, € ] Lyx € 1y I
with observations from Kwajalein. ) » )
To construct a Markov chain conditioned ang, taking

a particular value at present time stép we apply the

1 o2 skewness transition matrix to the past given staté¢ at timek — 1

observations 0.0080 1.2910~% 2.38 to calculatevrg* =(0,---,1,--- 70)p£ where thel is in

random variable 0.0077 1.4310~* 2.37 the o*-th entry. Then we select those < IV, bins, i.e.
Markov chain  0.0086 2.3610~* 2.46 the non-zero coordinates af ., which are consistent with

the current valuevsoo,. TheseL entries ofwgi with | =

1,---, L, associated with the current valuewfy, (if they

exist!), do not necessarily sum up toas required for a

to observations of large-scale vertical velocities obséat i .
éobablllty. Hence we renormalise as follows

Darwin with equal success. The results for the first thr&
moments are shown in Table Il for completeness.

We have also constructed synthetic time series of rain - Tar
rate data consisting of random variables conditioned on D S v
wspo and found similarly good results if the values of
wsoo for Kwajalein are corrected by adding, = 0.2 The subgrid-scale variablg is then randomly chosen from
(not shown). Further, we obtained similarly good resulis possible states with probabiliﬁf;i. The assigned values
when parametrizing CAF conditioned on observations efrresponding to the bin labelled with are coarse-grained
the vertical velocity at 715 hPa; in this case the verticay averaging over the bins analogously to (4).

o

()

velocities were shifted by, = 1.67. The data sparse region of large convective activity
for wspo < —18 is again treated with a deterministic
3.2. Conditional Markov chain relationship as in the instantaneous random variable model

Since the conditional Markov chain requires conditioning
The observational data obtained in Kwajalein and Darwam the current value ofusgy as well as on the past
exhibit non-vanishing temporal autocorrelations as illusbservation, we are required to use larger bin-sizes to
trated in Figure 4. This suggests that a more appropriateow for transitions to be covered by the finite training
parametrization should incorporate dependencies on wet. We subdivide théwsgg,y)-plane into bins of size
vious observations rather than simply conditioning on tti@.75,0.005), i.e. into 5 times largery-bins than for the
present values of the large-scale variables. Since Kwajalmstantaneous random variable approach in Section 3.1.
and Darwin exhibit similar values @ (7) for a lag of one
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Figure 10.Empirical probability density function of CAF for the
0.15¢ 1 observations over Kwajalein (crosses, online blue) andhferconditional
Markov chain model (circles, online magenta).

o 0.1} 1 stochastic subgrid-scale parameterisation for tropieaipd
< convection. Our approach fits within the framework of the
O quasi-equilibrium hypothesis introduced by Arakawa and
Schubert (1974) assuming the existence of a certain degree
0.05; ‘ \ | of scale separation between the convective activity and the

‘ large-scale dynamics (but is not limited to it).
| ‘ ‘ } J We presented two diagnostic approaches to stochastically
0 D L R o A L‘“\ Ll ‘\‘ Lol 1 WL parametrize convective activity conditioned on largelesca
0 200 400 600 800 1000 vertical velocity. We did not consider here the important
t aspect of convective initiation, but rather provide a
Figure 9. Time series of CAF of the observations over Kwajalein (t(m}asc-:heme a”Ong to determine convective &-ICUVIty once
of the conditional Markov process process described in@e8(bottom). triggered. Th_e first meth_o_d treated CAF as an instantaneous
The plots have a time resolution of 6 hours. random variable conditioned on the current value of
ws00- This method suffers from neglecting non-vanishing
autocorrelations present in the observations and is not
In Figure 9 we show a time series of the observatioable to reproduce periods of sustained convection and
of CAF in Kwajalein and the corresponding data obtaingwn-convection, for example. The second approach was
from the conditional Markov chains which was trained withuilt around a conditional Markov chain and incorporates
observations obtained in Darwin. Due to insufficient amouatito-correlations to some degree; this method, however,
of data not all transitions could be captured leading tor@quires substantially more data to train the Markov chain
shorter synthetic time series. Only approximatgji4 of as it involves conditioning on the past observations as well
the data points in Kwajalein can be reached by the Markas on the current value af;q0. Given these limitations
chain. Dorrestijnet al. (2014) have employed a Markovthe results are very promising. It is remarkable that the
chain model for the data obtained in Darwin mitigating th@arginal probability functions of CAF as well as its
data sparseness by i), coarse-graining the convective sfiasst three moments were reasonably well reproduced
into different cloud types and ii) using precipitation arday both approaches. In general, we would expect the
fraction data at very high temporal resolution (10 minutesjonditional Markov chain to provide better diagnosticsitha
The empirical probability density functions of CARhe parametrization consisting of instantaneous random
are shown in Figure 10 with reasonable correspondenegiables as it accounts for memory effects. To further
Results of an average ovier000 realisations of the Markov test the proposed parametrization schemes we will use
chain for the first moments are listed in Tables | and mumerical data from high-resolution cloud resolving
Again, it is remarkable how well the statistics of the actuaiodels in future work (or larger observational data sets if
observations are reproduced. The variance is overestimakey become available).
by the Markov chain. This may be due to the averaging of
CAF within the relatively coarse bins (cf. the definition of We have shown that although both locations feature
the coarse-grained CAF values (4) which is also used in #hiferences in convective behaviour in relation to largate

Markov chain). thermodynamic profiles, a universal relationship between
convective activity and large-scale vertical motion at
4. Summary and Conclusions 500 hPawsqo [hPa/hour], can be exploited for constructing

our data-driven stochastic parameterisations. We showed
In this study, we used observations of tropical dedpat the stochastic model was successful in reproducing
convection and the concurring large-scale atmosphdrtportant statistical features of the observations ateeith
states at two tropical locations, Darwin and Kwajaleitgcation if the distribution of subgrid-scale variablesswva
to design a cheap and easy-to-implement data-driwarifted towards more negative/positive valueswgfy in
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10 G. A. Gottwald, K. Peters and L. Davies

Darwin/Kwajalein, i.e. a particular CAF (or rain rate}o oceanic convection regimes, shows negligible influence
in Darwin/Kwajalein is associated with stronger/weakef the land-surface (Kumaat al.2013).
upward motion ab00 hPa compared to the original data. This motivates contrasting the convection and concurring
We presume that this is because over Darwin, subgrid-sdalge-scale meteorology over Kwajalein to regime-sorted
surface inhomogeneities, like coastlines and the presepoavection and large-scale meteorology over Darwin.
of land surface itself, more readily lead to convectiv@catterplots and 2D histograms of CAF as function of
organisation and self-enforcing mechanisms (for weak, as in Figures 1 and 2 sorted by synoptic regime over
large-scale dynamical forcing) compared to Kwajaleiarwin (not shown) exhibit convective behaviour similar
which is a purely oceanic site. To more accurately calibraie in Kwajalein (cf. Peterst al. 2013) in four out of five
the required shifts in the vertical velocitysoo and to regimes. The “dry-east” regime, a trade wind regime in
take into account the respective atmospheric environmeptsich dry continental air masses are advected over Darwin
of different geographical locations, numerical data frogPopeet al. 2009), which is active in less than 9% of our
high-resolution cloud resolving models could be used data and very infrequently exhibits deep convective events
asurrogate for missing observational data in future researcf. Kumar et al. 2013), does not share the systematic
convective relationships of the other four regimes. The
We chose to parameterise mainly subgrid-scale CAErtical velocity wsgg and CAF is anti-correlated with
because i), it is directly related to domain mean rainfall value of0.38 in the “dry-east” regime, whereas anti-
and thus total latent heating and ii), assigning a non-zeyerrelations are generally larger thaars in the other
area fraction to convective updrafts in a convection scheregimes.
relieves the problems associated with the assumption
of “scale-separation” as employed in current convectionOne way of characterising the interplay between tropical
schemes (e.g. Arakawet al. 2011). Current mass-fluxconvection and the large-scale atmospheric state is by
convection schemes need to predict the vertical mass fliestigating atmospheric profiles of equivalent potentia
at cloud base. Therefore, explicitly assigning an areattmperaturd,. Profiles off, in the tropics usually exhibit a
the convective updraft can be combined with an updrafinimum6. i, in the lower troposphere at approximately
velocity, e.g. 1 ms', to yield the mass flux at cloud70o hPa (Peixoto and Oort 1992). We denote A§, the
base. Such a convective scheme would be fully scalaifference between the boundary layer (or surface) value
with convective updrafts eventually covering large par§o Ocp and O min. Ab. can be interpreted as a measure of
of or even entire grid-boxes. In fact, ongoing work byross moist stability (Raymond 2000) and thus is suited for
one of the authors shows that such an implementatigiiaracterising convective versus large-scale relatipash
yields plausible results in a full GCM. A|th0Ugh CAF iQNee“n and Held 1987) Large (Sma”) \/a]uesm@6 occur
suited for a resolution independent parametrization, thedry (moist) environments associated with low (large)
way the observational data have been obtained involvegafues of moist static energy. Observations indeed show tha
particular spatial scale (i.e. thE90 x 190km? pentagon- periods of intense convection are associated with smaller
shaped area considered here). The observations would Rayges ofA6, than those associated with periods featuring
to be adapted for the particular resolution of the GCM.  |ess intense convection (Aspliden 1976; Lucas and Zipser
2000) (cf. Figure 12). However, caution is advised when
Acknowledgements relating Af. and convective activity over land, because
boundary layerd.-values over land can be very large,
GAG and KP acknowledge support from the Australigiavouring convection despite associated large values of
Research Council. We thank Mick Pope for processing thé, .
synoptic regime data. We thank Garth Tarr and Neville Figure 11 shows mean profiles and associated standard
Weber for discussions on quantile regression. We thasdviations off, for Darwin and Kwajalein. The Darwin
Steven Sherwood, Bob Plant, Chris Holloway and Gleriataset is sorted according to the prevailing synoptic
Shutts for constructive comments and suggestions to ragimes. Since Kwajalein is only subjected to a purely
earlier version of the paper. oceanic regime, we only consider the mean of the respective
variables. Values ofAd, corresponding to Figure 11 are
A. Equivalent potential temperature analysis of the ~ provided in Table IlI.
observations For Darwin, thef.-profiles clearly separate with respect
to the five synoptic regimes. This is mainly due to the
A detailed analysis of the influence of land-surfadadifferent boundary layer temperatures. Kureaal. (2013)
characteristics on convection over Darwin is presentednjectured that the “deep west” regime is the most
in Kumar et al. (2013) who found that the influence ofonvectively active and the “dry east” is the most suppresse
land-surface heterogeneities on convection depends onrégime. Consistent with this, the second largest value of
prevailing synoptic regime over Darwin as defined by th&6. is found for the “dry east” regime and the lowest
classification of Popeet al. (2009). In four out of the value for the “deep west” regime. However, the largest
five Pope-regimes, the spatial and temporal distribution\@lue of A, is achieved for the “shallow west” regime
convection over Darwin shows signatures associated w(tf. Table IIl), which Kumatret al. (2013) characterise as a
land-sea breezes and the diurnal cycle over land (Kuneanvectively active regime. An inspection of theprofiles
et al. 2013). This is also evident from the autocorrelaticshown in Figure 11 suggests that this large value\éf
function of our observations depicted in Figure 4, whiatesults from a relatively moist boundary layer combined
shows pronounced peaks at multiples of 24 hour time lagih a relatively dry mid troposphere (see also Kuretal.
for Darwin. Only the so-called “deep-west” regime, whicfR013), Fig. 2c). In that case, diurnally forced convection
is prevalent during the active monsoon period and is closich prevails in the “shallow west” regime, can effectivel
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400 400 - m . . . .
oo TESPECtiVElY, i)Af. decreases with increasing convective

T 500 1 T 500 1 7 salowwest @Ctivity and iii), that i) and ii) are universal for tropical
= = —eas . . .
= 600 = 600 4 —deep wes convection independent of location.
5 5 — t . . . .
g 700 - g 70 > Kwajaein For both locations, we find that as expected, situations
S 800 1 S 800 1 % featuring the least and most convective activity show

900 4 900 A T B

1000 N 1000 A the largest and smallest value &6., respectively (cf.

320 325 330 335 340 345 350 1.0 20 30 40 50 Table |||)_
8, [K] std 6, [K]

In Darwin, Af, decreases monotonically with increasing
Figure 11. Profiles of meand. (left) and associated sample standarOnvective activity, as expected. In Kwajalein however,
s Een o /S Bt fope convecton sotniotobefoessensive (0 e thermodynanic
of the full sample per Pojpe re@ime are: dry east (163, 8.6%gp dvest St.ratlflcatlon in the range of mtermedla_te convectiveatti
(278, 14.7%), east (210, 11.1%), shallow west (390, 20.686) moist With CAF € (0.005,0.05). Over Darwin, Af. decreases
east (849, 44.9%), c.f. Kumaet al. (2013). Kwajalein features 1095by 4.1 K in this range of CAF whereas Kwajalein shows
observations. a decrease of merely.7 K. Furthermore Aé. is slightly
smaller over Kwajalein compared to Darwin given a
) ) _ particular range of convective activity.
feed on the moisture contained in the boundary layer. Therjrst, this implies that over Kwajalein, the atmosphere is
“dry east” regime, on the other hand, features a relativgjénerally less stably stratified compared to Darwin.
dry boundary layer, combined with an even drier middle second, convection withCAF e (0.005,0.05) over
troposphere, thus making it the least convectively actikgyajalein appears less sensitive to mid-level relative
regime despite not exhibiting the largest value\d.. humidity than convection over Darwin: We have checked
The shape of the meah-profile and the mean value ofthat §, depends heavily on the ambient moisture profiles
Af. for Kwajalein are closest to those of the “deep wespyt only slightly on the temperature stratification (not
and “moist east” regimes over Darwin. Both regimes a&pown; see also Aspliden (1976)). It is pertinent to mention
characterised by advection of moist, tropical air mass@st in the procedures involved in the data acquisition a
over Darwin (Popeet al. 2009), which is also found inconcerted effort has been made to account for a reliable
the oceanic Kwajalein environment. The results showascription of atmospheric moisture. In the variational
in Figure 11 and Table Il also somewhat support thalysis of Xieet al. (2004) used to obtain our data, the
conclusion of Kumaret al. (2013) that the “deep west’mpjsture profile of the large-scale domain is improved
regime is the one most reminiscent of oceanic conditionsyy incorporating observations of rainfall rather than gsin
. _ o data from numerical weather prediction models alone
Table Ill. Abein [I_<] as calculat_ed from the profiles shown in Figures 1%ECMWF analyses in this study). Moreover, information on
and 126, is defined as the differenceq near the surface and the- atmospheric moisture as retrieved from satellite micravav
minimum in the middle troposphere. To comply with the datevgin . . - .
Figure 11, we only show the mean value/of. for Kwajalein whereas @nd infrared observations are already assimilated into the
the data for Darwin are sorted by their synoptic regime. ECMWEF forecast system.
Third, our findings are consistent with the results of
Pielke (2001) and Rieclet al. (2014) that convective
Af.(Darwin) Af.(Kwajalein) organisation and self-reinforcement is enhanced in the
presence of surface heterogeneities in situations when

regime, Fig. 11 environmental conditions are less favourable for convecti
i.e. those with large\d..
dry east 15.8 We also note that profiles ofisoo over Kwajalein
deep west 9.9 11.3 sorted by CAF show substantially stronger upward motion
east 15.1 compared to Darwin (not shown). This suggests, along
shallow west 16.2 the lines of Raymond (2000), that environments featuring
molst east 12.2 smaller values ofAf. and thus more neutral stability
support stronger vertical motions. For weak convective
CAF, Fig. 12 activity (CAF < 0.005), #. shows substantially higher
variability (in terms of sample standard deviations) below
0 < CAF < 0.005 14.5 12.2 500 hPa (approximately the freezing level in the tropics)
0.005< CAF < 0.01 12.9 9.8 compared to the more actively convecting periods at both
0.01< CAF < 0.02 12 9.4 locations (not shown). Over Kwajalein, this variability
0.02< CAF < 0.03 10.5 9.1 strongly increases from the boundary layer upwards — an
0.03< CAF < 0.04 9.7 8.5 effect attributable to the relatively constant moisturefibe
0.04< CAF < 0.05 8.8 8.1 of the oceanic boundary layer. This highvariability for
0.05< CAF 8.7 6.9 small CAF, as seen in Figure 12, can be related to the wide

range of environmental conditions, i©s09, which allow
for CAF < 0.005 as shown in Figures 1 and 2 at both
Figure 12 shows profiles af. and associated standardbcations.
deviations sorted by CAF as a proxy for convective activity
(c.f. Aspliden 1976; Lucas and Zipser 2000). Sorting th€aferences
observations by convective activity, one would expect that

i) the S_ma"eSt and |a_r993t values &ff. occur in the_ Arakawa A. 2004. The cumulus parameterization problem:t,Pas
convectively most active and most suppressed periodspresent, and futurdl. Climate17(13): 2493-2525.
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Figure 12. Profiles of mearf. and associated sample standard deviation for Darwin (feftganels) and Kwajalein (right two panels), sorted by
observed CAF.
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