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Abstract—In this paper for the first time we define a general
notion for Proxy Re-Encryption (PRE), which we call Determin-
istic Finite Automata Based Functional PRE (DFA-based FPRE).
Meanwhile, we propose the first and concrete DFA-based FPRE
system which adapts to our new notion. In our scheme a message
is encrypted in a ciphertext associated with an arbitrary length
index string, and a decryptor is legitimate if and only if a DFA
associated with his/her secret key accepts the string. Furthermore,
the above encryption is allowed to be transformed to another
ciphertext associated with a new string by a semi-trusted proxy
whom is given a re-encryption key. Nevertheless, the proxy cannot
gain access to the underlying plaintext. This new primitive can
increase the flexibility of users to delegate their decryption rights
to others. We also prove it fully chosen-ciphertext secure in the
standard model.

Keywords: functional encryption, functional proxy re-encryption,
chosen-ciphertext security.

I. INTRODUCTION

Functional Encryption (FE) is a useful cryptographic prim-
itive that not only guarantees the confidentiality of data but
also enhances the flexibility of data sharing. It is a general
extension of Public Key Encryption (PKE). In traditional PKE,
a data is encrypted to a particular receiver whose public key
has registered to a trusted Certificate Authority. FE, however,
provides more flexibility that the data can be encrypted under
a description a, and the encryption can be decrypted if and
only if there is a secret key whose description b matches a. As
stated in [18], [28], a classic example of FE is Attribute-Based
Encryption (ABE) [11], [26] which comes to two flavors: Key-
Policy ABE (KPABE) and Ciphertext-Policy ABE (CPABE).
The former associates a secret key with an access policy such
that the key can decrypt a ciphertext associated with attributes
satisfying the policy. The latter, however, is complementary.

Although FE has many applications (e.g. audit-log [11]),
it might not be flexible enough in some practical set-
tings. For example, a social network user (e.g. LinkedIn'),
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say Alice, might choose to share her profile (e.g. edu-
cational details) with others under a policy, say P, =
(“Region United State” and ”Occupation
student” and “Age : from 20 to 30”). Suppose Alice’s
profile is encrypted under P; and stored in the cloud so
that the users satisfying P; can access the profile. How-
ever, when trying to link herself with some companies for
job applications, she might modify the access policy, e.g.
P, = (“Region all countries” and “Location
Local Joverseas” and “Field : Finance”). To guarantee
the companies matching P, can access her profile, a new
encryption under P, is required. A naive solution for Alice
to generate the encryption is to first download the ciphertext
under P, from the cloud, and next re-encrypt the profile
under P, before uploading to the cloud. But the workload
of Alice here is increased. If Alice is using some resource-
limited devices which cannot afford the cost of encryption and
decryption, she cannot share the profile unless some powerful
computational devices (e.g. PC) are available. Besides, if the
bandwidth is charged (by bit or megabit), the download and
upload operations might yield a great amount of money.
Defined by Blaze, Bleumer and Strauss [5], Proxy Re-
Encryption (PRE) is proposed to tackle the above problem.
PRE is an useful extension of PKE, in which an honest-but-
curious proxy is given a re-encryption key that allows it to
transform ciphertexts intended for Alice into the ones intended
for Bob without revealing either the plaintexts or the secret
keys. PRE has many practical network applications, such as
digital rights management [7] and secure email forwarding [5].
To achieve more flexibility on re-encryption, many vari-
ants of PRE have been proposed, such as Conditional PRE
(CPRE) [29], Identity-Based PRE (IBPRE) [12] and Attribute-
Based PRE (ABPRE) [19]. CPRE allows an encryption asso-
ciated with a condition to be converted to a new ciphertext
tagged with a new condition. The technologies of IBPRE and
ABPRE are somewhat similar, and a main difference between
them is ABPRE enjoys more expressiveness in data sharing.
We might choose to employ ABPRE to solve the previous
problem. Suppose Alice’s profile is encrypted under ;. When
sharing her profile with some companies, she only needs
to generate a re-encryption key from some descriptions and
upload the key to the cloud. The cloud then will re-encrypt
the encryption under P; to the one under P, such that the
companies satisfying P, can access the profile. The cloud,
nevertheless, cannot read the underlying plaintext.

Motivation. Although ABPRE can solve practical network
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problems, it leaves interesting open problems in terms of
security and functionality. All existing ABPRE schemes [19],
[24], [22] are only proved to be secure against chosen-
plaintext attacks (CPA) in the selective model. Nonetheless,
the selective CPA security is not sufficient enough in practice
as it only achieves the secrecy against “passive” adversary (i.e.
eavesdroppers). To guarantee a higher level of confidentiality
for sensitive data, a stronger security notion is desirable, i.e.
adaptive security against chosen-ciphertext attacks (CCA).

The functionality of an ABPRE system is another practical
factor. Nonetheless, all existing ABPRE schemes only support
access policy assembling with AN D gates and fixed size
inputs. Practically, an access policy might be required to
assemble with AN D, OR gates and NOT'. Besides, in some
particular applications, the access policy might be expressed
by regular languages with arbitrary size. Thus it is desirable
to propose an ABPRE system with expressive access policy
supporting unlimited input size.

Our Contribution. This paper for the first time introduces
the notion of Deterministic Finite Automata (DFA) based
functional PRE (DFA-based FPRE). A concrete scheme is
proposed to adapt to the new notion. The scheme allows a data
sender to encrypt a message in an encryption associated with
an arbitrary length index string such that a secret key can be
used to recover the underlying plaintext if and only if the DFA
tagged with the key accepts the string. Furthermore, it permits
a semi-trusted proxy to transform an encryption associated
with an arbitrary length index string to another encryption
associated with a new index string without leaking any useful
message information to the proxy. Generally, our DFA-based
FPRE can be categorized as a type of Key-Policy ABPRE
(KP-ABPRE). It is worth mentioning that our scheme is the
first KP-ABPRE in the literature. Eventually, the present paper
proves the new scheme adaptively CCA secure in the standard
model. To the best of our knowledge, it is the first of its type to
achieve the adaptive CCA security in the standard model, but
also to provide unlimited size input for access policy without
degrading the functionality of proxy re-encryption.

Our Approach. It is challenging to propose a DFA-based
FPRE system when considering adaptive CCA security in the
standard model. The approach of achieving fully CCA security
without jeopardizing the expressiveness of DFA is as follows.

Our system is built on top of Waters-FE system [28].
Accordingly, it is unavoidable that the system inherits the
selective CPA security from Waters-FE scheme. To achieve
fully security, we might choose to employ the dual encryption
technology [17]. However, as stated in [18], the technique
of [17] degrades the expressiveness of policy so that a single
attribute can be used only once (in a policy) or a limited repe-
tition with the cost of enlarging the size of system parameters
and secret keys. This limitation for the policy (and efficiency)
is incurred by information theoretic argument. Our system
cannot get rid of this restriction by following the technology
of [17]. In our system a symbol can be repeatedly used in DFA
and index strings. Thus, the semi-functional parameters related
to this symbol might leak information to adversary such that
the nominality of secret key will not be hidden anymore.

To solve the problem, we leverage the proof idea of [18] by
integrating the dual encryption technology with the selective
proof technique. But we cannot trivially adapt the proof
technique of [18] to our system as two systems are based on
different primitives in which [18] is based on [27], and ours
is built on [28]. Like [18], the most crucial part of our proof
is to show that the nominality is hidden computationally from
the view of adversary. This reflects on the indistinguishability
from Gameé\’ to Game?. Due to limited space, we refer the
reader to Section III-C for the details. We let the challenger
respectively simulate the queries of Phase 1 and Phase 2
(in the above indistinguishability simulation) as follows. In
Phase 1, the challenger will receive the queries of secret
keys associated with DFA before defining the delayed semi-
functional parameters. Thus this phase is closely analogous to
the context of selective security for a CPABE system. In Phase
2, the challenger will obtain a string first that is closely relative
to the context of selective security for a KPABE system. We
accordingly leverage the selective proof techniques of [27],
[28]. To adapt the techniques to our system, we need two
new complexity assumptions (defined in Section III) which are
closely relative to the [ expanded bilinear Diffie-Hellman ex-
ponent assumption [28] and g-parallel bilinear Diffie-Hellman
exponent assumption [27]. For the rest of the games defined
in Section III-C, we prove their indistinguishability under the
3 assumptions [16].

We employ a strongly existential unforgeable one-time
signature system and a CCA-secure one-time symmetric en-
cryption system to achieve CCA security. Due to limited space
we will show the technical details in Section III-B. In the proof
we offer decryption oracle to the adversary. This does not
hinder the above framework as the challenger can construct
any secret key. One might concern that in Game, (resp.
Gameyinqg) the challenger only generating semi-functional
keys cannot respond decryption queries correctly. Actually, a
semi-functional key can decrypt any normal ciphertext (issued
by an adversary); and when the challenge ciphertext is issued
for decryption query, the challenger will reject it.

Related Work. The concept of ABE is introduced by Sahai
and Waters [26]. Goyal et al. [11] proposed the first KPABE
system. The decryption is successful if the attributes tagged
with ciphertext satisfy the access policy of the secret key.
Reversely, Bethencourt, Sahai and Waters [4] defined Later on,
Cheung and Newport [8] proposed a provably secure CPABE
scheme supporting AND gates over attributes. Ostrovsky,
Sahai and Waters [25] embedded negative attributes in access
policy without increasing the size of ciphertext by employing
the revocation technique in [11]. Goyal et al. [10] presented a
construction in the standard model, but its large key size makes
the scheme insufficient. More efficient and expressive CPABE
systems were put forth by Waters [27]. Attrapadung et al. [2]
proposed efficient ABE schemes with constant-size ciphertexts
including a CPABE for threshold access policy, and two
KPABE (with monotonic/non-monotonic access structures).
Waters [28] proposed the first DFA-based FE system that
supports the most expressive functionality for access policy.

The aforementioned schemes are proved selectively secure



except that [4] is secure in the generic group model. To
achieve CCA security, Yamada et al. [30] introduced a generic
approach that works for both KPABE and CPABE. Using dual
system encryption technology, Lewko et al. [16] converted [27]
to achieve fully security. But the conversion leads to some loss
of efficiency as it built on the composite order bilinear group.
Lewko and Waters [18] then introduced a new proof method
for converting a selective secure ABE to capture fully security
by integrating the selective technique into the dual encryption
system. Inspired by this, this paper proposes the first DFA-
based FPRE with adaptive security in the standard model.

Following the introduction of decryption rights delega-
tion [23], Ivan and Dodis [15] proposed a generic construction
for proxy cryptography via sequential multi-encryption. Blaze,
Bleumer and Strauss [5] formally defined PRE, and proposed
a seminal PRE scheme. After that PRE comes to different
flavors: unidirectional and bidirectional PRE, and single-hop
and multi-hop PRE?. This work deals with the single-hop
unidirectional PRE. Since its introduction there are many
classic PRE systems, such as [1], [7], [14], [21], [20], [13].

To implement PRE in the context of ABE, Liang et al. [19]
defined CP-ABPRE, and proposed a construction on top of [8].
Mizuno and Doi [24] proposed a hybrid scheme where it can
bridge ABE and IBE in the sense that ciphertexts generated in
the context of ABE can be converted to the ones which can be
decrypted in the IBE setting. Luo et al. [22] proposed a CP-
ABPRE scheme supporting AND gates on multi-valued and
negative attributes which can be viewed as a general extension
of [19]. The schemes, however, are secure against selectively
CPA. Besides, their policies only operate over a fixed number
of variables by AND gates only. The construction of an
adaptively CCA secure ABPRE supporting more expressive
access policy for arbitrary size input remains unsolved. This
paper deals with this problem.

II. DEFINITION AND SECURITY MODEL

Below the definition for DFA-based FPRE is defined. By a
DFA-based FPRE we mean a unidirectional single-hop DFA-
based FPRE. Due to limited space we refer the reader to [28]
for the details of the definition of DFA and DFA-based FE.

Definition 1: A DFA-based functional proxy re-encryption
(DFA-based FPRE) scheme includes the following algorithms:

1) (PP,MSK) < Setup(1™,3"): intakes a security pa-
rameter n and the description of a finite alphabet >,
and outputs the public parameters PP and a master key
MSK, where n € N. Note PP implicitly includes .

2) SKy + KeyGen(MSK,M = (Q,T,qo, F)): intakes
MSK and the description of a DFA M, and outputs a
private key SK s, where @ is a set of states, T is a set
of transitions, qq is a start state, and F' is a set of accept
states.

3) rky—w — ReKeyGen(SKyr,w): intakes SKj; for
a DFA description M and an arbitrary length string
w € >, and outputs a re-encryption key rkpr_.y,
where REJECT (M, w). This re-encryption key is used

2The definitions are defined in [1].

to convert any ciphertext under a string w’ (in which
ACCEPT(M,w")) to be another ciphertext under w.

4) C « Encrypt(PP,w, m): intakes PP, a w € ) and a
message m € Gp, and outputs a ciphertext CT" under w
(which can be further re-encrypted).

5) CE < ReEnc(rkys_sw, CT): intakes rky_,, and CT
(under w’). If ACCEPT(M,w'), CT is converted to a
re-encrypted ciphertext C under w (which cannot be
further converted); otherwise, output an error symbol L.

6) m/ L+ Dec(SKy,CT): intakes SK s and CT (under
w). If ACCEPT (M, w), output a message m; otherwise,
output an error symbol L.

7) m/ 1< Decr(SKy,CF): intakes SKj; and CE
(under w). If ACCEPT(M,w), output a message m;
otherwise, output an error symbol L.

Correctness: For any n € N, any w € ), and any
m € Gr, if (PP,MSK) <+ Setup(1™,>), SKy <«
KeyGen(MSK, M) for all DFA used in the system, we have

Dec(SK s, Encrypt(PP,w,m)) = m;
Decr(SKy, ReEnc(ReKeyGen(SK y,w'),
Encrypt(PP,w,m))) = m,

where ACCEPT(M,w) and ACCEPT(M',w").

Security. The IND-CCA security for DFA-based FPRE
systems is as follows. Here we make the knowledge of secret
key assumption where users will use their public keys when
they know knowledge of the corresponding private keys.

Definition 2: A DFA-based FPRE scheme is IND-CCA
secure at original ciphertext if no probabilistic polynomial
time (PPT) adversary .4 can win the game below with non-
negligible advantage. Let 3 be the game challenger.

Setup. B runs (PP, MSK) < Setup(1™,>"), and returns
PP to A.

Phase 1. A makes the following queries.

1) Osk(M): on input a DFA description M, B runs
SKpy < KeyGen(MSK, M) and returns SKjs to A.
Note the description M is based on »_, i.e. each symbol
used in M belongs to > _.

2) Opx(M,w): on input M and an arbitrary string w, B
returns rky— — ReKeyGen(skyr,w) to A, where
SKy  KeyGen(MSK, M). Note w must be chosen
from >, and REJECT (M, w).

3) Ope(M,w',CT): on input M, a string w’ and a CT
(under w), B returns a re-encrypted ciphertext O <
ReEnc(rkpr—w , CT) under w’ to A, where 1k sy
ReKeyGen(SKy,w'), SKp + KeyGen(MSK, M),
ACCEPT(M, w) and REJECT (M, w').

4) Ogee(M,CT): on input M and CT (under w), B
returns m < Dec(SKy,CT), where SKp <«
KeyGen(MSK, M) and ACCEPT(M,w).

5) Ogeer,(M,CF): on input M and CF (under w), B
returns m 4 Dec(SKy, CT), where SKy <+
KeyGen(MSK, M) and ACCEPT(M,w).

Note if the ciphertexts issued by A are ill-form, output L.

Challenge. A outputs two equal-length messages my,
my and a challenge string w* € > . If the fol-
lowing queries: Ogx(M*); Opp(M*,w') and Ogg(M')



are never made, B returns the challenge original ci-
phertext CT* = Encrypt(PP,w*,m;) to A, where
b er {0,1}, ACCEPT(M*,w*), ACCEPT(M',w") and
REJECT(M*,w").

Phase 2. The following queries are forbidden:

1) Ogsi (M*) for all M* requested ACCEPT(M*, w*);

2) Opp(M*,w') and Ogi(M’) for all M* and M’ re-
quested ACCEPT(M*,w*), ACCEPT(M',w') and
REJECT(M*,w").

3) Ogec(M*, CT*) for all M* requested ACCEPT(M*,
w*);

4) Ope(M*,w',CT*) and Ogg(M’) for all M* and M’
requested ACCEPT(M*,w*), ACCEPT(M’, w') and
REJECT(M*,w'); and

5) Odeer,(M,CT) for any M, CT, where (w',C%) is a
derivative of (w*,CT™*). As of [7], the derivative of
(w*,CT™) is defined as follows.

i. (w*,CT™) is a derivative of itself.

ii. If A has issued (M*,w’) to O, to obtain 7k«
such that it can run CF <« ReEnc(rkar s,
CT*) under w’, then (w’,C%) is a derivative of
(w*,CT*) if Decr(SKyy, CE) € {mg,my},
where ACCEPT(M’', w'"), ACCEPT(M*, w*)
and REJECT(M*,w'").

iii. If A has issued (M*,w',CT*) to O, to ob-
tain Cf under w’, then (w',CT) is a deriva-
tive of (w*, CT*), where ACCEPT(M*, w*) and
REJECT(M*,w'").

Guess. A outputs a guess bit b’ € {0, 1}.
The advantage of A is defined as €, = |[Pr[b’ = b] — 4|

Definition 3: A DFA-based FPRE scheme is IND-CCA se-

cure at re-encrypted ciphertext if the advantage e, is negligible
for any PPT adversary 4 in the following experiment. Set

O = {OSK, Ork, Odew OdeCR}'

€y =

Pr {b’ =b:(PP,MSK) + Setup(ln,Z)§

(mo, m1,w*,w') < A%(PP);b € {0,1};

1
CF ReEnc(rkyp: sy, CT); b AO(CR*)} - =

2

where w* and w’ are two “distinct” strings (chosen from
>7) so that if there is a SKj; in which ACCEPT (M, w*),
then REJECT(M,w') holds, CT <+ Encrypt(PP, w',
my), rkyy—we — ReKeyGen(SKyy, w*), SKyr <«
KeyGen(MSK, M'). Osk, Ork, Odecs Odecy, are the or-
acles defined in Definition 2 but limited to the following
constraints. For Ogg, A is forbidden to issue M* where
ACCEPT(M*, w*). If A queries to Ogec,, on (M*, CF*),
the oracle outputs L. There is no restriction for O, and O gec.

III. FuLLy CCA-SECURE DFA-BASED FPRE
A. Preliminaries
Composite Order Bilinear Groups. Composite order bilinear

groups were introduced in [6]. Let G and G be the two
multiplicative cyclic groups of order N = p;pops, where

p1,P2,p3 are distinct primes. We say that Gy has an ad-
missible bilinear map e : G x G — G if the following
properties hold: (1) Bilinearity: Yg,h € G and a,b €r Z},
e(g®, hb) = e(g, h)?; (2) Non-degeneracy: 3g € G so that
e(g,g) has order N in Gr. Assume that the group operations
in G and G as well as the bilinear map e are computable in
polynomial time with respect to a security parameter n, and
that the group description of G and Gr include the generators
of the respective cyclic groups. We denote by G, , Gp,, Gy,
the subgroups of order pi, p2, ps in G respectively.
Complexity Assumptions. Due to limited space, we refer the
readers to [17] for the details of the 3 assumptions. Below two
new assumptions are defined.

The Source Group [-Expanded Bilinear Diffie-Hellman
Exponent (I-Expanded BDHE) Assumption in a Subgroup.
It is closely relative to the Expanded [-BDHE assumption
introduced in [28], but this requires the challenge term to lie
in the source group.

The Source Group /-Expanded Bilinear Diffie-Hellman
Exponent (/-Expanded BDHE) Assumption in a Subgroup.
Given a group generator G and a positive integer [, we define

(N = p1p2p3anGT76) <~ gagl €R Gplng €R Gp27
93 €r Gp,,a,b,d,m,n,z,co,...,c14+1 €Er Zn,

ab/dx  b/dz

b
D= <N,G,GT76,91793792,95,93792 » 92 5/

n
792 ?927

a‘bmn/cjx

Vie[0,2041],i#£1+1,5€[0,1+1] g&™, g8 7

Vi€ [0,0+1] 9§i7g§id7ggbci/dr,ggm/dm’
a'bd/cjx

Vie [0,2041],5€[0,0+1] g ,
Vi j € 10,1+ 1] A g5 ") Ty = g8 Ty € G

The advantage of an algorithm A in breaking the assumption
is defined as Adv;PPHE(1") = |PrlA(D,Ty) = 1] —
PrlA(D,Ty) = 1]|. In Appendix A we give the proof of the
assumption in the generic group model.

Definition 4: The [-Expanded BDHE Assumption holds if
Advl}BPHE (1) is negligible for any PPT algorithm .A.

The Source Group Modified g-Parallel Bilinear Diffie-
Hellman Exponent (¢-BDHE) Assumption in a Subgroup. It
is a variant of the source group g-BDHE assumption [18].

The Source Group Modified ¢ Bilinear Diffie-Hellman
Exponent (¢-BDHE) Assumption in a Subgroup. Given a
group generator G, we define the following distribution:

(N = p1p2p3,G,Gr,e) < G,9 €r Gyp,, 92 €r Gp,,

g3 €R Gpgac,avevf €R ZNa

ct+f/c

aef’g2

D= (NvaGTa679792793795795’92
q +1
95,03/ ""), To = 95" Ty €R Gyp,.

2
c
ygo 5,

The advantage of an algorithm A in breaking the assumption
is defined as Adv%"P"P(1") = |PrlA(D, Tp) = 1] —
PrlA(D,Ty) = 1]|.

Definition 5: The Source Group Modified ¢g-BDHE As-
sumption holds if Advi{BDHE(ln) is negligible for any PPT
algorithm A.



Note we can prove the source group modified ¢-BDHE as-
sumption in the generic group model in the identical approach
as that of the previous assumption, we hence omit the details.

B. Construction

To achieve adaptive security we also let the elements of G,
represent all original components of our DFA-based FPRE
scheme, and additionally use the elements of G, to random-
ize the private key. The randomization will not hinder the
functionality of the scheme due to the orthogonality property
of subgroups G,,, G,, and G,,. Besides, the elements of
Gp, will not be used in the real scheme but in the security
proof. We additionally employ three primitives to achieve CCA
security: target collision resistant (TCR) hash function [9],
one-time symmetric encryption [9] and one-time signature
system [3]. Our DFA-based FPRE scheme works as follows.

o Setup(1”,>): Choose g,g0,2,h0 €r Gyp,, and «,

k7avb’ Qend, Ostart €R Z}kv Set hgiore = gastu.rt’
Rena = g% and hy = g*. For each symbol o € ),
choose a a, €r Zjy, and set h, = g% . Choose a

one-time signature scheme OT'S, a one-time symmetric
encryption scheme SYM = (SY M.Enc, SY M.Dec),
and two hash functions: Hy : Gpr — Zj
and Hy : Gpr — {0,1}p°w() The PP is
{e(9,9)*, 9.9, 90, 2, ho, hstarts hend, P, Voes o,
OTS,SYM, Hq, Hg} along with the descriptions of G
and the alphabet > . The MSK is (¢g-%, X3), where
X3 is a generator of G,,.

o KeyGen(MSK, M = (Q,T,qo, F)): The description of
M includes a set @ of states qo, ..., q|g|—1 and a set of
transitions 7 where each transition t € 7T is a triple
(z,y,0) € QX QX . qo is designated as a unique start
state and F' C @ is the set of accept states. The algorithm
chooses Dg, D1, ..., D|g|-1 €r Gy, (associating D; with
¢i), for each ¢t € T it chooses 1, €r Zy, Vg, € F
it chooses 7Teng, €r Zy, and chooses a u €p Z}y. It
also chooses Rstartl: RstartQ, Rstart?n Rt,ls Rt,2s Rt,3a
Rend, > Rend,, €r Gp, and a 7440t €r L. The
algorithm constructs the key as follows. First it sets:

Kstartl - DO : (hstart) start . Rstartla
. T U
Kotariz = 97" Rstart2, Kstarts = 9" - Rstare3-

For each t = (z,y,0) € T the algorithm sets:

-1
Kii = Dy 2" Ry, Kio=g"" Ripo,
Kt,S - Dy : (ha)rt : Rt,Sv
For each ¢, € F' it computes:
- b\Tend, k
Kendz‘l = g *. Dgc ' (hend : ga )T do g “ 'Rendm,la
Kendz,z = gre”dw . Rendm,z-

Finally, the key is
SK = (M> Ksta'rth KstartQa Kstart?n

vt € T(Kt,lv Kt,27Kt,3)7an: S F(Kendz,17Ke’rLdz,2))~
o ReKeyGen(SK,;, w):

1) Choose a y €r Gr and v, €r Zj (for Vg, €
F), and set vk, = KTW g, = ghHO)

rky = KW vt € Tk = KW rky =
ESY ks = KSY) Ve, € Flrkena,, =

Kff;l(f)l -h:2d7rkend172 = Kild(fl - g¥).
2) Run rky <+ Encrypt(PP,w,y), and finally out-
put Thyi—w = (M, rky, Tk, Tks, Tky, YVt €

T(Tkt,larkt,%rkt,?))’ Vg, € F(Tke”dm,l’lrk.endzl))'

e Encrypt(PP,w,m): Choose sg,s1,...,5 €r Zj, run

(ssk, svk) < KeyGen(1™) and constructs CT as

First set: Cp, = m - e(g,9)*%, Cstart1 = Co1 =
9807 Cstart2 = (hstart)soacstartfi = (ggvkh(l)soa
fori=1tol, set: C; 1 = g%, C; 2 = (hy,)% - 2%,
finally, set:

Condgt = Ci1 = g°, Condgz = (hend - ), Conaz = (hi)*",

Cend4 = SZg?’l(SSk‘, (wa Cma Cstartla Cstart27 Cstart?n
(01,17 01,2)7 eeey (Cendla Cl,2)7 C€7ld27 Cend?))) .

The original ciphertext is
CT = (svk, w, Cm, Csta'r‘tla Ost(m"t2a Ostart?n
(C1,1,C12),+++  (Cr1,Cr2), Cenazs Cenas, Cenda) -

e ReEnc(rkps_,,CT):

1) If Verify(svk’ (Cend47 (w’ Cm, Ostarth CstartQa
Cstart3, (Cl,ls C’1,2)9 ceey (Cendl, CZ,Z)’ Cend2s
Cend?)))) = 1 and e(CstartthvkhO):e(gyCstart?))’
proceed; otherwise, output L.

2) CT is associated with a string w = (wq, ..., w;) and the
re-encryption key rkp;_,. is associated with a DFA
M = (Q,T,q,F) where ACCEPT(M,w). There
must exist a sequence of [ + 1 states ug,uq, ..., u; and
[ transitions t1,...,t; where ug = qo and w; € F and
for i = 1,...,1, we have t; = (u;_1,u;,w;) € T. The
proxy re-encrypts C'I" as follows.

a) It first computes: Ay = e(Cstartr, k1) -
e(cstart2a TkZ)il = 6(97 DO)SOIHl(y)-
b) For i =1 to [, it computes:

Ap = A '6(0(1—1),1,7“]%,1)
-e(Cl 2, Tkti,2)71 ~e(Ci1,7ke; 3)
= e(gaDui)Si.Hl(y)'
Since M accepts w, we have that u; = g, for some
¢e € F and A; = e(g, D,)* 1),
c) It sets:
Aend = Al . e(Cendz,l 5 rkendmyl )_1
'e(Cendzyg ) rkendz,g) : e(cendz,gy TkS)
= e(g,g)r i,
d) The proxy sets C; = SYM.Enc(Hz(9),¢),
Cy = Encrypt(PP,w',§), where § € Gr and

¢ = (CT||Aendl|lrks). Tt finally outputs the re-
encrypted ciphertext CF = (Cy, Cs).

o Dec(SKp,CT): If Verify(svk, (Cenas, (w,

Cm’ Cstartl’ CstartQ’ CstartBs (Cl,ls 01,2)9



cees (Cendl» Cl,2)a CendZ’ Cend?;))) = 1 and
e(Cstart1, 95 %ho)=e(g, Cstart3), proceed; otherwise,
output L.

First compute:

By = e(Cstart1 Kstart1) - €(Cotare2, Kstare2) ™"
= e(g,Do)*.
For ¢ =1 to [, compute:
B; = Bi_1-e(Cli_1y1, Ky, 1) e(Cia, Ky, 2) ™"
-e(Ci1, Kt 3)
= e(g, Du,)™".

Since M accepts w, we have that u; = ¢, for some
gz € F and B; = e(g, D,)®'. Finally compute

Bend = Bl : e(cendmylaKend$,1)71
'e(Cendmyg ) Kendx,z) . e(cendx,ga Kstart?))

-8

= e(g,9)"™,

and output the message m = C,,,/ Beng.
o Decp(SKy, CF):
1) Run 6 <« Decrypt(SKy,Cy), compute & <
SY M.Dec(Hz(9),C1), where £ = (CT||Acndl|rk4).
2) Run y < Decrypt(SKys,rks), then compute Key =
AHl(y)fl'

end
3) Verify

2

e(Catart1 95" ho) = (g, Cstares),

Verify (svk, (C’end4, (w, Cry Cstartt,
Cstari2, Cstartss (C1,1,C1,2), -, (Cr1,Cr2),
CendQ;Cend3>)) L1,

If the equations hold, proceed; otherwise, output L.
4) Output the message m = C,,/Key.

C. Security Analysis

Theorem 1: Suppose Assumption 1, 2 and 3, the source
group modified g-BDHE assumption in a subgroup, and the
source group [-BDHE assumption in a subgroup hold, SY M
is a CCA-secure symmetric encryption, OT'S is a strongly
existential unforgeable one-time signature and Hi, Ho are
TCR hash functions, our DFA-based FPRE system is IND-
CCA secure in the standard model.

Before proceeding, we define the semi-functional
ciphertexts and the semi-functional keys as follows.
Semi-functional Ciphertexts. We let go be a generator
of subgroup Gp,, choose 7o,7v1,..., Y €R Ly,
al, €r Zj% associated to each symbol o belonging
to >, and B, 50,51, Qrarts Vona, K 0’0 € LY.
We run (ssk,svk) < KeyGen(1"), and set the
ciphertexts as (svk, w, Cr,, Carers Citartz Cotaress

énd?ﬂ Céndél) in which

(01,1’01,2)7'”7( énd17Cl/,2)’ (/and27

!
/ _ /! __ S0 70 ! _ 50 ,Xstart0
startl — C(),l =9 92 Ustartz = (hstart) 9o

/ _ svk S0 ,3(/)51)]C ,31 Yo i s
starts = (90" ho) (92 * 92 )7, Conar = Cz,l =999,

ab)slgéalend‘i'a/bl)’ﬂ 7 c’ ks; k' v

! —
end3 — g 92 9

end2 — (hendg

for 1 = 1 to I

/ _ S5 o4 Vi / _
) 0 Ci,l = 9792 , 050 =
e ay, Yit+B Vi1
(hu; )% 2% =1 gy ™ ., O

7, and C. ., are the normal
ciphertext components generated by the encryption algorithm
except that C/_ ,, is the signature for the above components.
Note &', 5', a4, @yqrs and (some of) o, will be shared in
the nominal and temporary semi-functional keys.

Below we define three types of semi-functional keys used
in our security proof. We let Rgiort1, Rstart2s Rstarts, Re 1,
Rt72, Rt)3, RendI,Q €ER Gpg and an R €g sz.
Semi-functional Keys. We set the keys as

! star
startl — DO(hstart)T ‘ tRstartl;
! Tstar U _u
Kstm“tZ = """ Rgtart2, KstartB = 9" Rstarts,
for each t = (z,y,0) € T:
/ —1_r / r /7 r
t1 =Dy 2" Ry, Ky = 9" Ri2, Ky 5 = Dy(he)™ Ry 3,
for each ¢, € F:
/ —« ab\7. ku
end, 1 — 9 Dx(hendg ) mda g Rendz,l R,

/ — Tendy
Kendm_g =g "Rendmfz'

Nominal Semi-functional Keys. We choose do, ..., d|g|-1 €r
Zy associated to the states in (), for each ¢t € 7T
choose a ¢ €p Z), for each ¢, € () choose a

€end, E€R LN, €start,W Er Zy. We set the keys

as (thart17K;tart27Vt € T( t/,17Kt/,27 é,S)ﬂVql’ €
, . .

F‘(I(ende7 endmg)) in which

’
: = Tstar Qs €s do
Ksta'r‘tl - DO(hStU«Tt) am'tRstartl(QZ S“”t) btangQ 9

start

K;tarﬂ = grsmrt Rstart2g§ ; ;tart3 = guRstart?)gg 5
for each ¢t = (z,y,0) € T:
_ 4 —d,
L1 =D; Realgs )95 ™,
o d
to=9"Ri295", K3 = Dy(ho)" Ri3(957) 9",

for each ¢, € F:

/ —a ab\Tendy, Lku
endy 1 9 Dm(hendg ) do gttt
de (alpgta’'b )eena, ko'
Rend17192T92 ¢ I92 )
/ €endy
s s =g enda Rendw,zgz :
Temporary Semi-functional Keys. We  choose

do,...,d|g|-1 €r L}, for each t € T choose a ¢; €g Zjy,
for each ¢, € @) choose a €cnq, €ERr LYy, A €start €R Ly We
set the keys as

K;tartl = DO (hstart)”mrt Rstartl(g;;tm‘t)EStaMggOv
Kiiario = 97 Rotare295" """ Kiariz = guRstart?)gg/’
for each t = (z,y,0) € T:
11 =D Rea(gh ) gy
1= 0" Reags' K|y = Dy(ho) Res(g57) 95",
for each ¢, € F:
flmdw,l = giaDz(hendgab)Tﬁndm gkuRendm,l R,

€endy

!/ _ Tend
endy 2 g zRendm,ng



We will prove Theorem 1 in a hybrid argument over
a sequence of games. In all the games (to be defined)
B will play with A, and the total number of queries is
q = qsk + Grk + Qre + Qdec, where qsks 4rk; Qre; ddec denote
the number of the secret key extraction, re-encryption key
extraction, re-encryption and decryption queries, respectively.
We define Game,eq to be the first game. It is the IND-
CCA security game for DFA-based FPRE systems in which
the challenge ciphertext (for original ciphertext security and
re-encrypted ciphertext security) is normal. In this game, B
will use normal secret keys as knowledge to respond secret
key extraction, re-encryption key extraction, re-encryption and
decryption queries. We define Gameg to be the second game
which is identical to Game,., except that the challenge
ciphertext is semi-functional. Hereafter by “keys” (resp. “key”)
we mean the secret key(s) (constructed by B) used to respond
the secret key extraction, re-encryption key extraction, re-
encryption and decryption queries. In the following games,
we will convert the “keys” to be semi-functional one by one.
But for clarity we first turn the “keys” for the secret key
extraction queries, and then convert the “keys” for the re-
encryption key extraction queries, the re-encryption queries
and the decryption queries in sequence. Besides, A is only
allowed to issue one corresponding query in each of the
following games. We further define Game; as follows, where
i€l,q. Welet j, € [1,q,], where ¢ € {sk,rk,re,dec}. For
each game Game;, we define two sub-games Game;\f and
Game?: in which the challenge ciphertext is semi-functional.
In Ga%neff the first (j — 1), “keys” are semi-functional, the
7.-th “key” is nominal semi-functional, and the rest of ‘“keys”
are normal. In Game}: the first (j — 1), “keys” are semi-
functional, the j,-th “key” is temporary semi-functional, and
the remaining “keys” are normal. To transform Game(;_1),
(where j,-th “key” is normal) to Game;, (where j,-th “key”
is semi-functional), we start from converting Game;_1), to
Gameé\f , then to Game}:, and finally to Game;,. Note to
get from Gamejb to GamejTL, we deal with the simulations
for the queries of Phase 1 and that of Phase 2 differently:
the former is based on the source group modified g-BDHE
assumption in a subgroup, and the latter is based on the
source group l-expanded BDHE assumption in a Subgroup.
In Game, = Game,,,  all “keys” are semi-functional, and
the challenge ciphertext is semi-functional for one of the given
messages. We define Gamefinq to be the final game in which
all “keys” are semi-functional and the challenge ciphertext
is semi-functional for a random message, independent of the
two message given by A. We will prove the above games
to be indistinguishable by the following lemmas. Below we
assume SY M is a CCA-secure, OT'S is a strongly existential
unforgeable and H;, Hs are TCR hash functions, and it is hard
to find a non-trivial factor of V.

Lemma 1: If there is an algorithm A4 such that
GamerealAdvf{FA'FPRE — GameoAvaFA'FPRE =0, we
can build an algorithm B breaking Assumption 1 with advan-
tage 0.

Proof: For simplicity, we combine the security proof
of original and re-encrypted ciphertexts into one simulation.

Below by original/re-encrypted game we mean the security
game for original/re-encrypted ciphertext.

Setup. B is given an instance (D, T) of Assumption 1,
and simulates either Game,..q; or Gameg (depending on T')
with A. B chooses a,b, o, B, Bo, b1, Xstart, Cends k €Er Ly,
a, €g Z} for all symbols in ), two TCR hush functions
H,, H5, a one-time signature system OTS and a one-time
symmetric encryption scheme SY M, and outputs PP:

QAstart

« ab
6(979) » 9,9 790:.96072:9[37}1'0:gﬁl7hsta'rt:g 5
hena = g%, hi = g" Voesho = g°7, H1, H, OTS, SY M.

B keeps o and X3 secretly.
Phase 1. A makes the following queries:

1) Oskg(M): If ACCEPT(M,w*), B output L. Other-
wise, B returns SKj,; to A by running the algorithm
KeyGen as it has knowledge of MSK.

2) Opp(M,w):

« For original game: if ACCEPT (M, w*) and SK
(for any DFA M’ so that ACCEPT (M’ w)) is
obtained by A, B outputs L. Otherwise, B constructs
SKjps as in Ogg, and next generates rkp;_,,, for A
by running the algorithm ReKeyGen.

« For re-encrypted game: I3 can construct generates any
re-encryption key rkas_,,, with knowledge of M SK.

3) Ope(M,w',CT):

o For original game: if ACCEPT(M,w*), CT is the
challenge ciphertext, and SKp; (for any DFA M’
so that ACCEPT(M’,w")) is obtained by A, B
outputs 1. Otherwise, B constructs rkp;_,, as in
O,k, and next generates the re-encrypted ciphertext
C* by running the algorithm ReEnc.

« For re-encrypted game: O,. is not offered to A.

4) Ogee(M,CT):

o For original game: if ACCEPT(M,w*), and CT
is the challenge ciphertext, B outputs L. Otherwise,
B constructs SKj; with knowledge of M SK, and
next recovers m by running the algorithm Dec.

o For re-encrypted game: B recovers the private key
with knowledge of M SK and recovers m.

5) OdecR(M; CR)Z

o For original game: B constructs SKj; with knowl-
edge of MSK, and next recovers m by running
Decg. If (w',C™) is a derivative, B outputs L. To
distinguish the derivatives from the submitted cipher-
texts, I3 can use the following approaches. If the re-
encrypted ciphertext is output by O,.(M,w’,CT),
then the ciphertext is indeed a derivative, where
CT is the challenge ciphertext and SKj, (for any
DFA M’ so that ACCEPT(M’,w")) is not obtained
by A. Otherwise, it indicates that the re-encrypted
ciphertext is constructed by A with a re-encryption
key given by B. B then recovers the underlying
CT from the re-encrypted ciphertext (by using the
corresponding private key), and re-constructs Agpq
as in the real scheme. If the value (of A.,q) is equal
to the one hidden in the symmetric encryption, and



C'T is the challenge ciphertext, it knows that the re-
encrypted ciphertext is a derivative.

o For re-encrypted game: B uses SKjs to decrypt

CT as in the real scheme. If CF is the challenge

ciphertext, 5 outputs L.

Challenge. B implicitly sets g°° to be the G,,, part of 7', runs

(ssk, svk) < KeyGen(1™), chooses a random b € {0, 1} and
generates the challenge ciphertext as follows.

o For original game: A outputs mg, mi, and w* (with

length [). B sets the challenge original ciphertext as

svk,w*, Cpm =my - e(g”, T)S;, Cstart1 =T,

Tastart

-svk
Tﬂn sV -Tﬂl,

CstartQ = 5 CstartS =

s/ [eY -s! k-s]
Cendl =T l: CendZ = T end l7 CendS =T Lv

fori=1tol: C;1 = TSQ,CZ',Q = Tsiw; . Tsio1B,
and Oend4 - Slgn<38k’, (w*; Cm7 Cstartl’ Cstart%

Ostarti% (Cl,l, 01,2)7 ) (Cl,l’ OZ,Q)’ Cenan CendS))’
where s}, ..., 8] €r Z%. B outputs CT = (svk, w*, C,,
Ostarth Cstart2’ Cstart3v (Ol,ls 01,2)7 (XX} (Ol,l, Cl,2)7
CendZ, CendS, Cend4) to A
o For re-encrypted game: A outputs mg,m;, a string

w’ and a challenge string w* (both with length [).
B runs CT = Encrypt(PP, w', my), generates the
re-encryption key rkp;_.+ and constructs Agc,gq as
in the real scheme. It further sets Cs in the identi-
cal approach described above. B finally sets C; =
SY M.Enc(H2(d),£), and outputs the challenge re-
encrypted ciphertext C* = (Cy,Cs) to A, where & =
(CT[Acnallrka).

Phase 2. Same as Phase 1.

Guess. B outputs whatever .4 outputs.

If T' € G, , the challenge ciphertext is a properly distributed
normal ciphertext so that this is in Gameyeq;. If T € Gy, p, s
we let g% be the G, part of T and g;° be the G,, part
of T, ie. T = g* - gJ°. We will have the semi-functional
ciphertext with 7; = 7o - s}, s; = So - ;. In addition, the
values of a,b, Qstart; Qend, o, B, k, 81, ..., s; modulo ps are
uncorrelated from their values modulo p; by the Chinese
Remainder Theorem (assume finding a nontrivial factor of N
is hard). Thus the challenge ciphertext is a properly distributed
semi-functional ciphertext so that this is in Gamey. Note it
can be easily seen that all private keys and re-encryption keys
generated in the simulation are normal. Therefore B can use
the output of A to break Assumption 1 with advantage §. H

Lemma 2: If there is an algorithm 4 such that
Game(j,l)bAdngA'FPRE — Gamejb Advf"FA'FPRE =9,
we can construct an algorithm B breaking Assumption 2 with
advantage 9.

Proof: Setup. B is given an instance (D, T') of Assump-

tion 2, and simulates either Game(j_l)L or Gameé\f with A.
B generates PP and M SK as in the proof of Lemma 1.

Phase 1. A makes the following queries:

1) Osk(M): B constructs the private keys for A as follows.

o For the first (j—1),, key queries, B

generates the semi-functional keys for A.

B chooses Rstarth RstartQ’ Rsta'rt?n (Vt €

T) Rt,laRt,2aRt,3a (VQw S F) Rendz,l’Rendm.Z €R
Gp,. For each t € T it chooses 1, €r Z};, and
Vg, € F it chooses Tena, , T €r Z}y. It also chooses
Tstart, U, k €r Z}k\[’ D07 Dla "'7D|Q|—1 €R Gp19
where D; is associated with g;. It sets

/ — Tstart
startl — DO(hstart) rart Rsta'rtla

! Ts . ! U
KstartQ =49 Lta”Rstart% KstartS =g RstartSa
for each t = (z,y,0) € T:
/ —1_r
t1 =D, 2" Ry,
! T ! T
to=9"Ri2, K;3=Dy(hs)" Ry 3,

for each ¢, € F:

/ - b\Tendy ok
Kendz,l =9 “Dy(henag* )r g uRendw,l(YQY?))m7
/ T §
endy 2 =g enda Rendmyg-

The value of 7, modulo p; is uncorrelated from
its values modulo p3 by the Chinese Remainder
Theorem. Thus the above key is properly distributed.
For the > js key queries, B runs the algorithm
KeyGen to generate keys.
For the j-th key query, B implicitly lets g"start be
the G, part of T. B chooses dy,d], ..., TQ\—l €r
N, for each t € 7T chooses r;, €r ZY,
Vq. € F chooses 1, €r Zy, a u' €r Zjy,
Rstartl, Rstart2s RstartS’ Rt,la Rt,Qs Rt,3, Rendz,p
Rena, , €r Gp, (here B can simply set Rstort1 =
Xéﬁsmrm’ Rsturt2 — Xéﬁsmrrz’ Rsturt3 — X?S’astav'tli’
Ripn = X3, Rio = X35"°, Rz = X3,

Pendy 1 endy o
Rena,, = X3 s Rend, , = X3 , where

Pstartls Pstart2> Pstartd> Pt,1, Pt,2> Pt,3> Pendy 1>
Pend, » ER Z’y). It sets the semi-functional key as

K =R Td6+asta'r‘t
startl startl )

Katartz = Ratare2Tstarts = RotaresT"
for each t = (z,y,0) € T

K1 = Rt,lTid;Jr’Gria

Ko =R oT" Ky g = Ry T,

for each ¢, € F:

. —« d' +(a +ab)r’ +ku'
Kendm.l =g Rendzle ot (ena ) ende )

/
P 7_‘ETL
Kendm,g - RendmygT dz

Note this implicitly sets 1y = TspartThs
D, = grterde and re,q = TstartTong, - 1
T € Gy, p,, the key is a properly distributed normal
key so that B has properly simulated Game(;_1), .
Otherwise, the key is a properly distributed semi-
functional key so that B has properly simulated
Game}. We implicitly let g5** be the G,, part
of T, set ¢ = estartréaeendw = estartréndm
and d, = €saredl,. Besides, u/'rgpqr: and
u'€stqr¢ are the exponents of the Gp1 part and
Gpo part (of Kgarez), and the G,, parts of
KstartluKstart%KstartSyKt,th,QaKt,SaKendz’l



Qstart€startt+do €star . Bei—d
and Kepq, , are gy srertostert 00 gostert gh gg 0,
. aertd (atendatab)eecnd, +da+ku Cendy
92" o Y 9 : and >
respectively.
2) Opr(M,w):

o For original game: since B can construct normal
private keys, it first constructs S K, with knowledge
of MSK and next generates the re-encryption key
rkpr—w Dy running the algorithm ReKeyGen. If
ACCEPT(M,w*) and SK; (for any DFA M’ so
that ACCEPT(M’',w)) is given to A, BB outputs L.

o For re-encrypted game: B generates any re-
encryption key for A.

3) Ope(M,w',CT):

o For original game: B constructs the re-encryption
key 7knr—swr as in Oy, next generates CT via the
algorithm ReEnc. If ACCEPT(M,w*), CT is the
challenge ciphertext, and S K, is obtained by A, B
outputs L, where ACCEPT(M',w').

o For re-encrypted game: no need to issue O,.

4) Ogee(M,CT):

« For original game: if ACCEPT (M, w*), and CT is
the challenge ciphertext, B outputs L. Otherwise B
constructs SK s to recover m.

« For re-encrypted game: B constructs the private key
to decrypt the ciphertext as in the real scheme.

5) OdecR (M, CR)Z

o For original game: if (M, CT) is a derivative, B
outputs L. Otherwise B constructs the private key
to recover the message m via the algorithm Decp.

o For re-encrypted game: if C* is the challenge cipher-
text, B outputs |. Otherwise B constructs SKj; as
in Ogk to decrypt the ciphertext.

Challenge. B implicitly sets g% = X; and g3° = X, runs
(ssk, svk) < KeyGen(1™), chooses a random b € {0,1} and
constructs the challenge ciphertext as follows.

o For original game: A outputs mg,my, and w*. B then
sets the challenge original ciphertext CT as

svk,w", Cp, = mb€(9a7X1X2)S;,Csmrt1 — X1 Xo,

Cstartz = (X1X2)**"  Cstarts = (X1X2)Bosvk(X1X2)5l 7
Cendar = ()(1X2)S§,C’end2 = (XIXQ)(aemﬂrab)sf7

Cends = (X1X2)k327

for ¢« = 1 to [ Ci,l = (XlXQ)S'Ii,Ci’Q =
(X1X2)S;"‘“’z‘(Xng)S;flﬂ, and Cepgs = Sign(ssk,
(’U}*, Cms Cstartls CstaTtZa Cstart3, (CLI: Cvl,2): A
(CZJ, 0172), Cend2, Cendg)), where 8/1,...,82 €R Z?V'
B outputs CT = (svk, w*, Cp,, Co1, Cstartzs Cstarts
(01,17 01,2)7 (RX3} (Cendlv Cl,2)s Cenan Cend& Cend4)
to A. Note we have the semi-functional ciphertext with
Yi = Yo -8, and s; = sg - s, where i € {1,...,1},
and the values of the exponents of X; X5 modulo p; are
uncorrelated from their values modulo ps.
o For re-encrypted game: A outputs mg,my, a string
w’ and a challenge string w*. B runs CT =

Encrypt(PP,w',my), generates the re-encryption key

rkyr—sw+ and constructs A.,q as in the real scheme. It
further sets C5 in the identical method described above.
B finally sets C1 = SYM.Enc(Hz(6),£), and outputs
the challenge re-encrypted ciphertext C'f* = (Cy,Cy) to
A, where & = (CT||Acnal|rks).

Phase 2. Same as Phase 1.

Guess. 53 outputs whatever .4 outputs.

Therefore if T' € G, p,, the simulation is in Game(j_l)b.
Otherwise, the simulation is in Gamej-\f . B can use the output
of A to break Assumption 2 with advantage . ]

Lemma 3: If there is an algorithm A4 such that
Gameﬁ’Advf"FA'FPRE — Game}:Advf{FA'FPRE = ¢ for
a j from Phase 1, we can build an algorithm 5 breaking the
source group modified g-BDHE assumption in a subgroup with
advantage 9.

Proof: Setup. B is given an instance (D, T) of the
source group modified ¢-BDHE assumption in a subgroup,

and simulates either GamelY or Game]TL with A. B generates

g
PP and MSK as in the proof of the previous lemma.

Phase 1. A makes the following queries:
1) Ogk(M): B constructs the private keys for A as follows.

o For the first (j — 1)s, and > js key queries, B
generates the semi-functional keys and the normal
keys for A as in the previous lemma.

e For the js-th key query, B runs the al-
gorithm KeyGen to generate a normal key
Kstartl;KstartZ’ vVt € T(Kt,laKt,ZaKt,3)7VQI €
F(Kend, > Kena, ). and next sets

dy Orart€otart €atart a
KstartlQQ 925 artoster 7Kstart2923 o aKstaTt3g27

for each ¢t = (z,y,0) € T:

’

7d/ 1 ’ d/ ’
K195 " g5 K095, Kt 395" 957,

for each ¢, € F"
f

’ ’
ercndz K ercndm
) endz,zg2 )

dl, ror! a
Kend, 95" T" <= gy

where d,,V t = (x,y,0) € T €,d,,¥V = €
F 7ﬂéndw’v o € Z afyva/startvﬁlstartvﬂ/ €Rr Z?\/
This implicitly sets (ab + aend) - €end, = (aec?™ +
Qfe) Tl b= —c1 — il — AT g f)
Qeng = ac- (¢4 +c0 4. 497" and €, =
e-rl, 4, Where ¢ is the maximum allowable number
of distinct symbols in ), and n is the total number
of the distinct symbols used in the DFA. Note we
here give a limitation to n such that n < ¢ — 1. If
T= ggecq“, the above key is a properly distributed
nominal semi-functional key so that 3 has properly
simulated Gameﬁk. If T €r Gp,, the key is a
properly distributed temporary semi-functional key
so that B has properly simulated Gamestk_.
2) The responses of the queries to O, Ore, Odec; Odecr
are the same as that of previous lemma.
Challenge. 53 chooses random elements v, ...,7, €r Zy. It
then runs (ssk, svk) <— KeyGen(1™), chooses a random b €
{0,1} and constructs the challenge ciphertext as follows.



o For original game: A outputs mg,my, and w*. B then
runs the algorithm Enc to generate a normal ciphertext
consisting of

Cm,7 Cstartla CstartQa Cstm’th (Cl,la 01,2)7 )
(Cl,la 01,2)7 Cenan Cend3a

and sets the challenge semi-functional ciphertext CT as

« 1/acl~]
svk,w 7Cm,Cstu.’rtl = Csta'rtlQQ )

1/ac~{al, t
CstartQ = Csta.'rt2gg star

1/ac? k, 1/act\vi B,

Cstart?: — Csta,’rt3 (gg/ac )’YOB()S'U (gz/aL )’Yoﬁl
1 ’

Cendl = Cendl( fact )’Yl CendZ =

ac? 4
Oend3 - Cend3 (g;/ )’Y ik

1/aci\~la’
Cendz(gy ™ )71 %end,

)

for ¢ = 1 to I: Czl = Ci71(g;/acq)’yz{’ci)2 =

C; gg;/acqa it act 16, and Cenga = Sign(ssk,
(’U}, Cm5 Cstartl, CstartQ, Cstart3: (01,1» 01)2)’ cey (Cl,la
Ci2), Cendzs Cenas)), where By, 81 €r Z}. B outputs
CT = (S’Uk, w, Cnm, Cstartts Cstart2s Cstart3s (Cl,l,
01,2)7 cees (Cendlv Cl,Z)’ Cend27 CendSs Cend4) to A

o For re-encrypted game: A outputs mg,mi, a string
w’' and a challenge string w*. B runs CT =
Encrypt(PP,w',my), generates rkpr_,+ and con-
structs A, q as in the real scheme. It further sets Cy =
(55k9 (U), 05, Cstartl’ Cstart27 Ostartf’), (Ol,ls 01,2)7
[EE) (Cendls CZ,Q), CendZ’ CendSaCend4)) as above. B
finally sets C; = SY M.Enc(Hz(d),£), and outputs the
challenge re-encrypted ciphertext O™ = (C},Cs) to A,

where £ = (CT||Acndl|rk4).
Guess. 3 outputs whatever A outputs.

Therefore if T €r G,,, the key is a properly distributed
temporary semi-functional key so that the simulation is in
Game] Otherwise, the key is a properly distributed nominal
semi-functional key so that the simulation is in Game . Thus
B can use the output of A to break the source group q ‘BDHE
assumption in a subgroup with advantage 9. ]

Lemma 4: If there is an algorithm A such that
GameNAdvDFA FPRE GameTAdvDFA FPRE — § for
aj from Phase 2, we can build an algonthm B breaking the
Source Group [-Expanded BDHE assumption in a Subgroup
with advantage 6.

Proof: Setup. B is given an instance (D, T') of the Source
Group [-Expanded BDHE assumption, and simulates either
Gameé\’ or GamejT for some j from Phase 2 with A. B
generates PP and M SK as in the proof of Lemma 1.
Challenge. B chooses a random b € {0, 1}, runs (ssk, svk)
KeyGen(1™) and generates the challenge ciphertext.

o For original game: A outputs mg,m;, and w*. B
first generates the normal components of the chal-
lenge ciphertext as in Encrypt, and obtains the nor-
mal components consisting of (w, Cp,, Cstart1, Cstartas
Cstartz, (C1,1,C12), s (C11,C12), Cendis Cenaz)-

B chooses v, Usiart, Vend, K €r Z} and Yo €
Z Ve €r Z3y. It implicitly sets 8/ = v, + ab/dz,
Xitart Ustart — ». alb/cjx, ol Vend —

JE[L,1%]

> adlb/ejz, Yo € Y, al, = vy—b/dr —

JE[2,0*+1] ] ]
all +1*J)b/c(l*+1_j):17, and ; = mna’,

JEOI*+1]s.t.w}#o

and next constructs the challenge ciphertext by adding

the parts in G,, to the normal components as follows.

0
mna
Cstuxrtl = Csta'rtlQQ = sta,rtlgg 5
0 —alb 0/c;
_ mna®\vstart albmna® /cjx
Cstart2 = Cstart2(g2 )oeter I I 9o
JE[1,0%]
—alb .
YoVstart | | a’byo/cj
- Csta'rt2g star 92 ’ )
JE[L,1*]
0 ’ 0 /
mna-\Bysvk s mna®\ 3
Cstart3 - Cstart3(g2 ) 0 (92 ) !

YoBosvk Y0681
= Cstart3g2 0 9o 17

1*
mna

Yy
Cendl = Cendlg2 = Cendlgzl 5

7al*+-7bmn/0jz
I o

* -
mnal )vend+(1b

CendQ - CendZ (92

JE[2,1%+1]
= Cendww(venﬁab) H g;ajbwl*/cjx7
JE[2,1*+1]
Cenas = CendS(ggnnal* )k/ = C'end39§lw*7
fori=1tol

Ci,l =C; 195”71@ = C¢,19;i7
i—1
Ciz =Cia (g5 ) 7 (g5me™ " yo=.

7a”*+1_-7‘+ibmn/c]'w
I =
JEOI*+1]s.t.w} #w;

'YL'Uw Yi—1Vz

=Cj; 292 "9

*4+1—j
—a bvi/cj
H g2 9

jE[O,l*—i—l]s.t.w; Fw}

where v, V>, 81, By, a,beg Z}; chosen by B. Finally,
B sets Cend4 = Slgn(SSk, (w, Cm’ Cstartl’ Cstart2,
Cstartss (C1.1, C1,2)s -y (Cr1s Cl2), Cendzs Cenas)),
and outputs the challenge original ciphertext CT* =
(S'Uk, w, Cm, Cstartt, Cstart2, Cstarts, (01,1’ 01,2)7
cees (Cendl, Cl,2)s CendZ, CendS, Cend4) to A It is
not difficult to see that B can construct the challenge
ciphertext using the terms given in the problem instance.

o For re-encrypted game: A outputs mg,mi, a string
w’ and a challenge string w*. B then runs CT =
Encrypt(PP,w', myp), generates rkps_,+ (using the
normal private key SK ;) and constructs A, as in the
real scheme. It further sets C'; as above. 5 finally sets
Cy = SYM.Enc(H»(9),€), and outputs the challenge
re-encrypted ciphertext C® = (Cy,Cs) to A, where
¢ = (CT | Acnal Irka).

Phase 2. A makes the following queries:

1) Osk(M): A submits a DFA M to B where for any M
such that REJECT (M, w*). For the first (j — 1)s and
> je key queries, B generates the semi-functional keys
and the normal keys for A as in the previous lemma.
Otherwise, BB constructs the private key for A as follows.
Note we use w*(9 denote the last i symbols of w*, Mj
denote a DFA M, = (Q, T, gk, F'), where ¢, is the start



state and k € {0, ..., |Q|—1}. For each ¢;, € Q we defined
a set Sy including indices in {0,1,...,1*}, we say i €
{0,1...,1*} is in Sy, if and only if ACC'EPT(My,w*®).

We set D, = (Hiesk 9o

a'tlb/x

)-ga" Tomgn Actually, B

cannot directly compute D), from the problem instance.
Fortunately the uncomputable components will be can-
celed out so that the key components to be consistent
with the values.

a)

b)

c)

B implicitly sets €gyqr Y e s, Ci+1 and do =
>ies, @ b/x + a” t1bm. Thus we have

Qstart * €start + dO

=(vstart — Z a’ “b/cjz) - Z Ciy1+

jE[l,l*] i€So
E a'tob/z +a" Hom + n.
i€So
Thus B sets the G,, parts for Kgrn and
i€Sg Cit+1 d Ustart® i€Sg Cit+1

KstartQ as  go )
— 2Xjen i) iesg i1 @ bciv1/ciT

92 - T - g% respectively.
Similarly? B sets €ond, = Sies, izoCit1 and dy =
Yics, @'t b/x + al Tbm such that

92

(Qena + ab) - €ena, + do + K’
:(Uend - Z aj . b/CjZL' + &B) : Z Ci+1
FER,1*+1] 1€S4,i#0
+ Z a*tobjx 4 a" From 4 n 4 K,

1E€S,

where a,b,w' €gr Z3Y. Here B can construct

the Gp, parts for Kepg,, and Kepq,, using
the terms given in the problem instance
2iesy iz0 Cit1  (Vena+ab) 30 cq. s Cit1
as 9o - » 92 -
-3 N ) AP Jbecip1/cjm ,
JE[2,1%+1],i€ Sy ,i#0,j#i+1 @ i+1/€j ab/z n k'u
9> ’ Tg, " 9595 -

B constructs the key components K; 1, K; o, K; 3 for
each transition ¢t = (z,y,0) € T. Like [28] for i =
0 to I* +1 we define (K14, K¢ 2, Ky 3,;) such that
Ky = Hie 0,0*+1] Kiyi Ko = Hie[o,l*ﬂ] K2,
and K, 3 = hie[o,l*+1] K, 3,. B will generate these
components through four possible cases.
e Case 1: i« ¢ S, AN(i—1) ¢
K14, Ki24, K43, to be 1.
e Case 2: i € S, AN(i—-1) € S, B
sets Ky;o; = ¢3¢ so that K,;; =
3 i+1 1* 41
gészrab/da:)-a d—a't b/z+a om+n and Kt,B,i

Sy, B sets

(vo—b/dz—a' " t1Ib/cpe |y _)-a'd+a’b/a+al T bm4n

2 .
B then sets K;1;, = g5 dv- . g9y =
ngl - T - gy, and K;3, = Kf"ii

—aW 1= pd /e n
H o @*+1-3) .T. gg.

JEO,*+1]s.t.w}#o

e Case 3: ¢ ¢ S, AN(i—1) € S, A
wi ,_; # o, B sebtsd Kio;, = g5 so
that Kt,l,i = gévz+a /dw)-ci and Kt,3,i =

(vg—b/dw—al“rl*jb/c,x+1_jx)-ci+aib/w+al*+1bm+n
9 It

v, citabe; /dx

then sets Ki1; = g = K5,

abe; /dx v —be; /dx

gy, 77, and K3 Ifté,i‘ © gy
g,a(l +1—J)bci/c(l*+1ﬂ>x.
2

j€[O,l*+1]s.t.j;£l*+17i/\w;f750'

T-g5.

e Case d:i € S N(i—1) & Sy ANwayy , # o,
B sets Kio;, = g5 d=¢i 5o that Kir; =
g(vz+ab/dx)~(aid—ci)—ai+1b/x—al lom—n and
2 X ) i
Kia; = (vo—b/dz—a T19b /e 1) (—ci+a’d)

39, - 2 .
—abc; /ds
It then sets Ky, K5, - gQQC’/ v
-1 —n _ Vo be; /dx
T - gy", and Kiz; = K5, g, )

—a(l*+17j+i)bd/c(l*+1,j)r
p)
JE[O, I +1]s.t.w}#o
_aW =9,
92
j€[O,l*+1]s.t.j;£l*+1fi/\w;f750'
B can compute all the above components using the
terms given in the problem instance.

[eax 415

2) The responses of the queries to Oyx, Ore, Odec, Odecr
are the same as that of previous lemma.
Guess. 3 outputs whatever A outputs.
If T €r Gp,, the j,-th private key constructed above is
a properly distributed temporary semi-functional key so that
this is in Gamegz. ItT = ggl Thmwe have the properly
distributed nominal semi-functional key so that this is in
Gameé\f . Thus B can use the output of A to break the source
group [-BDHE assumption in a subgroup with advantage §. ®
Lemma 5: If there is an algorithm A4 such that
GameiAvaFA—FPRE — GamejLAdvf{FA'FPRE = 4,
we can construct an algorithm B breaking Assumption 2 with
advantage J.
Proof: This proof is identical to that of Lemma 2 except
that B will use Y5Y3 to construct random elements of G,
(Vq, € F) such that all K.,q, , parts of the i-th key will be
randomly masked, and the rest of key components will not
have G, parts. Namely the j,-th key is semi-functional. ®
Lemma 6: If there is an algorithm A such that
GamqudvﬁFA'FpRE - GamefmalAdvﬁFA'FPRE = 4,
we can build an algorithm B breaking Assumption 3 with
advantage 9.
Proof: Setup. B is given an instance (D, T') of Assump-
tion 3, and simulates either Game, or Gamey;nq With A. B
chooses 67 603 /617 Ustarty Xends @, ba k €R Z}k\h and Qg €R Z*N
for all symbols in Y. It then chooses Hy, Hy, an OT'S and
an SY M as in the real scheme, and outputs PP:

Qstart

9.9, 90=9",2=g" ho = g™ hi. = g*  hatare = g™t

hend = g7 Voey ho = 9% ,e(g,9%X2), H1, H>,OTS, SY M.

Note here « is unknown to B.

Phase 1. A makes the following queries:

1) Osk(M): B chooses Dy, Dy, ...,D|g-1 €r Gp,. For

eacht € T it chooses r¢,0¢ 1,0¢.2,0: 3 € Z}y, and Vg, €
F it chooses Tend, ; dend, 1 0endy o) ke €r Ly It also
chooses Tsiqrt, Ostart1, Ostart2, & E€r L. It then sets

Tstart Y Ostar
Kstartl :DO(hstaTt) ¢ th ¢ tla

_ Tetart YOstart2 _ uyu
Kstart2 =4 bm”XB“GT ) start3 — g XS )



for each t = (z,y,0) € T: K1 =
D:ZIZ”thJaKt,Q = thth'z,Kt’g =
Dy(hg)nth’Sa for each ¢, € F: Kendm,l =

6€TL T
(gaXQ)ile(hendgab)rm’d'wgkuX:} ! JZSI,Kende

grenda X;’Sendzﬂ .
2) O (M, w): B can construct any re-encryption key as it
knows any semi-functional private key for a DFA M.
« For original game: if ACCEPT (M, w*) and SK
(for any DFA M’ so that ACCEPT(M', w)) is
obtained by A, B outputs L. Else, B constructs
SKr as in Ogg, and next constructs rkps_,,, via
ReKeyGen.
e For re-encrypted game:
encryption key for A .
3) Ope(M,w',CT):
o For original game: if ACCEPT(M,w*), CT is the
challenge ciphertext, and SKj; (for any DFA M’
so that ACCEPT(M’,w")) is obtained by A, B
outputs 1. Otherwise, B constructs rkp;_,, as in
O,k, next generates C" via ReEnec.
o For re-encrypted game: no need to issue O,.
4) Odec(Ma CT):
o For original game: B constructs the semi-functional
private key SK; as in Ogg, and next recovers m via
Dec. If ACCEPT (M, w*), and CT is the challenge
ciphertext, 5 outputs L.
« For re-encrypted game: B decrypts the ciphertext by
using the corresponding semi-functional key.
5) OdecR (M, CR)Z
o For original game: B constructs the semi-functional
private key SKjs, and next recovers m via Decg. If
(M, C®) is a derivative, B outputs L.
o For re-encrypted game: B recovers m as above except
that B outputs L if C is the challenge ciphertext.

Challenge. BB chooses a random b € {0, 1}, runs (ssk, svk) <
KeyGen(1™) and generates the challenge ciphertext.

B generates any re-

« For original game: .4 commits to two equal-length mes-
sages mg,m1, and a challenge string w*. B sets

svk,w", Crn = my, - T, Ctarts = g Ya,
Cstartz = (9°Y2)**""", Cstarts = (QSYQ)[;O.SUIC ’ (gSYQ)Bl’
Cenar = (QSY2)517 end2 = (gSYFQ)aendASlvcenlB = (gsl/?)kASL7

/

for i =1 to [: Ci,l = (gsyvg)sl,ci’g = (géyvg)g;o’wl .
(9°Y2)%-1P where sh,...,s] €r Z). Finally, B sets
Cend4 = Slgn(SSk, (U}, Cm’ Cstarﬂ’ Cstart2» Csta'rt?n
(Ci1, Cr2)s ooy (Cenars Cr2), Cenaz, Cenas)), and
outputs the challenge original ciphertext CT = (svk, w,
Cm: Cstartla CstartQa Cstart:}: (01,17 01,2)7 vy (Cendlv
Cl,?)’ CendQ’ CendB’ Cend4) to A

 For re-encrypted game: A outputs mg,m1, a w’ and
a w*. B runs CT = Encrypt(PP,w', m;), generates
rkpyr—q+ (using the semi-functional private key SKj)
and constructs A, as in the real scheme. It further sets
C to be an encryption of a random element § € Z}; as
above, sets C1 = SY M.Enc(Hz(0),&), and outputs the

challenge re-encrypted ciphertext C* = (Cy, Cs), where
§ = (CT|Acnalrka).

Phase 2. Same as Phase 1.

Guess. 5 outputs whatever A outputs.

Note this implicitly sets Yo = ¢3°, s = sg,8; = s - 8/
for each i € {1,...,l}. If T € Gr, the above ciphertext is
a properly distributed semi-functional ciphertext of a random
message in G so that this is in Gamefinq. If T = e(g, )%,
we have the semi-functional ciphertext with v; = 7 - s;. This
is a properly distributed semi-functional encryption of my so
that we are in Game,. |

IV. CONCLUSION

In this paper for the first time we defined the notion of DFA-
based functional proxy re-encryption, and meanwhile proposed
a concrete scheme satisfying the new notion. Furthermore
we proved the scheme, which is the first of its type, to be
adaptively CCA secure in the standard model by employing
Lewko et al. ’s dual encryption technology.

This work motivates some interesting open problems, for
example, how to convert our DFA-based FPRE in the prime
order bilinear group.
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APPENDIX

Using the same approach of proving g-based assump-
tion [18], we prove a lower bound for the complexity of
our assumption in the generic group model. The following
is the prime order version of the proof, but the proof for com-
posite order version is analogous. We consider the variables
a,b,d, m,n,x,co,c1,...c;+1 which are all over Z,, and define
) to be a set of rational functions over these variables.

Q={1,a,b,ab/dz,b/dz,ab/x,n, Vi € (0,21 + 1], A1+ 1,
j €[0,l+1] a'mn,a‘bmn/c;z,
Vi € [0,1+ 1] ¢;,a'd, abe; /dx, be; /da,
Vi€ [0,20+1],5 € [0, + 1] a'bd/c;z,
Vi,j € [0,1+1],i # j, a'bej/cix}.

Q is the set of exponents of the terms given in our assumption.
We define P(2) to be the set of all pairwise products of
functions in 2.

Lemma 7: For each function f € Q U {a'*'bm}, the
product f-a'*tlbm is independent of P(Q)Ua!*tbm-(Q\ f),
where 0\ f is the set of all terms of € excluding f.

Proof: We first observe that a?*2b%>m? is not included in
P(Q)Ua*tbmQ, and for any f € Q, f-a*lbom ¢ a'Tlom -
(©\ f). Thus the remaining work is to prove that for each f
such that f - a'*'bm ¢ P(Q). This holds if and only if the

intersection of P(€2) and a'T'bmQ leads to an empty set. To
show this, we build the set of a'*1bm& as follows.

aMomQ = {a"om, o' 2bm, 162 m, o 2 om / da,
a1 ?m/de, o' omn,
Vie[l+1,314+2],i#20+2,
§ €10, +1] a'bm?n, a'b*m*n/c;z,
Vie[l+1,20+2],5€[0,1+41]

l+2b2 l+1b2

aibcjm, a‘bdm, a

Vie[l+1,30+2],j€[0,l+1] a'b?*dm/c;x,

Viell+1,20+2],5,k€[0,1+1],

i # 3§, 7 # k, a'b’cym/cpx}.
We can observe that none of the above terms is included
in P(Q) except for a'*lbmn. Specifically, in P(f2) every
occurrence of the factor m is accompanied by n, and neither
single m nor single n~! is given, we hence cannot make the
product for any term in the above set with the factor m. In
addition, we cannot produce the products for the terms with
factor m2n in the above set, since the power of m is always
equal to that of n in P(Q) (recall that n~! is not provided).
For the term a't1bmn, we see that one of its factors should
includes n. If we regard n as one of its factors, then the other
factor should be a'T'bm. But it is not given in the set 2. If
we see either a’mn or a’bmn/c;x as one of its factors, then
we should need either a*b or akcjx, where 7 +k =1[1-+1, and
1 # 1+ 1 such that k # 0. It is clear that these terms are not
given in the set ) as well. ]

By the Lemma 7 and the proof strategy inroduced in [18],
we have the following theorem.

Theorem 2: For any PPT adversary A that issues ¢ queries
to the oracles computing the group operations in G, Gy and
the bilinear map e : G x G — G, the advantage of A against
the source group [-BDHE assumption in the generic group
model is at most O(q?l/p).

Note the proof of Theorem 2 is almost identical to that of ¢
based assumption introduced in [18], we hence omit the details
and refer the reader to [18].

Strongly Existential Unforgeable One-Time Signatures
(OTS) [3]. A strongly existential unforgeable OTS consists of
the following algorithms. The key pair generation algorithm
KeyGen takes the security parameter n € N as input, and
outputs a signing/verification key pair (ssk, svk). The sign
algorithm Sign takes ssk and a message M as input, and
outputs a signature o. The verification algorithm Veri fy takes
svk, o and a message M as input, and outputs 1 when o is
valid, and output O otherwise. Due to limited space we refer
the reader to [3] for the security notion of OTS.

One-time Symmetric Encryption [9]. It consists of the fol-
lowing algorithms. Note let K be the key space {0, 1}Polv(%),
and SY M be a symmetric encryption scheme. The encryption
algorithm SY M.Enc intakes a key K € Kp and a mes-
sage M, outputs a ciphertext C. The decryption algorithm
SY M.Dec intakes K and C, outputs M or a symbol L.
The CCA security model for one-time symmetric encryption
systems is given in [14], we hence omit the details.

me;j/dz, a c;m/dx,
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