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Abstract—In this paper for the first time we define a general
notion for Proxy Re-Encryption (PRE), which we call Determin-
istic Finite Automata Based Functional PRE (DFA-based FPRE).
Meanwhile, we propose the first and concrete DFA-based FPRE
system which adapts to our new notion. In our scheme a message
is encrypted in a ciphertext associated with an arbitrary length
index string, and a decryptor is legitimate if and only if a DFA
associated with his/her secret key accepts the string. Furthermore,
the above encryption is allowed to be transformed to another
ciphertext associated with a new string by a semi-trusted proxy
whom is given a re-encryption key. Nevertheless, the proxy cannot
gain access to the underlying plaintext. This new primitive can
increase the flexibility of users to delegate their decryption rights
to others. We also prove it fully chosen-ciphertext secure in the
standard model.
Keywords: functional encryption, functional proxy re-encryption,
chosen-ciphertext security.

I. INTRODUCTION

Functional Encryption (FE) is a useful cryptographic prim-
itive that not only guarantees the confidentiality of data but
also enhances the flexibility of data sharing. It is a general
extension of Public Key Encryption (PKE). In traditional PKE,
a data is encrypted to a particular receiver whose public key
has registered to a trusted Certificate Authority. FE, however,
provides more flexibility that the data can be encrypted under
a description a, and the encryption can be decrypted if and
only if there is a secret key whose description b matches a. As
stated in [18], [28], a classic example of FE is Attribute-Based
Encryption (ABE) [11], [26] which comes to two flavors: Key-
Policy ABE (KPABE) and Ciphertext-Policy ABE (CPABE).
The former associates a secret key with an access policy such
that the key can decrypt a ciphertext associated with attributes
satisfying the policy. The latter, however, is complementary.

Although FE has many applications (e.g. audit-log [11]),
it might not be flexible enough in some practical set-
tings. For example, a social network user (e.g. LinkedIn1),
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say Alice, might choose to share her profile (e.g. edu-
cational details) with others under a policy, say P1 =
(“Region : United State” and ”Occupation :
student” and “Age : from 20 to 30”). Suppose Alice’s
profile is encrypted under P1 and stored in the cloud so
that the users satisfying P1 can access the profile. How-
ever, when trying to link herself with some companies for
job applications, she might modify the access policy, e.g.
P2 = (“Region : all countries” and “Location :
Local/overseas” and “Field : Finance”). To guarantee
the companies matching P2 can access her profile, a new
encryption under P2 is required. A naive solution for Alice
to generate the encryption is to first download the ciphertext
under P1 from the cloud, and next re-encrypt the profile
under P2 before uploading to the cloud. But the workload
of Alice here is increased. If Alice is using some resource-
limited devices which cannot afford the cost of encryption and
decryption, she cannot share the profile unless some powerful
computational devices (e.g. PC) are available. Besides, if the
bandwidth is charged (by bit or megabit), the download and
upload operations might yield a great amount of money.

Defined by Blaze, Bleumer and Strauss [5], Proxy Re-
Encryption (PRE) is proposed to tackle the above problem.
PRE is an useful extension of PKE, in which an honest-but-
curious proxy is given a re-encryption key that allows it to
transform ciphertexts intended for Alice into the ones intended
for Bob without revealing either the plaintexts or the secret
keys. PRE has many practical network applications, such as
digital rights management [7] and secure email forwarding [5].

To achieve more flexibility on re-encryption, many vari-
ants of PRE have been proposed, such as Conditional PRE
(CPRE) [29], Identity-Based PRE (IBPRE) [12] and Attribute-
Based PRE (ABPRE) [19]. CPRE allows an encryption asso-
ciated with a condition to be converted to a new ciphertext
tagged with a new condition. The technologies of IBPRE and
ABPRE are somewhat similar, and a main difference between
them is ABPRE enjoys more expressiveness in data sharing.

We might choose to employ ABPRE to solve the previous
problem. Suppose Alice’s profile is encrypted under P1. When
sharing her profile with some companies, she only needs
to generate a re-encryption key from some descriptions and
upload the key to the cloud. The cloud then will re-encrypt
the encryption under P1 to the one under P2 such that the
companies satisfying P2 can access the profile. The cloud,
nevertheless, cannot read the underlying plaintext.

Motivation. Although ABPRE can solve practical network
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problems, it leaves interesting open problems in terms of
security and functionality. All existing ABPRE schemes [19],
[24], [22] are only proved to be secure against chosen-
plaintext attacks (CPA) in the selective model. Nonetheless,
the selective CPA security is not sufficient enough in practice
as it only achieves the secrecy against “passive” adversary (i.e.
eavesdroppers). To guarantee a higher level of confidentiality
for sensitive data, a stronger security notion is desirable, i.e.
adaptive security against chosen-ciphertext attacks (CCA).

The functionality of an ABPRE system is another practical
factor. Nonetheless, all existing ABPRE schemes only support
access policy assembling with AND gates and fixed size
inputs. Practically, an access policy might be required to
assemble with AND, OR gates and NOT . Besides, in some
particular applications, the access policy might be expressed
by regular languages with arbitrary size. Thus it is desirable
to propose an ABPRE system with expressive access policy
supporting unlimited input size.

Our Contribution. This paper for the first time introduces
the notion of Deterministic Finite Automata (DFA) based
functional PRE (DFA-based FPRE). A concrete scheme is
proposed to adapt to the new notion. The scheme allows a data
sender to encrypt a message in an encryption associated with
an arbitrary length index string such that a secret key can be
used to recover the underlying plaintext if and only if the DFA
tagged with the key accepts the string. Furthermore, it permits
a semi-trusted proxy to transform an encryption associated
with an arbitrary length index string to another encryption
associated with a new index string without leaking any useful
message information to the proxy. Generally, our DFA-based
FPRE can be categorized as a type of Key-Policy ABPRE
(KP-ABPRE). It is worth mentioning that our scheme is the
first KP-ABPRE in the literature. Eventually, the present paper
proves the new scheme adaptively CCA secure in the standard
model. To the best of our knowledge, it is the first of its type to
achieve the adaptive CCA security in the standard model, but
also to provide unlimited size input for access policy without
degrading the functionality of proxy re-encryption.

Our Approach. It is challenging to propose a DFA-based
FPRE system when considering adaptive CCA security in the
standard model. The approach of achieving fully CCA security
without jeopardizing the expressiveness of DFA is as follows.

Our system is built on top of Waters-FE system [28].
Accordingly, it is unavoidable that the system inherits the
selective CPA security from Waters-FE scheme. To achieve
fully security, we might choose to employ the dual encryption
technology [17]. However, as stated in [18], the technique
of [17] degrades the expressiveness of policy so that a single
attribute can be used only once (in a policy) or a limited repe-
tition with the cost of enlarging the size of system parameters
and secret keys. This limitation for the policy (and efficiency)
is incurred by information theoretic argument. Our system
cannot get rid of this restriction by following the technology
of [17]. In our system a symbol can be repeatedly used in DFA
and index strings. Thus, the semi-functional parameters related
to this symbol might leak information to adversary such that
the nominality of secret key will not be hidden anymore.

To solve the problem, we leverage the proof idea of [18] by
integrating the dual encryption technology with the selective
proof technique. But we cannot trivially adapt the proof
technique of [18] to our system as two systems are based on
different primitives in which [18] is based on [27], and ours
is built on [28]. Like [18], the most crucial part of our proof
is to show that the nominality is hidden computationally from
the view of adversary. This reflects on the indistinguishability
from GameNj to GameTj . Due to limited space, we refer the
reader to Section III-C for the details. We let the challenger
respectively simulate the queries of Phase 1 and Phase 2
(in the above indistinguishability simulation) as follows. In
Phase 1, the challenger will receive the queries of secret
keys associated with DFA before defining the delayed semi-
functional parameters. Thus this phase is closely analogous to
the context of selective security for a CPABE system. In Phase
2, the challenger will obtain a string first that is closely relative
to the context of selective security for a KPABE system. We
accordingly leverage the selective proof techniques of [27],
[28]. To adapt the techniques to our system, we need two
new complexity assumptions (defined in Section III) which are
closely relative to the l expanded bilinear Diffie-Hellman ex-
ponent assumption [28] and q-parallel bilinear Diffie-Hellman
exponent assumption [27]. For the rest of the games defined
in Section III-C, we prove their indistinguishability under the
3 assumptions [16].

We employ a strongly existential unforgeable one-time
signature system and a CCA-secure one-time symmetric en-
cryption system to achieve CCA security. Due to limited space
we will show the technical details in Section III-B. In the proof
we offer decryption oracle to the adversary. This does not
hinder the above framework as the challenger can construct
any secret key. One might concern that in Gameq (resp.
Gamefinal) the challenger only generating semi-functional
keys cannot respond decryption queries correctly. Actually, a
semi-functional key can decrypt any normal ciphertext (issued
by an adversary); and when the challenge ciphertext is issued
for decryption query, the challenger will reject it.

Related Work. The concept of ABE is introduced by Sahai
and Waters [26]. Goyal et al. [11] proposed the first KPABE
system. The decryption is successful if the attributes tagged
with ciphertext satisfy the access policy of the secret key.
Reversely, Bethencourt, Sahai and Waters [4] defined Later on,
Cheung and Newport [8] proposed a provably secure CPABE
scheme supporting AND gates over attributes. Ostrovsky,
Sahai and Waters [25] embedded negative attributes in access
policy without increasing the size of ciphertext by employing
the revocation technique in [11]. Goyal et al. [10] presented a
construction in the standard model, but its large key size makes
the scheme insufficient. More efficient and expressive CPABE
systems were put forth by Waters [27]. Attrapadung et al. [2]
proposed efficient ABE schemes with constant-size ciphertexts
including a CPABE for threshold access policy, and two
KPABE (with monotonic/non-monotonic access structures).
Waters [28] proposed the first DFA-based FE system that
supports the most expressive functionality for access policy.

The aforementioned schemes are proved selectively secure
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except that [4] is secure in the generic group model. To
achieve CCA security, Yamada et al. [30] introduced a generic
approach that works for both KPABE and CPABE. Using dual
system encryption technology, Lewko et al. [16] converted [27]
to achieve fully security. But the conversion leads to some loss
of efficiency as it built on the composite order bilinear group.
Lewko and Waters [18] then introduced a new proof method
for converting a selective secure ABE to capture fully security
by integrating the selective technique into the dual encryption
system. Inspired by this, this paper proposes the first DFA-
based FPRE with adaptive security in the standard model.

Following the introduction of decryption rights delega-
tion [23], Ivan and Dodis [15] proposed a generic construction
for proxy cryptography via sequential multi-encryption. Blaze,
Bleumer and Strauss [5] formally defined PRE, and proposed
a seminal PRE scheme. After that PRE comes to different
flavors: unidirectional and bidirectional PRE, and single-hop
and multi-hop PRE2. This work deals with the single-hop
unidirectional PRE. Since its introduction there are many
classic PRE systems, such as [1], [7], [14], [21], [20], [13].

To implement PRE in the context of ABE, Liang et al. [19]
defined CP-ABPRE, and proposed a construction on top of [8].
Mizuno and Doi [24] proposed a hybrid scheme where it can
bridge ABE and IBE in the sense that ciphertexts generated in
the context of ABE can be converted to the ones which can be
decrypted in the IBE setting. Luo et al. [22] proposed a CP-
ABPRE scheme supporting AND gates on multi-valued and
negative attributes which can be viewed as a general extension
of [19]. The schemes, however, are secure against selectively
CPA. Besides, their policies only operate over a fixed number
of variables by AND gates only. The construction of an
adaptively CCA secure ABPRE supporting more expressive
access policy for arbitrary size input remains unsolved. This
paper deals with this problem.

II. DEFINITION AND SECURITY MODEL

Below the definition for DFA-based FPRE is defined. By a
DFA-based FPRE we mean a unidirectional single-hop DFA-
based FPRE. Due to limited space we refer the reader to [28]
for the details of the definition of DFA and DFA-based FE.

Definition 1: A DFA-based functional proxy re-encryption
(DFA-based FPRE) scheme includes the following algorithms:

1) (PP,MSK) ← Setup(1n,
∑

): intakes a security pa-
rameter n and the description of a finite alphabet

∑
,

and outputs the public parameters PP and a master key
MSK, where n ∈ N. Note PP implicitly includes

∑
.

2) SKM ← KeyGen(MSK,M = (Q, T , q0, F )): intakes
MSK and the description of a DFA M , and outputs a
private key SKM , where Q is a set of states, T is a set
of transitions, q0 is a start state, and F is a set of accept
states.

3) rkM→w ← ReKeyGen(SKM , w): intakes SKM for
a DFA description M and an arbitrary length string
w ∈

∑
, and outputs a re-encryption key rkM→w,

where REJECT (M,w). This re-encryption key is used

2The definitions are defined in [1].

to convert any ciphertext under a string w′ (in which
ACCEPT (M,w′)) to be another ciphertext under w.

4) C ← Encrypt(PP,w,m): intakes PP , a w ∈
∑

and a
message m ∈ GT , and outputs a ciphertext CT under w
(which can be further re-encrypted).

5) CR ← ReEnc(rkM→w, CT ): intakes rkM→w and CT
(under w′). If ACCEPT (M,w′), CT is converted to a
re-encrypted ciphertext CR under w (which cannot be
further converted); otherwise, output an error symbol ⊥.

6) m/ ⊥← Dec(SKM , CT ): intakes SKM and CT (under
w). If ACCEPT (M,w), output a message m; otherwise,
output an error symbol ⊥.

7) m/ ⊥← DecR(SKM , C
R): intakes SKM and CR

(under w). If ACCEPT (M,w), output a message m;
otherwise, output an error symbol ⊥.

Correctness: For any n ∈ N, any w ∈
∑

, and any
m ∈ GT , if (PP,MSK) ← Setup(1n,

∑
), SKM ←

KeyGen(MSK,M) for all DFA used in the system, we have

Dec(SKM , Encrypt(PP,w,m)) = m;

DecR(SKM ′ , ReEnc(ReKeyGen(SKM , w
′),

Encrypt(PP,w,m))) = m,

where ACCEPT (M,w) and ACCEPT (M ′, w′).
Security. The IND-CCA security for DFA-based FPRE

systems is as follows. Here we make the knowledge of secret
key assumption where users will use their public keys when
they know knowledge of the corresponding private keys.

Definition 2: A DFA-based FPRE scheme is IND-CCA
secure at original ciphertext if no probabilistic polynomial
time (PPT) adversary A can win the game below with non-
negligible advantage. Let B be the game challenger.

Setup. B runs (PP,MSK)← Setup(1n,
∑

), and returns
PP to A.

Phase 1. A makes the following queries.
1) OSK(M): on input a DFA description M , B runs

SKM ← KeyGen(MSK,M) and returns SKM to A.
Note the description M is based on

∑
, i.e. each symbol

used in M belongs to
∑

.
2) Ork(M,w): on input M and an arbitrary string w, B

returns rkM→w ← ReKeyGen(skM , w) to A, where
SKM ← KeyGen(MSK,M). Note w must be chosen
from

∑
, and REJECT (M,w).

3) Ore(M,w′, CT ): on input M , a string w′ and a CT
(under w), B returns a re-encrypted ciphertext CR ←
ReEnc(rkM→w′ , CT ) under w′ to A, where rkM→w′ ←
ReKeyGen(SKM , w

′), SKM ← KeyGen(MSK,M),
ACCEPT (M , w) and REJECT (M , w′).

4) Odec(M,CT ): on input M and CT (under w), B
returns m ← Dec(SKM , CT ), where SKM ←
KeyGen(MSK,M) and ACCEPT (M,w).

5) OdecR(M,CR): on input M and CR (under w), B
returns m ← Dec(SKM , C

R), where SKM ←
KeyGen(MSK,M) and ACCEPT (M,w).

Note if the ciphertexts issued by A are ill-form, output ⊥.
Challenge. A outputs two equal-length messages m0,

m1 and a challenge string w∗ ∈
∑

. If the fol-
lowing queries: OSK(M∗); Ork(M∗, w′) and OSK(M ′)



4

are never made, B returns the challenge original ci-
phertext CT ∗ = Encrypt(PP,w∗,mb) to A, where
b ∈R {0, 1}, ACCEPT (M∗, w∗), ACCEPT (M ′, w′) and
REJECT (M∗, w′).

Phase 2. The following queries are forbidden:
1) OSK(M∗) for all M∗ requested ACCEPT (M∗, w∗);
2) Ork(M∗, w′) and OSK(M ′) for all M∗ and M ′ re-

quested ACCEPT (M∗, w∗), ACCEPT (M ′, w′) and
REJECT (M∗, w′).

3) Odec(M∗, CT ∗) for all M∗ requested ACCEPT (M∗,
w∗);

4) Ore(M∗, w′, CT ∗) and OSK(M ′) for all M∗ and M ′

requested ACCEPT (M∗, w∗), ACCEPT (M ′, w′) and
REJECT (M∗, w′); and

5) OdecR(M,CR) for any M , CR, where (w′, CR) is a
derivative of (w∗, CT ∗). As of [7], the derivative of
(w∗, CT ∗) is defined as follows.

i. (w∗, CT ∗) is a derivative of itself.
ii. If A has issued (M∗, w′) to Ork to obtain rkM∗→w′

such that it can run CR ← ReEnc(rkM∗→w′ ,
CT ∗) under w′, then (w′, CR) is a derivative of
(w∗, CT ∗) if DecR(SKM ′ , CR) ∈ {m0,m1},
where ACCEPT (M ′, w′), ACCEPT (M∗, w∗)
and REJECT (M∗, w′).

iii. If A has issued (M∗, w′, CT ∗) to Ore to ob-
tain CR under w′, then (w′, CR) is a deriva-
tive of (w∗, CT ∗), where ACCEPT (M∗, w∗) and
REJECT (M∗, w′).

Guess. A outputs a guess bit b′ ∈ {0, 1}.
The advantage of A is defined as ε1 = |Pr[b′ = b]− 1

2 |.
Definition 3: A DFA-based FPRE scheme is IND-CCA se-

cure at re-encrypted ciphertext if the advantage ε2 is negligible
for any PPT adversary A in the following experiment. Set
O = {OSK , Ork, Odec, OdecR}.

ε2 =

∣∣∣∣∣Pr
[
b′ = b : (PP,MSK)← Setup(1n,

∑
);

(m0,m1, w
∗, w′)← AO(PP ); b ∈R {0, 1};

CR∗ ← ReEnc(rkM ′→w∗ , CT ); b′ ← AO(CR∗)

]
− 1

2

∣∣∣∣∣,
where w∗ and w′ are two “distinct” strings (chosen from∑

) so that if there is a SKM in which ACCEPT (M,w∗),
then REJECT (M,w′) holds, CT ← Encrypt(PP , w′,
mb), rkM ′→w∗ ← ReKeyGen(SKM ′ , w∗), SKM ′ ←
KeyGen(MSK, M ′). OSK , Ork, Odec, OdecR are the or-
acles defined in Definition 2 but limited to the following
constraints. For OSK , A is forbidden to issue M∗ where
ACCEPT (M∗, w∗). If A queries to OdecR on (M∗, CR∗),
the oracle outputs ⊥. There is no restriction for Ork and Odec.

III. FULLY CCA-SECURE DFA-BASED FPRE

A. Preliminaries

Composite Order Bilinear Groups. Composite order bilinear
groups were introduced in [6]. Let G and GT be the two
multiplicative cyclic groups of order N = p1p2p3, where

p1, p2, p3 are distinct primes. We say that GT has an ad-
missible bilinear map e : G × G → GT if the following
properties hold: (1) Bilinearity: ∀g, h ∈ G and a, b ∈R Z∗N ,
e(ga, hb) = e(g, h)ab; (2) Non-degeneracy: ∃g ∈ G so that
e(g, g) has order N in GT . Assume that the group operations
in G and GT as well as the bilinear map e are computable in
polynomial time with respect to a security parameter n, and
that the group description of G and GT include the generators
of the respective cyclic groups. We denote by Gp1 , Gp2 , Gp3
the subgroups of order p1, p2, p3 in G respectively.
Complexity Assumptions. Due to limited space, we refer the
readers to [17] for the details of the 3 assumptions. Below two
new assumptions are defined.

The Source Group l-Expanded Bilinear Diffie-Hellman
Exponent (l-Expanded BDHE) Assumption in a Subgroup.
It is closely relative to the Expanded l-BDHE assumption
introduced in [28], but this requires the challenge term to lie
in the source group.

The Source Group l-Expanded Bilinear Diffie-Hellman
Exponent (l-Expanded BDHE) Assumption in a Subgroup.
Given a group generator G and a positive integer l, we define

(N = p1p2p3,G,GT , e)← G, g1 ∈R Gp1 , g2 ∈R Gp2 ,
g3 ∈R Gp3 , a, b, d,m, n, x, c0, ..., cl+1 ∈R ZN ,

D =
(
N,G,GT , e, g1, g3, g2, ga2 , gb2, g

ab/dx
2 , g

b/dx
2 , g

ab/x
2 , gn2 ,

∀i ∈ [0, 2l + 1], i 6= l + 1, j ∈ [0, l + 1] ga
imn

2 , g
aibmn/cjx
2 ,

∀i ∈ [0, l + 1] gci2 , g
aid
2 , g

abci/dx
2 , g

bci/dx
2 ,

∀i ∈ [0, 2l + 1], j ∈ [0, l + 1] g
aibd/cjx
2 ,

∀i, j ∈ [0, l + 1], i 6= j g
aibcj/cix
2

)
, T0 = ga

l+1bm
2 , T1 ∈R Gp2 .

The advantage of an algorithmA in breaking the assumption
is defined as Advl-BDHEA (1n) = |Pr[A(D,T0) = 1] −
Pr[A(D,T1) = 1]|. In Appendix A we give the proof of the
assumption in the generic group model.

Definition 4: The l-Expanded BDHE Assumption holds if
Advl-BDHEA (1n) is negligible for any PPT algorithm A.

The Source Group Modified q-Parallel Bilinear Diffie-
Hellman Exponent (q-BDHE) Assumption in a Subgroup. It
is a variant of the source group q-BDHE assumption [18].

The Source Group Modified q Bilinear Diffie-Hellman
Exponent (q-BDHE) Assumption in a Subgroup. Given a
group generator G, we define the following distribution:

(N = p1p2p3,G,GT , e)← G, g ∈R Gp1 , g2 ∈R Gp2 ,
g3 ∈R Gp3 , c, a, e, f ∈R ZN ,

D = (N,G,GT , e, g, g2, g3, ge2, ga2 , g
aef
2 , g

c+f/c
2 , gc

2

2 , · · · ,

gc
q

2 , g
1/acq

2 ), T0 = gaec
q+1

2 , T1 ∈R Gp2 .

The advantage of an algorithm A in breaking the assumption
is defined as Advq-BDHEA (1n) = |Pr[A(D, T0) = 1] −
Pr[A(D,T1) = 1]|.

Definition 5: The Source Group Modified q-BDHE As-
sumption holds if Advq-BDHEA (1n) is negligible for any PPT
algorithm A.
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Note we can prove the source group modified q-BDHE as-
sumption in the generic group model in the identical approach
as that of the previous assumption, we hence omit the details.

B. Construction

To achieve adaptive security we also let the elements of Gp1
represent all original components of our DFA-based FPRE
scheme, and additionally use the elements of Gp3 to random-
ize the private key. The randomization will not hinder the
functionality of the scheme due to the orthogonality property
of subgroups Gp1 , Gp2 and Gp3 . Besides, the elements of
Gp2 will not be used in the real scheme but in the security
proof. We additionally employ three primitives to achieve CCA
security: target collision resistant (TCR) hash function [9],
one-time symmetric encryption [9] and one-time signature
system [3]. Our DFA-based FPRE scheme works as follows.
• Setup(1n,

∑
): Choose g, g0, z, h0 ∈R Gp1 , and α,

k, a, b, αend, αstart ∈R Z∗N . Set hstart = gαstart ,
hend = gαend and hk = gk. For each symbol σ ∈

∑
,

choose a ασ ∈R Z∗N , and set hσ = gασ . Choose a
one-time signature scheme OTS, a one-time symmetric
encryption scheme SYM = (SYM.Enc, SYM.Dec),
and two hash functions: H1 : GT → Z∗N
and H2 : GT → {0, 1}poly(n). The PP is{
e(g, g)α, g, gab, g0, z, h0, hstart, hend, hk,∀σ∈∑hσ,
OTS, SYM,H1, H2

}
along with the descriptions of G

and the alphabet
∑

. The MSK is (g−α, X3), where
X3 is a generator of Gp3 .

• KeyGen(MSK,M = (Q, T , q0, F )): The description of
M includes a set Q of states q0, ..., q|Q|−1 and a set of
transitions T where each transition t ∈ T is a triple
(x, y, σ) ∈ Q×Q×

∑
. q0 is designated as a unique start

state and F ⊆ Q is the set of accept states. The algorithm
chooses D0, D1, ..., D|Q|−1 ∈R Gp1 (associating Di with
qi), for each t ∈ T it chooses rt ∈R Z∗N , ∀qx ∈ F
it chooses rendx ∈R Z∗N , and chooses a u ∈R Z∗N . It
also chooses Rstart1, Rstart2, Rstart3, Rt,1, Rt,2, Rt,3,
Rendx,1 , Rendx,2 ∈R Gp3 and a rstart ∈R Z∗N . The
algorithm constructs the key as follows. First it sets:

Kstart1 = D0 · (hstart)rstart ·Rstart1,
Kstart2 = grstart ·Rstart2,Kstart3 = gu ·Rstart3.

For each t = (x, y, σ) ∈ T the algorithm sets:

Kt,1 = D−1x · zrt ·Rt,1, Kt,2 = grt ·Rt,2,
Kt,3 = Dy · (hσ)rt ·Rt,3,

For each qx ∈ F it computes:

Kendx,1 = g−α ·Dx · (hend · gab)rendx · gku ·Rendx,1 ,
Kendx,2 = grendx ·Rendx,2 .

Finally, the key is

SK =
(
M,Kstart1,Kstart2,Kstart3,

∀t ∈ T (Kt,1,Kt,2,Kt,3),∀qx ∈ F (Kendx,1 ,Kendx,2)
)
.

• ReKeyGen(SKM , w):

1) Choose a y ∈R GT and vx ∈R Z∗N (for ∀qx ∈
F ), and set rk1 = K

H1(y)
start1, rk2 = K

H1(y)
start2,

rk3 = K
H1(y)
start3, ∀t ∈ T (rkt,1 = K

H1(y)
t,1 , rkt,2 =

K
H1(y)
t,2 , rkt,3 = K

H1(y)
t,3 ), ∀qx ∈ F (rkendx,1 =

K
H1(y)
endx,1

· hvxend, rkendx,2 = K
H1(y)
endx,2

· gvx).
2) Run rk4 ← Encrypt(PP,w, y), and finally out-

put rkM→w = (M , rk1, rk2, rk3, rk4, ∀t ∈
T (rkt,1, rkt,2, rkt,3), ∀qx ∈ F (rkendx,1 , rkendx,2)).

• Encrypt(PP,w,m): Choose s0, s1, ..., sl ∈R Z∗N , run
(ssk, svk)← KeyGen(1n) and constructs CT as
First set: Cm = m · e(g, g)α·sl , Cstart1 = C0,1 =
gs0 , Cstart2 = (hstart)

s0 , Cstart3 = (gsvk0 h0)s0 ,
for i = 1 to l, set: Ci,1 = gsi , Ci,2 = (hwi)

si · zsi−1 ,
finally, set:

Cend1 = Cl,1 = gsl , Cend2 = (hend · gab)sl , Cend3 = (hk)sl ,

Cend4 = Sign
(
ssk, (w,Cm, Cstart1, Cstart2, Cstart3,

(C1,1, C1,2), ..., (Cend1, Cl,2), Cend2, Cend3)
)
.

The original ciphertext is

CT =
(
svk, w,Cm, Cstart1, Cstart2, Cstart3,

(C1,1, C1,2), · · · , (Cl,1, Cl,2), Cend2, Cend3, Cend4
)
.

• ReEnc(rkM→w′ , CT ):
1) If V erify(svk, (Cend4, (w, Cm, Cstart1, Cstart2,

Cstart3, (C1,1, C1,2), ..., (Cend1, Cl,2), Cend2,
Cend3))) = 1 and e(Cstart1, g

svk
0 h0)=e(g, Cstart3),

proceed; otherwise, output ⊥.
2) CT is associated with a string w = (w1, ..., wl) and the

re-encryption key rkM→w′ is associated with a DFA
M = (Q, T , q0, F ) where ACCEPT (M,w). There
must exist a sequence of l+ 1 states u0, u1, ..., ul and
l transitions t1, ..., tl where u0 = q0 and ul ∈ F and
for i = 1, ..., l, we have ti = (ui−1, ui, wi) ∈ T . The
proxy re-encrypts CT as follows.
a) It first computes: A0 = e(Cstart1, rk1) ·

e(Cstart2, rk2)−1 = e(g,D0)s0·H1(y).
b) For i = 1 to l, it computes:

Ai = Ai−1 · e(C(i−1),1, rkti,1)

·e(Ci,2, rkti,2)−1 · e(Ci,1, rkti,3)

= e(g,Dui)
si·H1(y).

Since M accepts w, we have that ul = qx for some
qx ∈ F and Al = e(g,Dx)sl·H1(y).

c) It sets:

Aend = Al · e(Cendx,1 , rkendx,1)−1

·e(Cendx,2 , rkendx,2) · e(Cendx,3 , rk3)

= e(g, g)α·sl·H1(y).

d) The proxy sets C1 = SYM.Enc(H2(δ), ξ),
C2 = Encrypt(PP,w′, δ), where δ ∈R GT and
ξ = (CT ||Aend||rk4). It finally outputs the re-
encrypted ciphertext CR = (C1, C2).

• Dec(SKM , CT ): If V erify(svk, (Cend4, (w,
Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2),
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..., (Cend1, Cl,2), Cend2, Cend3))) = 1 and
e(Cstart1, g

svk
0 h0)=e(g, Cstart3), proceed; otherwise,

output ⊥.
First compute:

B0 = e(Cstart1,Kstart1) · e(Cstart2,Kstart2)−1

= e(g,D0)s0 .

For i = 1 to l, compute:

Bi = Bi−1 · e(C(i−1),1,Kti,1) · e(Ci,2,Kti,2)−1

·e(Ci,1,Kti,3)

= e(g,Dui)
si .

Since M accepts w, we have that ul = qx for some
qx ∈ F and Bl = e(g,Dx)sl . Finally compute

Bend = Bl · e(Cendx,1 ,Kendx,1)−1

·e(Cendx,2 ,Kendx,2) · e(Cendx,3 ,Kstart3)

= e(g, g)α·sl ,

and output the message m = Cm/Bend.
• DecR(SKM , C

R):
1) Run δ ← Decrypt(SKM , C2), compute ξ ←

SYM.Dec(H2(δ), C1), where ξ = (CT ||Aend||rk4).
2) Run y ← Decrypt(SKM , rk4), then compute Key =

A
H1(y)

−1

end .
3) Verify

e(Cstart1, g
svk
0 h0)

?
= e(g, Cstart3),

V erify
(
svk,

(
Cend4, (w,Cm, Cstart1,

Cstart2, Cstart3, (C1,1, C1,2), · · · , (Cl,1, Cl,2),

Cend2, Cend3)
)) ?

= 1.

If the equations hold, proceed; otherwise, output ⊥.
4) Output the message m = Cm/Key.

C. Security Analysis
Theorem 1: Suppose Assumption 1, 2 and 3, the source

group modified q-BDHE assumption in a subgroup, and the
source group l-BDHE assumption in a subgroup hold, SYM
is a CCA-secure symmetric encryption, OTS is a strongly
existential unforgeable one-time signature and H1, H2 are
TCR hash functions, our DFA-based FPRE system is IND-
CCA secure in the standard model.

Before proceeding, we define the semi-functional
ciphertexts and the semi-functional keys as follows.
Semi-functional Ciphertexts. We let g2 be a generator
of subgroup Gp2 , choose γ0, γ1, ..., γl ∈R Z∗N ,
α′σ ∈R Z∗N associated to each symbol σ belonging
to

∑
, and β′, β′0, β

′
1, α
′
start, α

′
end, k

′, a′, b′ ∈R Z∗N .
We run (ssk, svk) ← KeyGen(1n), and set the
ciphertexts as (svk, w,C ′m, C

′
start1, C

′
start2, C

′
start3,

(C ′1,1, C
′
1,2), ..., (C ′end1, C

′
l,2), C ′end2, C

′
end3, C

′
end4) in which

C ′start1 = C ′0,1 = gs0gγ02 , C
′
start2 = (hstart)

s0g
α′startγ0
2 ,

C ′start3 = (gsvk0 h0)s0(g
β′0svk
2 · gβ

′
1

2 )γ0 , C ′end1 = C ′l,1 = gslgγl2 ,

C ′end2 = (hendg
ab)slg

(α′end+a
′b′)γl

2 , C ′end3 = gkslgk
′γl

2 ,

for i = 1 to l: C ′i,1 = gsigγi2 , C
′
i,2 =

(hwi)
sizsi−1g

α′wi
γi+β

′γi−1

2 , C ′m and C ′end4 are the normal
ciphertext components generated by the encryption algorithm
except that C ′end4 is the signature for the above components.
Note k′, β′, α′end, α

′
start and (some of) α′wi will be shared in

the nominal and temporary semi-functional keys.
Below we define three types of semi-functional keys used

in our security proof. We let Rstart1, Rstart2, Rstart3, Rt,1,
Rt,2, Rt,3, Rendx,2 ∈R Gp3 and an R ∈R Gp2 .
Semi-functional Keys. We set the keys as

K ′start1 = D0(hstart)
rstartRstart1,

K ′start2 = grstartRstart2,K
′
start3 = guRstart3,

for each t = (x, y, σ) ∈ T :

K ′t,1 = D−1x zrtRt,1,K
′
t,2 = grtRt,2,K

′
t,3 = Dy(hσ)rtRt,3,

for each qx ∈ F :

K ′endx,1 = g−αDx(hendg
ab)rendx gkuRendx,1R,

K ′endx,2 = grendxRendx,2 .

Nominal Semi-functional Keys. We choose d0, ..., d|Q|−1 ∈R
Z∗N associated to the states in Q, for each t ∈ T
choose a εt ∈R Z∗N , for each qx ∈ Q choose a
εendx ∈R Z∗N , εstart, u′ ∈R Z∗N . We set the keys
as (K ′start1,K

′
start2,∀t ∈ T (K ′t,1,K

′
t,2, K ′t,3),∀qx ∈

F (K ′endx,1 ,K
′
endx,2

)) in which

K ′start1 = D0(hstart)
rstartRstart1(g

α′start
2 )εstartgd02 ,

K ′start2 = grstartRstart2g
εstart
2 ,K ′start3 = guRstart3g

u′

2 ,

for each t = (x, y, σ) ∈ T :

K ′t,1 = D−1x zrtRt,1(gβ
′

2 )εtg−dx2 ,

K ′t,2 = grtRt,2g
εt
2 ,K

′
t,3 = Dy(hσ)rtRt,3(g

α′σ
2 )εtg

dy
2 ,

for each qx ∈ F :

K ′endx,1 =g−αDx(hendg
ab)rendx gku·

Rendx,1g
dx
2 g

(α′end+a
′b′)εendx

2 gk
′u′

2 ,

K ′endx,2 =grendxRendx,2g
εendx
2 .

Temporary Semi-functional Keys. We choose
d0, ..., d|Q|−1 ∈R Z∗N , for each t ∈ T choose a εt ∈R Z∗N ,
for each qx ∈ Q choose a εendx ∈R Z∗N , a εstart ∈R Z∗N . We
set the keys as

K ′start1 = D0(hstart)
rstartRstart1(g

α′start
2 )εstartgd02 ,

K ′start2 = grstartRstart2g
εstart
2 ,K ′start3 = guRstart3g

u′

2 ,

for each t = (x, y, σ) ∈ T :

K ′t,1 = D−1x zrtRt,1(gβ
′

2 )εtg−dx2 ,

K ′t,2 = grtRt,2g
εt
2 ,K

′
t,3 = Dy(hσ)rtRt,3(g

α′σ
2 )εtg

dy
2 ,

for each qx ∈ F :

K ′endx,1 = g−αDx(hendg
ab)rendx gkuRendx,1R,

K ′endx,2 = grendxRendx,2g
εendx
2 .
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We will prove Theorem 1 in a hybrid argument over
a sequence of games. In all the games (to be defined)
B will play with A, and the total number of queries is
q = qsk + qrk + qre + qdec, where qsk, qrk, qre, qdec denote
the number of the secret key extraction, re-encryption key
extraction, re-encryption and decryption queries, respectively.
We define Gamereal to be the first game. It is the IND-
CCA security game for DFA-based FPRE systems in which
the challenge ciphertext (for original ciphertext security and
re-encrypted ciphertext security) is normal. In this game, B
will use normal secret keys as knowledge to respond secret
key extraction, re-encryption key extraction, re-encryption and
decryption queries. We define Game0 to be the second game
which is identical to Gamereal except that the challenge
ciphertext is semi-functional. Hereafter by “keys” (resp. “key”)
we mean the secret key(s) (constructed by B) used to respond
the secret key extraction, re-encryption key extraction, re-
encryption and decryption queries. In the following games,
we will convert the “keys” to be semi-functional one by one.
But for clarity we first turn the “keys” for the secret key
extraction queries, and then convert the “keys” for the re-
encryption key extraction queries, the re-encryption queries
and the decryption queries in sequence. Besides, A is only
allowed to issue one corresponding query in each of the
following games. We further define Gamei as follows, where
i ∈ [1, q]. We let jι ∈ [1, qι], where ι ∈ {sk, rk, re, dec}. For
each game Gamejι we define two sub-games GameNjι and
GameTjι in which the challenge ciphertext is semi-functional.
In GameNjι the first (j − 1)ι “keys” are semi-functional, the
jι-th “key” is nominal semi-functional, and the rest of “keys”
are normal. In GameTjι the first (j − 1)ι “keys” are semi-
functional, the jι-th “key” is temporary semi-functional, and
the remaining “keys” are normal. To transform Game(j−1)ι
(where jι-th “key” is normal) to Gamejι (where jι-th “key”
is semi-functional), we start from converting Game(j−1)ι to
GameNjι , then to GameTjι , and finally to Gamejι . Note to
get from GameNjι to GameTjι , we deal with the simulations
for the queries of Phase 1 and that of Phase 2 differently:
the former is based on the source group modified q-BDHE
assumption in a subgroup, and the latter is based on the
source group l-expanded BDHE assumption in a Subgroup.
In Gameq = Gameqdec all “keys” are semi-functional, and
the challenge ciphertext is semi-functional for one of the given
messages. We define Gamefinal to be the final game in which
all “keys” are semi-functional and the challenge ciphertext
is semi-functional for a random message, independent of the
two message given by A. We will prove the above games
to be indistinguishable by the following lemmas. Below we
assume SYM is a CCA-secure, OTS is a strongly existential
unforgeable and H1, H2 are TCR hash functions, and it is hard
to find a non-trivial factor of N .

Lemma 1: If there is an algorithm A such that
GamerealAdv

DFA-FPRE
A −Game0AdvDFA-FPRE

A = δ, we
can build an algorithm B breaking Assumption 1 with advan-
tage δ.

Proof: For simplicity, we combine the security proof
of original and re-encrypted ciphertexts into one simulation.

Below by original/re-encrypted game we mean the security
game for original/re-encrypted ciphertext.
Setup. B is given an instance (D, T ) of Assumption 1,
and simulates either Gamereal or Game0 (depending on T )
with A. B chooses a, b, α, β, β0, β1, αstart, αend, k ∈R Z∗N ,
ασ ∈R Z∗N for all symbols in

∑
, two TCR hush functions

H1, H2, a one-time signature system OTS and a one-time
symmetric encryption scheme SYM , and outputs PP :

e(g, g)α, g, gab, g0 = gβ0 , z = gβ , h0 = gβ1 , hstart = gαstart ,

hend = gαend , hk = gk, ∀σ∈∑hσ = gασ , H1, H2, OTS, SYM.

B keeps α and X3 secretly.
Phase 1. A makes the following queries:

1) OSK(M): If ACCEPT (M,w∗), B output ⊥. Other-
wise, B returns SKM to A by running the algorithm
KeyGen as it has knowledge of MSK.

2) Ork(M,w):
• For original game: if ACCEPT (M,w∗) and SKM ′

(for any DFA M ′ so that ACCEPT (M ′, w)) is
obtained by A, B outputs ⊥. Otherwise, B constructs
SKM as in OSK , and next generates rkM→w for A
by running the algorithm ReKeyGen.

• For re-encrypted game: B can construct generates any
re-encryption key rkM→w with knowledge of MSK.

3) Ore(M,w′, CT ):
• For original game: if ACCEPT (M,w∗), CT is the

challenge ciphertext, and SKM ′ (for any DFA M ′

so that ACCEPT (M ′, w′)) is obtained by A, B
outputs ⊥. Otherwise, B constructs rkM→w′ as in
Ork, and next generates the re-encrypted ciphertext
CR by running the algorithm ReEnc.

• For re-encrypted game: Ore is not offered to A.
4) Odec(M,CT ):

• For original game: if ACCEPT (M,w∗), and CT
is the challenge ciphertext, B outputs ⊥. Otherwise,
B constructs SKM with knowledge of MSK, and
next recovers m by running the algorithm Dec.

• For re-encrypted game: B recovers the private key
with knowledge of MSK and recovers m.

5) OdecR(M,CR):
• For original game: B constructs SKM with knowl-

edge of MSK, and next recovers m by running
DecR. If (w′, CR) is a derivative, B outputs ⊥. To
distinguish the derivatives from the submitted cipher-
texts, B can use the following approaches. If the re-
encrypted ciphertext is output by Ore(M,w′, CT ),
then the ciphertext is indeed a derivative, where
CT is the challenge ciphertext and SKM ′ (for any
DFA M ′ so that ACCEPT (M ′, w′)) is not obtained
by A. Otherwise, it indicates that the re-encrypted
ciphertext is constructed by A with a re-encryption
key given by B. B then recovers the underlying
CT from the re-encrypted ciphertext (by using the
corresponding private key), and re-constructs Aend
as in the real scheme. If the value (of Aend) is equal
to the one hidden in the symmetric encryption, and
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CT is the challenge ciphertext, it knows that the re-
encrypted ciphertext is a derivative.

• For re-encrypted game: B uses SKM to decrypt
CR as in the real scheme. If CR is the challenge
ciphertext, B outputs ⊥.

Challenge. B implicitly sets gs0 to be the Gp1 part of T , runs
(ssk, svk)← KeyGen(1n), chooses a random b ∈ {0, 1} and
generates the challenge ciphertext as follows.
• For original game: A outputs m0,m1, and w∗ (with

length l). B sets the challenge original ciphertext as

svk, w∗, Cm = mb · e(gα, T )s
′
l , Cstart1 = T,

Cstart2 = Tαstart , Cstart3 = T β0·svk · T β1 ,

Cend1 = T s
′
l , Cend2 = Tαend·s

′
l , Cend3 = T k·s

′
l ,

for i = 1 to l: Ci,1 = T s
′
i , Ci,2 = T s

′
i·αwi · T s

′
i−1·β ,

and Cend4 = Sign
(
ssk, (w∗, Cm, Cstart1, Cstart2,

Cstart3, (C1,1, C1,2), · · · , (Cl,1, Cl,2), Cend2, Cend3)
)

,
where s′1, ..., s

′
l ∈R Z∗N . B outputs CT = (svk, w∗, Cm,

Cstart1, Cstart2, Cstart3, (C1,1, C1,2), ..., (Cl,1, Cl,2),
Cend2, Cend3, Cend4) to A.

• For re-encrypted game: A outputs m0,m1, a string
w′ and a challenge string w∗ (both with length l).
B runs CT = Encrypt(PP , w′, mb), generates the
re-encryption key rkM→w∗ and constructs Aend as
in the real scheme. It further sets C2 in the identi-
cal approach described above. B finally sets C1 =
SYM.Enc(H2(δ), ξ), and outputs the challenge re-
encrypted ciphertext CR = (C1, C2) to A, where ξ =
(CT ||Aend||rk4).

Phase 2. Same as Phase 1.
Guess. B outputs whatever A outputs.

If T ∈ Gp1 , the challenge ciphertext is a properly distributed
normal ciphertext so that this is in Gamereal. If T ∈ Gp1p2 ,
we let gs0 be the Gp1 part of T and gγ02 be the Gp2 part
of T , i.e. T = gs0 · gγ02 . We will have the semi-functional
ciphertext with γi = γ0 · s′i, si = s0 · s′i. In addition, the
values of a, b, αstart, αend, ασ, β, k, s′1, ..., s

′
l modulo p2 are

uncorrelated from their values modulo p1 by the Chinese
Remainder Theorem (assume finding a nontrivial factor of N
is hard). Thus the challenge ciphertext is a properly distributed
semi-functional ciphertext so that this is in Game0. Note it
can be easily seen that all private keys and re-encryption keys
generated in the simulation are normal. Therefore B can use
the output of A to break Assumption 1 with advantage δ.

Lemma 2: If there is an algorithm A such that
Game(j−1)ιAdv

DFA-FPRE
A − GameNjιAdv

DFA-FPRE
A = δ,

we can construct an algorithm B breaking Assumption 2 with
advantage δ.

Proof: Setup. B is given an instance (D, T ) of Assump-
tion 2, and simulates either Game(j−1)ι or GameNjι with A.
B generates PP and MSK as in the proof of Lemma 1.
Phase 1. A makes the following queries:

1) OSK(M): B constructs the private keys for A as follows.
• For the first (j − 1)sk key queries, B

generates the semi-functional keys for A.
B chooses Rstart1, Rstart2, Rstart3, (∀t ∈

T ) Rt,1, Rt,2, Rt,3, (∀qx ∈ F ) Rendx,1 , Rendx,2 ∈R
Gp3 . For each t ∈ T it chooses rt ∈R Z∗N , and
∀qx ∈ F it chooses rendx , τx ∈R Z∗N . It also chooses
rstart, u, k ∈R Z∗N , D0, D1, ..., D|Q|−1 ∈R Gp1 ,
where Di is associated with qi. It sets

K ′start1 = D0(hstart)
rstartRstart1,

K ′start2 = grstartRstart2,K
′
start3 = guRstart3,

for each t = (x, y, σ) ∈ T :

K ′t,1 = D−1x zrtRt,1,

K ′t,2 = grtRt,2,K
′
t,3 = Dy(hσ)rtRt,3,

for each qx ∈ F :

K ′endx,1 =g−αDx(hendg
ab)rendx gkuRendx,1(Y2Y3)τx ,

K ′endx,2 =grendxRendx,2 .

The value of τx modulo p2 is uncorrelated from
its values modulo p3 by the Chinese Remainder
Theorem. Thus the above key is properly distributed.

• For the > jsk key queries, B runs the algorithm
KeyGen to generate keys.

• For the jsk-th key query, B implicitly lets grstart be
the Gp1 part of T . B chooses d′0, d

′
1, ..., d

′
|Q|−1 ∈R

Z∗N , for each t ∈ T chooses r′t ∈R Z∗N ,
∀qx ∈ F chooses r′endx ∈R Z∗N , a u′ ∈R Z∗N ,
Rstart1, Rstart2, Rstart3, Rt,1, Rt,2, Rt,3, Rendx,1 ,
Rendx,2 ∈R Gp3 (here B can simply set Rstart1 =
Xϕstart1

3 , Rstart2 = Xϕstart2
3 , Rstart3 = Xϕstart3

3 ,
Rt,1 = X

ϕt,1
3 , Rt,2 = X

ϕt,2
3 , Rt,3 = X

ϕt,3
3 ,

Rendx,1 = X
ϕendx,1
3 , Rendx,2 = X

ϕendx,2
3 , where

ϕstart1, ϕstart2, ϕstart3, ϕt,1, ϕt,2, ϕt,3, ϕendx,1 ,
ϕendx,2 ∈R Z∗N ). It sets the semi-functional key as

Kstart1 = Rstart1T
d′0+αstart ,

Kstart2 = Rstart2Tstart3 = Rstart3T
u′ ,

for each t = (x, y, σ) ∈ T :

Kt,1 = Rt,1T
−d′x+βr

′
t ,

Kt,2 = Rt,2T
r′t ,Kt,3 = Rt,3T

d′y+ασr
′
t ,

for each qx ∈ F :

Kendx,1 = g−αRendx,1T
d′x+(αend+ab)r

′
endx

+ku′ ,

Kendx,2 = Rendx,2T
r′endx .

Note this implicitly sets rt = rstartr
′
t,

Dx = grstartd
′
x and rendx = rstartr

′
endx

. If
T ∈ Gp1p3 , the key is a properly distributed normal
key so that B has properly simulated Game(j−1)ι .
Otherwise, the key is a properly distributed semi-
functional key so that B has properly simulated
GameNjι . We implicitly let gεstart2 be the Gp2 part
of T , set εt = εstartr

′
t,εendx = εstartr

′
endx

and dx = εstartd
′
x. Besides, u′rstart and

u′εstart are the exponents of the Gp1 part and
Gp2 part (of Kstart3), and the Gp2 parts of
Kstart1,Kstart2,Kstart3,Kt,1,Kt,2,Kt,3,Kendx,1
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and Kendx,2 are gαstartεstart+d02 , gεstart2 , gu2 , g
βεt−dx
2 ,

gεt2 , gασεt+dy2 , g(αend+ab)εendx+dx+ku2 and g
εendx
2 ,

respectively.
2) Ork(M,w):

• For original game: since B can construct normal
private keys, it first constructs SKM with knowledge
of MSK and next generates the re-encryption key
rkM→w by running the algorithm ReKeyGen. If
ACCEPT (M,w∗) and SKM ′ (for any DFA M ′ so
that ACCEPT (M ′, w)) is given to A, B outputs ⊥.

• For re-encrypted game: B generates any re-
encryption key for A.

3) Ore(M,w′, CT ):
• For original game: B constructs the re-encryption

key rkM→w′ as in Ork, next generates CR via the
algorithm ReEnc. If ACCEPT (M,w∗), CT is the
challenge ciphertext, and SKM ′ is obtained by A, B
outputs ⊥, where ACCEPT (M ′, w′).

• For re-encrypted game: no need to issue Ore.
4) Odec(M,CT ):

• For original game: if ACCEPT (M,w∗), and CT is
the challenge ciphertext, B outputs ⊥. Otherwise B
constructs SKM to recover m.

• For re-encrypted game: B constructs the private key
to decrypt the ciphertext as in the real scheme.

5) OdecR(M,CR):
• For original game: if (M , CR) is a derivative, B

outputs ⊥. Otherwise B constructs the private key
to recover the message m via the algorithm DecR.

• For re-encrypted game: if CR is the challenge cipher-
text, B outputs ⊥. Otherwise B constructs SKM as
in OSK to decrypt the ciphertext.

Challenge. B implicitly sets gs0 = X1 and gγ02 = X2, runs
(ssk, svk)← KeyGen(1n), chooses a random b ∈ {0, 1} and
constructs the challenge ciphertext as follows.
• For original game: A outputs m0,m1, and w∗. B then

sets the challenge original ciphertext CT as

svk, w∗, Cm = mbe(g
α, X1X2)

s′l , Cstart1 = X1X2,

Cstart2 = (X1X2)
αstart , Cstart3 = (X1X2)

β0svk(X1X2)
β1 ,

Cend1 = (X1X2)
s′l , Cend2 = (X1X2)

(αend+ab)s
′
l ,

Cend3 = (X1X2)
ks′l ,

for i = 1 to l: Ci,1 = (X1X2)s
′
i , Ci,2 =

(X1X2)s
′
iαwi (X1X2)s

′
i−1β , and Cend4 = Sign(ssk,

(w∗, Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2), ...,
(Cl,1, Cl,2), Cend2, Cend3)), where s′1, ..., s

′
l ∈R Z∗N .

B outputs CT = (svk, w∗, Cm, C0,1, Cstart2, Cstart3,
(C1,1, C1,2), ..., (Cend1, Cl,2), Cend2, Cend3, Cend4)
to A. Note we have the semi-functional ciphertext with
γi = γ0 · s′i, and si = s0 · s′i, where i ∈ {1, ..., l},
and the values of the exponents of X1X2 modulo p1 are
uncorrelated from their values modulo p2.

• For re-encrypted game: A outputs m0,m1, a string
w′ and a challenge string w∗. B runs CT =
Encrypt(PP,w′,mb), generates the re-encryption key

rkM→w∗ and constructs Aend as in the real scheme. It
further sets C2 in the identical method described above.
B finally sets C1 = SYM.Enc(H2(δ), ξ), and outputs
the challenge re-encrypted ciphertext CR = (C1, C2) to
A, where ξ = (CT ||Aend||rk4).

Phase 2. Same as Phase 1.
Guess. B outputs whatever A outputs.

Therefore if T ∈ Gp1p3 , the simulation is in Game(j−1)ι .
Otherwise, the simulation is in GameNjι . B can use the output
of A to break Assumption 2 with advantage δ.

Lemma 3: If there is an algorithm A such that
GameNjιAdv

DFA-FPRE
A − GameTjιAdv

DFA-FPRE
A = δ for

a j from Phase 1, we can build an algorithm B breaking the
source group modified q-BDHE assumption in a subgroup with
advantage δ.

Proof: Setup. B is given an instance (D, T ) of the
source group modified q-BDHE assumption in a subgroup,
and simulates either GameNjι or GameTjι with A. B generates
PP and MSK as in the proof of the previous lemma.
Phase 1. A makes the following queries:

1) OSK(M): B constructs the private keys for A as follows.
• For the first (j − 1)sk and > jsk key queries, B

generates the semi-functional keys and the normal
keys for A as in the previous lemma.

• For the jsk-th key query, B runs the al-
gorithm KeyGen to generate a normal key
Kstart1,Kstart2, ∀t ∈ T (Kt,1,Kt,2,Kt,3),∀qx ∈
F (Kendx,1 ,Kendx,2), and next sets

Kstart1g
d′0
2 g

α′startε
′
start

2 ,Kstart2g
ε′start
2 ,Kstart3g

a
2 ,

for each t = (x, y, σ) ∈ T :

Kt,1g
−d′x
2 g

β′ε′t
2 ,Kt,2g

ε′t
2 ,Kt,3g

d′y
2 g

α′σε
′
t

2 ,

for each qx ∈ F :

Kendx,1g
d′x
2 T r

′
endx g

afer′endx
2 ,Kendx,2g

er′endx
2 ,

where d′0,∀ t = (x, y, σ) ∈ T ε′t, dx,∀ x ∈
F r′endx ,∀ σ ∈

∑
α′σ, α

′
start, ε

′
start, β

′ ∈R Z∗N .
This implicitly sets (ab+αend) · εendx = (aecq+1 +
afe) · r′endx , b = −cq − cq−1 − · · · − cq−n+2 + f ,
αend = ac · (cq + cq−1 + · · ·+ cq−n+1) and εendx =
e · r′endx , where q is the maximum allowable number
of distinct symbols in

∑
, and n is the total number

of the distinct symbols used in the DFA. Note we
here give a limitation to n such that n ≤ q − 1. If
T = gaec

q+1

2 , the above key is a properly distributed
nominal semi-functional key so that B has properly
simulated GameNjsk . If T ∈R Gp2 , the key is a
properly distributed temporary semi-functional key
so that B has properly simulated GameTjsk .

2) The responses of the queries to Ork,Ore,Odec,OdecR
are the same as that of previous lemma.

Challenge. B chooses random elements γ′0, ..., γ
′
l ∈R Z∗N . It

then runs (ssk, svk)← KeyGen(1n), chooses a random b ∈
{0, 1} and constructs the challenge ciphertext as follows.
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• For original game: A outputs m0,m1, and w∗. B then
runs the algorithm Enc to generate a normal ciphertext
consisting of

Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2), ...,

(Cl,1, Cl,2), Cend2, Cend3,

and sets the challenge semi-functional ciphertext CT as

svk, w∗, Cm, Cstart1 = Cstart1g
1/acqγ′0
2 ,

Cstart2 = Cstart2g
1/acqγ′0α

′
start

2 ,

Cstart3 = Cstart3(g
1/acq

2 )γ
′
0β
′
0svk(g

1/acq

2 )γ
′
0β
′
1 ,

Cend1 = Cend1(g
1/acq

2 )γ
′
l , Cend2 = Cend2(g

1/acq

2 )γ
′
lα
′
end ,

Cend3 = Cend3(g
1/acq

2 )γ
′
lk
′
,

for i = 1 to l: Ci,1 = Ci,1(g
1/acq

2 )γ
′
i , Ci,2 =

Ci,2g
1/acqα′wi

γ′i+1/acqγ′i−1β
′

2 , and Cend4 = Sign(ssk,
(w, Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2), ..., (Cl,1,
Cl,2), Cend2, Cend3)), where β′0, β

′
1 ∈R Z∗N . B outputs

CT = (svk, w, Cm, Cstart1, Cstart2, Cstart3, (C1,1,
C1,2), ..., (Cend1, Cl,2), Cend2, Cend3, Cend4) to A.

• For re-encrypted game: A outputs m0,m1, a string
w′ and a challenge string w∗. B runs CT =
Encrypt(PP,w′,mb), generates rkM→w∗ and con-
structs Aend as in the real scheme. It further sets C2 =
(ssk, (w, Cδ , Cstart1, Cstart2, Cstart3, (C1,1, C1,2),
..., (Cend1, Cl,2), Cend2, Cend3, Cend4)) as above. B
finally sets C1 = SYM.Enc(H2(δ), ξ), and outputs the
challenge re-encrypted ciphertext CR∗ = (C1, C2) to A,
where ξ = (CT ||Aend||rk4).

Guess. B outputs whatever A outputs.
Therefore if T ∈R Gp2 , the key is a properly distributed

temporary semi-functional key so that the simulation is in
GameTjι . Otherwise, the key is a properly distributed nominal
semi-functional key so that the simulation is in GameNjι . Thus
B can use the output of A to break the source group q-BDHE
assumption in a subgroup with advantage δ.

Lemma 4: If there is an algorithm A such that
GameNjιAdv

DFA-FPRE
A − GameTjιAdv

DFA-FPRE
A = δ for

a j from Phase 2, we can build an algorithm B breaking the
Source Group l-Expanded BDHE assumption in a Subgroup
with advantage δ.

Proof: Setup. B is given an instance (D, T ) of the Source
Group l-Expanded BDHE assumption, and simulates either
GameNjι or GameTjι for some j from Phase 2 with A. B
generates PP and MSK as in the proof of Lemma 1.
Challenge. B chooses a random b ∈ {0, 1}, runs (ssk, svk)←
KeyGen(1n) and generates the challenge ciphertext.
• For original game: A outputs m0,m1, and w∗. B

first generates the normal components of the chal-
lenge ciphertext as in Encrypt, and obtains the nor-
mal components consisting of (w, Cm, Cstart1, Cstart2,
Cstart3, (C1,1, C1,2), ..., (Cl,1, Cl,2), Cend1, Cend2).
B chooses vz, vstart, vend, k

′ ∈R Z∗N and ∀σ ∈∑
, vσ ∈R Z∗N . It implicitly sets β′ = vz + ab/dx,

α′start = vstart −
∑

j∈[1,l∗]
ajb/cjx, α′end = vend −

∑
j∈[2,l∗+1]

ajb/cjx, ∀σ ∈
∑
, α′wi = vσ−b/dx −∑

j∈[0,l∗+1]s.t.w∗j 6=σ
a(l
∗+1−j)b/c(l∗+1−j)x, and γi = mnai,

and next constructs the challenge ciphertext by adding
the parts in Gp2 to the normal components as follows.

Cstart1 = Cstart1g
mna0

2 = Cstart1g
γ0
2 ,

Cstart2 = Cstart2(g
mna0

2 )vstart
∏

j∈[1,l∗]

g
−ajbmna0/cjx
2

= Cstart2g
γ0vstart
2

∏
j∈[1,l∗]

g
−ajbγ0/cjx
2 ,

Cstart3 = Cstart3(g
mna0

2 )β
′
0svk(gmna

0

2 )β
′
1

= Cstart3g
γ0β
′
0svk

2 g
γ0β
′
1

2 ,

Cend1 = Cend1g
mnal

∗

2 = Cend1g
γl∗
2 ,

Cend2 = Cend2(g
mnal

∗

2 )vend+âb̂
∏

j∈[2,l∗+1]

g
−al
∗+jbmn/cjx

2

= Cend2g
γl∗ (vend+âb̂)
2

∏
j∈[2,l∗+1]

g
−ajbγl∗/cjx
2 ,

Cend3 = Cend3(g
mnal

∗

2 )k
′
= Cend3g

k′γl∗
2 ,

for i = 1 to l

Ci,1 =Ci,1g
mnai

2 = Ci,1g
γi
2 ,

Ci,2 =Ci,2(gmna
i

2 )
vw∗
i (gmna

i−1

2 )vz ·∏
j∈[0,l∗+1]s.t.w∗j 6=w∗i

g
−al
∗+1−j+ibmn/cjx

2

=Ci,2g
γivw∗

i
2 g

γi−1vz
2 ·∏

j∈[0,l∗+1]s.t.w∗j 6=w∗i

g
−al
∗+1−jbγi/cj

2 ,

where vz, vw∗i , β
′
1, β
′
0, â, b̂ ∈R Z∗N chosen by B. Finally,

B sets Cend4 = Sign(ssk, (w, Cm, Cstart1, Cstart2,
Cstart3, (C1,1, C1,2), ..., (Cl,1, Cl,2), Cend2, Cend3)),
and outputs the challenge original ciphertext CT ∗ =
(svk, w, Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2),
..., (Cend1, Cl,2), Cend2, Cend3, Cend4) to A. It is
not difficult to see that B can construct the challenge
ciphertext using the terms given in the problem instance.

• For re-encrypted game: A outputs m0,m1, a string
w′ and a challenge string w∗. B then runs CT =
Encrypt(PP,w′,mb), generates rkM→w∗ (using the
normal private key SKM ) and constructs Aend as in the
real scheme. It further sets C2 as above. B finally sets
C1 = SYM.Enc(H2(δ), ξ), and outputs the challenge
re-encrypted ciphertext CR = (C1, C2) to A, where
ξ = (CT ||Aend||rk4).

Phase 2. A makes the following queries:
1) OSK(M): A submits a DFA M to B where for any M

such that REJECT (M,w∗). For the first (j − 1)sk and
> jsk key queries, B generates the semi-functional keys
and the normal keys for A as in the previous lemma.
Otherwise, B constructs the private key for A as follows.
Note we use w∗(i) denote the last i symbols of w∗, Mk

denote a DFA Mk = (Q, T , qk, F ), where qk is the start
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state and k ∈ {0, ..., |Q|−1}. For each qk ∈ Q we defined
a set Sk including indices in {0, 1, ..., l∗}, we say i ∈
{0, 1..., l∗} is in Sk if and only if ACCEPT (Mk, w

∗(i)).
We set Dk = (

∏
i∈Sk g

ai+1·b/x
2 )·gal

∗+1bm
2 ·gn2 . Actually, B

cannot directly compute Dk from the problem instance.
Fortunately the uncomputable components will be can-
celed out so that the key components to be consistent
with the values.

a) B implicitly sets εstart =
∑
i∈S0

ci+1 and d0 =∑
i∈S0

ai+1 · b/x+ al
∗+1bm. Thus we have

αstart · εstart + d0

=(vstart −
∑

j∈[1,l∗]

aj · b/cjx) ·
∑
i∈S0

ci+1+

∑
i∈S0

ai+1 · b/x+ al
∗+1bm+ n.

Thus B sets the Gp2 parts for Kstart1 and

Kstart2 as g
∑
i∈S0

ci+1

2 and g
vstart·

∑
i∈S0

ci+1

2 ·
g
−

∑
j∈[1,l∗],i∈S0,j 6=i+1 a

j ·b·ci+1/cjx

2 · T · gn2 respectively.
b) Similarly, B sets εendx =

∑
i∈Sx,i6=0 ci+1 and dx =∑

i∈Sx a
i+1 · b/x+ al

∗+1bm such that

(αend + âb̂) · εendx + dx + k′u′

=
(
vend −

∑
j∈[2,l∗+1]

aj · b/cjx+ âb̂
)
·
∑

i∈Sx,i6=0

ci+1

+
∑
i∈Sx

ai+1 · b/x+ al
∗+1bm+ n+ k′u′,

where â, b̂, u′ ∈R Z∗N . Here B can construct
the Gp2 parts for Kendx,1 and Kendx,2 using
the terms given in the problem instance

as g
∑
i∈Sx,i 6=0 ci+1

2 , g
(vend+âb̂)·

∑
i∈Sx,i 6=0 ci+1

2 ·
g
−

∑
j∈[2,l∗+1],i∈Sx,i 6=0,j 6=i+1 a

j ·b·ci+1/cjx

2 Tg
ab/x
2 gn2 g

k′u′

2 .
c) B constructs the key components Kt,1,Kt,2,Kt,3 for

each transition t = (x, y, σ) ∈ T . Like [28] for i =
0 to l∗ + 1 we define (Kt,1,i,Kt,2,i,Kt,3,i) such that
Kt,1 =

∏
i∈[0,l∗+1]Kt,1,i, Kt,2 =

∏
i∈[0,l∗+1]Kt,2,i

and Kt,3 =
∏
i∈[0,l∗+1]Kt,3,i. B will generate these

components through four possible cases.
• Case 1: i /∈ Sx ∧ (i − 1) /∈ Sy , B sets
Kt,1,i,Kt,2,i,Kt,3,i to be 1.

• Case 2: i ∈ Sx ∧ (i − 1) ∈ Sy , B
sets Kt,2,i = ga

id
2 so that Kt,1,i =

g
(vz+ab/dx)·aid−ai+1b/x+al

∗+1bm+n
2 and Kt,3,i =

g
(vσ−b/dx−al

∗+1−jb/cl∗+1−jx)·aid+aib/x+al
∗+1bm+n

2 .
B then sets Kt,1,i = ga

idvz
2 · T · gn2 =

Kvz
t,2,i · T · gn2 , and Kt,3,i = Kvσ

t,2,i ·∏
j∈[0,l∗+1]s.t.w∗j 6=σ

g
−a(l

∗+1−j+i)bd/c(l∗+1−j)x
2 · T · gn2 .

• Case 3: i /∈ Sx ∧ (i − 1) ∈ Sy ∧
w∗l∗+1−i 6= σ, B sets Kt,2,i = gci2 so
that Kt,1,i = g

(vz+ab/dx)·ci
2 and Kt,3,i =

g
(vσ−b/dx−al

∗+1−jb/cl∗+1−jx)·ci+aib/x+al
∗+1bm+n

2 . It

then sets Kt,1,i = g
vz·ci+abci/dx
2 = Kvz

t,2,i ·
g
abci/dx
2 , and Kt,3,i = Kvσ

t,2,i · g
−bci/dx
2 ·∏

j∈[0,l∗+1]s.t.j 6=l∗+1−i∧w∗j 6=σ
g
−a(l

∗+1−j)bci/c(l∗+1−j)x
2 ·

T · gn2 .
• Case 4: i ∈ Sx ∧ (i − 1) /∈ Sy ∧ w∗l∗+1−i 6= σ,
B sets Kt,2,i = ga

id−ci
2 so that Kt,1,i =

g
(vz+ab/dx)·(aid−ci)−ai+1b/x−al

∗+1bm−n
2 and

Kt,3,i = g
(vσ−b/dx−al

∗+1−jb/cl∗+1−jx)·(−ci+aid)
2 .

It then sets Kt,1,i = Kvz
t,2,i · g

−abci/dx
2 ·

T−1 · g−n2 , and Kt,3,i = Kvσ
t,2,i · g

bci/dx
2 ·∏

j∈[0,l∗+1]s.t.w∗j 6=σ
g
−a(l

∗+1−j+i)bd/c(l∗+1−j)x
2 ·

∏
j∈[0,l∗+1]s.t.j 6=l∗+1−i∧w∗j 6=σ

g
−a(l

∗+1−j)bci/c(l∗+1−j)x
2 .

B can compute all the above components using the
terms given in the problem instance.

2) The responses of the queries to Ork,Ore,Odec,OdecR
are the same as that of previous lemma.

Guess. B outputs whatever A outputs.
If T ∈R Gp2 , the jι-th private key constructed above is

a properly distributed temporary semi-functional key so that
this is in GameTjι . If T = ga

l∗+1bm
2 , we have the properly

distributed nominal semi-functional key so that this is in
GameNjι . Thus B can use the output of A to break the source
group l-BDHE assumption in a subgroup with advantage δ.

Lemma 5: If there is an algorithm A such that
GameTjιAdv

DFA-FPRE
A − GamejιAdv

DFA-FPRE
A = δ,

we can construct an algorithm B breaking Assumption 2 with
advantage δ.

Proof: This proof is identical to that of Lemma 2 except
that B will use Y2Y3 to construct random elements of Gp2
(∀qx ∈ F ) such that all Kendx,1 parts of the i-th key will be
randomly masked, and the rest of key components will not
have Gp2 parts. Namely the jι-th key is semi-functional.

Lemma 6: If there is an algorithm A such that
GameqAdv

DFA-FPRE
A − GamefinalAdv

DFA-FPRE
A = δ,

we can build an algorithm B breaking Assumption 3 with
advantage δ.

Proof: Setup. B is given an instance (D, T ) of Assump-
tion 3, and simulates either Gameq or Gamefinal with A. B
chooses β, β0, β1, αstart, αend, a, b, k ∈R Z∗N , and ασ ∈R Z∗N
for all symbols in

∑
. It then chooses H1, H2, an OTS and

an SYM as in the real scheme, and outputs PP :

g, gab, g0 = gβ0 , z = gβ , h0 = gβ1 , hk = gk, hstart = gαstart ,

hend = gαend , ∀σ∈∑hσ = gασ , e(g, gαX2), H1, H2, OTS, SYM.

Note here α is unknown to B.
Phase 1. A makes the following queries:

1) OSK(M): B chooses D0, D1, ..., D|Q|−1 ∈R Gp1 . For
each t ∈ T it chooses rt, δt,1, δt,2, δt,3 ∈R Z∗N , and ∀qx ∈
F it chooses rendx , δendx,1 , δendx,2 , kx ∈R Z∗N . It also
chooses rstart, δstart1, δstart2, u′ ∈R Z∗N . It then sets

Kstart1 = D0(hstart)
rstartXδstart1

3 ,

Kstart2 = grstartXδstart2
3 ,Kstart3 = guXu′

3 ,
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for each t = (x, y, σ) ∈ T : Kt,1 =

D−1x zrtX
δt,1
3 ,Kt,2 = grtX

δt,2
3 ,Kt,3 =

Dy(hσ)rtX
δt,3
3 , for each qx ∈ F : Kendx,1 =

(gαX2)−1Dx(hendg
ab)rendx gkuX

δendx,1
3 Zkx2 ,Kendx,2 =

grendxX
δendx,2
3 .

2) Ork(M,w): B can construct any re-encryption key as it
knows any semi-functional private key for a DFA M .
• For original game: if ACCEPT (M,w∗) and SKM ′

(for any DFA M ′ so that ACCEPT (M ′, w)) is
obtained by A, B outputs ⊥. Else, B constructs
SKM as in OSK , and next constructs rkM→w via
ReKeyGen.

• For re-encrypted game: B generates any re-
encryption key for A .

3) Ore(M,w′, CT ):
• For original game: if ACCEPT (M,w∗), CT is the

challenge ciphertext, and SKM ′ (for any DFA M ′

so that ACCEPT (M ′, w′)) is obtained by A, B
outputs ⊥. Otherwise, B constructs rkM→w′ as in
Ork, next generates CR via ReEnc.

• For re-encrypted game: no need to issue Ore.
4) Odec(M,CT ):

• For original game: B constructs the semi-functional
private key SKM as inOSK , and next recovers m via
Dec. If ACCEPT (M,w∗), and CT is the challenge
ciphertext, B outputs ⊥.

• For re-encrypted game: B decrypts the ciphertext by
using the corresponding semi-functional key.

5) OdecR(M,CR):
• For original game: B constructs the semi-functional

private key SKM , and next recovers m via DecR. If
(M , CR) is a derivative, B outputs ⊥.

• For re-encrypted game: B recovers m as above except
that B outputs ⊥ if CR is the challenge ciphertext.

Challenge. B chooses a random b ∈ {0, 1}, runs (ssk, svk)←
KeyGen(1n) and generates the challenge ciphertext.
• For original game: A commits to two equal-length mes-

sages m0,m1, and a challenge string w∗. B sets

svk, w∗, Cm = mb · T s
′
l , Cstart1 = gsY2,

Cstart2 = (gsY2)
αstart , Cstart3 = (gsY2)

β0·svk · (gsY2)
β1 ,

Cend1 = (gsY2)
s′l , Cend2 = (gsY2)

αend·s′l , Cend3 = (gsY2)
k·s′l ,

for i = 1 to l: Ci,1 = (gsY2)s
′
i , Ci,2 = (gsY2)s

′
i·αwi ·

(gsY2)s
′
i−1·β , where s′1, ..., s

′
l ∈R Z∗N . Finally, B sets

Cend4 = Sign(ssk, (w, Cm, Cstart1, Cstart2, Cstart3,
(C1,1, C1,2), ..., (Cend1, Cl,2), Cend2, Cend3)), and
outputs the challenge original ciphertext CT = (svk, w,
Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2), ..., (Cend1,
Cl,2), Cend2, Cend3, Cend4) to A.

• For re-encrypted game: A outputs m0,m1, a w′ and
a w∗. B runs CT = Encrypt(PP,w′,mb), generates
rkM→w∗ (using the semi-functional private key SKM )
and constructs Aend as in the real scheme. It further sets
C2 to be an encryption of a random element δ ∈R Z∗N as
above, sets C1 = SYM.Enc(H2(δ), ξ), and outputs the

challenge re-encrypted ciphertext CR = (C1, C2), where
ξ = (CT ||Aend||rk4).

Phase 2. Same as Phase 1.
Guess. B outputs whatever A outputs.

Note this implicitly sets Y2 = gγ02 , s = s0, si = s · s′i
for each i ∈ {1, ..., l}. If T ∈ GT , the above ciphertext is
a properly distributed semi-functional ciphertext of a random
message in GT so that this is in Gamefinal. If T = e(g, g)α·s,
we have the semi-functional ciphertext with γi = γ0 · si. This
is a properly distributed semi-functional encryption of mb so
that we are in Gameq .

IV. CONCLUSION

In this paper for the first time we defined the notion of DFA-
based functional proxy re-encryption, and meanwhile proposed
a concrete scheme satisfying the new notion. Furthermore
we proved the scheme, which is the first of its type, to be
adaptively CCA secure in the standard model by employing
Lewko et al. ’s dual encryption technology.

This work motivates some interesting open problems, for
example, how to convert our DFA-based FPRE in the prime
order bilinear group.
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APPENDIX

Using the same approach of proving q-based assump-
tion [18], we prove a lower bound for the complexity of
our assumption in the generic group model. The following
is the prime order version of the proof, but the proof for com-
posite order version is analogous. We consider the variables
a, b, d,m, n, x, c0, c1, ...cl+1 which are all over Zp, and define
Ω to be a set of rational functions over these variables.

Ω = {1, a, b, ab/dx, b/dx, ab/x, n,∀i ∈ [0, 2l + 1], i 6= l + 1,

j ∈ [0, l + 1] aimn, aibmn/cjx,

∀i ∈ [0, l + 1] ci, a
id, abci/dx, bci/dx,

∀i ∈ [0, 2l + 1], j ∈ [0, l + 1] aibd/cjx,

∀i, j ∈ [0, l + 1], i 6= j, aibcj/cix}.

Ω is the set of exponents of the terms given in our assumption.
We define P (Ω) to be the set of all pairwise products of
functions in Ω.

Lemma 7: For each function f ∈ Ω ∪ {al+1bm}, the
product f ·al+1bm is independent of P (Ω)∪al+1bm · (Ω\f),
where Ω \ f is the set of all terms of Ω excluding f .

Proof: We first observe that a2l+2b2m2 is not included in
P (Ω)∪ al+1bmΩ, and for any f ∈ Ω, f · al+1bm /∈ al+1bm ·
(Ω \ f). Thus the remaining work is to prove that for each f
such that f · al+1bm /∈ P (Ω). This holds if and only if the

intersection of P (Ω) and al+1bmΩ leads to an empty set. To
show this, we build the set of al+1bmΩ as follows.

al+1bmΩ = {al+1bm, al+2bm, al+1b2m, al+2bm/dx,

al+1b2m/dx, al+1bmn,

∀i ∈ [l + 1, 3l + 2], i 6= 2l + 2,

j ∈ [0, l + 1] aibm2n, aib2m2n/cjx,

∀i ∈ [l + 1, 2l + 2], j ∈ [0, l + 1]

aibcjm, a
ibdm, al+2b2mcj/dx, a

l+1b2cjm/dx,

∀i ∈ [l + 1, 3l + 2], j ∈ [0, l + 1] aib2dm/cjx,

∀i ∈ [l + 1, 2l + 2], j, k ∈ [0, l + 1],

i 6= j, j 6= k, aib2cjm/ckx}.

We can observe that none of the above terms is included
in P (Ω) except for al+1bmn. Specifically, in P (Ω) every
occurrence of the factor m is accompanied by n, and neither
single m nor single n−1 is given, we hence cannot make the
product for any term in the above set with the factor m. In
addition, we cannot produce the products for the terms with
factor m2n in the above set, since the power of m is always
equal to that of n in P (Ω) (recall that n−1 is not provided).
For the term al+1bmn, we see that one of its factors should
includes n. If we regard n as one of its factors, then the other
factor should be al+1bm. But it is not given in the set Ω. If
we see either aimn or aibmn/cjx as one of its factors, then
we should need either akb or akcjx, where i+ k = l+ 1, and
i 6= l + 1 such that k 6= 0. It is clear that these terms are not
given in the set Ω as well.

By the Lemma 7 and the proof strategy inroduced in [18],
we have the following theorem.

Theorem 2: For any PPT adversary A that issues q queries
to the oracles computing the group operations in G,GT and
the bilinear map e : G×G→ GT , the advantage of A against
the source group l-BDHE assumption in the generic group
model is at most O(q2l/p).

Note the proof of Theorem 2 is almost identical to that of q
based assumption introduced in [18], we hence omit the details
and refer the reader to [18].

Strongly Existential Unforgeable One-Time Signatures
(OTS) [3]. A strongly existential unforgeable OTS consists of
the following algorithms. The key pair generation algorithm
KeyGen takes the security parameter n ∈ N as input, and
outputs a signing/verification key pair (ssk, svk). The sign
algorithm Sign takes ssk and a message M as input, and
outputs a signature σ. The verification algorithm V erify takes
svk, σ and a message M as input, and outputs 1 when σ is
valid, and output 0 otherwise. Due to limited space we refer
the reader to [3] for the security notion of OTS.

One-time Symmetric Encryption [9]. It consists of the fol-
lowing algorithms. Note let KD be the key space {0, 1}poly(n),
and SYM be a symmetric encryption scheme. The encryption
algorithm SYM.Enc intakes a key K ∈ KD and a mes-
sage M , outputs a ciphertext C. The decryption algorithm
SYM.Dec intakes K and C, outputs M or a symbol ⊥.
The CCA security model for one-time symmetric encryption
systems is given in [14], we hence omit the details.
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