Progress towards a novel convection parameterisation
with stochastic elements
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Motivation

Essentials for future convection schemes

Convection in GCMs “Killing two birds with one stone”
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convection is still unsatisfactorily
represented in global atmospheric
models

processes (e.g. Horinouchi et al. (2003)),

deeming stochastic methods necessary
(e.g. Palmer (2012))

variability and reproduce
observed convective
behaviour (Peters et al.
(2013)).

“Stochastic to quasi-deterministic
transition” found in observations and
also captured by the SMCM

Implementation Preliminary Results
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Provide grid-box mean values of vertical velocity w
and relative humidity RH at 500hPa to the SMCM

before start of model physics.

Pass SMCM-calculated deep convective area

fraction f, to the convection scheme.

Calculate convective cloud base mass flux as

1 ms!”, let the existing cloud model do the up- and
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per model timestep sub-
stantially reduced, making it
more continuous (“convective
memory”)

RMS differences w.r.t. obser-
vations slightly worse for all
diagnostics compared to REF

Relative Humidity
SMCM - REF

of precipitation over the
Amazon, possibly due to incon-
sistencies between the diag-
nosis and the SMCM submodel
overall promising results, con-
sidering there has been no
tuning applied

Temperature
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@ Met Office UM vn8.5, GA5.0 physics, Gregory &

Rowntree (1990) convection, convective
diagnosis based on boundary layer type

classification after Lock et al. (2000), SMCM -
applied to tropics only; N96L85 resolution
(1.875°x1.25° at the equator), 20yr AMIP style

runs (1989 — 2008)

@ ECHAMSG.2 (research version), Tiedtke (1989)
with modifications by Nordeng (1994) con-
vection, convective diagnosis based on boun-

dary layer moisture convergence (among

others, cf. Mobis and Stevens (2012)) SMCM
applied globally; T63L47 (1.8°x1.8°) resolution,

S5yr AMIP style runs (2003 — 2007)
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similar impact as in the UM, i.e. -
weaker convection, especially
evident in a cooler mid- to upper
tropospere w.r.t. REF

increased organization of precip
compared to REF
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RMS differences to observations
smaller for SMCM than REF (not

shown) (note that REF is untuned)
like for the UM, these are
promising results, further
development/testing underway
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