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Abstract

Root-zone soil moisture can exert a strong influence on atmospheric boundary

layer forecasts. If not suitably constrained, the soil moisture in a Numerical

Weather Prediction (NWP) model will drift away from the true climate, poten-

tially resulting in erroneous atmospheric forecasts. In most NWP models this

is prevented by constraining the model soil moisture to minimise errors in the

screen-level (1.5 - 2 m) temperature and relative humidity forecasts. While as-

similating screen-level observations can effectively decrease errors in boundary

layer forecasts, it often generates unrealistic soil moisture, since the latter is

adjusted to compensate for screen-level errors unrelated to the model surface

state.

In response to these short-comings, this thesis seeks to establish whether

NWP might benefit from assimilating remotely sensed soil moisture observa-

tions. The focus is on improving the model root-zone soil moisture, with the

expectation that this will eventually lead to improved low-level atmospheric

forecasts. Satellite remote sensors observe soil moisture in a thin near-surface

soil layer, which interacts with the underlying soil moisture profile through dif-

fusion processes, potentially offering a more direct relationship to root-zone

soil moisture than the screen-level observations. Several studies have demon-

strated that modeled root-zone soil moisture can be improved by assimilating

near-surface soil moisture, although there has been very little work with NWP

models. In particular, there have been no studies assimilating both near-surface

soil moisture and screen-level observations at the continental scale.

First, the available remotely sensed soil moisture data sets are examined

over Australia. At the time of this study, only the passive microwave Advanced

Microwave Scanning Radiometer - Earth Observing System (AMSR-E) was pro-

viding soil moisture observations with sufficient coverage for use in NWP. Soil

moisture data sets generated from AMSR-E brightness temperatures using four

retrieval algorithms are assessed over 2006, principally by comparison to in situ
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soil moisture observations from the Goulburn and Murrumbidgee Soil Mois-

ture Monitoring Networks in southeast Australia. Based on this comparison

the soil moisture data retrieved with the Vrije Universiteit Amsterdam - NASA

(VUA-NASA) algorithm is identified as the most accurate. The accuracy of the

VUA-NASA AMSR-E soil moisture data is then confirmed, by comparison to

six years of in situ soil moisture observations from the Murrumbidgee, and to

maps of observed precipitation and vegetation across Australia.

The VUA-NASA AMSR-E near-surface soil moisture data is then assim-

ilated into the NWP land surface models used at the Australian Bureau of

Meteorology (BoM) and Météo-France. The assimilation is performed with an

Extended Kalman Filter (EKF) designed specifically to allow a computationally

affordable assimilation of screen-level observations and near-surface soil mois-

ture within operational NWP. The forward model itself (the land surface model)

is used as the observation operator (to allow the assimilation of screen-level

variables), and the assimilation is performed in an off-line version of the land

surface model (to make the assimilation computationally affordable). The off-

line assimilation is designed to be semicoupled to the NWP model, in that each

soil moisture analysis is generated using the off-line land surface model forced

with atmospheric forecasts generated from the NWP model updated with the

previous land analysis update.

Using Météo-France’s NWP land surface model (ISBA) over the European

domain, the assimilation of AMSR-E near-surface soil moisture observations is

compared to the assimilation of screen-level temperature and relative humidity

over July 2006. The two observation types are first assimilated separately to

determine how each is translated into root-zone soil moisture updates. These

experiments showed no consistency between the root-zone soil moisture gener-

ated from each observation type, indicating that the screen-level observations

could not have been substituted with AMSR-E data to achieve similar correc-

tions to the low-level atmospheric forecasts. However, when both data types

are assimilated together, the EKF is able to slightly improve the fit between

the model forecasts and both observation types, although these improvements

are extremely modest.

The AMSR-E observations are then assimilated into the BoM’s NWP land

surface model (MOSES) over a one year period, to test whether this improves

the modeled root-zone soil moisture. The manner in which the assimilation con-

strains the root zone soil moisture from near-surface observations is first exam-
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ined, and contrasted against the results from ISBA, to highlight the importance

of model physics to soil moisture assimilation. Qualitatively, the AMSR-E data

appears to have accurately detected errors in the (NWP forecast) precipita-

tion used to force MOSES, however this could not be confirmed quantitatively

(due either to inaccuracies in the AMSR-E data, or problems with the applied

assessment technique). Nonetheless, comparison to the Murrumbidgee in situ

soil moisture observations indicates that assimilating the AMSR-E data has im-

proved the modeled near-surface and root-zone soil moisture at those sites, con-

firming the potential to improve modeled soil moisture by assimilating remotely

sensed near-surface soil moisture observations. Combined with the results for

the ISBA experiments, this suggests that forecasts of both soil moisture and

the low-level atmosphere could be improved by assimilating both near-surface

soil moisture and screen-level observations.
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Jean-François Mahfouf of Météo-France / CNRM has very substantially shaped

this thesis, and in particular the work relating to the ISBA/ALADIN models.

I am extremely grateful to him for all of his input and for hosting my visits to
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National de la Météorologie in Tunisia is also acknowledged for coding an early

version of the EKF assimilation system. At CAWCR I would like to thank Les

Logon and Asri Sulaiman for assistance setting up the ACCESS model. Also,

Imtiaz Dharssi at the UK Met Office has been extremely generous in sharing

his wisdom regarding the intricacies of the JULES model, and I would also like

vii



viii

to thank Imtiaz and Bruce MacPherson for inviting me to the UK Met Office

and providing valuable feedback on my work with JULES. Additionally, I am

very grateful to Robert Gurney for inviting me to University of Reading, for

what was a very interesting visit.

For financial support I am grateful to the Australian Research Council and

the eWater CRC for funding my PhD Scholarships. I am also very grateful to

the institutes that funded my overseas trips: the University of Melbourne for a

Postgraduate Overseas Research Experience Scholarship to visit Météo-France,
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6.2.4 Köppen -Geiger climate classification . . . . . . . . . . . 147

6.2.5 The assimilation experiments . . . . . . . . . . . . . . . 147

6.3 Implementing the EKF in MOSES . . . . . . . . . . . . . . . . 149

6.3.1 MOSES model Jacobians . . . . . . . . . . . . . . . . . . 149

6.3.2 The model Jacobians . . . . . . . . . . . . . . . . . . . . 153

6.3.3 Model and observation error covariances . . . . . . . . . 159

6.3.4 The state update vector . . . . . . . . . . . . . . . . . . 162

6.4 Testing the EKF: synthetic experiments . . . . . . . . . . . . . 163

6.4.1 Time series examples . . . . . . . . . . . . . . . . . . . . 165

6.4.2 Net impact . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.5 Results: Assimilating AMSR-E data . . . . . . . . . . . . . . . 176

6.5.1 Rescaling the AMSR-E observations . . . . . . . . . . . . 176

6.5.2 Time series examples . . . . . . . . . . . . . . . . . . . . 180

6.5.3 Net impact . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.5.4 Evaluation against in situ data . . . . . . . . . . . . . . 192

6.5.5 Comparison to observed precipitation . . . . . . . . . . . 203

6.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . 206

xi



xii Contents

7 Conclusions and Future Work 209

7.1 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 210

7.1.1 Remotely sensed soil moisture over Australia . . . . . . . 210

7.1.2 Assimilation experiments with ISBA . . . . . . . . . . . 213

7.1.3 Assimilation experiments with MOSES . . . . . . . . . . 217

7.2 Main conclusions and future directions . . . . . . . . . . . . . . 221

References 227

A Related assimilation methods 247

A.1 Comparison to simplified 2-D Var . . . . . . . . . . . . . . . . . 247

A.2 Comparison to standard EKF for assimilating near-surface soil

moisture data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

B Comparing coupled MOSES and off-line JULES simulations 251

C Statistics of fit between in situ data for non-surface layers at

Kyeamba 257

D Additional time series plots comparing original AMSR-E re-

trieval algorithms to in situ data. 261

E Additional time series plots comparing normalised AMSR-E

retrieval algorithms to in situ data. 271

F Additional time series plots comparing original VUA-NASA

AMSR-E retrievals to in situ data. 281

G Additional time series plots comparing normalised VUA-NASA

AMSR-E retrievals to in situ data. 291

xii



List of Figures

4.1 Location of the Murrumbidgee and Goulburn Monitoring Net-

work sites, overlaid on the mean NDVI for 2006. See Tables 4.1

- 4.3 for details of each monitoring site. . . . . . . . . . . . . . 56

4.2 Time series of soil moisture observations (m3m−3) for each layer

over 2008, from five in situ soil moisture sensors at Kyeamba:

K1 (blue), K2 (red), K3 (green), K5 (yellow), and K7 (purple),

together with their mean (black). . . . . . . . . . . . . . . . . . 64

4.3 Comparison of in situ (solid lines) and original (not normalised)

AMSR-E (red diamonds) near-surface soil moisture (m3m−3) for

each retrieval algorithm, at Kyeamba (M9) over 2006. . . . . . 70

4.4 Comparison of in situ (solid lines) and original (not normalised)

AMSR-E (red diamonds) near-surface soil moisture (m3m−3) for

each retrieval algorithm, at Krui (G2) over 2006. . . . . . . . . 71

4.5 Comparison of in situ (solid lines) and normalised AMSR-E (red

diamonds) near-surface soil moisture (m3m−3) for each retrieval

algorithm, at Kyeamba (M9) over 2006. . . . . . . . . . . . . . 72

4.6 Comparison of in situ (solid lines) and normalised AMSR-E (red

diamonds) near-surface soil moisture (m3m−3) for each retrieval

algorithm, at Krui (G2) over 2006. . . . . . . . . . . . . . . . . 73

4.7 Scatterplots of the AMSR-E soil moisture anomalies vs. the in

situ anomalies over 2006 at Kyeamba (both in m3m−3), for the

X-band retrieval algorithms. . . . . . . . . . . . . . . . . . . . . 77

4.8 Time series of in situ (black) and original (not normalised) AMSR-

E (red) near-surface soil moisture (m3m−3) from the VUA-NASA

retrieval algorithm at Kyeamba (M9), from 2003-2008. . . . . . 82

xiii



xiv List of Figures

4.9 Time series of in situ (black) and normalised AMSR-E (red) near-

surface soil moisture (m3m−3) from the VUA-NASA retrieval

algorithm at Kyeamba (M9), from 2003-2008. . . . . . . . . . . 83

4.10 Monthly mean AMSR-E soil moisture (m3m−3) across Australia,

from the C-band ascending overpass (first row), C-band descend-

ing overpass (second row), X-band ascending overpass (third

row), and the X-band descending overpasses (fourth row), for

January (left) and July (right), 2006. . . . . . . . . . . . . . . 86

4.11 Monthly mean precipitation (in mm; first row), and NDVI (sec-

ond row), for January (left) and July (right), 2006. . . . . . . . 87

4.12 Maps of the C-band AMSR-E daily near-surface soil moisture

anomaly (m3m−3), with 10 mm precipitation contours for 13 - 15

July, 2006, based on the average of the ascending and descending

AMSR-E retrievals. Black indicates no AMSR-E data. . . . . . 88

4.13 Time series of near-surface soil moisture (m3m−3) from C-band

descending overpass AMSR-E (red), and Murrumbidgee Moni-

toring Network observations (black), for April 08 - April 09. The

AMSR-E data have been normalised to the mean and variance of

the in situ data, and filtered with an exponential moving average

filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.13 Time series of filtered and normalised C-band descending AMSR-

E overpass soil moisture (red), normalised ACCESS near-surface

soil moisture forecasts (blue), and Murrumbidgee Monitoring

Network in situ observations (black), for April 08 - April 09.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.14 Time series of precipitation (mm day−1) from the Bureau of Me-

teorology’s rain gauge analysis for the 0.25◦ grid surrounding M6,

from April 2008 to March 2009. . . . . . . . . . . . . . . . . . . 97

5.1 Fraction of days in July 2006 for which the descending overpass

AMSR-E soil moisture observations were available for assimila-

tion (after quality control). . . . . . . . . . . . . . . . . . . . . . 102

5.2 Screen-level observation network over the European domain. Black

squares indicate GTS SYNOP observations, and small grey cir-

cles indicate French RADOME observations (reproduced from

Figure 3 of Mahfouf et al. (2009)). . . . . . . . . . . . . . . . . 103

xiv



List of Figures xv

5.3 Comparison of M (m3m−3 /m3m−3 ) from 06:00 to 12:00 UTC

on 1 July 2006, estimated using positive (x-axes) and negative

(y-axes) perturbations of 10−4 × (wfc − wwilt). . . . . . . . . . 110

5.4 Comparison of M (m3m−3 /m3m−3 ) from 6:00 to 12:00 UTC on

1 July 2006, estimated using perturbations of 10−4×(wfc−wwilt)

(x-axes) and 10−1 × (wfc − wwilt) (y-axes). . . . . . . . . . . . 112

5.5 Maps of the observation operator for modeled w2 and observed

T2m (upper), RH2m (middle), and w1 (lower), for the analyses at

06:00 UTC (left) and 18:00 UTC (right) on 1 July 2006. . . . . 114

5.6 Surface wetness index at 18:00 on 1 July 2006 from the CTR

simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.7 Time series of near-surface soil moisture (m3m−3) for a grid-cell

in France (47.30 E/0.06 N) over 2006, from ALADIN (grey, solid),

the original AMSR-E data (grey, dashed), and the seasonal-bias

corrected (black, solid) and nonseasonal-bias corrected (black,

dotted) CDF-matched AMSR-E data. . . . . . . . . . . . . . . . 119

5.8 Net monthly w2 increments (m3m−3) over July 2006, from the

assimilation of a) seasonal-bias corrected AMSR-E data, and

b) nonseasonal-bias corrected AMSR-E data (assuming approxi-

mately equal observation and background errors). . . . . . . . . 121

5.9 Kalman gain (m3m−3/m3m−3) for w2 for the EKF at 18:00 on a)

2 July 2006 and b) 30 July 2006, and for the SEKF on c) 2 July

2006 and d) 30 July 2006. . . . . . . . . . . . . . . . . . . . . . 122

5.10 Maps of the w2 analysis increments (mm) accumulated over July

2006 by the a) EKF and b) SEKF assimilation of AMSR-E w1

observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.11 Histograms of the mean observation minus CTR forecast over

July 2006 for a) T2m(K), b) RH2m(%), and c) w1(m
3m−3). . . . 126

5.12 Histograms of the w2 analysis increments accumulated over July

2006 (mm) from the a) AMS, b) SLV, and c) CMB assimilation

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.13 Maps of the w2 analysis increments (mm) accumulated over July

2006 from the a) AMS, b) SLV, and c) CMB assimilation exper-

iments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xv



xvi List of Figures

5.14 Maps of the w2 analysis increments (mm) accumulated over July

2006 for each of the four daily assimilation cycles for the SLV

assimilation. Each plot is labelled with the time of the analysis,

and the colour scale is the same as used in Figure 5.13. . . . . . 130

5.15 Diurnal cycle in the mean monthly observation minus model fore-

cast over July 2006 for a) T2m (K), b) RH2m (%), and c) w1

(m3m−3 ), for the CTR (black, solid), SLV (black, dashed), AMS

(grey, solid), and CMB (grey, dashed) experiments. The hori-

zontal axes are in hours. . . . . . . . . . . . . . . . . . . . . . . 132

5.16 Mean daily observation minus model forecast for each day in July

2006, for a) T2m (K), b) RH2m (%), and c) w1 (m3m−3 ), for the

CTR (black, solid), SLV (black, dashed), AMS (grey, solid), and

CMB (grey, dashed) experiments. . . . . . . . . . . . . . . . . 133

5.17 Maps (left) and histograms (right) of the change in total soil

moisture storage (mm) from 1 to 31 July 2006, from a) SIM, b)

CTR, c) AMS, d) SLV, and e) CMB. . . . . . . . . . . . . . . . 139

6.1 Coverage (% of days) of the AMSR-E descending overpass soil

moisture observations over Australia from April 2008 - March

2009. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 Köppen-Geiger climate zones over Australia (from Peel et al.,

2007). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3 Dependence of estimated M11 (y axis: %/%) on the perturbation

used in the finite difference equation (x axis: fraction of soil

moisture at saturation). The upper plot shows the mean of the

Jacobians estimated with positive and negative perturbations,

and the lower plot shows the absolute difference between the two

estimates. All points plotted are the mean across the Australian

domain, for the six hour forecast beginning from 09:00 UTC on

7 April 2008. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4 Scatterplots of the diagonal Jacobian terms (%/%), for the 6

hour forecast from 09:00 UTC on 6 April 2008, estimated using

a perturbation of +0.1% (x-axis) and -0.1% (y-axis) of the soil

moisture at saturation. . . . . . . . . . . . . . . . . . . . . . . 151

6.5 Maps of the linearised observation operator (%/%) for the 6 hour

assimilation cycle from 09:00 UTC on 1 August 2008. . . . . . . 153

xvi



List of Figures xvii

6.6 Maps of the MOSES soil moisture (as a fraction of the soil mois-

ture at saturation) in each layer at 09:00 UTC on 1 August 2008. 154

6.7 Scatterplot of the ∂S1/∂S1 (red, %/%) and ∂S1/∂S2 (blue, %/%)

verse S1 (%) at Kyeamba A, for the twelve month period from

April 2008. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.8 Maps of the linearised observation operator (%/%) for the 6 hour

assimilation cycle from 09:00 UTC on 1 February 2009. . . . . . 157

6.9 Maps of the MOSES soil moisture (as a fraction of the soil mois-

ture at saturation) in each layer at 09:00 UTC on 1 February

2009. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.10 Soil moisture time series from the synthetic experiments at (137.375,-

26.0) in arid (Bwh) central Australia, in units of % of saturation

(left axis) and mm of soil moisture (right axis). The panels shows

each soil layer (from top to bottom), from the EKF analyses with

incorrect initialisation (solid, coloured), open-loop with incorrect

initialisation (dashed, coloured), and the assumed truth from the

reference open-loop (solid, black). Red (blue) lines indicate soil

moisture initialised at 25% (75%) on 1 April 2008. . . . . . . . 166

6.11 Time series of the soil moisture analysis increments (% of satu-

ration) from the synthetic experiments at (137.375,-26.0), in arid

(Bwh) central Australia, for layers one (upper) and two (lower).

Red (blue) lines indicate soil moisture initialised at 25% (75%)

on 1 April 2008. . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.12 Soil moisture time series from the synthetic experiments at (133.25,

-13.625) in tropical (Aw) Northern Territory, in units of % of

saturation (left axis) and mm of soil moisture (right axis). The

panels shows each soil layer (from top to bottom), from the EKF

analyses with incorrect initialisation (solid, coloured), open-loop

with incorrect initialisation (dashed, coloured), and the assumed

truth from the reference open-loop (solid, black). Red (blue)

lines indicate soil moisture initialised at 25% (75%) on 1 April

2008. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

xvii



xviii List of Figures

6.13 Time series of the soil moisture analysis increments (% of sat-

uration) from the synthetic experiments at (133.25, -13.625) in

tropical (Aw) Northern Territory, for layers one (upper) and two

(lower). Red (blue) lines indicate soil moisture initialised at 25%

(75%) on 1 April 2008. . . . . . . . . . . . . . . . . . . . . . . 169

6.14 Soil moisture time series from the synthetic experiments at (147.125,

-41.75), in temperate-oceanic (Cfb) Tasmania, in units of % of

saturation (left axis) and mm of soil moisture (right axis). The

panels shows each soil layer (from top to bottom), from the EKF

analyses with incorrect initialisation (solid, coloured), open-loop

with incorrect initialisation (dashed, coloured), and the assumed

truth from the reference open-loop (solid, black). Red (blue)

lines indicate soil moisture initialised at 25% (75%) on 1 April

2008. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.15 Time series of the soil moisture analysis increments (% of sat-

uration) from the synthetic experiments at (147.125, -41.75), in

temperate-oceanic (Cfb) Tasmania, for layers one (upper) and

two (lower). Red (blue) lines indicate soil moisture initialised at

25% (75%) on 1 April 2008. . . . . . . . . . . . . . . . . . . . . 171

6.16 Soil moisture time series from the synthetic experiments at (116.75,

-34.25) in temperate-Mediterranean (Cfb) south West Australia,

in units of % of saturation (left axis) and mm of soil mois-

ture (right axis). The panels shows each soil layer (from top

to bottom), from the EKF analyses with incorrect initialisation

(solid, coloured), open-loop with incorrect initialisation (dashed,

coloured), and the assumed truth from the reference open-loop

(solid, black). Red (blue) lines indicate soil moisture initialised

at 25% (75%) on 1 April 2008. . . . . . . . . . . . . . . . . . . 172

6.17 Time series of the soil moisture analysis increments (% of sat-

uration) from the synthetic experiments at (116.75, -34.25) in

temperate-Mediterranean (Cfb) south West Australia, for layers

one (upper) and two (lower). Red (blue) lines indicate soil mois-

ture initialised at 25% (75%) on 1 April 2008. . . . . . . . . . . 173

6.18 Maps of the soil moisture difference (% of saturation) from OPN ACCESS

for OPN 25 (left) and EKF 25 (right) on 1 July 2008, for S1 (up-

per) and SRZ (lower). . . . . . . . . . . . . . . . . . . . . . . . . 174

xviii



List of Figures xix

6.19 Near-surface soil moisture (as a fraction of saturation) on 1 Au-

gust 2008 at 15:00 UTC from MOSES, and AMSR-E, before and

after CDF-matching. . . . . . . . . . . . . . . . . . . . . . . . . 177

6.20 Time series of the assimilated AMSR-E observations minus the

open-loop S1(% of saturation), averaged over the a) arid, b) trop-

ical, c) temperate-oceanic, and d) temperate-Mediterranean cli-

mate zones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.21 Time series of precipitation (mm day−1) from the BoM’s rain

gauge analysis (blue) and ACCESS forecasts (black), averaged

over the a) arid, b) tropical, c) temperate-oceanic, and d) temperate-

Mediterranean climate zones. . . . . . . . . . . . . . . . . . . . 179

6.22 Time series of the modeled and observed daily precipitation and

soil moisture at (137.375,-26.0) in arid (Bwh) central Australia.

The upper panel shows the observed (blue) and modeled (red)

precipitation (mm day−1). The next four panels show the soil

moisture in each layer (from top to bottom), from the EKF (red),

the open-loop (black), and AMSR-E (blue), in units of % of sat-

uration (left axis) and mm of soil moisture (right axis). . . . . . 181

6.23 Time series of the soil moisture analysis increments (% of satu-

ration) in layers one (upper) and two (lower) at (137.375,-26.0)

in arid (Bwh) central Australia. . . . . . . . . . . . . . . . . . 182

6.24 Time series of the modeled and observed daily precipitation and

soil moisture at (133.25, -13.625) in tropical (Aw) Northern Ter-

ritory. The upper panel shows the observed (blue) and modeled

(red) precipitation (mm day−1). The next four panels show the

soil moisture in each layer (from top to bottom), from the EKF

(red), the open-loop (black), and AMSR-E (blue), in units of %

of saturation (left axis) and mm of soil moisture (right axis). . 183

6.25 Time series of the soil moisture analysis increments (% of satu-

ration) in layers one (upper) and two (lower) at (133.25, -13.625)

in tropical (Aw) Northern Territory . . . . . . . . . . . . . . . 184

xix



xx List of Figures

6.26 Time series of the modeled and observed daily precipitation and

soil moisture at (147.125, -41.75), in temperate-oceanic (Cfb)

Tasmania. The upper panel shows the observed (blue) and mod-

eled (red) precipitation (mm day−1). The next four panels show

the soil moisture in each layer (from top to bottom), from the

EKF (red), the open-loop (black), and AMSR-E (blue), in units

of % of saturation (left axis) and mm of soil moisture (right axis). 185

6.27 Time series of the soil moisture analysis increments (% of satu-

ration) in layers one (upper) and two (lower) at (147.125, -41.75)

in temperate-oceanic (Cfb) Tasmania. . . . . . . . . . . . . . . 186

6.28 Time series of the modeled and observed daily precipitation and

soil moisture at (116.75, -34.25) in temperate-Mediterranean (Cfb)

south West Australia. The upper panel shows the observed (blue)

and modeled (red) precipitation (mm day−1). The next four pan-

els show the soil moisture in each layer (from top to bottom),

from the EKF (red), the open-loop (black), and AMSR-E (blue),

in units of % of saturation (left axis) and mm of soil moisture

(right axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.29 Time series of the soil moisture analysis increments (% of satu-

ration) in layers one (upper) and two (lower) at (116.75, -34.25)

in temperate-Mediterranean (Cfb) south West Australia. . . . . 188

6.30 Time series of the mean near-surface soil moisture (% of satura-

tion) from the EKF (blue) and the open-loop (red), averaged over

the a) arid, b) tropical, c) temperate-oceanic, and d) temperate-

Mediterranean climate zones. . . . . . . . . . . . . . . . . . . . 189

6.31 Time series of the mean root-zone soil moisture (% of satura-

tion) from the EKF (blue) and the open-loop (red), averaged over

the a) arid, b) tropical, c) temperate-oceanic, and d) temperate-

Mediterranean climate zones. Note the different vertical axis for

the tropical zone. . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.32 Time series of the mean daily evapotranspiration (mm day−1)

from the EKF (blue) and the open-loop (red) experiments, av-

eraged over the a) arid, b) tropical, c) temperate-oceanic, and

d) temperate-Mediterranean climate zones. Note the different

vertical axis for the tropical time series. . . . . . . . . . . . . . . 191

xx



List of Figures xxi

6.33 Time series of modeled and observed precipitation and soil mois-

ture at M1. The upper panel shows precipitation from observa-

tions (blue) and ACCESS forecasts (red). The middle and lower

panels shows S1 and SRZ , respectively, from the EKF (blue),

open-loop (red), and in situ observations (black), in units of % of

saturation (left axis) and mm of soil moisture (right axis). The

blue diamonds indicate the assimilated AMSR-E S1. . . . . . . 195

6.34 Time series of modeled and observed precipitation and soil mois-

ture at M4. The upper panel shows precipitation from observa-

tions (blue) and ACCESS forecasts (red). The middle and lower

panels shows S1 and SRZ , respectively, from the EKF (blue),

open-loop (red), and in situ observations (black), in units of % of

saturation (left axis) and mm of soil moisture (right axis). The

blue diamonds indicate the assimilated AMSR-E S1. . . . . . . 196

6.35 Time series of modeled and observed precipitation and soil mois-

ture at M5. The upper panel shows precipitation from observa-

tions (blue) and ACCESS forecasts (red). The middle and lower

panels shows S1 and SRZ , respectively, from the EKF (blue),

open-loop (red), and in situ observations (black), in units of % of

saturation (left axis) and mm of soil moisture (right axis). The

blue diamonds indicate the assimilated AMSR-E S1. . . . . . . 197

6.36 Time series of modeled and observed precipitation and soil mois-

ture at M7. The upper panel shows precipitation from observa-

tions (blue) and ACCESS forecasts (red). The middle and lower

panels shows S1 and SRZ , respectively, from the EKF (blue),

open-loop (red), and in situ observations (black), in units of % of

saturation (left axis) and mm of soil moisture (right axis). The

blue diamonds indicate the assimilated AMSR-E S1. . . . . . . 198

6.37 Time series of modeled and observed precipitation and soil mois-

ture at M8. The upper panel shows precipitation from observa-

tions (blue) and ACCESS forecasts (red). The middle and lower

panels shows S1 and SRZ , respectively, from the EKF (blue),

open-loop (red), and in situ observations (black), in units of % of

saturation (left axis) and mm of soil moisture (right axis). The

blue diamonds indicate the assimilated AMSR-E S1. . . . . . . 199

xxi



xxii List of Figures

6.38 Time series of modeled and observed precipitation and soil mois-

ture at KA. The upper panel shows precipitation from observa-

tions (blue) and ACCESS forecasts (red). The middle and lower

panels shows S1 and SRZ , respectively, from the EKF (blue),

open-loop (red), and in situ observations (black), in units of % of

saturation (left axis) and mm of soil moisture (right axis). The

blue diamonds indicate the assimilated AMSR-E S1. . . . . . . . 200

6.39 Time series of modeled and observed precipitation and soil mois-

ture at KB. The upper panel shows precipitation from observa-

tions (blue) and ACCESS forecasts (red). The middle and lower

panels shows S1 and SRZ , respectively, from the EKF (blue),

open-loop (red), and in situ observations (black), in units of % of

saturation (left axis) and mm of soil moisture (right axis). The

blue diamonds indicate the assimilated AMSR-E S1. . . . . . . 201

6.40 Time series of the root-zone soil moisture (mm) averaged over

the a) arid, b) tropical, c) temperate-oceanic, and d) temperate-

Mediterranean climate zones, from the EKF (blue), open-loop

(red), and MOSES PRECIP (black) simulations. . . . . . . . . . 205

B.1 Difference between the layer one soil moisture (as a fraction of

saturation) from the off-line and coupled MOSES models (off-

line minus coupled), for the 24-hour forecast to 07:00 UTC on 2

November, 2008. . . . . . . . . . . . . . . . . . . . . . . . . . . 253

B.2 ACCESS forecast convective (upper) and large-scale (lower) rain-

fall (mm/day) for the 24-hours to 07:00 UTC on 2 November,

2008. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

B.3 Difference between the layer one soil temperature from the off-

line and coupled MOSES models (off-line minus coupled), for the

24-hour forecast to 07:00 UTC on 2 November, 2008. . . . . . . 255

D.1 Comparison of in-situ (solid lines) and original AMSR-E (red

diamonds) near-surface soil moisture (m3m−3) for each retrieval

algorithm, at Cooma Airfield (M1) over 2006. . . . . . . . . . . 262

D.2 Comparison of in-situ (solid lines) and original AMSR-E (red

diamonds) near-surface soil moisture (m3m−3) for each retrieval

algorithm, at Canberra Airport (M2) over 2006. . . . . . . . . . 263

xxii



List of Figures xxiii

D.3 Comparison of in-situ (solid lines) and original AMSR-E (red

diamonds) near-surface soil moisture (m3m−3) for each retrieval

algorithm, at West Wyalong Airfield (M4) over 2006. . . . . . . 264

D.4 Comparison of in-situ (solid lines) and original AMSR-E (red

diamonds) near-surface soil moisture (m3m−3) for each retrieval

algorithm, at Balranald (M5) over 2006. . . . . . . . . . . . . . 265

D.5 Comparison of in-situ (solid lines) and original AMSR-E (red

diamonds) near-surface soil moisture (m3m−3) for each retrieval

algorithm, at Hay (M6) over 2006. . . . . . . . . . . . . . . . . . 266

D.6 Comparison of in-situ (solid lines) and original AMSR-E (red

diamonds) near-surface soil moisture (m3m−3) for each retrieval

algorithm, at Griffith Aerodrome (M7) over 2006. . . . . . . . . 267

D.7 Comparison of in-situ (solid lines) and original AMSR-E (red

diamonds) near-surface soil moisture (m3m−3) for each retrieval

algorithm, at Yanco (M8) over 2006. . . . . . . . . . . . . . . . 268

D.8 Comparison of in-situ (solid lines) and original AMSR-E (red

diamonds) near-surface soil moisture (m3m−3) for each retrieval

algorithm, at Adelong (M10) over 2006. . . . . . . . . . . . . . . 269

D.9 Comparison of in-situ (solid lines) and original AMSR-E (red

diamonds) near-surface soil moisture (m3m−3) for each retrieval

algorithm, at Merriwa (G1) over 2006. . . . . . . . . . . . . . . 270

E.1 Comparison of in-situ (solid lines) and normalised AMSR-E (red

diamonds) near-surface soil moisture (m3m−3) for each retrieval

algorithm, at Cooma Airfield (M1) over 2006. . . . . . . . . . . 272

E.2 Comparison of in-situ (solid lines) and normalised AMSR-E (red

diamonds) near-surface soil moisture (m3m−3) for each retrieval

algorithm, at Canberra Airport (M2). . . . . . . . . . . . . . . . 273

E.3 Comparison of in-situ (solid lines) and normalised AMSR-E (red

diamonds) near-surface soil moisture (m3m−3) for each retrieval

algorithm, at West Wyalong Airfield (M4) over 2006. . . . . . . 274

E.4 Comparison of in-situ (solid lines) and normalised AMSR-E (red

diamonds) near-surface soil moisture (m3m−3) for each retrieval

algorithm, at Balranald (M5) over 2006. . . . . . . . . . . . . . 275

xxiii



xxiv List of Figures

E.5 Comparison of in-situ (solid lines) and normalised AMSR-E (red

diamonds) near-surface soil moisture (m3m−3) for each retrieval

algorithm, at Hay (M6) over 2006. . . . . . . . . . . . . . . . . . 276

E.6 Comparison of in-situ (solid lines) and normalised AMSR-E (red

diamonds) near-surface soil moisture (m3m−3) for each retrieval

algorithm, at Griffith Aerodrome (M7) over 2006. . . . . . . . . 277

E.7 Comparison of in-situ (solid lines) and normalised AMSR-E (red

diamonds) near-surface soil moisture (m3m−3) for each retrieval

algorithm, at Yanco (M8) over 2006. . . . . . . . . . . . . . . . 278

E.8 Comparison of in-situ (solid lines) and normalised AMSR-E (red

diamonds) near-surface soil moisture (m3m−3) for each retrieval

algorithm, at Adelong (M10) over 2006. . . . . . . . . . . . . . . 279

E.9 Comparison of in-situ (solid lines) and normalised AMSR-E (red

diamonds) near-surface soil moisture (m3m−3) for each retrieval

algorithm, at Merriwa (G1) over 2006. . . . . . . . . . . . . . . 280

F.1 Time series of in-situ (black) and original AMSR-E (red) near-

surface soil moisture (m3m−3) from the VUA-NASA retrieval

algorithm at Cooma Airfield (M1), from 2003-2008. . . . . . . . 282

F.2 Time series of in-situ (black) and original AMSR-E (red) near-

surface soil moisture (m3m−3) from the VUA-NASA retrieval

algorithm at Canberra Airport (M2), from 2003-2008. . . . . . . 283

F.3 Time series of in-situ (black) and original AMSR-E (red) near-

surface soil moisture (m3m−3) from the VUA-NASA retrieval

algorithm at West Wyalong Airfield (M4), from 2003-2008. . . . 284

F.4 Time series of in-situ (black) and original AMSR-E (red) near-

surface soil moisture (m3m−3) from the VUA-NASA retrieval

algorithm at Balranald (M5), from 2003-2008. . . . . . . . . . . 285

F.5 Time series of in-situ (black) and original AMSR-E (red) near-

surface soil moisture (m3m−3) from the VUA-NASA retrieval

algorithm at Hay (M6), from 2003-2008. . . . . . . . . . . . . . 286

F.6 Time series of in-situ (black) and original AMSR-E (red) near-

surface soil moisture (m3m−3) from the VUA-NASA retrieval

algorithm at Griffith Aerodrome (M7), from 2003-2008. . . . . . 287

xxiv



List of Figures xxv

F.7 Time series of in-situ (black) and original AMSR-E (red) near-

surface soil moisture (m3m−3) from the VUA-NASA retrieval

algorithm at Yanco (M8), from 2003-2008. . . . . . . . . . . . . 288

F.8 Time series of in-situ (black) and original AMSR-E (red) near-

surface soil moisture (m3m−3) from the VUA-NASA retrieval

algorithm at Adelong (M10), from 2003-2008. . . . . . . . . . . 289

G.1 Time series of in-situ (black) and normalised AMSR-E (red) near-

surface soil moisture (m3m−3) from the VUA-NASA retrieval

algorithm at Cooma Airfield (M1), from 2003-2008. . . . . . . . 292

G.2 Time series of in-situ (black) and normalised AMSR-E (red) near-

surface soil moisture (m3m−3) from the VUA-NASA retrieval

algorithm at Canberra Airport (M2), from 2003-2008. . . . . . . 293

G.3 Time series of in-situ (black) and normalised AMSR-E (red) near-

surface soil moisture (m3m−3) from the VUA-NASA retrieval

algorithm at West Wyalong Airfield (M4), from 2003-2008. . . . 294

G.4 Time series of in-situ (black) and normalised AMSR-E (red) near-

surface soil moisture (m3m−3) from the VUA-NASA retrieval

algorithm at Balranald (M5), from 2003-2008. . . . . . . . . . . 295

G.5 Time series of in-situ (black) and normalised AMSR-E (red) near-

surface soil moisture (m3m−3) from the VUA-NASA retrieval

algorithm at Hay (M6), from 2003-2008. . . . . . . . . . . . . . 296

G.6 Time series of in-situ (black) and normalised AMSR-E (red) near-

surface soil moisture (m3m−3) from the VUA-NASA retrieval

algorithm at Griffith Aerodrome (M7), from 2003-2008. . . . . . 297

G.7 Time series of in-situ (black) and normalised AMSR-E (red) near-

surface soil moisture (m3m−3) from the VUA-NASA retrieval

algorithm at Yanco (M8), from 2003-2008. . . . . . . . . . . . . 298

G.8 Time series of in-situ (black) and normalised AMSR-E (red) near-

surface soil moisture (m3m−3) from the VUA-NASA retrieval

algorithm at Adelong (M10), from 2003-2008. . . . . . . . . . . 299

xxv



xxvi List of Figures

xxvi



List of Tables

2.1 Summary of results from published evaluations of soil moisture

retrieved from passive microwave brightness temperatures. Un-

less otherwise-stated, AMSR-E brightness temperature observa-

tions were used in each study. * indicates that remotely sensed

data have been normalised to match the in situ soil moisture

climatology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Murrumbidgee Monitoring Network: First generation stations

(installed in September 2001). . . . . . . . . . . . . . . . . . . . 57

4.2 Murrumbidgee Monitoring Network: Second generation stations

(installed in September 2003, with shallow soil moisture sensors

installed in late 2006). . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Goulburn Monitoring Network (installed in September 2002, with

shallow soil moisture sensors installed in late 2005, data not avail-

able after 2007). Only stations used here are listed (there are

another 13 stations within the network). . . . . . . . . . . . . . 60

4.4 RMSD, correlation, and anomaly correlation between layer one

soil moisture from the individual monitoring stations in the Kyeamba-

A pixel, for April ’08 to April ’09. For each statistic the minimum

and maximum off-diagonal values are in bold. . . . . . . . . . . 65

4.5 Descriptive statistics for the soil moisture time series retrieved

from descending AMSR-E overpass brightness temperatures by

each retrieval algorithm and the in situ data, for 2006. Thee

bias values are calculated using only those days for which the

AMSR-E data are available for that algorithm. . . . . . . . . . 68

xxvii



xxviii List of Tables

4.6 Statistics of fit between the soil moisture time series retrieved

from descending AMSR-E overpass brightness temperatures by

each retrieval algorithm, and the in situ data for 2006. The

RMSD is provided for both the original and normalised AMSR-

E time series. Bold correlations indicates significance at the 1%

level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 Descriptive statistics for the VUA-NASA AMSR-E soil moisture

and from the in situ data, for 2003-2008. The bias values are

calculated using only those days for which the AMSR-E data are

available. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.8 Statistics of fit between the VUA-NASA AMSR-E soil moisture

time series and the in situ data for 2003-2008. The RMSD is pro-

vided for both the original and normalised AMSR-E time series.

Bold correlations indicates significance at the 1% level. . . . . . 84

4.9 Statistics of fit between the filtered VUA-NASA AMSR-E soil

moisture time series and the in situ data for 2006. The RMSD

is provided for both the original and normalised AMSR-E time

series. Bold correlations indicates significance at the 1% level. . 92

4.10 Statistics of fit to the in situ observations, from the filtered C-

band descending overpass VUA-NASA AMSR-E data, and the

ACCESS forecast near-surface soil moisture. . . . . . . . . . . 96

5.1 Summary of the observation, model, and initial background er-

ror variances used in the assimilation experiments. All diagonal

error covariances were assumed to be zero. Units are indicated

in brackets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Statistics of the 6-hour Jacobian terms (m3m−3 /m3m−3 ) from

06:00 to 12:00 UTC on 1 July 2006, estimated using a perturba-

tion size of +10−4 × (wfc − wwilt) (pos), −10−4 × (wfc − wwilt)

(neg), and +10−1 × (wfc − wwilt) (lrg). . . . . . . . . . . . . . . 111

5.3 Spatial mean M (m3m−3 /m3m−3) for a 6 hour forecast during

the night (upper), and day(centre), and for the 24 hour period

M (lower) form 18:00 UTC on 1 July 2006. . . . . . . . . . . . 113

5.4 Mean observation operator relating w2 to each observation type

from experiment CMB, averaged over July 2006 separately for

each of the four daily assimilation cycles. . . . . . . . . . . . . 115

xxviii



List of Tables xxix

5.5 RMSD between the observations and model forecasts over July

2006 for each assimilation experiment. For the screen-level vari-

ables the RMSD of the daily averaged forecasts and observations

is shown in brackets. . . . . . . . . . . . . . . . . . . . . . . . . 134

5.6 The relative information content as a fraction of the daily total

(for experiment CMB with w2 updated only), averaged over July

2006 separately for each of the four daily assimilation cycles. . 137

5.7 First, second, and third quartile of the change in total soil mois-

ture storage (mm) from 1 to 31 July 2006, for each experiment.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.1 Comparison of the statistics for the MOSES Jacobian terms (%/%),

for the 6 hour forecast from 09:00 UTC on 6 April 2008, estimated

using a perturbation of +0.1% (+ve) and -0.1% (-ve) of the soil

moisture at saturation. . . . . . . . . . . . . . . . . . . . . . . 152

6.2 MOSES model Jacobian terms in units of %/%, spatially aver-

aged across Australia, for the 6 hour forecast from 09:00 UTC on

1 August 2008. Values below 1× 10−5 are reported as 0.0. . . . 155

6.3 MOSES model Jacobian terms in units of mm mm−1, spatially

averaged across Australia, for the 6 hour forecast from 09:00 UTC

on 1 August 2008. Values below 1× 10−5 are reported as 0.0. . 155

6.4 The (spatially uniform) observation, model, and initial back-

ground error variances used in the assimilation of AMSR-E near-

surface soil moisture, in units of (% of saturation)−2. All diagonal

error covariances were assumed to be zero. . . . . . . . . . . . 160

6.5 Summary of the root mean square of the background soil moisture

errors (m3m−3) across the Murrumbidgee Monitoring Network

sites from April 2008 to March 2009. The errors are estimated

from the in situ soil moisture observations (observed), and from

the EKF background error covariance matrices (EKF), and are

reported relative to the MOSES soil moisture climatology. . . . 161

xxix



xxx List of Tables

6.6 Summary of the root mean square of the AMSR-E observation

errors (m3m−3) across the Murrumbidgee Monitoring Network

sites from April 2008 to March 2009. The errors are estimated

from the in situ soil moisture observations (observed), and from

the EKF observations error covariance matrices (EKF), and are

reported relative to the MOSES soil moisture climatology. . . . 161

6.7 Summary of the correlation between the background model soil

moisture errors in layers 1, 2, and 3 across the Murrumbidgee

Monitoring Network sites from April 2008 to March 2009. The

correlations are estimated from the in situ soil moisture observa-

tions (observed) and the EKF background error covariance ma-

trices (EKF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.8 Initial conditions and assimilated observations for the synthetic

assimilation experiments. . . . . . . . . . . . . . . . . . . . . . . 164

6.9 Mean soil moisture difference from OPN ACCESS on 1 July 2008

(% of saturation) for each synthetic experiment, averaged over

each climate zone. . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.10 Mean near-surface soil moisture (mm), root-zone soil moisture

(mm), and daily evapotranspiration (mm day−1), averaged over

April 2008 to March 2009 for each climate zone, from the open-

loop and the EKF. . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.11 Statistics of fit between the near-surface soil moisture in situ

observations from the Murrumbidgee Monitoring Network, and

the assimilated AMSR-E data, the open-loop, and the EKF. The

RMSD is calculated from model data normalised to match the

mean and variance on the in situ data. For each statistic the best

result is indicated in bold, and all correlations are significant at

1%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.12 Statistics of fit between the root-zone soil moisture in situ ob-

servations from the Murrumbidgee Monitoring Network, and the

open-loop and EKF. The RMSD is calculated from model data

normalised to match the mean and variance on the in situ data.

For each statistic the best result is indicated in bold, and all

correlations are significant at 1%. . . . . . . . . . . . . . . . . . 202

6.13 Statistics of fit between the MOSES PRECIP root-zone soil mois-

ture, and each of the open-loop and EKF simulations. . . . . . 204

xxx



List of Tables xxxi

C.1 RMSD, correlation, and anomaly correlation between layer 2 soil

moisture from the individual monitoring stations in the Kyeamba-

A pixel, for April ’08 to April ’09. For each statistic the minimum

and maximum off-diagonal values are in bold. . . . . . . . . . . 257

C.2 RMSD, correlation, and anomaly correlation between layer 3 soil

moisture from the individual monitoring stations in the Kyeamba-

A pixel, for April ’08 to April ’09. For each statistic the minimum

and maximum off-diagonal values are in bold. . . . . . . . . . . 258

C.3 RMSD, correlation, and anomaly correlation between layer 4 soil

moisture from the individual monitoring stations in the Kyeamba-

A pixel, for April ’08 to April ’09. For each statistic the minimum

and maximum off-diagonal values are in bold. . . . . . . . . . . 258

C.4 RMSD, correlation, and anomaly correlation between the root-

zone soil moisture from the individual monitoring stations in the

Kyeamba-A pixel, for April ’08 to April ’09. For each statistic

the minimum and maximum off-diagonal values are in bold. . . 259

xxxi



xxxii List of Tables

xxxii



Table of Symbols

di [m] Depth of ith soil layer

H [-] Observation operator

H [-] Linearised observation operator

K [-] Kalman gain

M [-] Forecast model

M [-] Linearised forecast model

P [-] Background error covariance matrix

Q [-] Model forecast error covariance matrix

R [-] Observation error covariance matrix

RH2m [%/%] Screen-level relative humidity

r [-] Correlation (Pearson)

rabs [-] Absolute correlation

ranom [-] Anomaly correlation

Si [% of saturation] Soil moisture in the ith model layer (MOSES)

SRZ [% of saturation] Soil moisture in the root-zone (MOSES)

SWI [-] Surface Wetness Index (ISBA)

Ti [K] Soil temperature in the ith model layer

T2m [K] Screen-level temperature

wi [m3m−3] Soil moisture in the ith model layer (ISBA)

wfc [m3m−3] Soil moisture at field capacity (ISBA)

wwilt [m3m−3] Soil moisture at the wilting point (ISBA)

x [-] Model state vector

y [-] Observation vector

xxxiii



xxxiv

xxxiv



Table of Abbreviations and

Acronyms

ACCESS Australian Community Climate and Earth-System Simulator

ALADIN Aire Limitée Adaptation Dynamique développment InterNational
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Chapter 1

Introduction

This thesis seeks to establish whether Numerical Weather Prediction (NWP)

models might benefit from the assimilation of remotely sensed near-surface soil

moisture data. It is motivated by the potential to improve the model root-zone

soil moisture, with the expectation that this will eventually lead to improved

low-level atmospheric forecasts.

It is first established that realistic near-surface soil moisture fields can be

extracted over Australia from currently available remotely sensed data sets.

Then remotely sensed near-surface soil moisture observations are assimilated

into the land surface scheme of the NWP models used by Météo-France and

the Australian Bureau of Meteorology (BoM). With Météo-France’s model over

Europe, the assimilation of near-surface soil moisture is contrasted with the

assimilation of the low-level atmospheric temperature and relative humidity

observations that are currently used to constrain soil moisture in most NWP

models. It is then demonstrated with the BoM model over Australia that as-

similating remotely sensed near-surface moisture observations can improve the

modeled near-surface and root-zone soil moisture.

1.1 Problem statement

Soil moisture can have a strong influence on atmospheric forecasts, both at short

(Baker et al., 2001; Drusch and Viterbo, 2007) and medium range (Zhang and

Frederiksen, 2003; Fischer et al., 2007) time scales. If not suitably constrained,

the soil moisture in an NWP model will drift from the true climate, resulting

in erroneous boundary layer forecasts (Drusch and Viterbo, 2007). This is pre-

vented in many NWP models, including those of the BoM (Best and Maisey,
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2 1. Introduction

2002) and Météo-France (Giard and Bazile, 2000), by constraining the model soil

moisture according to errors in short-range low-level atmospheric forecasts, by

assimilating observations of relative humidity and temperature taken at screen-

level (1.5 - 2.0 m above the surface). The assimilation of screen-level observa-

tions has been shown to effectively decrease errors in boundary layer forecasts

(Douville et al., 2000; Hess, 2001; Drusch and Viterbo, 2007), however from the

inception of this approach it was recognised that the improvements were not

necessarily due to improved model soil moisture (Douville et al., 2000; Hess,

2001). In fact, the assimilation of screen-level observations has been found to

often degrade the modeled soil moisture, since it is often ‘corrected’ to compen-

sate for screen-level errors that were not caused by the soil moisture itself (for

example due to inaccuracies in the land surface flux parameterisations or the

radiation physics) (Douville et al., 2000; Hess, 2001; Drusch and Viterbo, 2007).

Ultimately, model soil moisture cannot be adjusted to exactly compensate for

inaccurate model physics: a model with inaccurate soil moisture and inaccu-

rate physics cannot accurately model the atmosphere across the full range of

forecast lengths produced from NWP models. The use of screen-level obser-

vations is further limited by the strength of the local land surface - boundary

layer coupling, and cannot be applied during periods of weak coupling, such as

strong advection or weak radiative forcing. Its effectiveness is also limited by

the availability of screen-level observations, which are particularly sparse across

much of the Southern Hemisphere, including Australia.

In addition to the above, the lack of realism of the soil moisture in NWP

models prevents its use in other applications. If available, realistic operationally

supported soil moisture fields from NWP models would be extremely valuable to

a range of applications. For example, accurate daily soil moisture information

would be useful for hydrological prediction, including rainfall-runoff modelling

(Merz and Blöschl, 2009) and flood forecasting (Komma et al., 2008). Knowl-

edge of soil moisture conditions would also benefit environmental applications,

such as monitoring and predicting drought (Sheffield et al., 2004; Todisco et

al., 2009), and managing soil erosion (Fitzjohn et al., 1998). With appropriate

downscaling, NWP-derived soil moisture might also be useful for targeted agri-

cultural applications, such as crop yield prediction (Wagner et al., 2000) and

irrigation scheduling (Campbell and Campbell, 1982).

A promising solution to improving the accuracy of the soil moisture in NWP

models is to make use of novel remotely sensed observations of near-surface soil
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1.1 Problem statement 3

moisture. Remote sensors observe the moisture across a thin surface layer (up

to 5 cm depth, depending on the observation wavelength and the soil condi-

tions), with close to global coverage. This thin surface layer directly interacts

with the underlying soil moisture profile through diffusion processes, potentially

offering a more direct relationship with the root-zone soil moisture (of greatest

interest to NWP and most other applications) than the screen-level variables

(Calvet and Noilhan, 2000). A number of studies have demonstrated improve-

ments in model root-zone soil moisture from the assimilation of near-surface

soil moisture information into general land surface models (Walker and Houser,

2001; Crow and Wood, 2003; Reichle et al., 2007) and NWP models (Seuffert et

al., 2004; Drusch, 2007). Recent interest in using remotely sensed soil moisture

in NWP is largely motivated by the first two purpose-designed soil moisture

remote sensing missions: the European Space Agency’s (ESA) Soil Moisture

and Ocean Salinity mission (SMOS; Kerr et al., 2001), launched in Novem-

ber, 2009; and the National Aeronautics and Space Administration’s (NASA)

Soil Moisture Active Passive (SMAP; Entekhabi et al., 2004) mission, currently

scheduled for launch in 2015. However, in addition to SMOS and SMAP, soil

moisture information can already be retrieved from current microwave remote

sensing missions (Wagner et al., 1999; Owe et al., 2001).

Since the assimilation of screen-level observations reduces low-level atmo-

spheric forecast errors in part by adjusting the model soil moisture to compen-

sate for model errors, it is not straight-forward that improving the realism of

the model soil moisture will immediately improve atmospheric forecast skill.

However, it is foreseen that improving model soil moisture will lead to im-

proved atmospheric forecasts, since incorporating new observation types will

also expose model deficiencies, thus identifying areas for future model improve-

ments (Seuffert et al., 2004). Until these improvements occur, near-surface soil

moisture observations may be best used in NWP together with screen-level ob-

servations, to target both the model soil moisture and low-level atmospheric

forecasts. However, to date satellite derived near-surface soil moisture data and

screen-level observations have not been assimilated together at large scales (i.e.,

beyond individual field sites), and the manner in which these two data types

will interact in an assimilation is not well understood.

3



4 1. Introduction

1.2 Research objectives and outline

The aim of this thesis is to determine whether current generation NWP model-

ing over Australia might benefit from the assimilation of remotely sensed near-

surface soil moisture data. This includes identifying significant obstacles and/or

shortcomings related to the use of this data. While the ultimate aim of as-

similating remotely sensed soil moisture into NWP models is to improve land

surface flux forecasts, the focus here was on the intermediate step of improv-

ing the model soil moisture. Additionally, realistic operationally supported soil

moisture forecasts from NWP centres will have intrinsic value for applications

beyond NWP (as identified in the previous section). This aim has been achieved

through a series of related objectives:

• assessment of the realism of current remotely sensed soil moisture data

sets over Australia

• demonstration of a soil moisture analysis system capable of assimilating

both near-surface soil moisture and screen-level atmospheric observations,

within the limitations of operational NWP

• identification of the physical processes by which root-zone soil moisture

is constrained from near-surface soil moisture observations within this

assimilation system

• assessment of the impact of assimilating remotely sensed near-surface soil

moisture into an NWP land surface model, in terms of the model skill in

forecasting near-surface and root-zone soil moisture

• comparison of the assimilation of near-surface soil moisture data to the as-

similation of screen-level temperature and relative humidity observations,

and investigation of the interaction between the two observation types

when they are assimilated together

The above objectives were addressed through several stages of research. In

the first stage the quality of the available remotely sensed soil moisture data sets

was examined over Australia to select the best data set for assimilation, and to

characterise its accuracy. At the time of this study only the passive microwave

Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-

E) sensor was providing observations with sufficient coverage over Australia,
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hence this work focused on comparing soil moisture observations derived from

AMSR-E brightness temperatures with different retrieval algorithms.

The selected AMSR-E near-surface soil moisture data set has been assimi-

lated with an Extended Kalman Filter (EKF). This EKF is based on the sim-

plified EKF that Mahfouf et al. (2009) developed to assimilate screen-level ob-

servations into Météo-France’s NWP land surface scheme. Following Balsamo

et al. (2007) and Mahfouf et al. (2009), this land surface assimilation system

is designed to be semicoupled to an NWP model, in that each assimilation is

performed using an off-line version of the NWP land surface model, forced with

atmospheric forecasts produced from the NWP model updated with the pre-

vious land surface analysis update. However for this thesis, the land surface

assimilation has been completely decoupled from the atmospheric model, and

the land surface model is forced by NWP forecasts generated once at the start

of each experiment. While this simplification neglects any feedback between the

soil moisture updates and subsequent atmospheric forecasts, it greatly reduces

the computational cost and complexity of the experiments, while still allowing

the first-order surface dynamics to be examined.

Two separate sets of assimilation experiments have been carried out, one

over the Australian domain using the BoM’s NWP model and one over the Eu-

ropean domain using Météo-France’s NWP model. For the Australian experi-

ments, the EKF has been used to assimilate AMSR-E near-surface soil moisture

into the land surface scheme of the BoM’s NWP model, the Australian Com-

munity Climate and Earth-System Simulator (ACCESS). ACCESS is a recently

imported version of the UK Met Office’s NWP suite, and it was launched as the

Australian operational NWP model in September 2009. The manner in which

the assimilation translates the near-surface soil moisture observations into up-

dates throughout the soil moisture profile in ACCESS has been examined, and

the impact of the assimilation has been tested by assesing the analysed soil

moisture fields against in situ soil moisture observations. Screen-level temper-

ature and relative humidity observations suitable for use with the ACCESS

model were not available for use in these experiments.1 Consequently, exper-

iments assimilating screen-level observations were instead conducted over the

1The BoM archives screen-level observations in the form of a screen-level analysis, gen-
erated with the operational NWP model. Since ACCESS only recently became operational,
the archived analyses were generated with the BoM’s previous NWP model, and will be
strongly influenced by the biases in that model, and hence are not suitable for assimilation
into ACCESS.
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European domain with Météo-France’s NWP system, Aire Limitée Adaptation

Dynamique développment InterNational (ALADIN). The use of two different

land surface models, which have very different soil moisture physics, also allows

additional insight into the role of the model physics in the assimilation process.

Using Météo-France’s NWP system, the assimilation of AMSR-E near-surface

soil moisture and screen-level observations has been compared over a one month

period. The two different observations types were first assimilated separately,

to determine how each is translated into root-zone soil moisture updates, as well

as the level of agreement between these updates. They were then assimilated

together to examine the interaction between the two data sets.

1.3 Outline of thesis

The research conducted towards the above-stated aim and objectives is pre-

sented in the following six chapters. In Chapter 2 the main literature support-

ing this thesis is reviewed, and based on this review the research methods used

in this thesis are then formulated. An EKF-based land surface analysis was

identified as the most suitable for use in NWP, and this land surface analy-

sis is described in detail in Chapter 3, together with the land surface models

from Météo-France and the BoM that have been used in the assimilation ex-

periments. In Chapter 4 the available remotely sensed soil moisture data sets

over Australia are assessed, and the most suitable product is selected for use in

the assimilation experiments. The next two chapters then present the results

of experiments assimilating this data. Chapter 5 introduces the assimilation of

near-surface soil moisture data into Météo-France’s NWP land surface scheme,

and this is then compared to the assimilation of screen-level observations. Hav-

ing demonstrated how near-surface soil moisture observations can be combined

with the preexisting assimilation of screen-level observations, Chapter 6 presents

the assimilation of the AMSR-E near-surface soil moisture observations into the

Australian BoM’s NWP suite, and the impact of the assimilation on the model

soil moisture is assessed against available in situ soil moisture data. Finally,

Chapter 7 presents the main findings and recommendations arising from the

previous chapters.
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Chapter 2

Literature Review and Research

Outline

2.1 Overview of chapter

This chapter presents an overview of the literature relevant to this thesis. It be-

gins with a review of the manner in which soil moisture influences atmospheric

forecasts, followed by the main approaches that are currently used to initialise

soil moisture for NWP forecasts. The relative advantages and disadvantages of

the current assimilation techniques are identified, and the work done to date

to assimilate remotely sensed land surface observations into NWP models is re-

viewed. The available remotely sensed soil moisture data sets are then identified,

and briefly reviewed within the context of their potential application to NWP.

The main research findings regarding the assimilation of remotely sensed soil

moisture into generalised land surface models (rather than NWP models) are

then surveyed. Based on the findings from this literature review, the methods

used here to address the aims and objectives listed on page 4 of the Introduction

are then described.

2.2 Soil moisture as an atmospheric control

The main process through which soil moisture influences the atmosphere is by

limiting the amount of water available for evapotranspiration, and hence deter-

mining the partition of surface radiation into latent and sensible heat fluxes.

This influence has been observed over adjacent wet and dry regions, with wet-
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8 2. Literature Review and Research Outline

ter (greater latent heating), and shallower atmospheric boundary layers with

reduced diurnal temperature range (reduced sensible heating) occurring over

the wetter soils (e.g., Betts and Ball, 1995; Pielke, 2001).1 Since the surface

flux partition contributes to the temperature and humidity profile of the at-

mosphere, soil moisture can then have a profound impact the stability of the

atmospheric boundary layer. While it is difficult to directly observe these ef-

fects, sensitivity studies with numerical models have shown that changes in the

flux partition induced by changing the model soil moisture can have a profound

impact on short-term atmospheric forecasts, particularly of precipitation. For

example, studies of individual precipitation events have demonstrated that the

model soil moisture can influence the initiation and intensity of precipitation

associated with convection (Gallus and Segal, 2000; Findell and Eltahir, 2003),

sea-breezes (Baker et al., 2001), and dry-lines (Grasso, 2000; Martin and Xue,

2006). In most of the above studies increased latent heating associated with

increased soil moisture lead to increased precipitation, although under certain

conditions the increased sensible heating associated with decreased soil mois-

ture can also induce precipitation (Gallus and Segal, 2000; Findell and Eltahir,

2003). However, the influence of soil moisture is dependent on the atmospheric

conditions, and under some conditions (strong large-scale atmospheric controls,

or either very stable or unstable conditions) short range forecasts are insensitive

to soil moisture conditions (Findell and Eltahir, 2003; Martin and Xue, 2006).

The influence of soil moisture on the atmosphere can also extend beyond

individual events. Compared to atmospheric time scales, soil moisture has a

relatively long memory, particularly where it is enhanced by a positive feedback

loop (typically between evapotranspiration and precipitation), and soil moisture

anomalies can persist over seasons or even years. Hence an initial soil moisture

anomaly can have a significant impact on monthly to seasonal-scale forecasts.

For example, the anomalously low soil moisture over Europe in spring 2003

contributed to the heat wave conditions the following summer (Fischer et al.,

2007). Likewise, studies over the Mississippi River Basin have suggested while

the anomalous (low) high precipitation in July (1998) 1993 was principally

caused by anomalies in the large atmospheric circulation, these anomalies were

enhanced by the antecedent soil moisture conditions (Trenberth and Guillemot,

1Note that this occurs only in moisture limited conditions, so that above a certain surface
wetness Betts and Ball (1995) observed that the atmosphere was no longer sensitive to the
surface state.
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1996; Seth and Giorgi, 1998). Additionally, in a statistical analysis of ensemble

forecasts with different surface boundary conditions (Conil et al., 2007) con-

cluded that in the extra-tropics during summer soil moisture contributes more

to seasonal predictability than sea surface temperature does.

Since soil moisture influences the atmosphere through limiting evapotranspi-

ration, it has the greatest influence on the atmosphere during warm conditions

when evapotranspiration is most active. All of the results cited above regarding

the influence of soil moisture on the atmosphere were related to warm season

(summer and the adjacent months) events. During winter the importance of

soil moisture is reduced due to lesser radiative forcing, and in many regions the

presence of frozen cover creates a barrier between the soil moisture storage and

the atmosphere. Statistics from multiple atmospheric models indicate that (at

the seasonal scale) the strongest atmosphere - land surface coupling, and hence

greatest sensitivity to soil moisture occurs in the transition zones between wet

and dry climates during summer: in these regions the surface is sufficiently dry

that the evapotranspiration is moisture limited, and there is sufficient humidity

that precipitation can occur (Koster et al., 2004).

2.3 Initialisation of soil moisture in NWP

Soil moisture is a sink variable so that errors in an NWP model, for example in

forecast precipitation, will accumulate in the model soil moisture, causing it to

drift away from the true climate (e.g., Viterbo, 1995). The two main approaches

that are currently used to prevent this drift are i) to initialise the land surface

variables (usually soil temperature and moisture) from a stand-alone land sur-

face model forced with observations, or ii) to constrain the surface states ac-

cording to errors in the forecasts of low-level atmospheric variables. These two

approaches are reviewed below, focusing on the initialisation of soil moisture

(rather than temperature), and the main advantages and disadvantages of each

are highlighted.

2.3.1 Current initialisation methods: stand-alone land

surface models

The land surface states in an NWP model can be constrained by regularly

updating it with fields from a stand-alone land surface model forced with ob-
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servations. This approach is used by the Met Office for their regional model

over a limited domain centred on the UK (Smith et al., 2006). The National

Centers for Environmental Protection (NCEP) operate a similar system, called

the North American Land Data Assimilation System (NLDAS; Mitchell et al.,

2004), which is intended to supply initial conditions to their NWP model. In

both of the above examples the stand-alone land surface model is forced with

a mixture of ground-based observations (including precipitation), space-based

observations (including radiation), and NWP model output (including low-level

atmospheric temperature, humidity, and wind).

This approach prevents NWP forecast errors from accumulating in the sur-

face state variables, removing one of the main error-sources in the NWP surface.

At the same time it generates surface fields that are consistent with biases in

the model’s (imperfect) physics. However, for NWP applications accurate at-

mospheric forecasts are the first priority, and this approach cannot correct for

errors in a model’s land surface flux forecasts, since there is no feedback from

the land surface to the atmosphere. Additionally, the effectiveness of this ap-

proach is limited by the availability of high quality observations. It is best suited

to limited-domain models over regions with high-density observation networks,

and so is not well suited to Australia (which has an unusually sparse observation

network - see Section 2.3.3). While remote sensors can provide global forcing

data (as is done for precipitation in the Global Land Data Assimilation System

(GLDAS)), these data sets may not offer significantly greater accuracy than

NWP forecasts do.

2.3.2 Current initialisation methods: assimilation of screen-

level observations

A more common approach to constrain the land surface is to adjust the surface

state variables at the beginning of each forecast by relating the errors in short-

range forecasts of screen-level (1.5 - 2.0 m) variables (usually temperature and

humidity) to errors in the surface states. Several different assimilation methods

are used to achieve this, the most prominent of which are reviewed below.

The OI and related nudging schemes

Several centres use an Optimal Interpolation (OI) scheme developed at the Eu-

ropean Centre for Medium Range Weather Forecasting (ECMWF) and Météo-

10
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France (Mahfouf, 1991; Douville et al., 2000; Giard and Bazile, 2000; Mahfouf,

2000). At both ECMWF and Météo-France the OI updates model surface mois-

ture every 6 hours based on errors in the forecast screen-level temperature and

relative humidity. The OI coefficients relating the screen-level errors to soil

moisture errors were derived from an ensemble of 100 single column simulations

initialised with randomly perturbed soil moisture (Douville et al., 2000). The

estimated coefficients were generated for clear-sky conditions with maximum

insolation, and are based on the assumption that the screen-level errors are due

only to soil moisture errors. Empirical reduction factors are then applied to the

coefficients to account for periods of reduced surface-atmosphere interaction

(such as strong advection, precipitation, frozen soils, snow cover, cloud cover,

and nighttime). At Météo-France and ECMWF the soil temperature is also

analysed based on screen-level temperature errors, using the simple linear rela-

tionship of Coiffier et al. (1987). The Canadian Meteorological Centre (CMC;

Bélair et al., 2003) and the HIgh Resolution Limited Area Model (HIRLAM;

Rodriguez et al., 2003) consortium of European nations both use Météo-France’s

land surface model, and hence the OI surface analysis scheme.

In addition to the ECMWF / Météo-France OI, several other NWP centres

use variations of this approach, including the Australian BoM. As noted above,

the Met Office initialise the land surface in their regional model using an off-

line model forced with observations. However the necessary high-quality forcing

data for this approach are not available globally, and the land surface variables

in both the Australian ACCESS model and the Met Office global model are

initialised according to errors in the screen-level forecasts. In place of the em-

pirical OI coefficients the Met Office has developed a physically-based soil mois-

ture nudging scheme, by estimating a linear relationship between screen-level

errors and soil moisture corrections from the model physics (Best and Maisey,

2002). Additionally, in the BoM’s previous NWP model, the surface was ini-

tialised using an older ECMWF scheme, in which soil moisture was adjusted,

or “nudged”, twice daily according to errors in the low level specific humidity

forecasts (Pescod, 1994).

The simplified variational analysis

The German weather service (Deutscher WetterDienst; DWD) use a more so-

phisticated method to relate screen-level forecast errors to soil moisture updates.

They update their model soil moisture once daily from daytime screen-level

11
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temperature observations, using a simplified variational analysis, with Kalman

filter-like cycling of the model background error matrix (Hess, 2001; Hess et

al., 2008). As will be discussed in Section 2.5.2, to be computationally efficient

variational assimilation requires model adjoints, which have not been developed

for most land surface models. Other centres have previously tested a variational

surface analysis from screen-level observations using a brute-force iterative min-

imisation of the cost function, but this option is too computationally expensive

to implement within a full 3-D atmospheric model (Bouyssel et al., 1999). In-

stead, Hess (2001) avoid the cost of an iterative minimisation by linearising

the forecast model over the assimilation window, using a first-order Taylor ap-

proximation, enabling a direct solution to minimising the cost function. With

this linearisation the method further resembles an EKF (this similarity will be

reviewed in Section 3.2 and Appendix A). The Taylor approximation requires

an additional (perturbed) forecast for each element of the state vector, which

is obtained with a single perturbed model run for each surface state variable,

by neglecting the horizontal screen-level - surface feedback , and performing an

independent (and one dimensional) analysis at each model grid.

2.3.3 Towards assimilation of land surface observations

From its inception it was recognised that updating model soil moisture from

screen-level observations could improve atmospheric forecasts, but would not

necessarily lead to realistic soil moisture. Hess (2001) states that this approach

“does not attempt to provide accurate and realistic soil moisture, but it rather

uses the soil moisture value to some extent to compensate for biases in the

physical parameterisations”. In particular, Hess (2001) showed that the surface

initialisation reduced atmospheric temperature errors during periods of strong

radiative forcing, by compensating for errors in the radiative forcing. However,

the initialisation degraded the model soil moisture compared to observations

from Lindenberg Meteorological Observatory. Likewise, for the ECMWF model,

both Douville et al. (2000) and Drusch and Viterbo (2007) found that the OI

reduced errors in the screen-level observations, and prevented the model surface

state from drifting towards unrealistic values. However, compared to in situ

soil moisture observations from the First International Satellite Land Surface

Climatology Project (ISLSCP) Field Experiment (FIFE) (Douville et al., 2000)

and the Oklahoma Mesonet (Drusch and Viterbo, 2007), it did not generate

12



2.3 Initialisation of soil moisture in NWP 13

realistic soil moisture.

In addition to the lack of realism of the resulting model soil moisture, the use

of screen-level observations is limited by the strength of the local soil moisture -

boundary layer coupling, and cannot be applied during periods of weak coupling,

such as strong advection or weak radiative forcing. This approach is also limited

by the availability of screen-level observations, which are particularly sparse

across much of the Southern Hemisphere, including Australia. For example,

there are less than 250 observations available for each screen-level analysis over

Australia (Mills, 2001), about 10% of the number available over west and central

European (Mahfouf et al., 2009) which is about half the size of Australia.

A promising approach to addressing these short-comings is to assimilate ob-

servations that are more directly related to the land surface states than screen-

level variables, such as remotely sensed observations of the land surface. As-

similation of remotely sensed observations of near-surface soil moisture have

received the most attention to date (e.g., Balsamo et al., 2006; Drusch and

Viterbo, 2007; Mahfouf et al., 2009), however observations of snow, soil tem-

perature, and vegetation cover are also of interest (Drusch, 2007). To assimilate

new data types several NWP centres, including Météo-France (Mahfouf et al.,

2009), ECMWF (Drusch et al., 2009), and CMC (Balsamo et al., 2007), are

working towards implementing a version of the simplified variational analysis

used at DWD, which Balsamo et al. (2004) has dubbed “simplified 2-D Var”

(where the dimensions refer to time and the vertical direction). The simplified

2-D Var can more easily assimilate new data types than the OI methods which

require new coefficients to be calculated for each new observation type, using

either Monte-Carlo experiments (for the ECMWF / Météo-France approach),

or analytical means (for the Met Office approach). Additionally, the simplified

2-D Var also offers the advantage of responding more accurately to the synoptic

and seasonal conditions at the time of each update (Hess, 2001; Mahfouf et al.,

2009), and hence it reflects the model physics more accurately (Drusch et al.,

2009). It can also better account for nonlinear relationships between the surface

and screen-level atmospheric states (Hess, 2001).

In the form used by DWD (which is applied to their regional model), the

computational cost of the additional model integrations required to linearise the

model for the simplified 2-D Var is too expensive for operational implementation

(e.g., see Drusch et al., 2009). This led Balsamo et al. (2007) to adapt the

simplified 2-D Var of Balsamo et al. (2004) to perform the analysis using a

13
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parallel off-line version of land surface model. In this set-up the (coupled)

NWP model is updated with the land surface analysis update from the off-line

assimilation, and the subsequent NWP forecasts are then used to force the off-

line model for the next assimilation cycle. To allow the off-line assimilation

of screen-level observations, the off-line model is forced at the level of the first

atmospheric layer. This is higher than most land surface models to allow an

interactive evolution of the atmospheric surface layer, producing the required

feedback between the screen-level atmosphere and the land surface. 2

Balsamo et al. (2007) showed that the gain terms and the information con-

tent derived from the 2-D Var assimilation of screen-level observations, and var-

ious remotely sensed land surface observations, was similar for the off-line sys-

tem and the fully-coupled Canadian Global Environmental Multiscale (GEM)

model. Météo-France have also developed a similar system, referred to by Mah-

fouf et al. (2009) as a “simplified EKF” (the “simplified EKF” of Mahfouf et al.

(2009) and the “simplified 2-D Var” of Balsamo et al. (2007) are equivalent, as

will be discussed in Section 3.2 and Appendix A). Mahfouf et al. (2009) showed

that for the assimilation of screen-level variables the Kalman gain terms gen-

erated with this off-line system better capture the feedback between the land

surface and the screen-level forecasts than the OI coefficients used in Météo-

France’s current surface analysis system. With the use of an off-line model the

simplified variational analysis is computationally affordable in global models,

even at high resolution.

2.4 Remote sensing of soil moisture

The most widely accepted method for remote sensing of soil moisture is to use

radiances in the microwave wavelengths (1 - 50 cm) (Schmugge and Jackson,

1996; Jackson, 2005; Pietroniro and Leconte, 2005), and to date the only con-

tinuously generated global soil moisture data sets with the spatial resolution

2Note the difference between the off-line simplified 2-D Var assimilation of screen-level
observations and the use of the stand-alone model forced with observations in Section 2.3.1.
For the simplified 2-D Var, the off-line model is used only to save computational cost, and it
is intended to mimic the land surface in the coupled model as closely as possible (allowing the
assimilation to correct the land surface for errors in the screen-level forecasts). In contrast,
the stand-alone models in Section 2.3.1 are forced with observations, to prevent errors in
the NWP forecasts (e.g., of precipitation) from accumulating in the land surface. The latter
approach cannot account for feedback from the land-surface to the atmosphere, and so cannot
correct for errors in the land surface flux forecasts.
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required for NWP are derived from passive microwave radiometers and active

microwave scatterometers. Each of the available remotely sensed soil moisture

data sets is reviewed below, focusing on their potential for application in Aus-

tralian NWP. Several other approaches to remote sensing soil moisture have also

shown promise, including thermal infra-red (McVicar and Van Niel, 2005) and

the Gravity Recovery and Climate Experiment (Tapley et al., 2004). However

none of these provides global soil moisture data sets at the resolution required

for NWP, and they are not considered here. Additionally, a major obstacle to

the uptake of remotely sensed soil moisture data is that it is extremely difficult

to validate, and the reasons for this are reviewed here.

2.4.1 Microwave remote sensing

Soil moisture is inferred from microwave observations by utilising the contrast-

ing dielectric properties of soil and water. The main advantage of the microwave

frequencies for sensing the land surface is that there is relatively little interfer-

ence to the microwave signal from other factors. In particular, at the longer

microwave wavelengths the atmosphere including (nonraining) clouds is trans-

parent, and vegetation is semitransparent. In general, the longer microwave

wavelengths are better suited to sensing soil moisture, since the observations

relate to a deeper soil layer, there is less interference from vegetation, sur-

face roughness, and the atmosphere, and the signal becomes more sensitive to

moisture due to increases in the dielectric constant of water (Jackson, 1993).

Microwave data are derived from both passive and active sensors; passive mi-

crowave (radiometers) observe natural thermal microwave emissions from the

ground, and active microwave (scatterometers) observe the ratio between a pulse

of microwave radiation that is emitted by the sensor and the back-scatter pulse

received from the target surface. Each of these methods is reviewed below.

Passive microwave missions

The most commonly used passive microwave sensor for observing soil moisture

at present is the Advanced Microwave Scanning Radiometer - Earth Observ-

ing System (AMSR-E), which has been orbiting on National Aeronautics and

Space Administration’s (NASA) Aqua satellite since May 2002. AMSR-E ob-

serves five dual-polarised frequency bands (centred at 6.92, 10.65, 18.7, 36.5, and

89.0 GHz), and until the recent launch of SMOS (see Section 2.4.2) it was the

15
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lowest frequency radiometer in orbit.3 With the exception of regions of dense

vegetation, snow, ice, or frozen soils, it provides global soil moisture coverage

every two days, from two overpasses (Njoku et al., 2003): the ascending over-

pass (equator-crossing at about 1.30pm local time) and the descending overpass

(equator-crossing at about 1.30 am). The two lowest frequencies, C-band (6.92

GHz) and X-band (10.65 GHz), are currently used to observe soil moisture.

The C-band data have a nominal spatial resolution of 25 km (resampled from

overlapping 45 x 75 km2 swath data), and are sensitive to soil moisture in the

upper-most ∼1 cm of the surface, with the exact depth depending on the soil

moisture content.

The utility of AMSR-E for remote sensing soil moisture has been limited in

many regions by Radio Frequency Interference (RFI), principally from surface

communication networks. RFI cannot be removed by post-processing (Njoku et

al., 2003). Global maps of RFI produced by Njoku et al. (2005) show significant

C-band RFI over the USA, Japan, and the middle East, as well as X-band RFI

over Japan (Njoku et al., 2005) and some countries in Europe.

Soil moisture retrieval from radiometer observations

A radiative transfer model can relate the brightness temperatures observed by

AMSR-E to soil moisture. The radiative transfer equation is under-determined,

since the observed brightness temperature for each microwave frequency and

polarisation depends on several geophysical parameters. At the scale of an

AMSR-E footprint the primary surface geophysical variables influencing the

brightness temperature are the volumetric soil moisture, vegetation opacity, and

the vegetation and soil temperature. The surface roughness, single scattering

albedo, and soil properties are also influential. It is unlikely that the parameters

required to obtain soil moisture can be determined with sufficient accuracy from

a single-frequency and polarisation retrieval algorithm (Crosson et al., 2005),

necessitating the use of multiple frequency and/or polarisation data to minimise

the use of ancillary data.

A range of different approaches has been developed to retrieve soil mois-

ture from AMSR-E brightness temperatures, each of which frames the radiative

transfer equations, and approaches the under-determination problem, differently

(and so makes use of different ancillary data). The most prominent retrieval

3The radiometer on-board the Coriolis/WINDSAT Weather Satellite, launched in 2006,
also observes similar frequencies to AMSR-E.
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algorithms have been developed at;

• NASA, following Njoku et al. (2003) ;

• the Japanese Aerospace Exploration Agency (JAXA), following Koike et

al. (2004);

• the United States Department of Agriculture (USDA), following Jackson

(1993); and

• the Vrije Universiteit Amsterdam (VUA) in collaboration with NASA

(referred to below as VUA-NASA), following Owe et al. (2001).

The NASA, JAXA, and USDA algorithms are all based on X-band AMSR-

E brightness temperatures only, due to C-band RFI over north America and

east Asia. The VUA-NASA algorithm is applied separately to C- and X-band

AMSR-E data (recall that the longer wavelength C-band is theoretically better

suited to observing soil moisture). RFI is associated with densely populated

urban areas (Li et al., 2004), and is not expected to be problematic over Aus-

tralia due to the low population density. In a global RFI survey for June 2002

to May 2003, Njoku et al. (2005) did not note any RFI over Australia (in any

wavebands), while over Europe they observed C-band RFI over several urban

regions and widespread X-band RFI over Italy and England.

The accuracy of each AMSR-E soil moisture data set is not well charac-

terised, and the relative accuracy of the different retrieval algorithms is un-

known. Validation of AMSR-E derived soil moisture has been hampered by

the presence of RFI in many regions, the limited availability of ground truth

data, and the differences in scale between remotely sensed soil moisture and

other estimates (which will be discussed in Section 2.4.3). Table 2.1 lists a se-

lection of studies that have quantitatively evaluated soil moisture derived from

AMSR-E. A number of studies obtained better results from the VUA-NASA

algorithm than from the NASA algorithm (Wagner et al., 2007; Rüdiger et al.,

2009), however the JAXA and USDA soil moisture data sets have not been com-

pared to the other retrievals. Results from different studies cannot be directly

compared, due to differences between the evaluation methodologies and char-

acteristics at each monitoring site. Very little work has evaluated AMSR-E soil

moisture over Australian sites, and the work that has been done has used the

VUA-NASA retrieval algorithm only. In general these results are encouraging:

17
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Liu et al. (2009) have demonstrated that soil moisture and vegetation derived

from VUA-NASA AMSR-E (and its passive microwave predecessors) contains

a statistical signal of regional climate indices.

Table 2.1: Summary of results from published evaluations of soil moisture
retrieved from passive microwave brightness temperatures. Unless otherwise-
stated, AMSR-E brightness temperature observations were used in each study.
* indicates that remotely sensed data have been normalised to match the in
situ soil moisture climatology.

Publication: Reference Data Set Algorithm RMSD Correlation
Wagner et al. (2007):
Mean value from comparison to in situ VUA-NASA 0.06* 0.62
data from 1 location (20 stations) in
Spain, and three other remotely sensed
soil moisture estimates.

NASA 0.08* 0.17

Rüdiger et al. (2009):
In situ data from 1 location (4 stations) VUA-NASA 0.06* 0.78
in France NASA 0.11* 0.11
Land surface model forced with high VUA-NASA 0.08* 0.49
quality observations over France NASA 0.11* -0.01

de Jeu et al. (2008):
ERS soil moisture for all global regions
with sparse vegetation

VUA-NASA – 0.83

Gruhier et al. (2008):
In situ data from one location (site with
best fit) in France

NASA 0.11 0.17

In situ data from one location (site with
best fit) in Mali

NASA 0.06 0.54

Bindlish et al. (2006):
Intensive sampling from the Soil Mois-
ture Experiment 2002 in the United
States, compared to airborne C-band
radiometer observations

USDA 0.03 –

Jackson et al. (2002):
Intensive sampling from the Southern
Great Plains 1999 Experiment in the
United States, compared to airborne C-
band radiometer observations

USDA 0.06 –
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Active microwave missions

To date the only operationally-supported remotely sensed soil moisture data set

is based on active microwave observations from the Advanced SCATterometer

(ASCAT) on board ESA’s MetOp satellite (Naeimi et al., 2009). ASCAT is a

real aperture back-scatter radar at 5.255 GHz (C-band), and it is the lowest

frequency scatterometer in orbit. It observes at a spatial resolution of 25 km,

which is resampled onto a 12.5 km grid, and as with the passive microwave

data, the C-band observations relate to soil moisture in about the uppermost

1 cm of soil. ASCAT was launched in late 2006 to replace the European Re-

mote Sensing Satellites, ERS-1 (operational from 1991 to 1996), and ERS-2

(launched in April 1995), and ASCAT-derived soil moisture observations have

been available since 2008. While the ERS satellites also observe C-band radar

back-scatter, (at lower spatial resolution: 50 km, resampled to 25 km), the

coverage of the ERS observations is rather poor. The ERS orbit enables global

coverage approximately every three days, however the coverage of the scatterom-

eter observations is much lower (Wagner et al., 2003), since the scatterometer is

not operated continuously (the instruments are switched between a wind/wave

mode and an imaging mode). Additionally, due to the loss of storage capacity

on ERS-2 in June 2003, data are available only when the satellite has line-of-

sight to a ground-based receiving station. For Australia, a ground station in

Hobart has been receiving data since 30 November 2005, however this typically

consists of just one or two (500 km wide) swaths over southeast Australia ev-

ery three days (and coverage over Europe is similar). While the ASCAT soil

moisture observations were not available in time to be used in this thesis, and

the ERS observations do not have sufficient coverage, the soil moisture retrieval

method used is briefly reviewed here for completeness.

Soil moisture retrieval from scatterometer observations

In contrast to the conceptual radiative transfer models applied to passive mi-

crowave, a semiempirical change detection approach has been developed to re-

late ASCAT and ERS observation to near-surface soil moisture. This method

was developed at the Technische Universität Wien, initially based on eight years

of ERS-1/2 data (Wagner et al., 1999), and has been extended to ASCAT (Bar-

talis et al., 2007). The approach is based on the assumption that over the long

data record considered the highest observed reflectivity relates to soil moisture
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at saturation, while the lowest represents a completely dry soil, and that a linear

relationship can be used to interpolate the values in between. Soil moisture is

provided as a surface wetness index (degree of saturation), which can be con-

verted to a volumetric soil moisture if the local wet and dry-end soil moisture

values are known.

Comparisons of soil moisture from ERS to in situ data (typically using locally

observed upper and lower limits to convert the wetness index into volumetric

values) suggest similar accuracy to AMSR-E. For example estimates of the Root

Mean Square Difference (RMSD) and correlation (given in brackets) between

ERS and ground data include 0.06 m3m−3 (0.43 ) in America (Drusch et al.,

2004), 0.02 m3m−3 (0.87) in Spain (Ceballos et al., 2005), 0.07 m3m−3 (0.54)

also in Spain (Wagner et al., 2007), and 0.07 m3m−3 (0.62) in France (Rüdiger et

al., 2009). Early results for ASCAT are similar: Albergel et al. (2009) obtained

RMSD (correlation) estimates of 0.06 m3m−3 (0.58) in France.

2.4.2 Future missions

Much of the present research applying remotely sensed soil moisture data is

motivated by the emerging availability of soil moisture observations from ESA’s

SMOS Mission (Kerr et al., 2010), and NASA’s SMAP mission (formally Hy-

dros, Entekhabi et al., 2004), both of which operate in the microwave frequencies

at L-band. SMOS was launched in November 2009, and is the first purpose de-

signed soil moisture remote sensing mission. It carries an L-band (1.4 GHz)

passive microwave radiometer, which is sensitive to soil moisture in the top 5

cm of the surface and is considered the ideal frequency for sensing soil moisture.

It is anticipated that SMOS will provide global soil moisture observations at an

accuracy of 0.04 m3m−3 every three days (Kerr et al., 2001). The SMAP in-

strument will also observe at L-band, using both a radiometer and a synthetic

aperture radar (providing 10km resolution), and is designed to measure soil

moisture and its freeze/thaw states. Both of the SMAP and SMOS missions

should provide soil moisture observations with enhanced accuracy and utility,

and these data sets will likely supersede the present data sets.

2.4.3 Validation of remotely sensed soil moisture

The traditional approach to validating remotely sensed soil moisture has been

by comparison to in situ soil moisture data, however there are several short-
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comings associated with this approach. Most notably, remotely sensed and in

situ soil moisture observations relate to quite different quantities. Horizontally,

remote sensors observe an area-average soil moisture, typically with a resolution

of tens of km, while in situ sensors observe the soil moisture at a point, yet soil

moisture variability is controlled by different processes across these two scales

(Vinnikov et al., 1999; Entin et al., 2000; Robock et al., 2000). At the coarse

scale of remote sensing observations, soil moisture variability is driven by atmo-

spheric forcing, predominantly precipitation, while point-based observations are

controlled by fine scale processes, due to the land surface characteristics (such

as soil properties, vegetation, and topography) controlling the infiltration and

gravitational drainage of precipitated water (Vinnikov et al., 1999). These dif-

ferences prevent direct comparison between remotely sensed and ground-based

estimates of soil moisture. However, at the coarse scale of remotely sensed ob-

servations the within-pixel fine scale variability can be regarded as random noise

(Vinnikov et al., 1999; Robock et al., 2000), and Schmugge and Jackson (1996)

recommend estimating the area-average by averaging a large number (>50) of

point-based observations. More recent studies indicate a modest number of

carefully chosen in situ sensors (< 10) may suffice (Bosch et al., 2006; Cosh et

al., 2006). Additionally, even though their absolute values differ substantially,

point-based and area-average soil moisture estimates show a strong temporal

agreement (Vachaud et al., 1996). Consequently comparisons between the two

are best based on their temporal dynamics (Reichle et al., 2004b). To focus

on measures of association rather than absolute difference it is common to nor-

malise the remotely sensed data to fit the distribution of the in situ data before

comparing the two (e.g.,Wagner et al., 2007; Rüdiger et al., 2009).

In addition to differences in their horizontal scale, there are often differences

in the depths of the two observation types, since current remote sensors observe

only a thin surface layer (approx. 1 cm), while ground-based sensors tend to

be deeper (typically 5 - 10 cm). The thin surface layer responds more rapidly

to atmospheric forcing, and the vertical soil moisture gradient is often steep

close to the surface, introducing systematic differences between near-surface soil

moisture observed at different depths. The ERS and ASCAT soil moisture ob-

servations are often extrapolated to a deeper layer soil wetness from time series

of near-surface wetness observations using an exponentially weighted moving

average filter (e.g., Wagner et al., 1999; Ceballos et al., 2005; Albergel et al.,

2009). The exponential filter has been shown to improve the agreement between
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observations of the near-surface wetness and deeper layer observations, for both

remotely sensed (Wagner et al., 1999) and in situ data (Albergel et al., 2008).

While the exponential filter was developed from a simple vertical soil moisture

flow model (Wagner et al., 1999), it is as possible that the improvements it

generates are due simply to the filtering of noise.

To overcome the difference in scale between in situ and remotely sensed

soil moisture, several field campaigns have attempted to observe coarse scale

area-average soil moisture using intensive ground observations over limited time

periods (typically one month or less). These campaigns often make use of

air-plane-mounted sensors, which can be used to test soil moisture retrieval

algorithms under controlled conditions. For example, see Jackson et al. (2002)

(Southern Great Plains (SGP) 1999 Experiment), McCabe et al. (2005a) (Soil

Moisture EXperiment (SMEX) 2002), Jackson et al. (2005) (SMEX03), and

de Jeu et al. (2009) (National Airborne Field Experiment 2005). Also, airborne

data can provide a useful intermediate scale observation, which can be scaled

up to the satellite footprint (e.g., Drusch et al. (2004) (SGP99) and Bindlish et

al. (2006) (SMEX02)).

Intensive field campaigns and in situ monitoring networks can only provide

observations at limited locations. To assess remotely soil moisture data sets

globally, other data must be used. One option is to assess remotely sensed soil

moisture through comparison to other global soil moisture estimates, such as

alternative remotely sensed soil moisture data (Wagner et al., 2007; de Jeu et

al., 2008), or modeled soil moisture (Wagner et al., 2003; Naeimi et al., 2009;

Rüdiger et al., 2009). An even better option would be to assess remotely sensed

data against two independent soil moisture estimates, which allows root mean

square error estimates (useful for data assimilation) to be calculated for each

data set, via triple collocation (Stoffelen., 1998). However, this strategy is lim-

ited to situations where three independent soil moisture estimates are available,

and hence to date it has only been applied at continental scales to past time

periods during which ERS soil moisture data were available, or to recent periods

during which ASCAT data were available Dorigo et al. (2010). Alternatively,

since precipitation is the principal driver of soil moisture variability, informa-

tion regarding the realism of remotely sensed soil moisture can be extracted by

comparison to precipitation observations, either qualitatively (McCabe et al.,

2005b), or quantitatively using correlation anomalies (Wagner et al., 2003), or

more complex data assimilation methods (Crow et al., 2009). While these ap-
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proaches certainly yield useful information regarding the accuracy of remotely

sensed soil moisture, it is difficult to assign errors between the soil moisture data

sets when two uncertain soil moisture data sets are compared, and it is also diffi-

cult to derive a meaningful soil moisture error from comparison to precipitation

data.

2.5 Soil moisture assimilation

The recent developments in remote sensing of near-surface soil moisture out-

lined above introduce the potential to improve model root-zone soil moisture

by assimilating this data. To date, most of the work assimilating soil moisture

has used stand-alone land surface models (rather than NWP models), within

projects such as the GLDAS and NLDAS. These studies are briefly reviewed

below, however much of this work uses assimilation methods too complex and

costly to be implemented in NWP, with experiments performed at sites with

more data available than would be the case for NWP (in terms of the assimi-

lated data, model parameters, or validation / tuning data). Those studies that

have specifically focussed on assimilating soil moisture data into NWP models

are then discussed separately in Section 2.5.4.

2.5.1 From near-surface to root-zone soil moisture

Remote sensors observe only the near-surface soil layer, yet the root-zone soil

moisture is of greater importance to NWP (and most other applications). The

model root-zone soil moisture can potentially be constrained using near-surface

observations by either updating the near-surface soil moisture layer and using

the model to propagate the updates through the soil profile, or by directly

updating the deeper layers based on the near-surface observations (or a combi-

nation of both). The efficiency of both of these processes depends on the fre-

quency of the observations (e.g., Calvet and Noilhan, 2000), and the coupling

strength between the model near-surface and root-zone soil moisture, which is

model-dependent (e.g., Kumar et al., 2009). In general the root-zone soil mois-

ture is only weakly constrained by the surface layer, and updating only the

model surface layer may not generate substantial improvements in the deeper

soil layers (e.g., Walker et al., 2001b). Most assimilation systems aim to use the

near-surface observations to update the model soil moisture state throughout
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the profile. The viability of this approach was initially proven with synthetic

data experiments, in which synthetic “data” are generated by the model, and

perturbed in some way to synthesise the model error, before being assimilated

back into the model and compared against an unperturbed modeled reference

(the “truth”). Synthetic studies have shown that assimilation of near-surface

soil moisture, or related microwave brightness temperatures, can improve both

the model near-surface soil moisture, and root-zone soil moisture relative to

the unperturbed model truth (Walker and Houser, 2001; Reichle et al., 2002b;

Balsamo et al., 2006; Zhou et al., 2006).

Experiments assimilating nonsynthetic soil moisture observations have also

demonstrated root-zone soil moisture improvements, relative to independent

observations from ground based sensors. Initial experiments using in situ obser-

vations demonstrated that assimilating near-surface soil moisture observations

could correct the root-zone soil moisture for errors in the initial soil moisture

conditions (Calvet and Noilhan, 2000) and/or atmospheric forcing (Walker et

al., 2001a). Similar results have also been obtained by assimilating microwave

data collected during field experiments by airplane-mounted remote sensors.

By assimilating L-band brightness temperature observations from the SGP97

field experiment, Crow and Wood (2003) improved the root-zone soil mois-

ture and latent heat flux forecasts from the TOPMODEL-based Land Surface-

Atmosphere Transfer Scheme, using an Ensemble Kalman Filter (EnKF). Also,

by assimilating the SGP97 data, Dunne and Entekhabi (2006) improved esti-

mates of the latent heat flux and near-surface and root-zone soil moisture from

the Noah model with an Ensemble Kalman Smoother (with the exception of

an extended period of missing data). In studies using satellite data, (Reichle

and Koster, 2005) assimilated C-band Scanning Multichannel Microwave Ra-

diometer (SMMR) data, and (Reichle et al., 2007) assimilated SMMR C-band

and AMSR-E X-band data, into the NASA Catchment Land Model with an

EnKF. In both of these studies the assimilation improved the near-surface soil

moisture estimates relative to both the original modeled and observed values,

however this had only a modest impact on the root-zone: Reichle and Koster

(2005) obtained small root-zone soil moisture improvements by assimilating the

SMMR data, while for Reichle et al. (2007) only the AMSR-E data generated

significant root-zone improvements. Also using the Catchment Land Model and

an EnKF, Ni-Meister et al. (2007) improved the model root-zone soil moisture

by assimilating C-band SMMR data globally, and in the only study focused
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on the Australian continent, Walker et al. (2003) assimilated C-band SMMR

to improve the fit between the model root-zone soil moisture and Normalised

Difference Vegetation Index (NDVI) data over Australia. In the first large scale

studies to assimilate satellite-based soil moisture data into NWP models Drusch

(2007) and Scipal et al. (2008) used a simple nudging method, in which only

the near-surface soil layer is updated, to assimilate soil moisture into ECMWF’s

NWP model. While both reported improved correlations to in situ soil moisture

data, the bi-weekly ERS data assimilated by Scipal et al. (2008) was insufficient

to fully constrain the root-zone soil moisture, while the daily TMI data used by

Drusch (2007) was more effective. Additionally, the UK Met Office recently im-

plemented a similar nudging scheme to assimilate ASCAT derived soil moisture

into their operational NWP model, resulting in a small positive impact on fore-

casts of screen-level temperature and humidity for the tropics, north America

and Australia (Dharssi et al., 2010).

Our capacity to correctly update model root-zone soil moisture from near-

surface observations depends on the accuracy of the model physics and the

strength of the coupling between the model near-surface and root-zone soil

moisture (Kumar et al., 2009). Many of the studies assimilating remotely sensed

soil moisture data have used the same model: NASA’s Catchment Land Model

(e.g., Walker et al., 2003; Reichle and Koster, 2005; Ni-Meister et al., 2007;

Reichle et al., 2007), and there is a clear need to experiment with a broader

range of models. In particular very little work has been done with NWP models:

the only studies to have assimilated remotely sensed data into NWP models (or

their land surface schemes) are Drusch (2007), Scipal et al. (2008), and Dharssi

et al. (2010), all of which used a simple assimilation scheme (and all recommend

developing more advanced methods). Additionally, much of the work to date

has focused on North America, and all validations against in situ observations

have used data from the USA (Crow and Wood, 2003; Reichle and Koster, 2005;

Dunne and Entekhabi, 2006; Drusch, 2007; Reichle et al., 2007; Scipal et al.,

2008), or (and) the Global Soil Moisture Data Bank (Reichle and Koster, 2005;

Ni-Meister et al., 2007; Reichle et al., 2007), using Northern Hemisphere sites

only4. Assimilating soil moisture across a more diverse range of locations will

advance our understanding of how the assimilation is influenced by differences

in climate, surface conditions, and observation coverage and quality (including

4The GSMDB includes two Australian sites, however neither has been used to validate
soil moisture assimilation experiments.
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forcing).

Radiance vs. retrieval assimilation

Some of the studies cited above assimilated soil moisture fields retrieved from

microwave brightness temperatures (retrievals; Reichle and Koster, 2005; Dr-

usch, 2007; Ni-Meister et al., 2007), while others assimilated the brightness tem-

peratures (radiances; Crow and Wood, 2003; Seuffert et al., 2004; Dunne and

Entekhabi, 2006), by coupling the land surface model to a radiative transfer

model. In general radiance assimilation is superior, since it solves the (under-

determined) microwave emission equations using ancillary fields consistent with

the model. Additionally, the error correlation structure of radiance observa-

tions is easier to define, although bias correction is more difficult (Balsamo et

al., 2006).

2.5.2 Soil moisture data assimilation techniques

A range of methods have been applied to soil moisture assimilation, including

variational smoothers (Castelli et al., 1999; Calvet and Noilhan, 2000; Reichle et

al., 2001), and sequential Kalman filter-based approaches (Walker and Houser,

2001; Reichle et al., 2002b; Crow and Wood, 2003). Variational smoothing

seeks to minimise a cost function measuring the net disagreement between the

observations and the model. The assimilation is performed over a time-window,

and the cost function is minimised across all observations within that window.

To be computationally affordable this requires an adjoint of the forecast model

(which is derived from the tangent linear model), to translate the model state

backwards in time. In contrast to smoothers, sequential assimilation methods

update the model state each time new data are available. The Kalman filters

update the model states by minimising the expected error covariance of the

analysed variables. For linear systems, the optimal Kalman filter (Kalman,

1960) explicitly propagates the model error covariance matrices through time

using the forecast model. For nonlinear models, the EKF approximates the

Kalman filter by using a tangent linear model to propagate the model error,

while for the EnKF (Evensen, 1994) the forecast model error is diagnosed using

an ensemble of forecasts to sample the error distribution.

The method used for soil moisture assimilation must be tailored to the

unique characteristics of the land surface. Most notably, land surface models
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are nonlinear, requiring nonlinear assimilation techniques. Additionally, land

surface models contain switches that are nondifferentiable, and tangent lin-

ear models and model adjoints are not available for most land surface models.

Also, the land surface is dissipative rather than chaotic, and smoothers are bet-

ter suited to assimilating noisy (remotely sensed) data into dissipative models

(Dunne and Entekhabi, 2006). However, variational smoothers have not been

widely used for soil moisture assimilation, due to difficulty in obtaining model

adjoints (although ensemble Kalman smoothers have been successfully applied

in reanalysis type problems (Dunne and Entekhabi, 2005)). Those studies that

have used variational methods have either; used approximate methods (Houser

et al., 1998; Balsamo et al., 2006); or circumvented the need for an adjoint by

using extremely expensive brute-force iterative methods to minimise the cost

function (Calvet and Noilhan, 2000); or made use of simplified land surface

models, specifically designed to be differentiable (Castelli et al., 1999; Reichle

et al., 2001).

Due to lack of model adjoints for use in variational assimilation, the non-

linear approximations to the Kalman filter are more commonly used in land

surface assimilation problems. For the EKF, the tangent linear model is typi-

cally estimated for each assimilation cycle using a first-order Taylor approxima-

tion about the model state5 (Walker and Houser, 2001; Reichle et al., 2002b).

This requires an additional model forecast for each element of the state up-

date vector for each assimilation cycle. These additional integrations, as well

as the explicit propagation of the model error covariance, make the EKF very

expensive for large-dimension problems (Reichle et al., 2002b). However, most

land surface models (including those in NWP models) do not account for lateral

sub-surface flow, and are essentially a series of independent 1-D models. This

greatly reduces the horizontal error correlations, and in particular “errors of

the day” will not develop significant flow-dependent horizontal structures, as

occurs in the atmosphere. The EKF is then made affordable over large domains

by neglecting horizontal error correlations, and performing an independent 1-D

(vertical) assimilation at each grid (Walker and Houser, 2001; Reichle et al.,

2002b). This 1-D assumption is currently made when screen-level temperature

and relative humidity are used to initialise the NWP land surface states (e.g,

Hess, 2001; Balsamo et al., 2004).

5This is the same method used by Hess (2001) to linearise the forecast model for the
simplified variational analysis.
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However, Reichle and Koster (2003) point out that even without lateral flow

in models, horizontal model error correlations still exist for example, due to

approximation or neglect of physical processes by the model, large scale errors

in soil parameters, and errors in meteorological forcing data. In a synthetic

experiment with an EnKF, Reichle and Koster (2003) demonstrated that the

inclusion of horizontal error covariance (3-D assimilation) improved the analy-

ses, with the greatest improvement occurring where data coverage was sparse

(due to information spreading into regions with no observations): the average

soil moisture error was reduced by 47% by the 1-D assimilation, compared to

58% for the 3-D assimilation. However, (even for an EnKF) the inclusion of the

horizontal error correlation increased the cost of the assimilation by 60%, and

the benefits obtained by Reichle and Koster (2003) are also contingent on the

horizontal error correlations having been (approximately) correctly specified.

The EnKF is the most common method for assimilating soil moisture data,

and Reichle et al. (2002a) demonstrated that the (3-D) EnKF generated similar

error reductions to the optimal (but prohibitively expensive) 4-D Var, with half

of the computational cost. A major advantage of the EnKF over the EKF is

that it can more easily account for horizontal error correlations, and it does

not require an accurate model linearisation (although the Gaussian assump-

tion under-pinning the error sampling will break down under strongly nonlinear

conditions). The EnKF also allows more flexible specification of errors, so that

errors can be specified more intuitively (for example, through errors in forcing,

or model parameters), than the additive model forecast error required by the

EKF. The main cost of the EnKF is the ensemble generation. While large en-

sembles reduce the sampling uncertainty in the error correlations, reasonable

results have been obtained with modest ensemble sizes, typically between 10 to

100 (Reichle et al., 2002a; Crow and Wood, 2003; Reichle and Koster, 2003).

Reichle et al. (2002b) compared the performance of the EKF and EnKF (both

1-D), and found that the computational cost and performance of the two meth-

ods was similar for an EKF with four ensemble members, although when the

ensemble size was increased, the EnKF outperformed the EKF. In contrast,

Muñoz Sabater et al. (2007) found that the simplified 2-D Var of Balsamo et

al. (2006) (which is very similar to an EKF - see Section 3.2 and Appendix A)

outperformed an EnKF at an experimental site in France, even for very large

ensemble sizes (200). While the EnKF is flexible, it is not straight-forward to

implement. In particular, for dissipative land surface model, maintaining the
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ensemble spread can be difficult, and Muñoz Sabater et al. (2007) suggest this

as the reason for the lesser performance of the EnKF in their experiment (since

the EnKF did outperform the other assimilation methods in the year used to

tune the ensemble inflation factor).

2.5.3 Model - observation bias

Data assimilation is based on the assumption that the model and observations

are unbiased. If biases are present, the assimilation will be sub-optimal, and

will generate biased results (Dee, 2005). It is well established that soil moisture

estimates from models and observations are systematically different (Reichle et

al., 2004b; Ni-Meister et al., 2007), and so soil moisture assimilation must ad-

dress these biases. One option is to use a “bias aware” assimilation, in which the

assimilation adjusts for both bias and random error (Dee, 2005). This is an at-

tractive idea for land surface assimilation, since the nonchaotic physics increase

the susceptibility of the surface to biases, and also reduce the importance of ran-

dom errors. However, bias aware techniques require the source of the (model

and/or observation) biases to be identified and then modeled, and there is no

established truth against which remotely sensed and model soil moisture can be

referenced (Reichle et al., 2004b). In particular, model soil moisture is a model

dependent property (Dirmeyer et al., 2004; Schaake et al., 2004; Koster et al.,

2009). Koster et al. (2009) argue that model soil moisture is better thought of

as a model specific index, rather than a physical quantity that can be observed

in the field, since the model soil moisture is defined by model-specific soil pa-

rameters (such as soil texture) and parameterisations (such as the evaporation).

Hence even with perfect observations of soil moisture at the same resolution as

the model, the representativity error in the observations would still be signifi-

cant and unknown. Consequently when de Lannoy et al. (2007) assimilated soil

moisture data using a bias aware assimilation to correct for model soil mois-

ture biases (relative to in situ land observations), the model soil moisture was

improved (relative to the same observations), however the flux forecasts were

degraded, since the model was tuned to give (hopefully) unbiased correct fluxes

from its “biased” soil moisture climatology.

An alternative option to addressing the biases, which is more common, is

to assume that the model is unbiased, and then rescale the observations to

match the model climatology. This removes the observation representativity
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error discussed above. The observations can be rescaled based on the range

(Muñoz Sabater et al., 2007), the mean and variance (Scipal et al., 2008), or

the mean, variance, and higher order modes (Reichle et al., 2004a) of the model

climatology. The latter is achieved by matching the Cumulative Distribution

Frequency (CDF) of observations to that of the model (Reichle et al., 2007).

2.5.4 Soil moisture assimilation in NWP

As mentioned in Section 2.3.2 several NWP centres are working towards im-

plementing a land surface assimilation based on the simplified variational anal-

ysis scheme of Balsamo et al. (2007), which utilises an off-line version of the

NWP land surface model to generate the necessary model Jacobians. These

systems will be capable of assimilating both screen-level observations and re-

motely sensed soil moisture data. However, they are still under development,

and very few published studies have assimilated soil moisture data (or associ-

ated radiances) into NWP models (Balsamo et al. (2007) assimilated synthetic

microwave brightness temperatures in an information content study). In an

early feasibility study with a single column version of ECMWF’s NWP model

and data from the SGP97 experiment, Seuffert et al. (2004) showed that as-

similating L-band brightness temperatures improved the modeled root-zone soil

moisture, but this degraded forecasts of screen-level temperature and humidity

compared to the assimilation of screen-level variables. However, the bright-

ness temperature assimilation did improve the screen-level forecasts relative to

an open-loop, and the best overall results were obtained by assimilating both

the screen-level data and near-surface soil moisture information (due to the soil

moisture information compensated for a period of missing screen-level data dur-

ing the experiment). As discussed in Section 2.5.1, Drusch (2007) and Scipal et

al. (2008) obtained modest improvements to the model soil moisture by assimi-

lating remotely sensed soil moisture data. However, in both cases the improved

soil moisture slightly degraded the screen-level forecasts, relative to the assimi-

lation of screen-level observations. These results, and also that of Seuffert et al.

(2004), suggest that assimilating soil moisture information does not minimise

screen-level forecast errors as effectively as assimilating screen-level data. This

is consistent with the tendency for assimilation of screen-level data to generate

unrealistic soil moisture (in part by tuning the soil moisture to compensate for

unrelated errors).
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2.6 Outline of research

The review of the literature presented in the previous sections highlights that

root-zone soil moisture has a demonstrable influence on the evolution of the

atmospheric boundary layer. If not suitably constrained the soil moisture in

NWP models will drift from the true climate, resulting in a detrimental im-

pact on atmospheric forecasts. This can result in substantial errors in seasonal

forecasts, where there is a positive feedback between soil moisture and the at-

mosphere. Many NWP centres prevent this by analysing land surface variables

from screen-level observations (typically of relative humidity and temperature).

While this approach effectively minimises screen-level forecast errors, it fre-

quently generates unrealistic soil moisture states. Ultimately the unrealistic

model soil moisture will generate errors in atmospheric forecasts. To improve

the realism of soil moisture in their models, several NWP centres are pursuing

an alternative approach that involves assimilating remotely sensed near-surface

soil moisture data. The potential value for near-surface soil moisture observa-

tions to improve weather forecasts has also motivated the development of the

first purpose-built soil moisture remote sensing missions, SMOS and SMAP.

Consequently, there has been significant interest in exploring the best use of

that data using (sub-optimal) soil moisture data sets obtained from preexisting

satellite missions.

While several studies have demonstrated that assimilating near-surface soil

moisture observations can improve the root-zone soil moisture prediction in land

surface models, these studies have been limited in scope. In particular, there

have been few studies to date that have used actual soil moisture observations,

due in part to the RFI that exists in current remotely sensed soil moisture data

sets, and the uncertain accuracy of the data. Additionally, very little work

has been done assimilating near-surface soil moisture (or associated brightness

temperatures) into NWP models, and yet the effectiveness with which the model

root-zone soil moisture can be updated from near-surface observations is model-

specific, depending on the accuracy and strength of the coupling between the

model near-surface and root-zone soil moisture. Consequently there is a need for

assimilation experiments to be conducted with (nonsynthetic) remotely sensed

observations within the framework of NWP to identify practical hurdles to an

operational assimilation, for example due to time/computational constrains,

shortage of quality data for validation, tuning, and forcing the model.
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The assimilation of near-surface soil moisture observations cannot be ex-

pected to correct the low-level atmosphere as effectively as the assimilation of

screen-level observations, since the latter targets the atmosphere directly and

thus compensates for errors occuring elsewhere in the model. Since accurate

atmospheric forecasts are of the most immediate interest to NWP, soil mois-

ture data is unlikely to (immediately) replace the screen-level observations, and

would instead be best to complement the screen-level observations. However,

to date remotely sensed soil moisture and screen-level observations have not

been assimilated together over regions larger than individual field sites, and the

manner in which the information from the two data sources will interact across

different regions is not well understood.

In response to these issues, this thesis seeks to better our understanding

of the potential improvements to weather forecasts from assimilating remotely

sensed soil moisture data into NWP models. This work is particularly mo-

tivated by the potential benefit that such an assimilation system might offer

Australian NWP. Australia is well placed to benefit from the assimilation of

remotely sensed soil moisture. In general, the use of satellite data has benefited

atmospheric forecasts over the Southern Hemisphere more than the Northern

Hemisphere, due to the lower coverage of ground-based observations in the

Southern Hemisphere (Le Marshall et al., 2009), and a similar result is ex-

pected for land surface assimilation. Additionally, Australia consists of a large

arid in-land region surrounded by humid coastal regions, and so has extensive

areas in the transition-zone between arid and humid climates, for which soil

moisture has been shown to have an enhanced impact on the atmosphere at

seasonal scales (Koster et al., 2004). Finally, the factors that have limited the

use of soil moisture from current microwave platforms, including AMSR-E, are

not prevalent over Australia, giving an unusually complete coverage of high-

quality satellite data. In particular, Australia has only a small corridor of dense

vegetation, very limited occurrence of snow, frozen cover, or complex terrain,

and no significant RFI.

The potential benefit of using remotely sensed soil moisture data in NWP

is examined in this thesis by first assessing the quality of the available remotely

sensed soil moisture observations over Australia, and then assimilating this data

into the land surface of several NWP models. Each of these investigations is

described in detail below.
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2.6.1 Assessment of remotely sensed soil moisture obser-

vations

The first stage of the research was to select the most suitable remotely sensed

soil moisture data set for assimilation over Australia, and to characterise the

accuracy of those data. The above review of remotely sensed soil moisture prod-

ucts found that the only soil moisture data sets that were continuously available

with global coverage for the time period of this study were being derived from

active (ASCAT / ERS) and passive (AMSR-E) microwave sensors. However,

only AMSR-E had sufficient spatial/temporal coverage for use over Australia

(and most other regions including Europe), since the ERS coverage is limited to

just one or two (500 km wide) swaths over southeast Australia every three days

and ASCAT observations were not available at the time of this study. Four

prominent algorithms to retrieve soil moisture from AMSR-E were identified

in Section 2.4 : the VUA-NASA, NASA, JAXA, and USDA algorithms. The

relative accuracy of these retrieval algorithms is not known (previously only the

VUA-NASA and NASA retrieval algorithms had been compared), and so they

have been assessed here to identify which is most accurate. In total, five re-

motely sensed soil moisture data sets were assessed: separate C-band (since RFI

is not problematic over Australia) and X-band data sets for the VUA-NASA

algorithm, and X-band data for the other retrieval algorithms, for which C-band

products are not produced.

The five AMSR-E data sets identified above were assessed by comparison to

in situ soil moisture data from two monitoring networks in southeast Australia,

over a one year period. The most realistic of these data sets was then assessed

in greater detail to better characterise its uncertainty, before being used in the

assimilation experiments described below. This assessment included temporal

comparison to in situ soil moisture time series over the full six year AMSR-E

record, and spatial comparison against maps of related hydrological observa-

tions. The AMSR-E soil moisture observations were also bench-marked against

soil moisture forecasts from the Australian ACCESS NWP model, to establish

whether the model might benefit from the assimilation of AMSR-E data. As

discussed in Section 2.4.3, comparisons between in situ and remotely sensed

soil moisture data are hampered by the differences between the horizontal and

vertical resolutions of each data type, and so the suitability of the in situ data

sets for assessing large scale (modeled or remotely sensed) soil moisture has also
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been examined.

The results of the assessment of the AMSR-E soil moisture are presented in

Chapter 4, and have been published in Draper et al. (2009b).

2.6.2 Assimilation of remotely sensed soil moisture ob-

servations

The Assimilation Approach

The next stage of the research involved experiments assimilating the selected

AMSR-E near-surface soil moisture data set. The assimilation technique, which

is described in detail in Chapter 3, was based on the simplified EKF used

by Mahfouf et al. (2009) to assimilate screen-level observations into Météo-

France’s NWP model. Following the simplified 2-D Var approach of Balsamo

et al. (2007), the simplified EKF uses an off-line version of the NWP land

surface model to perform the land surface analysis. In this study, the simplified

EKF of Mahfouf et al. (2009) has been extended to include the assimilation

of near-surface soil moisture observations: previously Mahfouf et al. (2009)

had assimilated only screen-level observations, although Balsamo et al. (2007)

had assimilated synthetic passive microwave brightness temperatures into the

Canadian ISBA model. Both Balsamo et al. (2007) and Mahfouf et al. (2009)

recommend that the full EKF be used for assimilating remotely sensed data,

since it is expected to better account for the irregular availability of remotely

sensed data. Hence, the simplified EKF has been expanded into a full EKF in

this thesis by introducing the temporal evolution of the model error covariance

matrix.

Note that most of the literature relating to the assimilation of near-surface

soil moisture uses an EnKF assimilation, in preference to an EKF. However,

much of this literature uses land surface models forced with reanalyses or ob-

servations, often run over small scale field sites, consequently avoiding many

of the restrictions imposed on NWP modeling. Most notably, the computa-

tional cost of generating an ensemble for use in an EnKF is problematic within

an NWP system. Additionally, one of the main attractions of the EnKF is

its ability to include horizontal error correlations, which are (for computational

reasons) neglected by the EKF method used here. However, this is not expected

to be a major limitation in this thesis, since horizontal error correlations are
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also neglected by the current surface analysis schemes used in NWP.6 Conse-

quently, simpler and less costly methods, such as the EKF-based approaches,

are favoured by the NWP community.

The review of the literature also highlighted that systematic differences are

expected between soil moisture from remote sensors and models (Reichle et al.,

2004b), and that these biases must be addressed by the assimilating system

(Dee, 2005). While a bias aware assimilation of soil moisture would be more

consistent with the nonchaotic nature of land surface models, at the continental

scale there is no established soil moisture truth against which the biases could be

defined. Additionally, the model-dependent nature of soil moisture introduces

significant representativity errors between modeled and observed soil moisture.

Consequently, correcting model soil moisture to an observed “true” climatology

would be unlikely to improve land surface flux predictions, since the fluxes are

tuned to interpret soil moisture consistent with the model’s climatology. Hence,

this thesis has adopted the common approach of normalising the soil moisture

observations to be consistent with the the model climatology, using the CDF-

matching technique of Reichle and Koster (2004). Finally, for simplicity, soil

moisture retrievals were assimilated rather than radiances.

The assimilation experiments

The EKF has been used to assimilate near-surface soil moisture from AMSR-E

into the land surface models in the NWP suites used at the Australian BoM

and Météo-France, and each of these experiments is outlined below. Since

screen-level observations were not available for the recently launched Australian

model7, the experiments comparing assimilation of screen-level and near-surface

soil moisture observations were conducted with Météo-France’s model. Con-

6Note that with appropriate localisation, horizontal error correlations could be included
in the EKF, by concatenating the state-update vectors from multiple grids, and specifying
the assumed off-diagonal cross-correlations. This would not require any additional perturbed
model runs to linearise the model with the expanded state update vector, since the model
Jacobians for flow between adjacent grids in NWP models will be zero, due to the absence of
horizontal flows.

7Before screen-level data are assimilated into the land surface component of an NWP
model they must be analysed onto the model grid. Within an NWP suite this is done during
the atmospheric assimilation cycle, using the model screen level forecasts as the background
state. The only screen-level archives that the Bureau of Meteorology has for the experiment
period were generated using background information from the BoM’s previous NWP model,
the Limited Area Prediction System (LAPS;Puri et al., 1998). These analyses are not suitable
for use in other models, since they will contain LAPS-specific biases.
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ducting assimilation experiments with two models, which have very different

soil moisture physics (see Chapter 3), offers an additional opportunity to high-

light the role of the model physics in the assimilation.

While the EKF is designed to be semicoupled to the NWP model, the land

surface assimilation experiments conducted here have been completely decou-

pled from the atmospheric model, and static short-range (24-hour) forecasts

(generated once) from the NWP model were used to force off-line versions of

the NWP land surface schemes. This neglects feedback between the soil mois-

ture updates and the atmospheric forecasts. However, it greatly reduces the

computational cost and complexity of the experiments conducted here, while

still allowing the main dynamics of the assimilation to be examined.

Assimilation of near-surface soil moisture and screen-level observa-

tions into the Météo-France’s ISBA model

Near-surface soil moisture from AMSR-E and screen-level observations have

been assimilated into the land surface model used in Météo-France’s ALADIN

NWP model, over the European domain. The land surface model in ALADIN

is the two-layer version of the Interactions between Surface, Biosphere, and

Atmosphere (ISBA) model, which is described in Chapter 3. Satellite observa-

tions of soil moisture have not been assimilated into ISBA before, beyond the

scale of individual field sites, and the mechanisms by which the near-surface

soil moisture observations are related to the model root-zone soil moisture were

not well understood. Consequently, the manner in which the near-surface soil

moisture observations are translated into root-zone soil moisture increments is

first established, by examining the model Jacobians generated by the assim-

ilation. Then, the assimilation of AMSR-E observations is compared to the

assimilation of screen-level observations, before assimilating the AMSR-E soil

moisture and screen-level data together, to determine the level of agreement

between the two observation types, and the manner in which the information

from each is combined by the assimilation. Also, the potential benefit of using

the full EKF was tested by comparing the EKF and simplified EKF assimila-

tion. The ISBA assimilation experiments were limited to the month of July

2006 by the availability of forcing data from Météo-France. While one month is

too short to confidently validate results, the emphasis of these experiments was

on understanding the dynamics of the assimilation and the interactions between

the near-surface soil moisture and the screen-level observations.

36



2.7 Chapter summary 37

The results of the above investigations are presented in Chapter 5, and

the experiments assimilating near-surface soil moisture have been published in

Draper et al. (2009a), while the assimilation of near-surface soil moisture and

screen-level observations have been published in Draper et al. (2011). This work

also contributed to the simplified EKF assimilation of screen-level data reported

in Mahfouf et al. (2009).

Assimilation of near-surface soil moisture in the Australian MOSES

model

AMSR-E soil moisture observations have been assimilated over Australia into

the land surface model used in the Australian ACCESS model, the Met Of-

fice Surface Exchange Scheme (MOSES), which is described in Chapter 3. The

manner in which the model relates the near-surface soil moisture observations to

moisture in each soil layer is first identified, again by examining the model Ja-

cobians. The AMSR-E observations are then assimilated into MOSES, and the

net impact on the model near-surface and root-zone soil moisture is examined,

before the impact on the model forecast skill is assessed by comparison to in situ

soil moisture soil moisture observations. The assimilation was conducted over a

one year period from April 2008 to take advantage of an important bug-fix to the

derivation of soil properties in MOSES. The ACCESS model was only recently

ported to the BoM from the Met Office, and was still under development during

this research. Consequently the BoM had no archived ACCESS forecasts, and

atmospheric forecasts (for forcing MOSES) were specifically generated for these

experiments using a research version of ACCESS.

The results of the above investigations are presented in Chapter 6.

2.7 Chapter summary

This chapter has presented an overview of the literature supporting this thesis,

and then based on this literature review the research methods used through-

out this thesis have been formulated. The literature review highlighted that

model root-zone soil moisture can significantly impact the accuracy of weather

forecasts. In most NWP models, including those used at the BoM and Météo-

France, soil moisture is initialised by assimilating screen-level observations of

temperature and relative humidity. While this approach improves low-level at-
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mospheric forecasts, it does not generally result in realistic soil moisture, since

soil moisture is often adjusted to compensate for errors occurring elsewhere in

the model. A promising approach to improving the realism of NWP model

soil moisture is to assimilate remotely sensed observations of soil moisture in

a thin near-surface layer. Several studies have demonstrated that assimilat-

ing near-surface soil moisture data can improve model root-zone soil moisture.

However assimilating near-surface soil moisture observations is not expected

to correct the low-level atmosphere as effectively as the assimilation of screen-

level observations, since the latter accounts for feedback from the surface to

the atmosphere (thus accounting for model errors unrelated to soil moisture).

Since accurate atmospheric forecasts are the most immediate concern for NWP,

remotely sensed soil moisture data would be best used together with the screen-

level observations (in current-generation models at least).

This thesis examines the potential value of assimilating remotely sensed

near-surface soil moisture into NWP models over Australia. The impact of as-

similating soil moisture data has been examined when it is assimilated on its

own, and together with screen-level observations. An EKF is used for the as-

similation experiments, which is based on the simplified 2-D Var/EKF approach

of Balsamo et al. (2007) and Mahfouf et al. (2009). The thesis experiments are

divided into three broad investigations:

• The available remotely sensed soil moisture data sets over Australia have

been assessed, and the most accurate was selected for use in the assimila-

tion experiments.

• The selected AMSR-E soil moisture data set has been assimilated into

Météo-France ISBA land surface model over one month, together with

screen-level temperature and relative humidity, to determine the level of

agreement between the two data sets, and how they interact when used

together.

• The AMSR-E soil moisture has then been assimilated into the Bureau of

Meteorology’s MOSES land surface model over one year, and the result-

ing near-surface and root-zone soil moisture forecasts have been assessed

against in situ soil moisture observations.
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Chapter 3

The EKF and the Land Surface

Models

3.1 Overview of chapter

This chapter describes the land surface models used in the assimilation ex-

periments in this thesis, together with the method used to assimilate near-

surface soil moisture (and screen-level) observations into these models. The

assimilation experiments have been performed with an EKF-based land surface

analysis scheme, described in Section 3.2, which is derived from the simplified

EKF of Mahfouf et al. (2009). In Chapter 5 AMSR-E near-surface soil mois-

ture and screen-level observations are assimilated into the ISBA land surface

model, which is used in Météo-France’s ALADIN NWP. The experiments with

the ISBA model were conducted in a a preexisting experimental environment,

called SURFEX, and the ISBA model and the SURFEX modelling environment

are described below in Section 3.4.1. In Chapter 6 AMSR-E near-surface soil

moisture is assimilated into the MOSES land surface model, which is used in

the Australian ACCESS NWP model. There was no previous land surface as-

similation research with the ACCESS model at the Bureau of Meteorology, and

an off-line modelling environment for MOSES has been developed for use in this

thesis; both the MOSES model and the environment in which it has been run

are described below in Section 3.4.2.
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3.2 The EKF

An EKF has been used in this thesis, which is based on the simplified EKF of

Mahfouf et al. (2009) and the equivalent simplified 2-D Var of Balsamo et al.

(2006) and Balsamo et al. (2007). Both Balsamo et al. (2007) and Mahfouf et al.

(2009) recommended extending their “simplified” approaches into a full EKF,

in which the background error covariances are propagated through time. It is

expected that this will better account for the different observation availabilities

when remotely sensed soil moisture and screen-level data are assimilated to-

gether, particularly given that the temporal availability of the remotely sensed

data is variable. For the assimilation of near-surface soil moisture, an additional

advantage of the full EKF is that it will introduce a long-term memory into the

model error cross-covariance relating the near-surface and root-zone soil mois-

ture model errors (increasing the accuracy of the background cross-covariances

used by the EKF). Hence, the simplified approaches have been extended into a

full EKF in this thesis, by introducing the temporal evolution of the background

error covariances.

Using the notation of Ide et al. (1997), the Extended Kalman Filter (Ghil

and Malanotte-Rizzoli, 1991) equations for the ith model state forecast and

update at time ti are:

xb(ti) =Mi−1[x
a(ti−1)] (3.1)

and

xa(ti) = xb(ti) + Ki

(
yo

i −Hi[x
b(ti)]

)
(3.2)

where x indicates the model state vector and y is the observation vector. The

superscripts a, b, and o indicate the analysis, background, and observations,

respectively. M is the nonlinear state forecast model, and, H is the nonlinear

observation operator (to map the model state into the observation state space).

K is the Kalman gain, given by:

Ki = Pf (ti)H
T
i

(
HiP

f (ti)H
T
i + Ri

)−1
(3.3)
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where P and R are the covariance matrices of the model background and obser-

vation errors, respectively, and H is the linearisation of H. The defining feature

of the EKF is that the background model error is also evolved through a series

of model forecasts and updates:

Pf (ti) = Mi−1P
a(ti−1)M

T
i−1 + Q(ti−1) (3.4)

Pa(ti) = (I−KiHi)P
f (ti) (3.5)

where Q is the error covariance matrix for the (additive) model forecast error,

and M is the linearisation of M.

For the EKF as applied here, the observations are 6 hours later than the

analysis time, and the observation operator is a 6 hour model forecast followed

by conversion to the observed state, following Mahfouf (1991) and Hess (2001).

For example, for the ISBA model from Chapter 5, in which a two-layer soil mois-

ture state is updated from observations of the upper-most layer, the observation

operator is:

Hi =
(

1 0
)
Mti→ti+6 (3.6)

A 6 hour forecast was chosen to match the availability of the screen-level

observations. Due to the continuous evolution of the background error matrix

through time, the forecast-length used in the observation operator has little

influence on the assimilation results for the full EKF.

The linearisation of H andM is obtained by finite differences, using a first-

order Taylor expansion about x. The nth element of the observation vector,

and the mth element of the control vector, Hnm is given by:

Hnm,i =
H[x(ti) + δxm(ti)]n −H[x(ti)]n

δxm(ti)
(3.7)

Calculating the linearisation requires an additional (perturbed) 6 hour model

integration for each element of the state vector. Following Balsamo et al. (2007)

41
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the computational cost of the additional model forecasts required by the obser-

vation operator are reduced by performing the assimilation in an off-line version

of the NWP model’s land surface scheme. The off-line assimilation is designed

to be semicoupled to the NWP model, such that the NWP model is updated

with each land surface analysis, before the forcing for the subsequent off-line

assimilation cycle is generated by the NWP model. To assimilate the screen-

level observations in this off-line system, the land surface model is forced at the

height of the first atmospheric model layer (higher than a typical land surface

model) to allow the screen-level observations to be assimilated off-line, again

following Balsamo et al. (2007).

Since H is used in equation (3.3) before the state vector is updated and M is

used in equation (3.4) after the update, two sets of additional model forecasts are

required for each assimilation cycle. However, for the assimilation experiments

with the ISBA model in Chapter 5 an approximation has been introduced in

which the perturbed model forecasts made before the state vector update (for

estimating H) were used to estimate M (see Section 5.3.2)1.

3.3 Related assimilation approaches

The simplified EKF of Mahfouf et al. (2009) differs from the EKF described

above in that equations (3.4) and (3.5) for the update and evolution of the

background model error covariance matrix are not applied. Instead the same

P is used at the beginning of each assimilation cycle, based on the assumption

that the reduction in P induced by each analysis (equation (3.5)) is balanced by

the subsequent increase in P during the next model forecast (equation (3.4)).

Note that the simplified EKF still accounts for some temporal evolution of P,

due to the inclusion of a model forecast in the observation operator.

Additionally, the EKF is also closely related to a number of other land

surface analysis techniques, as is reviewed in Appendix A. Specifically, the sim-

ilarity between the simplified variational approach of Balsamo et al. (2007) and

the EKF is demonstrated. It is also shown that for assimilating of near-surface

soil moisture the soil moisture analyses generated by the EKF presented here

differs only slightly from those generated by the more standard EKF formula-

1This approximation was not introduced for the MOSES model in Chapter 6, since the
data were assimilated (and the observation operator calculated) only once every 24-hours, or
every fourth assimilation cycle.
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tion (e.g, as used by Walker and Houser, 2001; Reichle et al., 2002b; Muñoz

Sabater et al., 2007), in which the observation operator for updating the model

near-surface soil moisture is equal to the identity (rather than using a model

forecast).

3.4 The land surface models

The modelling systems used in the assimilation experiments are described be-

low. While the off-line land surface analysis described above is designed to

be semicoupled to the NWP model, in the experiments conducted here static

short-range forecasts (generated once) from the NWP model have been used to

force the land surface models. Apart from this, the off-line land surface models

are run in an environment that mimics the coupled NWP models as closely as

possible, and the modeling environment used for each is also described below.

3.4.1 The French ALADIN and ISBA models

The ALADIN NWP model

The NWP suite used at Météo-France was developed in collaboration with

ECMWF. It includes the Action de Receherche Petite Echelle Grande Echelle

(ARPEGE) global model, and its limited area version, ALADIN/France (Bub-

nova et al., 1995), referred to throughout this thesis as “ALADIN”. ALADIN

and ARPEGE are hydrostatic models, with hybrid terrain-following height co-

ordinates, semi-Lagrangian advection, and a 4D-VAR atmospheric assimilation.

ALADIN is nested within ARPEGE, and it has an (irregular) stretched grid cen-

tred over France, with a resolution of approximately 9 km. The 2006 operational

configuration used here has 46 vertical levels.

The ISBA land surface model

ALADIN uses a two-layer version of the ISBA land surface scheme (Noilhan

and Planton, 1989; Noilhan and Mahfouf, 1996). ISBA is a force-restore model

and has eight prognostic variables: surface temperature, mean (deep-layer) soil

temperature, near-surface water content (liquid / frozen), total (deep-layer)

water content (liquid / frozen), vegetation intercepted water content, and snow
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water. The (liquid) near-surface soil moisture, w1, is defined as the reservoir

from which moisture is extracted by bare soil evaporation, and is arbitrarily

assigned a depth (d1) of 0.01 m; while the total soil moisture, w2, is defined

as the reservoir from which moisture is extracted by bare soil evaporation and

transpiration, with the depth (d2) depending on the local soil type and climate

(ranging between 0.24 to 3.8 m over the ALADIN domain). In the two layer

ISBA model there is no distinction between the root-zone and total layer depth,

and so the root-zone is effectively modeled over the total soil layer. Horizon-

tal sub-surface flows are neglected (each grid is modeled independent from its

neighbours), and the vertical liquid moisture dynamics are described by the

force restore method of Deardorff (1977):

∂w1/∂t =
C1

ρwd1

(Pg − Eg)− C2

τ
(wg − weq); 0 ≤ w1 ≤ wsat (3.8)

∂w2/∂t =
1

ρwd2

(Pg−Eg−Etr)−
C3

d2τ
max[0, (w2−wfc)]; 0 ≤ w2 ≤ wsat (3.9)

The first term in each equation represents the forcing: precipitation (Pg) and

bare-soil evaporation (Eg) affect both layers, while transpiration (Etr) also acts

on w2 (equation 3.9). The second set of terms in each equation are the restore

action. In equation 3.8 for w1 the restore term represents the balance between

capillary rise from w2 and gravitation drainage from w1: w1 is restored towards

an equilibrium value (weq), calculated as a function of w2 and the saturation

water content, wsat. In equation 3.9 for w2 the restore term represents gravita-

tional drainage, which is proportional to the volume of moisture exceeding field

capacity (wfc). ρw is the density of liquid water, and the coefficients (C1, C2,

and C3) are calibrated for different soil textures, with C1 and C2 also depending

on soil moisture.

Bare soil evaporation is dependent on the soil type, surface roughness, wind

speed and humidity deficit, while transpiration also depends on vegetation type,

temperature, and soil moisture availability. For a given energy input the evapo-

transpiration from a grid varies according to w1 and w2: w1 controls the bare soil

evaporation by driving the surface humidity, while the w2 controls the stomatal

resistance to transpiration. Following Noilhan and Planton (1989), the resis-
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tance to transpiration depends on a normalised soil moisture, called the Surface

Wetness Index (SWI):

SWI =
w2 − wwilt

wfc − wwilt

(3.10)

Transpiration occurs at the potential rate for SWI above 1 (w2 > wfc),

while it effectively ceases for SWI less than 0 (w2 < wwilt), and for interme-

diate soil moisture values transpiration is nonlinearly related to SWI. The soil

temperature dynamics are determined by the force-restore method proposed by

Bhumralkar (1975), and a single energy budget is applied to both the vegetation

and bare-soil surface for each grid.

All of the required soil and vegetation parameters in ISBA are calculated

from the soil and vegetation classification, which are obtained from the ECO-

CLIMAP data base (Masson et al., 2003). Each nonurban land grid is classified

as a mixture of nine land cover types (broadleaf trees, coniferous trees, C3 and

C4 crops, flat bare soil, grassland, irrigated crops, parks and marshes, perma-

nent snow, rocks, tropical grass, and tropical trees), and the surface parameters

are aggregated to a single parameter set for each grid. The Köppen-Geiger

climate classification (Peel et al., 2007) classes most of the ALADIN Europe

domain as temperate, with arid regions in Spain and north Africa, and some

isolated area with continental climates, associated with the Alps. The land cover

is quite diverse, and is predominantly made of up broadleaf and needleleaf trees

and nonirrigated crops, with isolated regions of irrigated crops, permanent ice,

rocks, and parks and marshes.

Running ISBA off-line in the SURFEX environment

The assimilation experiments conducted with the ISBA model used the same

experimental set-up as was used by Mahfouf et al. (2009) for the simplified

EKF assimilation of screen-level observations into ISBA. ISBA was run within

the Surface EXternalisée (SURFEX) Environment (Le Moigne et al, 2009) , in

which it has been decoupled from the atmospheric model using the implicit cou-

pling scheme of Best et al. (2004). All ISBA model parameters were read from

the same ancillary files used by ALADIN, and all model physics options were

set the same as for ALADIN. The atmospheric forcing for ISBA (of precipita-

tion, temperature, specific humidity, pressure, wind components, and short- and
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long-wave radiation) was derived from ALADIN forecasts, interpolated onto the

ISBA time-step (300 s). The atmospheric forcing is applied at the first atmo-

spheric model layer in ALADIN (17 m), and prognostic screen-level forecasts

are obtained by interpolating between the relevant quantities from the atmo-

spheric forcing and the forecast surface values, using Monin-Obukhov similarity

theory. It was demonstrated by Mahfouf et al. (2009) that this method provides

sufficient sensitivity between the model surface and screen-level variables to ac-

curately estimate the model Jacobians required to assimilate the screen-level

observations in the SURFEX off-line environment.

3.4.2 The Australian ACCESS AND MOSES models

The ACCESS NWP model

The Australian ACCESS NWP model is a coupled climate and Earth-system

simulator, based on the UK Met Office’s Unified Model (UM). The UM (Davies

et al., 2005) was designed to model the land surface, ocean, and atmospheric

dynamics, across a range of scales, from operational weather forecasting to long

range (centuries plus) climate research. The UM is a nonhydrostatic model, with

a hybrid height formulation, a regular latitude-longitude grid, semi-Lagrangian

advection, and a 4D-VAR atmospheric assimilation system (Rawlins et al.,

2007). The UM was ported to the BoM in 2006 (Puri, 2006) and adapted

for local use, before being launched as the BoM’s operational NWP model in

September 2009 (National Meteorological and Oceanographic Centre, 2010).

The initial operational implementation of ACCESS consisted of a hierarchy of

nested models with similar spatial resolution to the legacy NWP suite, LAPS.

The Australian-domain ACCESS simulation (ACCESS-A) is nested in a re-

gional simulation (ACCESS-R), which is in turn nested in the global ACCESS

model (ACCESS-G), all of which have 50 vertical model levels, and horizontal

resolutions of approximately 12, 37, and 80 km, respectively.

As discussed in Section 2.3 soil moisture and temperature are nudged in

the Met Office’s global model according to errors in low-level temperature and

humidity (Best and Maisey, 2002). In their regional models, the Met Office

initialise soil moisture by either interpolating global fields for regions outside the

UK, or by using fields from the UK NWP Post-Processing (UKPP) system over

the UK. The UKPP generates nowcasts of the soil states and surface hydrology

at 2 km resolution over the UK, using the same land surface scheme as the
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UM, coupled to a probability distributed model for generating surface runoff,

as well as a river flow model (Smith et al., 2006). In the Australian ACCESS

modelling suite, soil moisture and temperature are initialised in the global and

regional models using the nudging scheme of Best and Maisey (2002) (the second

initialisation in the regional model is required since the globally nudged fields

are not yet available when the regional model forecast is commenced, and the

high quality observations required to run a UKPP-type scheme are not available

over Australia).

The MOSES land surface model

The land surface scheme in ACCESS is the Met Office Surface Exchange Scheme

(MOSES) 2.2 (Cox et al., 1999; Essery et al., 2001). The soil moisture dynamics

in MOSES are very different to those used in ISBA. In its standard formulation

(as used in NWP), MOSES has four soil layers, of thickness, 0.1, 0.25, 0.65, 2.0

m. For the vegetation covers present in Australia, the root-zone is largely con-

tained within the three uppermost model layers (covering 1.0 m) 2. MOSES has

14 prognostic variables: moisture (frozen and liquid) and temperature in each

layer, snow on the ground, and canopy water storage. Horizontal sub-surface

flows are neglected (each grid is modeled independent from its neighbours),

and vertical moisture flow is a finite difference form of the Richards equation

(Richards., 1931):

∂Mi/∂t = Wi−1 −Wi − Ei (3.11)

where, Mi is the net volume (mm) of soil moisture in the ith layer, Wi is the

diffusive flux flowing from layer i to i + 1, and Ei is the evapotranspiration

flux from layer i, calculated from the total evapotranspiration based on the soil

moisture and root density profiles. The diffusive flux for each layer depends

on the soil moisture and soil moisture gradient between neighbouring layers,

and is calculated according to the Darcy equation (Darcy, 1856) extended to

2With the exception of some small regions of broadleaf vegetation, the root-zone in MOSES
has an e-folding root-depth of 0.5 m, so that 90% of the roots are within 1.0 m of the surface.
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unsaturated soils:

W = K(
∂ψ

∂z
+ 1) (3.12)

where ψ is the soil suction, z is the depth from the surface, and K is the

hydraulic conductivity. These are calculated using the Clapp and Hornberger

relations:

ψ = ψsS
−b (3.13)

K = KsS
2b+3 (3.14)

where Ks, ψs, and b are empirical soil dependent constants, and S is the un-

frozen soil moisture as a fraction of the volumetric soil moisture at saturation

(θs):

S =
θ

θs

(3.15)

There is free drainage from the lower boundary (i.e. W4 = K4), and the

surface flux is precipitation throughfall minus runoff. Evapotranspiration is

the sum of evaporation from the canopy and bare soil, and transpiration via

vegetation. Canopy evaporation occurs at the potential rate, and depends on

surface roughness, wind speed, and surface layer stability. Bare soil evaporation

and transpiration experience an additional surface resistance, dependent on soil

moisture in layer one, while transpiration has an additional canopy resistance,

dependent on vegetation type, temperature, humidity deficit, radiation, and

soil moisture availability. The soil thermodynamics consist of diffusive heat

exchange between soil layers, together with heat advection generated by the

flux of moisture. The surface heat flux is calculated to balance the surface

energy budget, and the lower boundary has zero heat flux.

MOSES 2.2 is a tiled model (Essery et al., 2003), and each model grid is

divided between nine surface cover types (the “tiles”): urban, inland water, bare

soil, ice, and five plant function types (broadleaf, needleleaf, temperate grass,
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tropical grass, shrubs). According to the Köppen-Geiger climate classification

(Peel et al., 2007), Australia is predominantly arid in the center and west, with a

narrow temperate strip along the east coast, and also in the south, and a tropical

climate in the far north. The arid centre is classed as bare soils and shrubs,

while the north is tropical grasses, and the temperate regions have a mixture of

broadleaf trees (concentrated along the east coast), temperate grass, bare soil,

and shrubs. There are no grids categorised as ice or needleleaf trees, and only

isolated instances of lakes and urban environments. MOSES has the capability

to calculate a separate energy and water balance for each tile (although all tiles

interface with the same sub-surface soil layers), however this heterogeneity is

not fully enabled in the ACCESS model and the surface parameters are instead

aggregated across all tiles in each grid to give a single value for use in the surface

fluxes calculations (as is done in ISBA).

Running MOSES off-line: the JULES model

An off-line version of MOSES, called the Joint UK Land Environment Simulator

(JULES), was developed at the Joint Centre for Hydrometeorological Research

to enable the use of MOSES outside of atmospheric modelling applications

(Joint Centre for Hydro-Meteorological Research, 2001). For the experiments

in this thesis, JULES was configured to be as close as possible to the coupled

MOSES model, and all model physics options and parameters were taken di-

rectly from ACCESS. There were no archived ACCESS forecasts available for

the period of these experiments, and so forecasts were specifically generated to

provide the required forcing (and also initial conditions) for the off-line model.

Since the ACCESS modelling suite was still under development at the BoM, a

research version of the UM, based on version 6.4 – Parallel Suite 18 (PS18), was

used. The research suite consisted of a development version of ACCESS-R (run

at the same resolution: 0.375◦ with 50 vertical layers), run once daily and nested

within a development version of the global model, (run at the resolution as the

Met Office global model: 0.5625 degrees meridionally, and 0.375 degrees zonally,

and 50 vertical levels). The atmospheric assimilation in ACCESS was still under

development at the time of these experiments, and so the global ACCESS model

was initialised each day with global UM atmospheric analyses downloaded from

the Met Office, to incorporate the updates from their assimilation cycle.

The ACCESS modeling suite described above was used to generate one year

of consecutive 24 hour forecasts for forcing MOSES. These forecasts, of surface
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pressure, downward short- and long-wave radiation, and low-level atmospheric

temperature, humidity, wind, and large scale and convective precipitation (sep-

arated into snow and rain), were saved hourly and then interpolated onto the 15

minutes time-step used for MOSES. Following the Assistance for Land surface

Modelling Activities guidelines developed for the Global Land/Atmosphere Sys-

tem Study (Assistance for Land-Surface Modelling Activities, 2004) the fluxes

were specified as hourly mean values, while the remaining forcing variables were

specified instantaneously. The fluxes were applied at a constant rate each hour

(rather than being interpolated), to ensure that the net quantity across the

diurnal cycle was maintained for each. Finally, since screen-level observations

have not been assimilated into MOSES, the forcing is applied at the standard

reference heights used by MOSES within ACCESS (10 m for wind, 1.5 m for

temperature and humidity).3

JULES was launched in October 2006, with the same programming as in

MOSES at that time. However, the Met Office updates the UM code four times

a year, and the MOSES code in ACCESS now differs from that in JULES. In

particular, there have been two significant updates to MOSES since the launch

of JULES, including an update for PS18 in April 2008 to amend a long standing

error in the soil hydraulic properties. The PS18 update had a positive impact

on the atmospheric forecast skill of the UM, including a significant reduction in

the screen-level temperature and humidity errors (Dharssi et al., 2009). Hence

the ACCESS model experiments conducted here have been limited to the pe-

riod after April 2008 to take advantage of this update, and the JULES model

code has been updated to better reflect the current MOSES code (and to amend

several model short-comings encountered during this research) as is described

in Appendix B. It is also demonstrated in the Appendix that the off-line JULES

model environment developed here provides a sufficiently accurate representa-

tion of the MOSES model within ACCESS to be used in these experiments

(although there is a discrepancy between the soil temperature forecast by the

coupled and off-line MOSES models which would need to be resolved before the

off-line land surface analysis could be coupled to the ACCESS model).

3Note that height of the forcing can be specified in JULES, so that the forcing could be
easily changed to the height of the first atmospheric layer for the assimilation of screen-level
observations, however the sensitivity of screen-level forecasts in the off-line system would need
to be carefully investigated before the screen-level observations were assimilated.
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3.5 Chapter summary

The land surface assimilation method and modelling systems used in this thesis

have been described in this chapter. The land surface assimilation is based

on the EKF, and has been adapted from the simplified EKF of Mahfouf et al.

(2009), and the equivalent simplified 2-D Var of Balsamo et al. (2007). The EFK

land surface analysis is designed to assimilate both remotely sensed near-surface

soil moisture (and other novel observation types) and screen-level observations,

within the constraints of operational NWP. It uses an off-line version of the

land surface model to perform the analysis, with the resultant soil moisture

update fed-back to the NWP model before the forcing for the subsequent off-line

assimilation is generated. To allow the assimilation of screen-level observations

the EKF uses the forecast model itself as the observation operator, and the

atmospheric forcing is applied at the first atmospheric model level. While the

EKF land surface analysis is designed to be semicoupled to the NWP model, in

the experiments conducted here the land surface models have been completely

decoupled.

In Chapter 5 the EKF is used to assimilate near-surface soil moisture and

screen-level observations into ISBA, the land surface model in Météo-France’s

ALADIN/ARPEGE NWP suite. Then in Chapter 6 near-surface soil moisture

observations are assimilated into an off-line version of MOSES, the land sur-

face model in the Australian ACCESS NWP suite. Both models have been

configured to mimic their coupled counterparts as closely as possible. Météo-

France has developed an off-line environment, called SURFEX, as a research

test-bed for ISBA, and the ALADIN environment was easily mimicked within

SURFEX. For the MOSES model no such environment existed, and the off-line

version of MOSES, called JULES, was specifically configured for use in this

thesis (including several code updates). Additionally, the ACCESS model was

under development at the time of this work, and the forecasts to force MOSES

were specifically generated with a research version of the limited area ACCESS

model.

The main soil moisture dynamics in the MOSES and ISBA land surface

models have also been described in this Chapter. These two models have very

different soil moisture physics and vertical resolution: MOSES is a four-layer

model with explicitly modeled diffusive flow between layers, while ISBA is a two-

layer force-restore model. These differences will be important in determining

51
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how each model responds to the assimilation of near-surface soil moisture in

Chapters 5 and 6, since they affect the definition of soil moisture in each model

(and specifically the soil moisture in the near-surface layer, to which the AMSR-

E observations are equated during the assimilation), as well as the strength and

nature of the coupling between the soil moisture in the near-surface layer and

the underlying soil profile.

52



Chapter 4

Remotely Sensed Soil Moisture

over Australia

4.1 Overview of chapter

This chapter assesses the value of current remotely sensed near-surface soil mois-

ture data sets over Australia for use in data assimilation. Observations from

the passive microwave AMSR-E instrument only are considered, since until re-

cently this was the only instrument offering sufficient coverage over Australia.

Soil moisture data sets derived from AMSR-E observations using four differ-

ent retrieval algorithms are compared to in situ soil moisture observations from

southeast Australia over 2006. Based on this comparison, the VUA-NASA re-

trieval algorithm is selected for the assimilation experiments in Chapters 5 -

6. The VUA-NASA soil moisture products are then assessed in greater detail

to better characterise their accuracy, and to determine their best use in the

assimilation experiments. This is achieved by temporally comparing the VUA-

NASA soil moisture to the longest available in situ soil moisture data record

(six years), and spatially comparing it against maps of observed precipitation

and vegetation. Finally, the AMSR-E data is bench-marked against soil mois-

ture forecasts from the BoM’s ACCESS model, to establish whether the model

is likely to benefit from the assimilation of the AMSR-E data in Chapter 6.

Additionally, the limitations of comparing area-averaged remotely soil moisture

observations against point-based in situ data are highlighted by examining the

consistency of time series of in situ observations from within a single AMSR-E

pixel.
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Much of the work presented in this chapter has been published in Draper et

al. (2009b).

4.2 Data and methods

Three different types of data have been used in this Chapter. The AMSR-

E near-surface soil moisture data sets are described in Section 4.2.1. These

data sets have been assessed by comparison to in situ soil moisture observa-

tions from the Murrumbidgee and Goulburn Monitoring Networks, which are

described in Section 4.2.2. Additionally, the methods used to compare the in

situ and remotely sensed soil moisture time series are also reviewed in Section

4.2.3. Finally, maps of the AMSR-E soil moisture have also been qualitatively

compared to maps of precipitation observations, which are described in Section

4.2.4.

4.2.1 AMSR-E soil moisture

Recall from Section 2.4 that the four most prominent soil moisture retrieval

algorithms that have been applied to AMSR-E have been developed by:

• NASA, following Njoku et al. (2003);

• JAXA, following Koike et al. (2004);

• USDA, following Jackson (1993); and

• VUA-NASA, following Owe et al. (2001).

The defining feature of the VUA-NASA retrieval, which will be used through-

out this thesis, is the expression of the vegetation optical depth as a function

of the dielectric constant and the passive microwave polarisation ratio. This

function is substituted into the radiative transfer equation for the H-polarised

brightness temperature, together with ancillary soil temperature. The radiative

transfer equation is then solved for the soil dielectric constant, and subsequently

soil moisture content. The algorithm is designed to minimise reliance on ancil-

lary data and requires only ancillary soil temperature, which is currently derived

from the 36.5 GHz V-polarised AMSR-E observations.
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Due to RFI in the C-band observations across much of the globe, NASA,

JAXA, and USDA retrieve soil moisture from X-band AMSR-E brightness tem-

peratures only, while VUA-NASA generate separate soil moisture products from

C- and X-band brightness temperature. However, Njoku et al. (2005) did not

note any RFI over Australia, while over Europe they observed C-band RFI only

over isolated urban regions (although X-band RFI was widespread over Italy

and England). For Australia, the lack of RFI has been confirmed by apply-

ing the spectral difference method of Li et al. (2004) to AMSR-E observations

(pers. comm. Thomas Holmes): in 2006 there was no problematic C-band RFI

(defined as RFI on more than 30 days over the year), and only a small region in

northeast Australia with problematic X-band RFI. Consequently, both the C-

and X-band data sets have been assessed here, giving a total of five soil moisture

products that have been inter-compared below.

Soil moisture data sets retrieved with each of these algorithms have been

obtained from the relevant institutions for 2006. While the resolution of the

C-band data is 45× 75 km2 (Njoku et al., 2003), the AMSR-E swaths (level 1)

are over-sampled at approximately every 5 km, and the (level 2 and 3) data are

typically reported on a 0.25◦ grid. Each of the AMSR-E data sets was provided

on either a regular 0.25◦ grid (JAXA), or at the original swath level (NASA,

USDA, VUA-NASA). The latter have been projected onto the regular 0.25◦ grid

using a nearest neighbour approach, before any further processing is performed.

Passive microwave soil moisture retrievals are thought to be more accurate

during the nighttime than during the daytime, due to the greater (vertical and

horizontal) homogeneity of the surface temperatures at nighttime (Owe et al.,

2001). Consequently the soil moisture derived from the descending (nighttime)

and ascending (daytime) AMSR-E overpasses have been assessed separately.

4.2.2 In situ soil moisture

Time series of AMSR-E derived soil moisture have been compared to in situ soil

moisture data from the Murrumbidgee and Goulburn River Basins in southeast

Australia, each of which are indicated in Figure 4.1. The Murrumbidgee Mon-

itoring Network is maintained by the University of Melbourne, and currently

consists of 38 monitoring stations at which surface hydrological and thermody-

namic variables are observed every 20 to 30 minutes. The Goulburn Monitoring

Network (Rüdiger et al., 2007) is approximately 200 km north of the Mur-
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56 4. Remotely Sensed Soil Moisture over Australia

Figure 4.1: Location of the Murrumbidgee and Goulburn Monitoring Network
sites, overlaid on the mean NDVI for 2006. See Tables 4.1 - 4.3 for details of
each monitoring site.

rumbidgee, and currently has 26 monitoring stations operated by the University

of Newcastle.

Vegetation is the main limitation to observing soil moisture using the AMSR-

E wavelengths, and the mean 2006 NDVI (from the Advanced Very High Reso-

lution Radiometer) is plotted in Figure 4.1 to indicate the potential attenuation

of the soil moisture signal by vegetation across the monitoring sites. All of the

monitoring stations in both networks are grazed or grassland, although some

are very close to dense vegetation (which may fall within the AMSR-E swaths).

In particular, the AMSR-E pixels adjacent to Adelong (M10) are forested. The

vegetation at the Goulburn and Murrumbidgee monitoring sites is dense rela-

tive to Australian conditions: a mean 2006 NDVI of 0.29 (the mean across the

monitoring sites) or 0.42 (the maximum across the sites) represents the 80th

and 93rd percentile of the mean 2006 NDVI across Australia.

The Murrumbidgee Monitoring Network

The Murrumbidgee Monitoring Network consists of two generations of monitor-

ing stations. The first generation of 18 stations was installed in 2001 (see Table

4.1). Each station observes precipitation, and soil moisture at four depths (0 -

8 cm, 0 - 30 cm, 30 - 60 cm, and 60 - 90 cm), as well as soil temperature and

suction at similar depths, every 20 to 30 minutes. Five stations are grouped
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Table 4.1: Murrumbidgee Monitoring Network: First generation stations (in-
stalled in September 2001).

Code Name Latitude Longitude Coverage Notes
M1 Cooma Airfield -36.293 148.971
M2 Canberra Airport -35.305 149.201 Missing Jun.-Nov. ’08
M3 Cootamundra Aerodrome -34.630 148.037 Missing Oct. ’06 to

Oct. ’08
M4 West Wyalong Airfield -33.938 147.196
M5 Balranald -34.658 143.549
M6 Hay -34.547 144.867
M7 Griffith Aerodrome -34.249 146.070

M8 YANCO REGION
Y3 Yanco Research Station -34.621 146.424

M9 KYEAMBA REGION
K1 Waitara -35.493 147.559
K2 Kyeamba Downs -35.435 147.530
K3 Kyeamba Station -35.434 147.569 Very poor coverage (≈

50%) Dec.’06 - Apr.
’08

K4 Ginnindera Flat -35.427 147.600
K5 Ginnindera Slope -35.419 147.604

M10 ADELONG REGION
A1 Keenan -35.497 148.106
A2 Strathvale -35.428 148.132 Destroyed by fire in

Jan ’05
A3 Weeroona -35.400 148.101 Missing Dec.’07 - Oct.

’08
A4 Rochedale -35.373 148.066 Missing Jun. ’07 -

Jun. ’08
A5 Crawford -35.360 148.085
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Table 4.2: Murrumbidgee Monitoring Network: Second generation stations
(installed in September 2003, with shallow soil moisture sensors installed in
late 2006).

Code Name Latitude Longitude Coverage Notes

M8 YANCO REGION
Y1 Uri Park -34.629 145.849
Y2 Banandra -34.655 146.110
Y4 Eulo -34.719 146.020
Y5 Dry Lake -34.728 146.293
Y6 S. Coleambally -34.843 145.867
Y7 Yamma Rd. -34.852 146.115
Y8 Wynella -34.847 146.414
Y9 Yammacoona -34.968 146.016
Y10 Cheverelis -35.005 146.310
Y11 Bundure -35.110 145.935
Y12 Spring Bank -35.070 146.169
Y13 Widgiewa -35.090 146.306

M9 KYEAMBA REGION
K6 Cox -35.390 147.457
K7 Wollumbi -35.394 147.566
K8 Benwerrin -35.316 147.344
K10 Alabama -35.324 147.535
K11 Silver Springs -35.272 147.429
K12 Samarra -35.227 147.485
K13 Evergreen -35.239 147.533
K14 Kyeamba Mouth -35.125 147.497

together at Kyeamba, and four are grouped at Adelong. The other eight sta-

tions are colocated with Australian Weather Service atmospheric observation

stations, which regularly monitor air temperature, humidity, wind direction

and strength, and air pressure. The second generation stations were installed in

2003 (see Table 4.2), with nine stations added at Kyeamba and twelve at Yanco

(where there was previously one station). These stations observed precipitation,

soil temperature at 15 cm, and soil moisture at three depths (0 - 30 cm, 30 -

60 cm, and 60 - 90 cm) until late 2006, when near-surface soil moisture ( 0 - 5

cm) and temperature (2.5 cm) sensors were added.

Soil moisture is measured with Campbell Scientific water content reflectome-
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ters (CS615 sensors for first generation sites, and CS616 sensors for the second

generation sites), except for the second generation near-surface sensors which

are Stevens Hydraprobe soil dielectric sensors. Calibration studies estimate an

RMSE between 0.02 m3m−3 and 0.05 m3m−3 for the Campbell Scientific sensors

(Young et al., 2008), and 0.03 m3m−3 for the Stevens Hydraprobes (Merlin et

al., 2007).

The Goulburn Monitoring Network

The Goulburn Monitoring Network was established in September 2002 in the

Goulburn River Basin. Initially it consisted of 26 stations, each observing soil

moisture at three depths (0 - 30 cm, 30 - 60 cm, and 60 - 90 cm) with Campbell

Scientific water content reflectometers. In October 2005 Stevens Hydraprobes

were installed at most sites to observe the near-surface (0 - 5cm) soil mois-

ture. While the Goulburn monitoring network is still operational, soil moisture

data are currently available only until the end of 2007, due to delays in data-

processing and telemetry failures. The Goulburn data have been used only for

the 2006 comparison of the different retrieval algorithms (Section 4.3.2) due to

their limited availability in later years. Further to this, of the 26 Goulburn

Monitoring Network stations, only the 13 stations listed in Table 4.3 have been

used here since the remaining stations either had no available near-surface soil

moisture data or significant data quality problems. The 13 stations that were

used are located close together, with less than 50 km separation between them,

and seven of the stations are within a 1 km2 focus area at Stanley.

Preparation of in situ time series

The in situ soil moisture data from the above monitoring networks have been

used in three separate comparisons below, each of which covers a different time

period. In Section 4.3.2 the AMSR-E soil moisture products from each of the

retrieval algorithms listed above have been assessed over 2006. Then in Section

4.3.3, the VUA-NASA soil moisture data have been evaluated in greater detail

from 2003-2008. In Section 4.3.5 the VUA-NASA soil moisture has been bench-

marked against the near-surface soil moisture from the ACCESS model, over

the experimental period used in Chapter 6, from April 2008 to March 2009.

To maximise the amount of data used, the in situ data have been separately

processed for each of the above-listed comparisons. In each case:
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Table 4.3: Goulburn Monitoring Network (installed in September 2002, with
shallow soil moisture sensors installed in late 2005, data not available after
2007). Only stations used here are listed (there are another 13 stations within
the network).

Code Name Latitude Longitude Notes

G1 MERRIWA REGION
Maram Park -32.25 150.32
Cullingral -32.17 150.33
Merriwa Park -32.1 150.42

G2 KRUI REGION
Illogan -32.15 150.07
Roscommon -32.17 150.15
Pembroke N -31.98 150.18
Stanley -32.1 150.13 7 stations in a 1 km2 area

• The in situ data were subsampled at the approximate time of the AMSR-

E overpasses (1:30 am/pm local time), for comparison to the colocated

AMSR-E pixel.

• For evaluation of near-surface soil moisture, only sensors within 8 cm of

the surface were included.

• If data were available from an in situ sensor for less than 80% of the

evaluation period, that sensors was excluded.

• Where there is more than one in situ sensor in an AMSR-E pixel, the

average has been calculated (after checking that all the stations reflect

similar temporal dynamics). The mean was not calculated at a given time

if any of the selected stations were missing data (to prevent the station

availability from influencing the mean).

4.2.3 Methods to compare in situ and remotely sensed

soil moisture

The AMSR-E soil moisture products have been principally assessed by compar-

ison to time series of near-surface soil moisture observations from in situ mon-

itoring stations. However, as was reviewed in Section 2.4.3, the soil moisture
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quantities observed by in situ and remote sensors are fundamentally different

(see also Section 4.3.1), and comparisons between them are best based on their

temporal dynamics, rather than their absolute values. Consequently, to focus

on comparing the temporal behaviour of the AMSR-E and in situ soil moisture

time series, the AMSR-E data have been normalised to match the statistics of

the in situ time series. This is consistent with the use of remotely sensed soil

moisture in data assimilation, since the data are typically rescaled to the model

climatology prior to assimilation (to account for the model-observation biases).

Each AMSR-E observation (θA) has been normalised to match the mean (θ)

and variance (s(θ)2) of the in situ data (θi), according to:

θ′A = (θA − θA)× (s(θi)/s(θA)) + θi (4.1)

For each AMSR-E pixel the colocated in situ data are unlikely to reflect

the absolute value of the pixel-average soil moisture. For example, it will be

demonstrated in Section 4.3.1 that there is considerable spread between the

absolute values from different monitoring stations within an AMSR-E pixel

(see Figure 4.2). Consequently, the inter-pixel differences in the in situ data

do not necessarily represent the expected inter-pixel differences in the remotely

sensed data, and the in situ data cannot be sensibly used to assess the spatial

variation in the remotely sensed data. The normalisation has then been applied

independently at each AMSR-E pixel, and the spatial patterns in the in situ

and remotely sensed data have not been compared.

Since the comparison between the in situ and remotely sensed soil moisture

seeks to establish the degree of association between them, the (Pearson product

moment) correlation coefficient (r) is the main statistic used here. The cor-

relations between the absolute values of each time series, rabs, as well as their

anomaly correlations, ranm, have been calculated. The ranm is calculated from

the anomaly between the soil moisture on each day and the surrounding 31 day

moving average. ranm measures the agreement in the short-term variability of

each time series, including the response to individual rain events, while rabs also

measures agreement between their seasonal cycles. For many data assimilation

applications, ranm is a better metric for assessing remotely sensed data, since

data are typically normalised to match the model climatology before assimila-

tion, removing much of the seasonal scale information (for an extreme example,

see Chapter 5).
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The significance of the estimated sample correlations has been tested against

the null hypothesis that the population correlation (ρ) is zero, using the test

statistic:

t = r ×
√
N − 2√
1− r2

(4.2)

Where t has a Student’s t-distribution, with N − 2 degrees of freedom for a

sample size of N (Dawdy and Matalas, 1964).

In several instances the difference between two estimated sample correlations

has been tested to determine whether one data set yields significantly higher

correlations than the other. Since the above statistic has a t-distribution only

for ρ equal to zero, it cannot be used to test the significance of the difference

between two estimates of (nonzero) ρ, and instead, a Fisher r to z transform

has been used (Yevdjevich, 1964):

z = 1/2× ln[(1 + r)/(1− r)] (4.3)

Where z is (approximately) normal, with standard error 1/
√
N − 3. The signif-

icance of the difference between the two correlation estimates has been tested

using the difference between the two z estimates (which has a normal distribu-

tion, with
√

1/(N1 − 3) + 1/(N2 − 3) standard error).

The above statistics assume that the sample correlations have been esti-

mated from random samples, yet soil moisture time series are not random, and

exhibit strong serial correlation. For example, for the Adelong time series used

in Section 4.3.2, the lag-1 auto-correlations of the in situ and VUA-NASA C-

band soil moisture were 0.964 and 0.774, respectively. Serial correlation reduces

the number of independent data in the sample, generating a bias in the statisti-

cal inference, although not in the estimation of the correlation itself (Yevdjevich,

1964). To test the significance of the correlations between two serially corre-

lated time series (with lag-1 auto-correlations of rx and ry), the sample size, N ,

must be reduced to account for the lack of independence between the samples.

Soil moisture time series can be approximated by a first-order Markov pro-

cesses (Vinnikov and Yeserkepova, 1991), and for first-order Markov processes,

an “effective sample size”, Neff , can be estimated from (Dawdy and Matalas,
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1964):

Neff = N(1− rxry)/(1 + rxry) (4.4)

Neff has been used in all statistical inference for correlation between soil mois-

ture time series. This reduces the sample size to about 10 - 30% of the number

of observations. For example, for the VUA-NASA C-band descending pass and

in situ data at Adelong over 2006, N is reduced from 293 to an Neff of 43.

4.2.4 Precipitation data

In the absence of in situ soil moisture observations for most of Australia, maps

of AMSR-E derived soil moisture have been qualitatively compared to precip-

itation maps to check the realism of the continental scale spatial patterns in

the AMSR-E data. Since precipitation is the dominant forcing of soil moisture

at atmospheric time scales, a strong spatial correlation is expected between

near-surface soil moisture and precipitation. The precipitation maps have been

prepared from the BoM’s daily rain-gauge analysis (Weymouth et al., 1999),

which analyses daily precipitation observations (to 9 am) from approximately

6000 rain-gauges across Australia onto a 0.25◦ grid.

4.3 Results

4.3.1 In situ soil moisture as a proxy for the area-average

As reviewed in Section 2.4.3 remote sensors observe an area-average soil mois-

ture, typically with a resolution of tens of km, while in situ sensors observe the

soil moisture at a point, and yet soil moisture variability is controlled by differ-

ent processes across these two scales (Vinnikov et al., 1999; Entin et al., 2000;

Robock et al., 2000). To highlight the importance of this issue, and specifically

its consequences for comparing in situ and area-average (modeled or remotely

sensed) soil moisture estimates, the variation between the in situ soil moisture

observations from different monitoring stations within an AMSR-E pixel is ex-

amined here. Figure 4.2 shows time series of the in situ observations from the

five monitoring stations at Kyeamba that will be used to estimate the Kyeamba-

A pixel average for comparison to the ACCESS model soil moisture in Section
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Figure 4.2: Time series of soil moisture observations (m3m−3) for each layer
over 2008, from five in situ soil moisture sensors at Kyeamba: K1 (blue), K2
(red), K3 (green), K5 (yellow), and K7 (purple), together with their mean
(black).
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4.3.5. In layer one, the timing of the precipitation signal was similar at all

stations, since they were all subject to similar (large scale) atmospheric forcing.

However the precipitation responses recorded at each station were different, in

terms of the magnitude and persistence of the precipitation induced spikes, due

to (small scale) variability between the land surface characteristics at the dif-

ferent stations. For example, K7 showed a greater response and more rapid

dry-down after each rain event. At longer time scales, the different stations

had similar seasonal cycles, although there were still differences. Most notably,

K7 dried more rapidly after winter, and K1 was elevated relative to the other

stations from August onwards. Table 4.4 presents statistics describing the fit

between the layer one soil moisture observations from all possible combinations

of the stations plotted in Figure 4.2, using the same statistics that will be used

to compare the AMSR-E and in situ soil moisture observations. For these differ-

ent combinations rabs ranged between 0.71 - 0.97, and ranm ranged between 0.69

- 0.92, while the RMSD was between 0.021 - 0.081 m3m−3. These statistics pro-

vide an indication of the upper performance limit that might be expected from

comparing time series of individual point-based observations of soil moisture to

Table 4.4: RMSD, correlation, and anomaly correlation between layer one
soil moisture from the individual monitoring stations in the Kyeamba-A pixel,
for April ’08 to April ’09. For each statistic the minimum and maximum off-
diagonal values are in bold.

RMSD (m3m−3)
K1 K2 K3 K5 K7

K1 0.000 - - - -
K2 0.036 0.000 - - -
K3 0.045 0.021 0.000 - -
K5 0.039 0.028 0.021 0.000 -
K7 0.081 0.073 0.075 0.067 0.000

rabs

K1 K2 K3 K5 K7
K1 1.00 - - - -
K2 0.85 1.00 - - -
K3 0.81 0.97 1.00 - -
K5 0.81 0.96 0.97 1.00 -
K7 0.71 0.75 0.72 0.81 1.00

ranm

K1 K2 K3 K5 K7
K1 1.00 - - - -
K2 0.84 1.00 - - -
K3 0.85 0.89 1.00 - -
K5 0.81 0.84 0.92 1.00 -
K7 0.70 0.69 0.79 0.87 1.00
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area-averages. Additionally, previous studies have indicated that the expected

RMSD between soil moisture at the point scale and the typical satellite foot-

print scale is closer to the upper-limit of the RMSD values obtained here: by

comparison of a very large (36,000) number of in situ observations Famiglietti

(2008) obtained a RMSD estimate of 0.07 m3m−3, while Miralles et al. (2010)

used triple collocation to compare soil moisture from remote sensing, an in situ

sensor, and a land surface model, and obtained an estimate of 0.06 m3m−3.

Soil moisture observations from the nonsurface soil layers have not been used

in this chapter, however they will be used in Chapter 6, and so the in situ obser-

vations throughout the soil profile are also considered here. Comparing the soil

moisture time series from each observation depth in Figure 4.2, demonstrates

that the rapid fluctuations at the surface are filtered as the surface moisture

infiltrates through the soil profile. The rate of infiltration will depend on the

(small scale) soil properties. While there is good agreement between the layer

two soil moisture time series from the different monitoring sites, there is sub-

stantial spread in their absolute values in layers three and four (> 0.2 m3m−3 in

some cases). For the two deepest layers there was good agreement in the main

temporal dynamics at each station, although there were occasional diversions

from this. For example, K1 and K7 show a delayed response to the rain in July,

despite both having responded to the same rain events in layer one. Also layers

three and four at K2 and K3 show a signal of two rain events in August and

September that are not evident in these layers at the other sites.

The statistics of fit between the different in situ observations (equivalent

to Table 4.4) for the nonsurface layers are included in Appendix C. Since the

RMSD is influenced by biases, it decreases from layers one to two, before in-

creasing in layers three and four. The rabs was consistently very high in each

layer, and in most instances it increased with depth (since short-term variability

is decreased), and was between 0.86 and 0.99 in layer four. In contrast ranm

decreased with depth, to the extent that it was negative at M7 in layers three

and four, and also at M1 in layer four, due to the different temporal behaviour

in these layers noted above. In layer four rabs was between -0.48 to 0.97. These

results suggest that in situ soil moisture observations are of limited value for as-

sessing the anomaly correlation (arguably the most important of the evaluation

statistics used here) of large scale soil moisture estimates in individual layers

below the surface.

The lowest panel in Figure 4.2 shows the estimated root-zone soil moisture
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at each station, calculated by aggregating the observations in all layers (giving

an observation of the uppermost 90 cm). There is still considerable spread in

the absolute root-zone soil moisture at the different monitoring sites, however

the similarity in the temporal behaviour at each site appears stronger than in

any of the individual layers. Consequently, in nearly all instances rabs for the

root-zone soil moisture is better than for the individual layers, with a range

of 0.89 to 0.99. The ranm is also improved in most instances, compared to

the values from individual soil layers. In particular, K1 and K7 do not have

negative ranm as had occurred in some of the individual layers, although the

values are still rather low for K7 (between 0.39 and 0.58). At the remaining

sites ranm is consistently high, and is generally higher than in the individual

layers, and is between 0.88 and 0.93. From these results, and particularly the

improved ranm statistics, it is concluded that evaluation of large scale estimates

of nonsurface soil moisture using in situ observations should be based on the

bulk soil moisture over the root-zone (or some other depth of the order of 1 m).

Additionally, the poor agreement between the nonsurface soil moisture from

K7 and the other monitoring sites, even after a bulk root-zone estimates are

compared, highlights that in some instances the soil moisture from an individual

monitoring site is simply not representative of the area-averaged behaviour, and

comparisons between in situ and area-averaged soil moisture estimates should

be interpreted with this in mind.

4.3.2 Inter-comparison of the AMSR-E soil moisture re-

trievals

Soil moisture from each retrieval algorithm has been compared to in situ ob-

servations over 2006 for the descending AMSR-E overpass. After screening and

processing the in situ data as described in Section 4.2.2, in situ time series were

obtained for the 11 AMSR-E pixels listed in Table 4.5. For the Murrumbidgee

network the second generation sites did not yet have near-surface soil moisture

sensors, A2 was no longer operating, and M3 had no data for the last three

months of 2006, and these stations were excluded. The remaining stations in-

cluded five (K1, K2, K3, K4, K5) at Kyeamba (M9), four (A1, A3, A4, A5) at

Adelong (M10), and eight others throughout the Murrumbidgee basin. For the

Goulburn monitoring network, there were three stations within a single pixel

at Merriwa (G1), and ten within a nearly adjacent pixel at Krui (G2; see Ta-
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ble 4.3), including seven at Stanley. To prevent local conditions in the Stanley

focus area from dominating the pixel average at Krui, the average of the seven

Stanley stations was treated as a single observation when calculating the Krui

pixel average time series.

The AMSR-E soil moisture time series have been compared to the in situ

time series over 2006, both before and after normalising the AMSR-E data

with equation 4.1. Examples of the original soil moisture time series are given

in Figure 4.3 for Kyeamba in the Murrumbidgee network, and in Figure 4.4

for Krui in the Goulburn network; plots for the remaining monitoring stations

are in Appendix D. Additionally, the equivalent plots for the normalised time

series are given in Figures 4.5 and 4.6, and Appendix E, respectively. Finally,

descriptive statistics for each data set are provided in Table 4.5, and statistics

describing the fit between the AMSR-E and in situ data are provided in Table

4.6.

There were substantial differences between the various AMSR-E soil mois-

ture data sets, in terms of both their climatology and their agreement with

the in situ data. The VUA-NASA and USDA time series had quite different

climatologies to the in situ data. Both of these data sets had a greater seasonal

amplitude than the in situ data (see Figures 4.3 and 4.4), and the VUA-NASA

data sets also had more short-term variability. As a result, the standard devia-

tions in Table 4.5 for VUA-NASA (range: C-band 0.08 - 0.13 m3m−3, X-band

0.07 - 0.11 m3m−3) and USDA (range: 0.05 - 0.15 m3m−3) are consistently

much larger than for the in situ data (range: 0.03 - 0.08 m3m−3). Also there

were often large biases in the VUA-NASA (max C-band: 0.16 m3m−3 at M1 ,

X-band 0.12 at G1) and USDA (max: 0.13 m3m−3 at M6) data sets. In con-

trast, the NASA and JAXA data sets had smaller biases (max: NASA 0.05

m3m−3 at M2, JAXA -0.04 m3m−3 at M4), and lower standard deviations, par-

ticularly for NASA, which consistently had standard deviations lower than the

in situ data (range: 0.01 - 0.02 m3m−3). The temporal coverage differed for the

AMSR-E data sets, and was particularly low for JAXA, with a mean of 198 days

(compared to 268 days for VUA-NASA (C- and X-band), 262 days for USDA,

and 256 days for NASA). It is not known why the JAXA coverage was lower,

however it is likely due to technical problems, lack of algorithm convergence, or

quality control procedures.

At the Murrumbidgee sites, the VUA-NASA data sets qualitatively reflected

the temporal behaviour of the in situ time series better than the other retrieval
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Figure 4.3: Comparison of in situ (solid lines) and original (not normalised)
AMSR-E (red diamonds) near-surface soil moisture (m3m−3) for each retrieval
algorithm, at Kyeamba (M9) over 2006.
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Figure 4.4: Comparison of in situ (solid lines) and original (not normalised)
AMSR-E (red diamonds) near-surface soil moisture (m3m−3) for each retrieval
algorithm, at Krui (G2) over 2006.
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Figure 4.5: Comparison of in situ (solid lines) and normalised AMSR-E (red
diamonds) near-surface soil moisture (m3m−3) for each retrieval algorithm, at
Kyeamba (M9) over 2006.
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Figure 4.6: Comparison of in situ (solid lines) and normalised AMSR-E (red
diamonds) near-surface soil moisture (m3m−3) for each retrieval algorithm, at
Krui (G2) over 2006.
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algorithms did. The timing of the seasonal cycle, and the response to precip-

itation, in both the C- and X-band VUA-NASA data sets agreed closely with

the in situ time series in each of the Murrumbidgee plots (see Figure 4.5 and

Figures E.1 to E.8 in Appendix E). In contrast, the other data sets often di-

verged from the in situ data, and in most cases they did not capture the timing

of the seasonal cycle. Additionally, there is a clear monotonic relationship be-

tween scatterplots of the VUA-NASA and in situ soil moisture in Figure 4.3 and

Appendix D. In these plots the gradient of the scatterplots is steeper than the

1:1 line, indicating the VUA-NASA retrievals were more sensitive to changes

in soil moisture than the in situ data (recall the enhanced seasonal cycle in the

VUA-NASA time series). It is interesting to note that the gradient at most sites

was slightly steeper for drier soils, which is likely a consequence of the shallower

depth of the AMSR-E observations, since soil drying occurs more rapidly close

to the surface in dry conditions (Li and Islam, 2002). At M4 and M6 the VUA-

NASA scatterplots showed a clear departure from linearity, with more than one

linear regime over the year.

The statistics in Table 4.6 confirm that the VUA-NASA retrievals had the

best fit to the in situ data across the Murrumbidgee sites. For both VUA-NASA

data sets rabs was significant at all sites, including values of 0.77 (C-band) and

0.84 (X-band) for Figure 4.3 at Kyeamba, and a range of 0.69 - 0.91 (C-band)

and 0.61- 0.91 (X-band) across the Murrumbidgee sites. In contrast the other

data sets did not have consistent monotonic relationships to the in situ data,

giving lower rabs of between -0.03 - 0.57 for NASA, 0.07 - 0.77 for JAXA, and

0.30 - 0.75 for USDA (including values of 0.29, 0.64, and 0.39, respectively at

Kyeamba). Additionally, rabs was not always significant for the other data sets,

particularly for NASA and USDA.

For all of the AMSR-E data sets the agreement between the AMSR-E and

in situ soil moisture was not as good at the Goulburn sites as it was at the Mur-

rumbidgee sites, although the VUA-NASA data sets again had the best agree-

ment. At both Goulburn sites (see Figure 4.6, and Figure E.9 in Appendix E for

Merriwa) the in situ time series consisted of a series of rain-induced peaks, with

low base values in between. Both VUA-NASA time series detected the timing

of the rain-induced maxima well, although the maxima themselves were under-

estimated. Also in the first half of the year the VUA-NASA time series drifted

upwards in between the precipitation events (by ∼0.15 m3m−3 in Figure 4.4),

while the in situ data remained low. There is a reasonably linear relationship in
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the scatterplots comparing the VUA-NASA and in situ data at the Goulburn

sites, although the AMSR-E data has more spread (C-band: rabs=0.73, 0.73,

X-band: rabs=0.71, 0.69, at Krui and Merriwa respectively). The remaining

algorithms did not agree with the in situ time series as well. Before normalisa-

tion, the NASA time series had little detectable variability in Figure 4.6 (rabs

= 0.36, 0.22), while JAXA (rabs =0.46, 0.27) and USDA (rabs =0.43, 0.35) both

detected some, although not all, of the rain induced soil moisture maxima.

The anomaly correlation statistics also indicate that the VUA-NASA data

sets had the best agreement with the in situ time series. Scatterplots comparing

the AMSR-E and in situ anomalies at Kyeamba are shown in Figure 4.7 (the

C-band VUA-NASA plot is not included since it similar to the X-band VUA-

NASA plot). For all of the retrieval algorithms the data are clustered about

the origin, however the data points further from the origin for both VUA-

NASA (ranm=0.62) and USDA (ranm=0.40) show a weak linear relationship.

In contrast NASA (ranm=0.29) and JAXA (ranm=0.24) had a much weaker

relationship. Across all of the sites ranm ranged between 0.34 - 0.77 for C-

band VUA-NASA, and from 0.26 - 0.76 for X-band VUA-NASA, compared

to 0.32 - 0.68 for USDA, 0.09 - 0.51 for JAXA, and 0.21 - 0.54 for NASA.

While ranm was significant at almost all locations for all retrieval algorithms,

the correlations were generally quite small, indicating a significant but weak

relationship between the remotely sensed and in situ data. Except for the

Goulburn sites and for the NASA data set, ranm was generally less than rabs.

For VUA-NASA, ranm was about 0.3 lower than rabs at each Murrumbidgee

site, indicating that a substantial portion of rabs between the VUA-NASA and

in situ soil moisture was due to their similarities at time scales beyond one

month. In contrast, at the Goulburn sites, where none of the retrievals detected

the seasonal cycle accurately, the calculation of the anomalies improved the

agreement between the in situ and remotely sensed data, and ranm was slightly

higher than rabs.

The RMSD has also been included in Table 4.6 to give a measure of the

absolute agreement between the AMSR-E and in situ time series. However,

for the original AMSR-E time series the RMSD does not necessarily measure

the accuracy of the AMSR-E observations, since it will be influenced by biases,

which are as likely due to the mismatch in the horizontal and vertical scales

of the two different observations types as to errors in the remotely sensed data

(recall the spread between the different in situ stations in Figure 4.2 for a
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Figure 4.7: Scatterplots of the AMSR-E soil moisture anomalies vs. the in
situ anomalies over 2006 at Kyeamba (both in m3m−3), for the X-band retrieval
algorithms.

single AMSR-E pixel). The normalised RMSD must also be interpreted with

caution, since it contains a signal of the variance of the in situ time series.

Despite this the normalised RMSD is useful for inter-comparing the different

remotely sensed data sets at each location. Again, the best results were obtained

for VUA-NASA, and the two lowest normalised RMSD at each site were for

the two VUA-NASA data sets, which had a value between 0.02 - 0.03 m3m−3

at most Murrumbidgee sites, with larger values (up to 0.06 m3m−3) at the

Goulburn sites. The VUA-NASA normalised RMSD were also lower than the

standard deviation of the in situ data at all sites1. The other data sets had

higher normalised RMSD statistics, of between 0.03 - 0.04 m3m−3 at most

Murrumbidgee sites, and higher again at the Goulburn sites. Additionally, the

normalised RMSD for NASA was larger than the in situ standard deviation at

most sites, while the JAXA and USDA retrieval algorithms had RMSD higher

1The standard deviation gives the RMSD that would be obtained from a time series equal
to the mean value at all times.
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78 4. Remotely Sensed Soil Moisture over Australia

than the in situ standard deviation at about half the sites (interestingly these

are mostly the same sites for both data sets: M1, M2, M10, G1, and G2 - and

also at G9 for JAXA).

In summary, of the five AMSR-E data sets examined here the two VUA-

NASA retrievals (C- and X- band) had the best fit to the in situ data from the

Murrumbidgee and Goulburn Monitoring Networks over 2006. This finding is

consistent with previous inter-comparisons between the VUA-NASA and NASA

data sets; for example Wagner et al. (2007) and Rüdiger et al. (2009) in Table

2.1. All of the AMSR-E data sets had a stronger fit to the in situ observations

from the Murrumbidgee than from the Goulburn Network. Qualitatively, both

VUA-NASA data sets could detect the step-changes in the in situ data asso-

ciated with precipitation events, and the correlation between the in situ data

and the VUA-NASA time series were generally above 0.7 and consistently sig-

nificant. While the other data sets often had significant correlations (with the

exception of NASA), the portion of explained variance was less than for VUA-

NASA. Additionally, the normalised RMSD between the AMSR-E and in situ

soil moisture was smaller for the VUA-NASA data sets (except at M2 for VUA-

NASA X-band). For brevity, results were presented here for the descending

(nighttime) AMSR-E overpass only, however an assessment of the soil moisture

retrieved from each algorithm for the ascending AMSR-E overpass produced

the same conclusions.

Based on the above inter-comparison, the VUA-NASA product has been

selected for use in the assimilation experiments in the following chapters. The

remainder of this chapter is focused on understanding the capabilities of the

VUA-NASA data sets, including the identification of any differences between

the soil moisture estimated from the C- and X-band observations, and from the

ascending and descending AMSR-E overpasses.

4.3.3 Assessment of VUA-NASA AMSR-E soil moisture

Temporal assessment against in situ observations

While one year of data was sufficient to establish the superior performance of

the VUA-NASA retrieval algorithm, comparison over a longer period will allow

a more robust evaluation of the data, and the comparison is now extended to a

six year period. After screening the data as described in Section 4.2.2, in situ

time series were obtained over 2003-2008 for the nine AMSR-E pixels in the
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80 4. Remotely Sensed Soil Moisture over Australia

Murrumbidgee Monitoring Network listed in Table 4.7. The Goulburn data are

available for less than two years, and were excluded, together with the second

generation Murrumbidgee sites, which did not have near-surface soil sensors for

most of the this period. Additionally A2 and M3 were also excluded due to

insufficient data coverage. Of the remaining stations five (K1, K2, K3, K4, K5)

are at Kyeamba (M9), four (A1, A3, A4, A5) are at Adelong (M10), and six

others are spread throughout the Murrumbidgee basin.

Descriptive statistics for the in situ and VUA-NASA time series at each

site are provided in Table 4.7, for both the ascending and descending AMSR-E

overpass, and for the C- and X-band observations. The coverage of the AMSR-

E data was unusually poor at M2, where the lowest coverage over 2003-2008

was 49% for the X-band descending overpass (and the highest was 69% for the

C-band ascending overpass), compared to a mean of 70% for the descending

overpass and 71% for the ascending overpass. This low coverage was likely due

to localised RFI, as M2 is at a major airport. The slightly reduced coverage of

the in situ data at M2 (close to 90%) is unrelated and was due to an equipment

failure in mid-June 2008.

The in situ and original VUA-NASA time series are plotted in Figure 4.8

for Kyeamba, and in Appendix F for the remaining sites. The most striking

features of these plots is that the VUA-NASA data sets had much more short-

term variability than the in situ data, and also a more exaggerated seasonal

cycle, particularly for the descending overpass. The short-term variability will

be partly due to the shallower soil layer observed by AMSR-E (1 cm for C-band,

and less for X-band) compared to the in situ sensors (5 - 8 cm), since the shallow

surface layer will respond more rapidly to atmospheric forcing. However, it is

likely that a substantial portion of the short-term variance in the AMSR-E data

is from noise in the observations. As well as the usual sampling uncertainties of

remotely sensed data, the method used to map the swath data onto the 0.25◦

grid introduces small errors. The AMSR-E value for each grid cell is the mean

of all (NSIDC Level 1) swath data for which the foot-print is centred on that

grid cell (Owe et al., 2008). Due to the progression of the AMSR-E orbit, the

land area (and hence soil moisture) contributing to each grid cell varies from

day to day, with a 16-day cycle.

The normalised VUA-NASA time series for Kyeamba are plotted in Figure

4.9, and the remaining Murrumbidgee sites are plotted in Appendix G. These

plots highlight that in general the AMSR-E time series predicted the timing and
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4.3 Results 81

relative amplitude of the in situ seasonal cycle in each year, with the exception

of M6, where the onset and relative amplitude of the winter maxima differ.

There were other differences between the two, including the tendency for the

AMSR-E time series to drift upwards in the spring of 2005, when the in situ

data remained low. Due to these differences rabs and the normalised RMSD for

the 6 year period in Table 4.8 suggest a poorer fit than the 2006 statistics in

Table 4.6. For the descending overpass, rabs over the 6 years was about 0.1 to

0.2 lower than over 2006, and ranged between 0.53 - 0.82 for C-band, and 0.52

- 0.80 for X-band. The ascending overpass had similar rabs, of between 0.51 -

0.79 for C-band, and 0.52 - 0.79 for X-band. For both overpasses all estimated

correlations were significant at 1%, and the RMSD were again lower than the

in situ standard deviation at all sites (except M2, for the X-band descending

overpass). In contrast to rabs, the anomaly correlations for the 6 year period

and for 2006 were similar, since ranm is robust to interannual differences in

seasonal behaviour. For the descending overpass ranm was between 0.31 - 0.65

for C-band, and 0.29 - 0.65 for X-band, and the ascending overpass values were

similar, between 0.27 - 0.55 for C-band, and 0.30 - 0.63 for X-band.2

C-band passive microwave data are expected to yield more accurate soil

moisture than the shorter-wavelength X-band data. However, it is difficult to

discern a consistent difference between them in the plots in Figure 4.9 and Ap-

pendix G. In Table 4.7 the mean soil moisture (and hence the biases) in the

C- and X-band AMSR-E data differ, most notably at M2 and M10. These dif-

ferences suggest possible errors, since the C- and X-band observations occur at

the same time and use the same retrieval parameters. However, they could also

be due the different depth of soil observed by each wavelength. The statistics

in Table 4.8 slightly favour the C-band overpass for the descending AMSR-E

overpass only. For the descending overpass, rabs was higher and the RMSD was

lower for the C-band data at seven of the nine sites, but for the ascending over-

pass the C-band time series correlations were higher and the RMSD was lower

at just two sites, with another two that were equal. For both overpasses, the

difference between the correlations for the C- and X-band overpasses was not

2With the longer data record available in this section, the anomaly correlation could have
been reported relative to the climatological mean 31 day moving average (rather than the 31
day mean for the present year only). This method was tested, and yielded slightly higher
rabs across the Murrumbidgee, indicating that in general the in situ and remotely sensed
soil moisture data have similar interannual variability in their seasonal cycles. However, this
method has not been reported here for consistency with the remainder of the thesis, where
only one year of data is available.
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82 4. Remotely Sensed Soil Moisture over Australia

Figure 4.8: Time series of in situ (black) and original (not normalised) AMSR-
E (red) near-surface soil moisture (m3m−3) from the VUA-NASA retrieval al-
gorithm at Kyeamba (M9), from 2003-2008.
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4.3 Results 83

Figure 4.9: Time series of in situ (black) and normalised AMSR-E (red)
near-surface soil moisture (m3m−3) from the VUA-NASA retrieval algorithm
at Kyeamba (M9), from 2003-2008.
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84 4. Remotely Sensed Soil Moisture over Australia

Table 4.8: Statistics of fit between the VUA-NASA AMSR-E soil moisture
time series and the in situ data for 2003-2008. The RMSD is provided for both
the original and normalised AMSR-E time series. Bold correlations indicates
significance at the 1% level.

VUA-NASA C - Dsc. VUA-NASA X - Dsc.
rabs ranm RMSD (m3m−3) rabs ranm RMSD (m3m−3)

raw norm raw norm
M1 0.62 0.43 0.180 0.028 0.66 0.51 0.135 0.026
M2 0.56 0.33 0.169 0.028 0.52 0.33 0.090 0.031
M4 0.82 0.62 0.053 0.034 0.80 0.60 0.065 0.035
M5 0.72 0.60 0.094 0.023 0.65 0.59 0.117 0.025
M6 0.53 0.31 0.096 0.049 0.52 0.29 0.111 0.050
M7 0.66 0.49 0.080 0.024 0.61 0.50 0.094 0.026
M8 0.81 0.65 0.083 0.033 0.80 0.65 0.097 0.034
M9 0.65 0.40 0.092 0.061 0.74 0.62 0.090 0.053
M10 0.77 0.43 0.170 0.043 0.70 0.53 0.115 0.050

VUA-NASA C - Asc. VUA-NASA X - Asc.
rabs ranm RMSD (m3m−3) rabs ranm RMSD (m3m−3)

raw norm raw norm
M1 0.61 0.46 0.164 0.028 0.67 0.54 0.134 0.025
M2 0.60 0.27 0.193 0.026 0.70 0.47 0.097 0.023
M4 0.79 0.55 0.045 0.035 0.79 0.54 0.049 0.035
M5 0.57 0.40 0.102 0.028 0.62 0.44 0.103 0.026
M6 0.51 0.30 0.086 0.051 0.52 0.30 0.089 0.050
M7 0.55 0.50 0.084 0.026 0.58 0.55 0.085 0.026
M8 0.78 0.55 0.082 0.034 0.78 0.59 0.077 0.034
M9 0.78 0.49 0.085 0.049 0.75 0.63 0.073 0.051
M10 0.79 0.40 0.181 0.042 0.73 0.48 0.107 0.047
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4.3 Results 85

significant at 1%. Additionally, comparison of ranm did not consistently favour

either wavelength.

The descending (nighttime) AMSR-E overpass was expected to produce

more accurate soil moisture than the ascending (daytime) overpass. For the

original AMSR-E data plotted in Figure 4.8, the descending overpass had more

variance, and had a more exaggerated seasonal cycle, and in particular the

summer minima were much lower (contrary to expectation that bare-soil evap-

oration would generate a greater tendency toward dry-end values during the

day). This suggests that the descending overpass was more sensitive to changes

in near-surface soil moisture. However, the descending overpass also had more

short-term variability, which was likely due to both noise and a true signal. This

behaviour occurred across all of the Murrumbidgee sites, resulting in higher

standard deviations for the descending overpass than for the ascending over-

pass for both wavelengths in Table 4.7. Despite these differences, there are no

obvious differences between the normalised time series plots for each wavelength

(see Figure 4.9 and Appendix G). Also, the statistics in Table 4.8 suggest that

for C-band at least, the descending overpass may be slightly more accurate than

the ascending overpass: rabs is higher, and the RMSD is lower at six of nine

sites. However, for the ascending overpass the C-band has better statistics at

just four locations (with one site having equal statistics). Again, the differ-

ences between the absolute correlations were not significant, and the anomaly

correlation did not consistently favour either overpass.

Spatial assessment against related observations

In this section the realism of the spatial patterns in the AMSR-E soil moisture

is checked by qualitative comparison against observed precipitation and veg-

etation greenness across Australia. Maps of the mean monthly soil moisture

from AMSR-E in January and June are shown in Figure 4.10, and maps of the

equivalent monthly precipitation and mean NDVI are shown in Figure 4.11. At

the continental scale, the mean soil moisture reflects the precipitation patterns

in each month. In January, the extremely high monsoonal rain (∼ 200 to ∼ 600

mm/month) in tropical north Australia is evident in the mean monthly soil

moisture, as are the smaller regions of elevated precipitation (∼ 100 mm) along

the east coast. However, the rainfall (∼ 100 mm) in Western Australia is not

reflected in the soil moisture maps, likely due to the precipitation signal being

reduced by the episodic nature of rainfall there (most of the monthly total fell
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86 4. Remotely Sensed Soil Moisture over Australia

a) C-band asc. b) C-band asc.

c) C-band dsc. d) C-band dsc.

e) X-band asc. f) X-band asc.

g) X-band dsc. h) X-band dsc.

JANUARY JUNE

Figure 4.10: Monthly mean AMSR-E soil moisture (m3m−3) across Australia,
from the C-band ascending overpass (first row), C-band descending overpass
(second row), X-band ascending overpass (third row), and the X-band descend-
ing overpasses (fourth row), for January (left) and July (right), 2006.
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4.3 Results 87

a) Precip. b) Precip.

e) NDVI d) NDVI

JANUARY JUNE

Figure 4.11: Monthly mean precipitation (in mm; first row), and NDVI (sec-
ond row), for January (left) and July (right), 2006.

in the first 2 weeks of the month), combined with the extremely high potential

evaporation3. In June, the winter precipitation across east Australia is also

evident in the soil moisture maps. As with the time series plots above, the

descending overpass soil moisture has a stronger contrast between wet and dry

regions in Figure 4.10, and in particular it has a stronger signal of the rain in

tropical north Australia in January, particularly for C-band. The mean monthly

X-band and C-band maps are quite similar, although there is less contrast be-

tween the wet- and dry-end conditions in the X-band maps.

At finer spatial scales, two other features are evident in the AMSR-E soil

moisture maps; ephemeral salt-lakes and vegetation cover. Inland water bodies

have been outlined in black in Figure 4.10, and many arid-zone lakes are iden-

tifiable as regions of elevated soil moisture. Most of these are ephemeral salt

lakes, which fill only during flood events, and the elevated soil moisture may

be due to ground-water discharge, possibly combined with a surface salt crust

3The BoM estimates the annual mean average pan evaporation across inland West Aus-
tralia to be between 2000 and 4000 mm/year.
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88 4. Remotely Sensed Soil Moisture over Australia

13 July

14 July

15 July

Figure 4.12: Maps of the C-band AMSR-E daily near-surface soil moisture
anomaly (m3m−3), with 10 mm precipitation contours for 13 - 15 July, 2006,
based on the average of the ascending and descending AMSR-E retrievals. Black
indicates no AMSR-E data.
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4.3 Results 89

acting to reduce surface moisture evaporation. There is also a strong correspon-

dence between the maps of monthly soil moisture and monthly NDVI in Figure

4.11. This correspondence could be due to either a true relationship between

elevated soil moisture and vegetation vigour, or to vegetation artefacts in the

soil moisture retrievals. Even if these are vegetation artefacts, in Section 4.3.3

the AMSR-E data still showed a strong soil moisture signal in the presence of

dense vegetation (recall that the Murrumbidgee Monitoring Network includes

some relatively densely vegetated sites).

In addition to the monthly averages in Figure 4.10, there is also a strong

spatial relationship between the AMSR-E soil moisture and precipitation at

shorter time scales. Figure 4.12 shows examples of positive daily soil moisture

anomalies, indicating daily wetting, together with 10 mm daily precipitation

contours, from 13-15 July, 2006. This period was selected as an example of wide-

spread precipitation preceded by a dry spell. In each panel of the Figure there

is a clear pattern of elevated soil moisture in the regions of precipitation. There

is some mismatch between the locations of each, some of which will be due to

timing differences between the two observations: precipitation is observed over

the 24 hours to 9 am, while the AMSR-E maps are an average of the anomaly

at 1:30 am and 1:30 pm (the mean was used to maximise the spatial coverage

of the soil moisture maps).

Implications of the VUA-NASA soil moisture assessment

For both the C- and X-band AMSR-E data, the positive assessment of the

VUA-NASA soil moisture over 2006 in Section 4.3.2 has been confirmed by

extending the temporal comparison to the in situ data from Murrumbidgee

monitoring network to a 6 year period, and by qualitatively comparing maps

of the AMSR-E soil moisture against observed precipitation and vegetation.

While the C-band passive microwave data were expected to yield more accurate

estimates of soil moisture than the longer X-band wavelengths, neither wave-

length yielded consistently better results. Despite this, the C-band VUA-NASA

product is selected for use in the assimilation experiments, since it is theoret-

ically favoured and RFI is not problematic in Australia. However, in regions

where RFI prevents the use of C-band data, these results indicate that the X-

band soil moisture product could be confidently used. Likewise, the (nighttime)

descending AMSR-E overpass was theoretically favoured over the (daytime) as-

cending overpass data. While the descending overpass showed more sensitivity
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90 4. Remotely Sensed Soil Moisture over Australia

to changes in soil moisture, both temporally (Figures 4.8 and Appendix F)

and spatially (Figure 4.10), neither overpass consistently had better agreement

with the in situ data. The descending overpass has been selected for use in

the assimilation experiments in preference to the ascending overpass data, since

it is theoretically favoured. However, these results suggest that the ascending

overpass data could also be used without loss of accuracy.

Note that the best statistics for the association between the AMSR-E and

in situ observations in Table 4.8 are similar to the statistics comparing the

in situ time series from different sensors within a single pixel in Table 4.4.

Consequently, it is possible that the above inter-comparisons of the soil moisture

time series from different AMSR-E wavelengths and overpasses did not produce

differing levels of skill (despite differences being expected) due to the limited

accuracy with which the in situ data represents the area-average soil moisture

observed by AMSR-E.

4.3.4 A filter for AMSR-E soil moisture

The VUA-NASA soil moisture time series consistently had much greater short-

term variability than the in situ data. While some of this short-term variability

is likely due to noise in the AMSR-E signal, much of it will be due to the

shallower depth of AMSR-E observations (compared to the in situ data). Con-

sequently, an exponentially weighted moving average filter is presented here to

filter the noise in the AMSR-E data, and hence reduce the systematic differ-

ences between soil moisture from AMSR-E and from (observed or modeled) soil

moisture over a deeper layer. This is the same as the “exponential filter” that

is commonly applied to ERS and ASCAT data (Wagner et al., 1999) to ex-

trapolate the near-surface surface observations to a deeper soil moisture layer,

however it is used here principally to reduce temporal noise. Qualitatively, the

filtered AMSR-E time series at Kyeamba in Figure 4.13 has a better fit to the

in situ data, since it is less noisy than the original data, while still accurately

detecting precipitation events. The quantitative agreement with the in situ data

is also improved (note that applying a filter will in general improve correlation

statistics by reducing variability about the mean). Comparing the statistics for

the original and filtered AMSR-E data sets in Tables 4.8 and 4.9 shows that the

filter increased rabs by about 0.1 in most cases. Since ranm is more susceptible

to noise, it increased more dramatically, by 0.1 to 0.3 in most cases, giving
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Figure 4.13: Time series of near-surface soil moisture (m3m−3) from C-band
descending overpass AMSR-E (red), and Murrumbidgee Monitoring Network
observations (black), for April 08 - April 09. The AMSR-E data have been
normalised to the mean and variance of the in situ data, and filtered with an
exponential moving average filter.
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Table 4.9: Statistics of fit between the filtered VUA-NASA AMSR-E soil
moisture time series and the in situ data for 2006. The RMSD is provided
for both the original and normalised AMSR-E time series. Bold correlations
indicates significance at the 1% level.

VUA-NASA C - Dsc. VUA-NASA X - Dsc.
rabs ranm RMSD (m3m−3) rabs ranm RMSD (m3m−3)

raw norm raw norm
M1 0.77 0.72 0.161 0.021 0.79 0.77 0.123 0.020
M2 0.69 0.55 0.153 0.024 0.68 0.57 0.064 0.026
M4 0.87 0.77 0.042 0.029 0.83 0.75 0.056 0.032
M5 0.76 0.76 0.086 0.021 0.68 0.75 0.111 0.024
M6 0.63 0.55 0.084 0.044 0.59 0.53 0.102 0.046
M7 0.75 0.70 0.072 0.021 0.67 0.70 0.089 0.024
M8 0.82 0.75 0.078 0.031 0.81 0.73 0.092 0.033
M9 0.77 0.55 0.061 0.050 0.79 0.70 0.075 0.048
M10 0.87 0.59 0.155 0.033 0.77 0.69 0.096 0.044

VUA-NASA C - Asc. VUA-NASA X - Asc.
rabs ranm RMSD (m3m−3) rabs ranm RMSD (m3m−3)

raw norm raw norm
M1 0.71 0.69 0.160 0.024 0.78 0.79 0.125 0.021
M2 0.74 0.40 0.176 0.021 0.78 0.59 0.084 0.020
M4 0.87 0.76 0.038 0.028 0.87 0.77 0.038 0.027
M5 0.67 0.66 0.097 0.024 0.71 0.70 0.098 0.023
M6 0.61 0.56 0.078 0.046 0.63 0.56 0.080 0.045
M7 0.64 0.67 0.080 0.024 0.66 0.72 0.079 0.023
M8 0.85 0.73 0.078 0.028 0.85 0.75 0.071 0.028
M9 0.83 0.57 0.075 0.043 0.81 0.69 0.061 0.045
M10 0.84 0.48 0.175 0.037 0.81 0.65 0.088 0.040

values between 0.55 - 0.77 (0.53 - 0.77) for the descending overpass C-band

(X-band) time series, and 0.40 - 0.76 (0.59 - 0.79) for the equivalent ascending

overpass time series. Note that applying the filter did not change the relative

performance of the data sets from different overpasses or different wavelengths.

The qualitative and quantitative improvement in the fit to the in situ data

that is generated by filtering the AMSR-E data suggests that the filter has

successfully reduced the systematic differences between the AMSR-E and in

situ data. For data assimilation into models which have a deeper near-surface

layer than the AMSR-E observation depth, applying such a filter is expected
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to be beneficial, and the AMSR-E data will be filtered before being assimilated

into the ACCESS model (for which the near-surface model layer has a depth of

10 cm), although it will not be filtered for use in the ISBA model (which has a

near-surface layer depth of 1 cm).

4.3.5 Inter-comparison of AMSR-E and ACCESS model

soil moisture

Finally the AMSR-E soil moisture data have been bench-marked against the

near-surface soil moisture forecasts from the BoM’s ACCESS model (used in the

Australian assimilation experiments in Chapter 6). The ACCESS soil moisture

forecasts were generated by forcing an off-line version of its land surface model

with short-range atmospheric forecasts from ACCESS, from April 2008 to April

2009 (this is the open-loop simulation introduced in Chapter 6). There were

no data available from the Goulburn Monitoring Network for this period, and

so only Murrumbidgee in situ data have been used. The second generation

Murrumbidgee stations had near-surface sensors for this period, and have been

included, however there were widespread data outages across the Murrumbidgee

network in late 2008, reducing the number of monitoring sites to eight: one at

Yanco (M8: mean of Y1, Y3-Y13), two at Kyeamba (M9) – Kyeamba A (mean

of K1, K2, K3, K5, & K7), and Kyeamba B (mean of K8, K11, & K14) –

and five individual stations across the Murrumbidgee. The ACCESS forecasts

have been compared to the AMSR-E soil moisture for the C-band descending

overpass, and the AMSR-E data has been regrided onto the 0.375◦ ACCESS

grid (rather than the 0.25◦ grid used earlier in this Chapter), using a nearest-

neighbour approach. The AMSR-E time series at each grid-cell has then been

filtered, as described in Section 4.3.4.

Time series of the ACCESS and AMSR-E soil moisture have been compared

to the in situ data in Figure 4.13, and statistics describing the agreement with

the in situ data are given in Table 4.10. Both AMSR-E and ACCESS agree well

with the in situ data. Excluding M6, rabs (ranm) was between 0.60 - 0.87 (0.57

- 0.86) for AMSR-E, and 0.64 - 0.86 (0.64 - 0.88) for ACCESS. AMSR-E and

ACCESS have comparable agreement with the in situ data, and the AMSR-E

time series generated higher rabs and ranm, and lower (normalised) RMSD at

four sites (and ACCESS generated better statistics at the other four sites). Both

had unusually poor fit at M6, and Figure 4.13d suggests this might be due to
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Figure 4.13: Time series of filtered and normalised C-band descending AMSR-
E overpass soil moisture (red), normalised ACCESS near-surface soil moisture
forecasts (blue), and Murrumbidgee Monitoring Network in situ observations
(black), for April 08 - April 09.
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Table 4.10: Statistics of fit to the in situ observations, from the filtered C-band
descending overpass VUA-NASA AMSR-E data, and the ACCESS forecast
near-surface soil moisture.

AMSR-E UM
rabs ranm RMSD (m3m−3) rabs ranm RMSD (m3m−3)

raw norm raw norm
M1 0.60 0.59 0.230 0.020 0.68 0.50 0.429 0.018
M4 0.71 0.73 0.049 0.033 0.64 0.71 0.199 0.036
M5 0.60 0.48 0.069 0.026 0.69 0.62 0.203 0.023
M6 0.27 0.44 0.071 0.034 0.35 0.74 0.220 0.031
M7 0.86 0.73 0.055 0.013 0.76 0.65 0.202 0.017
YA 0.87 0.72 0.069 0.030 0.78 0.56 0.186 0.038
KA 0.84 0.53 0.051 0.040 0.83 0.76 0.208 0.041
KB 0.84 0.77 0.072 0.045 0.86 0.77 0.194 0.040

a problem with the in situ data: both the AMSR-E and ACCESS soil moisture

increased during the winter of 2008, while the in situ measurement remained

low. The soil moisture at the surrounding in situ stations (M5, M7 and M8;

see Figure 4.1) also increased through winter, with similarly timed step changes

(suggesting large scale precipitation events) as shown by ACCESS and AMSR-

E at M6. Figure 4.14 shows the time series of observed precipitation from the

BoM’s rain gauge analysis over an 0.25◦ grid surrounding the M6 site, confirming

the occurrence of precipitation, consistent with the signals from AMSR-E and

ACCESS at M6. This strongly suggests that the in situ data at M6 does not

accurately reflect the area-average soil moisture, either because of measurement

errors, or because the precipitation events in question were localised, and did

not occur at the location of the M6 in situ sensor (although the detection of

similarly timed precipitation at the surrounding in situ sensors suggests that

this was not the case).

Assimilating near-surface soil moisture data with similar accuracy to the

model soil moisture forecasts is expected to generate modest improvements in

the model soil moisture (Reichle et al., 2008b), hence the above inter-comparison

suggests that assimilating the C-band VUA-NASA AMSR-E soil moisture into

the ACCESS model in Chapter 6 will generated improved soil moisture forecasts.
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Figure 4.14: Time series of precipitation (mm day−1) from the Bureau of
Meteorology’s rain gauge analysis for the 0.25◦ grid surrounding M6, from April
2008 to March 2009.

4.4 Chapter summary

The currently available remotely sensed near-surface soil moisture data sets over

Australia have been assessed to identify which data set should be used in the as-

similation experiments in this thesis, and to establish the best use of that data.

At the time of this study the only soil moisture data sets with sufficient cover-

age over Australia for use in NWP model were being derived from the passive

microwave AMSR-E instrument. Soil moisture data retrieved from AMSR-E

with the algorithms developed at VUA-NASA, NASA, USDA, and JAXA were

compared to in situ soil moisture observations from the Murrumbidgee and

Goulburn Monitoring Networks over 2006, and based on this comparison the

VUA-NASA retrieval algorithm was identified as the most realistic, and conse-

quently it will be used in the assimilation experiments in Chapters 5 - 6.

The VUA-NASA soil moisture data was then examined in more detail, in

principal by comparison to six years of in situ data from the Murrumbidgee

Monitoring Network, to identify which observation wavelength (C-band or X-

band) and which overpass time (descending or ascending) should be used in

these assimilation experiments, and to further characterise the accuracy of that

data. Neither of the observation wavelengths or observation times was identified

as yielding superior near-surface soil moisture estimates, and consequently the
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C-band descending overpass data will be preferentially used, since it is theoreti-

cally favoured. However, in situations where more frequent data are warranted,

or where RFI prevents the use of C-band data, the results obtained here suggest

that the ascending pass and/or X-band data could also be used confidently. Ad-

ditionally, comparison over the six year period confirmed that the VUA-NASA

observations can detect a strong signal of temporal changes in soil moisture.

The above evaluation of remotely sensed soil moisture is based on in situ

soil moisture observations, and so is limited by both the systematic differences

between the soil moisture quantities observed by in situ and remote sensors,

and also by the limited coverage of the in situ data. However, it is not yet

clear how a more robust evaluation of remotely sensed soil moisture can be

attained. Consequently, the AMSR-E data were also compared visually to both

precipitation and vegetation observations, confirming that the soil moisture data

had the expected large-scale spatial patterns.

The AMSR-E observations has much greater short short-term variability

than the in situ data, due to the much shallower surface layer observed by

C-band passive microwave sensors (1 cm, compared to 5-8 cm for the in situ

data), although there was likely also some noise in the remotely sensed signal.

An exponential filter was then presented to reduce the short-term variability in

the AMSR-E soil moisture time series, for better comparison to soil moisture

estimates over deeper surface layers. Applying this filter improved the statistics

of fit between the AMSR-E and in situ soil moisture observations, and so it

will be applied to the AMSR-E data before it is assimilated into the MOSES

model (which has a 10 cm near-surface layer) in Chapter 6, however it will not

be applied for use with the ISBA model (which has a 1 cm near-surface layer)

model in Chapter 5.

Finally, inter-comparison of the filtered C-band descending overpass AMSR-

E soil moisture and near-surface soil moisture forecasts from the MOSES model,

showed that they have similar accuracy (compared to in situ observations from

the Murrumbidgee Monitoring Network). It is then expected that assimilat-

ing the AMSR-E data into the MOSES model in Chapter 6 will yield small

improvements in the modeled soil moisture.
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Chapter 5

Assimilation Experiments with

ISBA

5.1 Overview of chapter

Chapter 4 demonstrated that useful near-surface soil moisture information can

be retrieved from AMSR-E brightness temperatures using the retrieval algo-

rithm developed by VUA-NASA. Additionally, Section 3.2 outlined an EKF-

based land surface analysis method capable of assimilating both screen-level

observations and novel remotely sensed observations of the land surface. In this

chapter the EKF is used to assimilate the AMSR-E near-surface soil moisture

into Météo-France’s NWP land surface model (ISBA), to obtain updates to the

model root-zone soil moisture.

There has been little previous work assimilating near-surface soil moisture

data into ISBA, and this is the first study to assimilate satellite observations

over a large domain. Consequently, this chapter begins by exploring how the

EKF relates the near-surface soil moisture observations to the underlying root-

zone soil moisture in the model. Additionally, the assimilation of the AMSR-

E near-surface soil moisture data is compared to the assimilation of screen-

level temperature (T2m) and relative humidity (RH2m). Specifically, a series

of experiments is conducted to examine whether the AMSR-E data might be

useful, either as a substitute for the screen-level data (to improve the low-

level atmospheric forecasts) or as a complimentary data source (to improve

both the root-zone soil moisture and low-level atmospheric forecasts). The

relative impact of each data type is measured, in terms of the net magnitude
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and direction of the root-zone soil moisture increments generated by each, as

well as the relative information content contributed by each data source when

they are assimilated together.

The development of the EKF assimilation of AMSR-E near-surface soil mois-

ture into ISBA has been published in Draper et al. (2009a), while the combined

assimilation of near-surface soil moisture and screen-level observations has been

published in Draper et al. (2011). Additionally, the work presented here also

contributed to the simplified EKF assimilation of screen level variables reported

in Mahfouf et al. (2009).

5.2 Data and methods

This section describes the assimilated data sets, together with the main exper-

iments undertaken to assimilate these data into ISBA.

5.2.1 AMSR-E soil moisture data

Near-surface soil moisture data retrieved from AMSR-E brightness tempera-

tures with the VUA-NASA retrieval algorithm of Owe et al. (2008) have been

used in the assimilation experiments, following the findings in Chapter 4. Since

Njoku et al. (2005) showed that C-band RFI is not widespread across Europe

(with the exception of isolated pockets over some urban areas), the C-band data

have been used, with RFI-contaminated data screened out. Both the ascending

and descending overpass data have been assimilated to maximise the potential

impact of the AMSR-E data, since the impact of assimilating the AMSR-E data

was relatively low with the assimilation strategy used here (and the assessment

in Chapter 4 did not reveal a significant difference between the accuracy of

the two overpasses). The EKF uses a 6 hour assimilation cycle (starting at

0:00, 6:00, 12:00 and 18:00 UTC each day) with observations assimilated at the

end of each cycle, for consistency with the observation times of the screen-level

observations. The AMSR-E data have then been assimilated at the closest 6

hour interval, so that the descending overpass observations (observed at ap-

proximately 1:30 am local time) were assumed to occur at 0:00 UTC, and the

ascending overpass observations (observed at approximately 1:30 pm) were as-

sumed to occur at 12:00 UTC.

The level 1 AMSR-E swath-data have been directly mapped onto the irregu-
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lar ALADIN grid using a nearest neighbour approach. All observations contam-

inated by RFI or open water, and where dense vegetation or frozen ground-cover

conceals the near-surface microwave signal have been screened out. RFI con-

tamination was identified based on the RFI index of Li et al. (2004), which is

provided together with the soil moisture data. Frozen ground-cover is identified

and removed during the moisture retrieval, although this was not significant

over Europe in July. Densely vegetated regions were screened out according

to the vegetation optical depth that is retrieved from the AMSR-E brightness

temperatures together with the soil moisture data (Owe et al., 2001). The veg-

etation optical depth is linearly proportional to the vegetation water content,

and the sensitivity of the microwave brightness temperature to soil moisture

decreases with increasing vegetation optical depth (e.g., de Jeu et al., 2008).

Owe et al. (2001) show that the soil moisture sensitivity is quite low for optical

depths above about 0.75, and so a mean monthly optical depth threshold of 0.8

has been adopted, following de Jeu et al. (2008). Finally, to prevent outliers in

the AMSR-E data from generating large analysis updates, an additional quality

control has been applied immediately prior to the assimilation, by discarding

data for which the observation increment was more than twice the standard

deviation of the increments over the month. This rather strict threshold was

chosen arbitrarily in response to the presence of occasional suspect outliers in

the AMSR-E data (likely resulting from the absence of strict quality controls

during the soil moisture retrieval), since these outliers can have a substantial

detrimental impact on the quality of the analyses.

After the above quality control was applied, the average spatial coverage of

the AMSR-E data over July 2006 was 49% of the European domain, for both

overpasses. Figure 5.1 shows the temporal coverage of the assimilated AMSR-

E data for the descending overpass over July 2006 (the ascending overpass

coverage is similar). In the figure, the daily coverage over Europe is nearly 100%

at 58◦N, decreasing towards the equator, with 70% of days covered at 33◦N.

Superimposed on this general pattern are several isolated regions of reduced

coverage due to local RFI, usually over urban regions (for example, London).

Additionally, there was widespread significant RFI over Italy, and roughly 50%

of the data over the Italian peninsula was removed. This result differs from the

initial RFI investigation over 2003 of Njoku et al. (2005), who found limited

C-band RFI over Europe, and X-band RFI over Italy, also using the index of

Li et al. (2004)).
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Finally, the quantity observed by AMSR-E is assumed to be equivalent to

the model near-surface soil moisture (w1), since both represent the soil moisture

in approximately the upper-most 10 mm of soil. Additionally, before being

assimilated the AMSR-E data were rescaled to reduce the systematic differences

between the observed and modeled w1. The bias removal strategy that was

applied, and the resulting soil moisture fields, will be described in Section 5.4.1.

Figure 5.1: Fraction of days in July 2006 for which the descending overpass
AMSR-E soil moisture observations were available for assimilation (after quality
control).

5.2.2 Screen-level data

The assimilated screen level T2m and RH2m fields were taken from the 6-hourly

bidimensional OI scheme used to analyse the screen-level fields in ALADIN

(Taillefer, 2002). This is the same data that is currently used in the OI land

surface analysis in ALADIN (described in Section 2.3.2).1 The screen-level OI

analyses the screen-level variables in ALADIN every 6 hours, based on screen-

level observations from GTS SYNOP, SHIP, BUOY reports, and the French

1In practise, it is actually the observation increments from the screen-level analysis that
are used in the land surface analysis.
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RADOME network. Approximately 2000 observations each of T2m and RH2m

are ingested per cycle, although the density of the observation network, shown in

Figure 5.2, varies widely across Europe. In particular, observations are reason-

ably dense across central Europe, and particularly over France where there are

about 1000 observations available per analysis (due to the RADOME data). In

contrast, the coverage over Spain and north Africa is much sparser, and there

are only about 50 stations across Spain, which has a similar area to France.

The background field for each analysis is an ALADIN forecast, so that the

screen-level analysis for model grids not affected by observations will equal the

background forecast. Since the current land surface analysis does not include

bias correction of the screen-level data, they have not been bias-corrected here

either.

Figure 5.2: Screen-level observation network over the European domain.
Black squares indicate GTS SYNOP observations, and small grey circles in-
dicate French RADOME observations (reproduced from Figure 3 of Mahfouf et
al. (2009)).

5.2.3 The assimilation experiments and error selection

To compare the impact of assimilating the screen-level observations and AMSR-

E near-surface soil moisture, four main assimilation experiments have been con-

ducted:
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• CTR - an open-loop simulation with no assimilation (the control)

• SLV - assimilation of screen-level variables (T2m and RH2m )

• AMS - assimilation of AMSR-E w1

• CMB - a combined assimilation of T2m, RH2m, and AMSR-E w1.

The EKF described in Section 3.2 has been used for each experiment (note

that an approximation to reduce the number of model Jacobians required for

each assimilation cycle will be introduced in Section 5.3.2). In ISBA, w1 is de-

fined over a thin surface layer, giving it a very short time scale (as will be shown

in Section 5.3.2, perturbations to w1 are largely lost within a day), and limiting

its influence on other model variables. As a result, the accurate initialisation of

w1 is not very important in ISBA, and in their experiments assimilating screen-

level observations into ISBA, Balsamo et al. (2007) and Mahfouf et al. (2009)

updated the root-zone soil moisture (w2) only. In contrast, for the EKF as-

similation used here, w1 has been included in the state update vector, to allow

the EKF to evolve long term error covariance between w1 and w2. However the

analysis results will only be reported for w2.

The same observation and model error covariances have been prescribed for

all experiments (for the relevant variables) conducted in this chapter. Since the

true soil moisture is not well understood at the large scales modeled by NWP,

accurate specification of the error covariances required to assimilate and/or

analyse soil moisture is extremely difficult. Consequently, a fairly simplistic

error selection has been used here, based on the assumption that these errors

can be refined in the future if the assimilation proves useful. The selection

of the error covariances is discussed below, and the selected covariances are

summarised in Table 5.1.

The observation errors

The observation error covariances (R) for the screen-level observations were

taken directly from Mahfouf et al. (2009), and spatially uniform error variances

of (10%)2 and (1K)2 have been used for RH2m and T2m, respectively. These

are the errors used in Météo-France’s screen-level OI analyses, from which the

assimilated observations were taken. For the AMSR-E observations, a spatially

uniform error variance of (0.05 m3m−3 )2 has been used. This is close to the
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Table 5.1: Summary of the observation, model, and initial background error
variances used in the assimilation experiments. All diagonal error covariances
were assumed to be zero. Units are indicated in brackets.

Observation Errors
T2m 1.02 (K2)
RH2m 102 (%2)
w1 0.052 ((m3m−3)2)

Forecast Model Errors*
w1 (0.2×(wfc - wwilt))

2 ((m3m−3)2)
w2 (0.02×(wfc - wwilt))

2 ((m3m−3)2)
Initial Background Errors*
w1 (0.2×(wfc - wwilt))

2 ((m3m−3)2)
w2 (0.2×(wfc - wwilt))

2 ((m3m−3)2)
*The mean (wfc - wwilt) is 0.086 m3m−3.

AMSR-E error estimates from Chapter 4: for example, the mean RMSD be-

tween the VUA-NASA descending overpass AMSR-E data and the Australian

in situ data in Table 4.8 is 0.04 m3m−3. It is also consistent with published

root mean square error estimates from Europe, specifically from Wagner et al.

(2007) (0.06 m3m−3 from one location in Spain), and Rüdiger et al. (2009) (0.06

m3m−3 at one location in France). The errors for each observation type were

assumed to be independent from each other (i.e., R is diagonal). While this

assumption is clear for the w1 data, it will neglect some correlation between T2m

and RH2m, for example due to representativity errors (note that T2m and RH2m

are observed at the same locations by different sensors, hence their instrument

errors will not be aliased).

Background and model errors for w2

For the EKF, both the additive model forecast error covariances (Q) and the

initial background model error covariances (P) must be defined, although be-

yond the first few assimilation cycles P is largely determined by Q. Following

Mahfouf et al. (2009) and Balsamo et al. (2007), the initial P and Q were as-

sumed to be diagonal and spatially uniform, and both have been defined as a

fraction of the difference between the soil moisture at field capacity (wfc) and at

the wilting point (wwilt). The w2 error variance in Q has been set at (0.02×(wfc

- wwilt))
2. Over the mean depth of w2 (2.3 m) this amounts to applying an error
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of 4 mm every 6 hours, giving 16 mm day−1 applied across the soil layer, which

is slightly more than the approximate NWP surface water budget error of 10

mm day−1 quoted by Douville et al. (2000).

The initial w2 error variance in P was set rather high at (0.2×(wfc - wwilt)
2,

equivalent to an error of approximately 40 mm. The EKF rapidly (within a few

assimilation cycles) reduced the mean w2 error variance in P to approximately

(20 mm)2, which is consistent with empirical error estimates for w2. For exam-

ple, comparisons of ISBA w2 forecasts to in situ soil moisture observations have

yielded root mean square error estimates of 28 mm (Muñoz Sabater et al., 2007),

20.0 mm (Calvet and Noilhan, 2000), and 22.6 mm, 32.2mm, and 14.5mm (Cal-

vet et al., 1998), at various locations in France. Additionally, 20 mm is slightly

larger than the (static) w2 errors used by Mahfouf et al. (2009) (recall that the

screen-level observation errors have also been taken from Mahfouf et al. (2009)),

who in turn based their model and observation errors on those used to derive the

update coefficients for the current operational OI surface analysis in ALADIN.

The mean w2 error of 20 mm in P is equivalent to 0.01 m3m−3, which is much

smaller than the errors typically expected from a land surface model, and five-

times smaller than the assumed AMSR-E observation errors. This apparently

small error is due to the unrealistic nature of the soil moisture in the ALADIN

ISBA model, associated with its coarse vertical resolution and poorly specified

soil parameters. Since there is no distinction between the root-zone and total

soil depth, the root-zone is defined as the entire soil column, which has a mean

depth over the ALADIN domain of 2.3 m. To compensate for the potentially

large water reservoir defined by this overly-thick root-zone, the water holding

capacity (wfc - wwilt) in ISBA is specified to be too small (mean (wfc -wwilt):

0.086 m3m−3). As a comparison, the ECMWF H-TESSEL land surface model

has a 1 m deep root-zone, and a (wfc - wwilt) close to 0.2 m3m−3 for a medium

soil texture (Balsamo et al., 2009). The misspecification of soil parameters in

ISBA reduces the soil moisture variability, since a given volume of moisture

forcing (P-E), or any errors in that forcing, is dispersed across the overly thick

layer. For example applying a 20 mm error to the ECMWF root-zone would

result in a volumetric error of 0.02 m3m−3 (note that this is still equivalent to

0.1×(wfc -wwilt)), rather than the 0.01 m3m−3 value obtained here.
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Background and model errors for w1

The model errors for w1 are even more difficult to define than those for w2, due

to the difficulty of taking observations over such a thin layer. The w1 errors

(in m3m−3 ) are expected to be greater than those in w2, since the surface

layer has more active soil moisture dynamics and a greater exposure to the

atmospheric forcing (errors). The model w1 errors have then been set to give

a mean w1 error standard deviation approximately double the mean w2 error

standard deviation in P. This was achieved using an error variance of (0.2×(wfc

- wwilt))
2 for both the initial P and Q. For Q this is equivalent to adding an

error of 0.8 mm day−1, which is approximately one third of the mean daily (bare

soil) evaporation forecasts. w1 has a very short memory, and the mean w1 error

variance in P was (0.024 m3m−3)2 ((0.24 mm)2), only slightly larger than the

added Q.

While the error variance assumed for w1 is less certain than the previously

specified error variances, the w1 error has less impact on the analysis results

than the other errors. To confirm this, a sensitivity test was conducted in

which the w1 error variance in Q was replaced with estimates of the minimum

and maximum of its likely values: 0.1×(wfc -wwilt))
2 which gives P11 close to

P22, and (0.5×(wfc -wwilt))
2 which gives P11 close to R for w1. Using these

values resulted in a variation in the monthly mean K for updating w2 from w1

of +3% and -16% of the original value, respectively.2 In comparison, varying the

w2 model error over the same range resulted in a factor of five difference in K.

Hence, the uncertainty in the specification of the w1 error in these experiments

is not expected to have a significant impact on the conclusions of this study.

5.2.4 The relative information content

To quantify the contribution of the AMSR-E observations to the CMB ex-

periments the relative information content of the assimilated data has been

calculated. The relative information content, calculated following Balsamo et

al. (2007), measures the sensitivity of the analysis update to each observed

variable, scaled by the net sensitivity of the analysis to all of the assimilated

observations. From Cardinali et al. (2004), the sensitivity of the analysis to the

2Note that increasing the model error variance for w1 decreases the Kalman gain for
updating w2, since this reduces the confidence of the comparison between the observed and
modeled w1.
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observations, mapped into observation space, is given by the derivative:

∂Hxa

∂y
= KTHT (5.1)

Additionally, the ith diagonal of KTHT gives the sensitivity of the model anal-

ysis to the ith observation, and Tr(KTHT) gives the total sensitivity, or infor-

mation content, from all of the assimilated observations (where Tr is the trace

of the matrix).3 The relative information content of the ith observation can

then be calculated as:

rICi = (KTHT)ii/Tr(K
THT) (5.2)

5.3 Implementing the EKF in ISBA

Before the assimilation results are presented in Section 5.5, the preliminary work

testing and refining the assimilation strategy is presented here. This includes

testing the accuracy of the estimates of the linearised model used by the EKF,

examining the manner in which the root-zone soil moisture is related to near-

surface soil moisture in ISBA, and comparing this to the relationship between

the screen-level variables and the root-zone soil moisture.

5.3.1 Testing the ISBA model Jacobians

The EKF described in Section 3.2 requires linear estimates of the ISBA model,

for both the observation operator (H in equations 3.3 and 3.5) and the forward

model (M in equation 3.4). As outlined in Section 3.2, the linearised model has

been approximated using the Jacobians of the model. The perturbation used

to estimate the model Jacobians must be chosen carefully to ensure accurate

and stable results (Balsamo et al., 2004). For the simplified EKF assimilation

of screen-level observations, Mahfouf et al. (2009) demonstrated that a pertur-

bation of 10−4 × (wfc − wwilt) was most suitable for estimating the linearised

observation operator, and the suitability of using the same perturbation size for

the EKF assimilation of near-surface soil moisture is tested here. Following Bal-

samo et al. (2004), the accuracy of estimating M with a given perturbation size

3Note the relationship to equation 3.5: in response to the information gained from the
analysis, Pf is reduced by the transpose of the observation sensitivity.
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has been tested by examining the agreement between the Jacobians estimated

using both positive and negative perturbations, since the difference between the

two estimates gives a measure of the nonlinearity ofM for perturbations of that

size. Both H for near-surface soil moisture and M must be tested. However

since H is included in M, only M will be explicitly considered here.

The Jacobian terms estimated with positive and negative perturbations of

10−4 × (wfc − wwilt) were compared for each of the four assimilation cycles on

the first day of the assimilation experiments. For each assimilation cycle, the

two estimates were very close, consistent with M being well approximated by

M within the range of the applied perturbation. The greatest disagreement

occurred for the 06:00-12:00 UTC forecast, and the Jacobians at this time are

compared in Figure 5.3 and summarised in Table 5.2. In Table 5.2 there is little

difference between the mean, standard deviation, and extreme values of the two

estimates of M. Additionally, the scatterplot in Figure 5.3 shows very good

agreement between the two estimates of M, with nearly all points aligned on

the one-to-one line. For ∂w1(t+ 6)/∂w2(t) several data points stand out to the

right of the one-to-one line, indicating that the positive perturbation generated

larger estimates. However, each plot contains 39417 data, the majority of which

are aligned close to the one-to-one line: less than 0.2% of the ∂w1(t+ 6)/∂w2(t)

estimates from the positive and negative perturbations differed by more than

0.01 m3m−3 / m3m−3.

The above analysis indicates thatM is well approximated by M within the

range of the very small perturbations that were applied. However, this does not

guarantee that M approximates M well when applied to the errors in P, since

these errors are typically much larger than the applied perturbations. To test

the potential error generated when M (or H) is used to propagate P, the model

Jacobians estimated using perturbations with magnitude similar to the expected

model error (10−1× (wfc−wwilt) ∼ O(10−2)) have been compared to the above

estimates, with the summary statistics again included in Table 5.2. Scatterplots

in Figure 5.4 compare the Jacobian estimates derived from this larger pertur-

bation to the original estimates (with perturbation +10−4 × (wfc − wwilt)) for

the 06:00-12:00 UTC assimilation cycle, showing that there is now more scat-

ter about the one-to-one line. Additionally, for ∂w1(t+ 6)/∂w2(t) there are

data-points for which the smaller perturbation generated values close to zero,

while the larger perturbation generated much larger values, ranging up to one;

and for ∂w2(t+ 6)/∂w2(t) there are points for which the smaller perturbation
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Figure 5.3: Comparison of M (m3m−3 /m3m−3 ) from 06:00 to 12:00 UTC
on 1 July 2006, estimated using positive (x-axes) and negative (y-axes) pertur-
bations of 10−4 × (wfc − wwilt).

generated values close to one, while the larger perturbation generated smaller

values, down to 0.16. While these points stand out in the scatterplots, they

represent only a small proportion of the data, and less than 2% (1%) of the

∂w1(t+ 6)/∂w2(t) (∂w2(t+ 6)/∂w2(t) ) estimates from the smaller and larger

perturbations differed by more than 0.01 m3m−3 / m3m−3. These differences

are not large enough to impact the statistics in Table 5.2, which are very similar

for the two estimates. In conclusion, while the larger perturbation was outside

the model’s linear regime in more instances, the Jacobian estimates compare

favourably over the majority of grid cells, indicating that M estimated with the

smaller perturbation of 10−4× (wfc−wwilt) led to an acceptable approximation

of nonlinear M for propagating P through each assimilation cycle.
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Table 5.2: Statistics of the 6-hour Jacobian terms (m3m−3 /m3m−3 ) from
06:00 to 12:00 UTC on 1 July 2006, estimated using a perturbation size of
+10−4 × (wfc −wwilt) (pos), −10−4 × (wfc −wwilt) (neg), and +10−1 × (wfc −
wwilt) (lrg).

mean stdev min max
+ve 0.35 0.42 -0.10 1.1

∂w1(t+ 6)/∂w1(t) -ve 0.35 0.42 -0.10 1.1
lrg 0.36 0.42 -0.10 1.1

+ve -0.0017 0.0015 -0.036 0.0
∂w2(t+ 6)/∂w1(t) -ve -0.0017 0.0015 -0.036 0.0

lrg -0.0017 0.0015 -0.037 0.0
+ve 0.34 0.25 -0.10 1.1

∂w1(t+ 6)/∂w2(t) -ve 0.34 0.25 -0.10 1.1
lrg 0.34 0.24 -0.072 1.1

+ve 0.99 0.014 0.78 1.0
∂w2(t+ 6)/∂w2(t) -ve 0.99 0.014 0.78 1.0

lrg 0.99 0.015 0.16 1.0

5.3.2 The ISBA model Jacobians

It is well established that screen-level variables are related to root-zone soil

moisture via transpiration. However the relationship between near-surface and

root-zone soil moisture is not as well understood (for either reality, or specific

models such as ISBA). Consequently, this section examines the manner in which

the EKF translates near-surface soil moisture observations into root-zone soil

moisture increments in ISBA. This is achieved by examining the ISBA model

Jacobians, to first examine the inter-dependencies between w1 and w2 in ISBA,

and then to compare the observation operators for assimilating w1 and screen-

level observations.

Soil moisture coupling

Table 5.3 shows the spatial mean model Jacobian terms for 1 July 2006, for

a 6 hour period during both the day and night, and for a 24 hour period.

Since the superficial soil layer responds rapidly to atmospheric forcing, w1 has

less memory during the day when the surface is more strongly forced, and the

nighttime spatial mean ∂w1/∂w1 of 0.80 m3m−3 /m3m−3 is reduced to 0.35

m3m−3 /m3m−3 during the day. Over the 24 hour forecast from 00:00 UTC,
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Figure 5.4: Comparison of M (m3m−3 /m3m−3 ) from 6:00 to 12:00 UTC on
1 July 2006, estimated using perturbations of 10−4× (wfc−wwilt) (x-axes) and
10−1 × (wfc − wwilt) (y-axes).

w1 has little memory, and the spatial mean ∂w1/∂w1 is 0.25 m3m−3 /m3m−3.

In addition to its short time scale, the small reservoir of w1 cannot exert much

influence on the more substantial w2 , so that ∂w2/∂w1 is extremely small (mean

< |0.01| m3m−3 /m3m−3) over all of the time periods considered.

In contrast to w1, the atmospheric forcing is applied more slowly to w2, which

has a time scale of about ten days. Over the comparatively shorter periods con-

sidered here, the w2 perturbations were largely retained (mean ∂w2(t+ 24)/∂w2(t):

0.95 m3m−3 /m3m−3 over 24 hours). Additionally, w2 has a clear influence on

w1, with a mean ∂w1(t+ 6)/∂w2(t) of 0.20 and 0.34 m3m−3 /m3m−3 for the 6

hours from 18:00 and 06:00 UTC, respectively. The influence of w2 increased

over time, giving ∂w1(t+ 24)/∂w2(t) of 0.60 m3m−3 /m3m−3 for the 24 hour

forecast. Comparing this to ∂w1(t+ 24)/∂w1(t) highlights that the initial w2

has a stronger influence on the 24 hour forecasts of w1 than the initial w1 does.

The above results have several consequences for analysing w2 from w1 ob-

servations. The short memory and limited influence of the ISBA w1 was noted
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by Balsamo et al. (2007) and Mahfouf et al. (2009), who did not update w1. As

noted by Calvet and Noilhan (2000), an additional consequence is that assimi-

lating w1 into ISBA relies on updating w2 based on the sensitivity of w1 forecasts

to w2, in much the same way that assimilating screen-level observations makes

use of the influence of w2 on the screen-level forecasts.

Table 5.3: Spatial mean M (m3m−3 /m3m−3) for a 6 hour forecast during
the night (upper), and day(centre), and for the 24 hour period M (lower) form
18:00 UTC on 1 July 2006.

M18→00UTC =

(
0.80 0.20
0.00 0.99

)

M06→12UTC =

(
0.35 0.34
−0.002 0.99

)

M18→18UTC =

(
0.25 0.60
0.00 0.95

)

The observation operator

Figure 5.5 shows the Jacobians of the observation operator for each observa-

tion type for observations at 00:00 and 12:00 UTC on 1 July 2006. For the

screen-level observations the Jacobian maps show the expected dependency on

evapotranspiration. As outlined by Mahfouf et al. (2009), in ISBA the surface

canopy resistance to transpiration is nonlinearly dependent on the root-zone

soil moisture, with stronger dependencies close to the wilting point, so that the

screen-level variables are most sensitive to w2 in clear sky regions with a high

fraction of vegetation cover and dry soils. For example, comparing the model

Jacobians in Figure 5.5 to the map of the Surface Wetness Index in Figure 5.6

shows that in north central Europe and England, where the vegetation fraction

is greater than 0.75, the daytime Jacobians are higher where the SWI is close to

zero (recall from Section 3.4.1 that SWI = (w2- wwilt)/(wfc-wwilt)). In contrast,

in sparsely vegetated Spain where the vegetation fraction is less than 0.5, the

SWI is similarly low and yet there is no response in the Jacobians. Addition-

ally, in those regions where w2 is below the wilting point (most prominently

in Africa, inland Spain, and close to the French Atlantic coast), transpiration
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ceases so that the screen-level Jacobians in Figure 5.5 are close to zero during

the day.

The role of evapotranspiration is reflected in the mean Jacobians for each of

the four daily assimilation cycles in Table 5.4. The screen-level Jacobians are

reduced at 18:00 to 00:00 UTC and 00:00 to 06:00 UTC, although there was still
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Figure 5.5: Maps of the observation operator for modeled w2 and observed
T2m (upper), RH2m (middle), and w1 (lower), for the analyses at 06:00 UTC
(left) and 18:00 UTC (right) on 1 July 2006.
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Table 5.4: Mean observation operator relating w2 to each observation type
from experiment CMB, averaged over July 2006 separately for each of the four
daily assimilation cycles.

Time T2m (K/m3m−3) RH2m (%/m3m−3) w1 (m3m−3/m3m−3)
00-06 -2.6 0.8 0.16
06-12 -17.3 1.1 0.30
12-18 -19.1 1.7 0.33
18-00 -2.9 0.1 0.17

a small response since both time periods include some day-light. The exception

is the 00:00 to 06:00 UTC Jacobian for RH2m, which had a relatively large

mean of 80 %(m3m−3)−1, compared to 110-170%(m3m−3)−1 for the subsequent

assimilation cycles, suggesting a rapid humidity response at sunrise.

For the w1 observation operator, w2 directly influences w1 in equation 3.8

via the w1 restore term, representing the balance between gravitational drainage

and capillary rise. However, there is a strong and unexpected similarity between

the observation operators for w1 and those for the screen-level variables in Fig-

ure 5.5. Again the highest values (up to 1.0 m3m−3 /m3m−3 ) occur in dry

vegetated regions, while regions with negative surface wetness index have very

low values. This suggests that the greatest influence of w2 on w1 does not arise

from the direct restore term as expected, but from an indirect relationship via

evapotranspiration. Tests on the forecast impact of switching off various as-

Figure 5.6: Surface wetness index at 18:00 on 1 July 2006 from the CTR
simulation.
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pects of the model physics have confirmed this finding, and also revealed that

the dependency arises from the influence of transpiration on the surface tem-

perature. The mechanism by which this occurs is that increasing w2 increases

transpiration, which reduces the surface temperature, thus reducing the deple-

tion of w1 by bare-ground evaporation, giving a relative increase in w1, and a

positive dependency of w1 and w2 (pers. comm Jean-Françis Mahfouf).

During the night the restore term introduces a very weak sensitivity of w1 to

w2, with the mean ∂w1(t+ 6)/∂w2(t) close to half the daytime value in Table

5.4. In Figure 5.5 ∂w1(t+ 6)/∂w2(t) is less than 0.3 m3m−3 /m3m−3 across

most (93%) of the domain, although there are a few regions with slightly higher

values of up to 0.4 m3m−3 /m3m−3. All of these regions have low clay content

(<10%), so that the soil texture dependent coefficient of the w1 restore term

(C2 in equation 3.8) will restore w1 towards w2 more rapidly.

As noted above, the assimilation of w1 into ISBA relies on updating w2

rather than w1. Consequently, the effectiveness with which the ISBA w2 can

be updated from w1 observations is limited by the strength of ∂w1/∂w2, since

this is the observation operator and it also controls the evolution of error cross

covariance between w1 and w2 in P. One of the main motivations for assimilat-

ing near-surface soil moisture was the expectation that it will provide a more

direct observation of total soil moisture than the screen-level observations, since

the latter must rely on the model flux parameterisations to link the root-zone

to the screen-level atmosphere. However the above analysis has indicated that

this is not the case for ISBA, since the dominant link between w2 and w1 is

provided by evapotranspiration during the day. This relationship is more likely

to be a consequence of the use of a single surface temperature for both the

soil and vegetation surface in ISBA, than due to a true physical relationship

between transpiration and bare soil evaporation. Given this indirect relation-

ship between w1 and w2 during the day, ISBA will likely benefit more from the

assimilation of nighttime w1 data than daytime data. Despite this, both the as-

cending and descending overpass AMSR-E observations have been assimilated

in these experiments, in response to the relatively weak relationship between

w1 and w2 in ISBA.

An approximation to reduce to number of model Jacobians calculated

An approximation to the EKF has been introduced for the ISBA experiments

to reduce the computational cost of the assimilation. For each assimilation cy-
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cle the EKF requires two separate estimates of the linearised forecast model,

necessitating two sets of perturbed forecasts: one made before the analysis to

estimate H for use in equation 3.2, and one made after the analysis to estimate

M for use in equation 3.4. The cost of the assimilation can then be reduced

by estimating M based on the perturbed model simulations made prior to the

analysis (neglecting changes to M due to the analysis update). To test the

impact of this approximation, assimilation results obtained with the above ap-

proximation have been compared to a reference run in which M is estimated

using perturbed model integrations made after the analysis update. For 1 July

2006, the mean absolute difference between the approximate and reference M

was small (O(10−3) and O(10−5) for the daytime and nighttime assimilation cy-

cles, respectively). These differences had a limited impact on the analyses, and

after two weeks of assimilating T2m, RH2m, and AMSR-E w1 (using the CMB

experimental set-up introduced in section 5.2.3), the mean absolute difference

between the two estimates of w2 was 1.0 × 10−4 m3m−3, with an absolute dif-

ference less that 1.0 × 10−3 m3m−3 across 99% of the model domain. This is

several orders of magnitude less than the impact of the assimilation: the mean

absolute difference between w2 from the reference assimilation and an open-

loop simulation after two weeks was close to 1.0 × 10−2 m3m−3. Hence this

approximation is considered acceptable, and has been adopted for the ISBA

assimilation experiments in this Chapter.

5.4 Initial results: Assimilating AMSR-E soil

moisture

This section presents the initial results from the EKF assimilation of AMSR-E

near-surface soil moisture data. First, the rescaling of the AMSR-E observa-

tions to reduce the systematic differences between the modeled and observed

soil moisture is presented. Then the EKF assimilation of AMSR-E into ISBA

is demonstrated, before the EKF and Simplified EKF (SEKF) assimilation of

the AMSR-E observations are compared to determine the role of evolving the

background error covariances in the assimilation. The results from assimilat-

ing the AMSR-E data are examined in further detail, and also compared to

the assimilation of screen-level observations, in the subsequent section (Section

5.4.2).
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5.4.1 Rescaling the AMSR-E data

The CDF-matching strategy

Since the EKF is derived from the assumption that the model and observations

are not biased relative to each other, the AMSR-E w1 observations have been

normalised to better match the model climatology, by matching the observed

CDF (Reichle and Koster, 2004; Drusch et al., 2005) to that of the superficial soil

moisture forecasts from ALADIN. Ideally, a long data set is used to sample the

model and observation climatology, and the CDF-matching is performed on as

localised a scale as possible. However, for this study only one year of ALADIN

soil moisture fields were available. To compensate for the truncated temporal

sample, ergodic substitution has been used to expand the sample for estimating

the CDF-matching operator, with the operator at each grid estimated using data

from the surrounding one-degree window, following Reichle and Koster (2004).

In Chapter 4 the climatology of ascending and descending AMSR-E data differed

(for example in Figure 4.10). The ISBA w1 also has a substantial diurnal cycle,

and to ensure that the CDF-matched observations do not include a diurnal bias,

the CDF-matching has been performed separately for each overpass.

CDF-matching is based on the assumption that the systematic differences

between the model and observations are stationary. However, for ALADIN and

AMSR-E this is not the case. For example, Figure 5.7 shows a time series

of the descending overpass AMSR-E data before and after CDF-matching at

a location in north France. While both the original AMSR-E and ALADIN

time series have a similar range of short-term (up to several days) variability,

with amplitude between 0.1 and 0.2 m3m−3, the seasonal cycle in the AMSR-E

data has a greater amplitude (>0.2 m3m−3) than that in the ALADIN data (

∼0.1 m3m−3). To compensate for the variance generated by the exaggerated

seasonal cycle in the AMSR-E data, the CDF-matching has overly dampened

the short-term variability, resulting in a lessened response to rain events in the

CDF-matched time series. Note that there are also several monthly to seasonal

scale periods of consistent bias in the CDF-matched time series (e.g., around

day 100 in Figure 5.7), which cannot be attributed to either the observations

or the model.

To avoid these problems, the CDF-matching was repeated using seasonal-

bias corrected AMSR-E data. If sufficient data were available, the AMSR-E

seasonal cycle would be best corrected based on the climatological seasonal
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Figure 5.7: Time series of near-surface soil moisture (m3m−3) for a grid-cell
in France (47.30 E/0.06 N) over 2006, from ALADIN (grey, solid), the original
AMSR-E data (grey, dashed), and the seasonal-bias corrected (black, solid) and
nonseasonal-bias corrected (black, dotted) CDF-matched AMSR-E data.

cycle of the model and the observations, as this would retain any seasonal scale

anomalies in the AMSR-E data. However, with only one year of ALADIN w1

fields available, seasonal scale bias anomalies cannot be detected, regardless of

the method used to rescale the data. Consequently, a conservative approach

was taken here, by assuming the ISBA 2006 seasonal cycle to be correct, and

subtracting the difference between the 31 day moving average of the modeled

and observed w1 from the AMSR-E time series. Figure 5.7 includes the time

series of the seasonal-bias corrected and then CDF-matched time series, showing

that it has retained an appropriate response to precipitation (while also reducing

the monthly biases).

The CDF-matching reduced the mean bias between the AMSR-E and AL-

ADIN w1 for July 2006, from -0.14 m3m−3 in the original AMSR-E data, to

0.014 m3m−3 in the seasonal-bias corrected and CDF-matched data for the

descending overpass, and from -0.12m3m−3 to 0.013m3m−3 for the ascending

AMSR-E overpass. For 2006, the RMSD between the CDF-matched AMSR-E

and ALADIN soil moisture was 0.058 m3m−3 and 0.072 m3m−3, for the descend-

ing and ascending overpasses respectively (compared to standard deviations of

0.09 m3m−3 and 0.10 m3m−3 for the ALADIN w1 at the corresponding times).
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Impact of the rescaling strategy

To highlight the importance of the strategy adopted for bias correcting the

assimilated w1 data, preliminary experiments have compared the assimilation

of the seasonal-bias corrected and nonseasonal-bias corrected AMSR-E obser-

vations. For these experiments, the observation and background soil moisture

errors (in all layers) were assumed to be equal (rather than using the errors

described for the AMS experiment in Table 5.1). For R, the same w1 observa-

tion error variance of (0.05 m3m−3 )2 as for AMS was used, and the diagonal

elements of P were initialised at (0.6 × (wfc − wwilt))
2 (giving a mean error of

0.052 m3m−3). The diagonal elements of Q were then tuned to maintain P at

close to this value, giving (0.3× (wfc−wwilt))
2 and (0.2× (wfc−wwilt))

2 for the

w1 and w2 error variances, respectively. The off-diagonal elements of P and Q

were again assumed to be zero. While these model errors are clearly too large

(see for example, the discussion in Section 5.2.3), this experimental set up is

sufficient to highlight the impact of the bias-correction technique for AMSR-E.

Figure 5.8 compares the net monthly soil moisture increments generated by

assimilating the seasonal-bias corrected and nonseasonal-bias corrected AMSR-

E observations over July 2006. The net monthly increments added by each

were very different. The seasonal-bias corrected data generating net positive

increments across most of the domain, with negative increments in Spain,

north Africa, and small regions in the east, while the nonseasonal-bias cor-

rected data generated net negative increments almost everywhere except north

Europe. Consequently, assimilating the seasonal-bias corrected data added a

mean monthly total of 55 mm of water, while assimilating the nonseasonal-bias

corrected data removed a mean of 6.2 mm of water from w2.

The substantial differences between the two plots in Figure 5.8 highlight

that the outcome of an assimilation is limited by the quality of the assimilated

data, and consequently the strategy used to bias-correct soil moisture data can

have a profound impact on the analysis results.
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a) b)

Figure 5.8: Net monthly w2 increments (m3m−3) over July 2006, from the
assimilation of a) seasonal-bias corrected AMSR-E data, and b) nonseasonal-
bias corrected AMSR-E data (assuming approximately equal observation and
background errors).

5.4.2 Comparison of the EKF and SEKF assimilation of

AMSR-E w1

The EKF assimilation of AMSR-E w1

Here, the results of the AMS experiment to assimilate the AMSR-E data are

briefly presented to establish that the EKF can extract sufficient information

from observations of w1 to make significant updates to w2 in ISBA.

The upper panels of Figure 5.9 show maps of the Kalman gain for w2 (k2)

and the resulting net monthly analysis increments generated by the AMS ex-

periment, respectively. The Kalman gain is plotted close to the beginning and

end of the one month assimilation, at 18:00 UTC on 2 and 30 July 2006. In

both cases the EKF gain was consistently below 0.2 m3m−3 /m3m−3, with a

mean of 0.09 m3m−3 /m3m−3 on 2 July, and 0.11 m3m−3 /m3m−3 on 30 July.

Given the ratio of the depths of the w1 and w2 soil layers, these gains will result

in reasonably large volumes of moisture being added to w2. The depth of w1 is

0.4% of the average depth of the w2 layer, so that a Kalman gain of 0.1 m3m−3

/m3m−3 will convert an error of 1 mm in w1 into an average update of 23 mm

to w2.

The mean monthly increment to w2 from assimilating the AMSR-E data

was 24 mm, which is very close to the mean monthly surface water budget

(precipitation minus evaporation and runoff) of 30 mm. There is considerable
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Figure 5.9: Kalman gain (m3m−3/m3m−3) for w2 for the EKF at 18:00 on a)
2 July 2006 and b) 30 July 2006, and for the SEKF on c) 2 July 2006 and d)
30 July 2006.

spatial variability in the increments shown in Figure 5.10, giving a standard

deviation of the net monthly increments of 49 mm. The analysis increments

generated by the AMSR-E assimilation are not examined further here, and will

instead be explored in greater detail in Section 5.5.

The SEKF assimilation of AMSR-E w1

The SEKF of Mahfouf et al. (2009) has been extended into an EKF for the

assimilation of w1 data, to allow the evolution of long-term memory in the

background model error covariance between w1 and w2. For the AMS exper-

iment, the square root of the w1-w2 error covariance was typically about half

the w2 error standard deviation: the mean values for the square root of each

element of P over the experiment (excluding the first few days) were 0.024 for
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Figure 5.10: Maps of the w2 analysis increments (mm) accumulated over July
2006 by the a) EKF and b) SEKF assimilation of AMSR-E w1 observations.

P11, 0.009 for P22, and 0.005 for P21. In contrast to the EKF, the SEKF of

Balsamo et al. (2007) and Mahfouf et al. (2009) does not use equations 3.4 and

3.5 to evolve and update P, and instead uses the same (diagonal) P at the

beginning of each assimilation cycle. While this neglects the long term evolu-

tion of the model errors, it still allows some temporal evolution of P through

the inclusion of the (6 hour) forecast model in the observation operator (see

Appendix A). To directly test the impact of the off-diagonal error covariance

on the EKF assimilation, its impact has been isolated by repeating the AMS

experiment with w1 excluded from the update vector. This reduced the mean

monthly increment to 18 mm month−1, with a standard deviation of 43 mm

month−1, indicating that the error covariance between w1 and w2 does enhance

the correction of w2 from w1 observations.

To further test the impact of using the full EKF, the AMS experiment has

been repeated with a SEKF. For the SEKF, the diagonal error variances in

P were set at (0.2×(wfc - wwilt))
2 and (0.1×(wfc - wwilt))

2 for w1 and w2,

respectively (close to the mean diagonal Pf elements for AMS quoted above).

The off-diagonal elements of P were assumed to be zero, following Balsamo et al.

(2007) and Mahfouf et al. (2009). The Kalman gains for the SEKF assimilation
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124 5. Assimilation Experiments with ISBA

experiments are included in Figure 5.9. The SEKF gain was consistently smaller

than the EKF gain, with means of 0.05 and 0.06 m3m−3/m3m−3 on 2 and 30

July. Apart from the magnitude, the most apparent difference between the

Kalman gains is that evolving P increased the fine scale spatial heterogeneity

in the EKF gain. This was evident after just two days of assimilation, although

it was more pronounced on 30 July. At larger scales the maps of the EKF and

SEKF Kalman gain show similar regions of comparatively high and low values,

particularly on 2 July when both are relatively low over much of north Africa,

Spain, and north France. However, the evolution of P has introduced some

differences, and on 30 July the EKF gain was comparatively high in the arid

zones of north Africa and Spain (the prominent region of reduced gain in both

plots over north France on 30 July was caused by precipitation). As a result of

the smaller SEKF gain, the net analysis increments in Figure 5.10 are slightly

smaller than for the EKF, with a mean and standard deviation of 18 and 44

mm, respectively (compared to 24 mm and 49 mm, respectively for the EKF).

However, consistent with the similarity in their Kalman gains, the large scale

patterns of moisture addition and subtraction for the EKF and the SEKF were

very similar.

In summary, using an EKF rather than a SEKF allows for the development

of long-term memory in the background model error covariance between w1

and w2, which for the AMS experiment was close to half the magnitude of

the w2 error variance. Comparing the EKF assimilation of AMSR-E data to

the assimilation with w1 excluded from the update vector indicates that this

off-diagonal error covariance has enhanced k2. While the Kalman gain, and

subsequent analysis updates, were smaller for the SEKF assimilation of AMSR-

E, the broad spatial patterns in the analysis updates were similar to those from

the EKF assimilation. This similarity between the SEKF and EKF assimilation

is a consequence of the the use of a 1-D assimilation. For a 1-D assimilation

of near-surface soil moisture, the temporal evolution of P can only affect the

vertical profile of the analysis increments. In contrast, for (3-D) atmospheric

data assimilation the main benefit of evolving P to account for “errors of the

day” is the ability to capture the spatial correlations generated by horizontal

flow (Kalnay, 2003). For the 2-layer ISBA model, evolving P can only influence

the magnitude of the update to w2 from a given w1 observation, and these

differences in k2 are unlikely to affect the broad scale patterns in the addition

and subtraction of moisture. In contrast, the processing of the observations can
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have a more profound impact on the net monthly analysis increments than the

evolution of P: note that the method used to rescale the observations had a

much greater impact on the spatial patterns in the analysis increments in Figure

5.8 than the model error covariance evolution did in Figure 5.10.

Despite the minimal impact of evolving the background error covariances in

this experiment, the EKF is recommended for future work and it has been used

throughout this thesis, since with a 6 hour assimilation cycle it does not incur

any extra cost if M is approximated from the same perturbed model simulations

used to estimate H (Section 5.3.2). Additionally, the evolution of P is expected

to generate more realistic error covariances, while also allowing greater flexibility

in the specification of errors, which should further improve the background error

covariances (for example, Mahfouf (2010a) present a parameterisation of Q,

based on precipitation).

5.5 Comparison of the assimilation of AMSR-E

near-surface soil moisture and screen-level

observations

In this section the results of the experiments described in Section 5.2.3 to as-

similate the AMSR-E w1, the screen-level observations, and both, are presented

and compared. The focus is on determining whether there is any consistency

between the soil moisture analyses generated by assimilating each data type,

and to examine how the information from each data type interacts when they

are assimilated together. First, the distributions of the mean monthly obser-

vation increments for each observed variable, and then the analysis increments

for each assimilation experiment, are compared. Then, the impact of assimi-

lating each observation type on the subsequent observation increments4 for all

observed variables is examined. Finally, the results of each experiment are com-

pared to the surface water balance generated by forcing the ISBA model with

high quality observations.

4The term“observation increment” has been used loosely in this chapter, to refer to the
difference between the model forecasts and observations, including for observations not as-
similated in a given experiment.
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126 5. Assimilation Experiments with ISBA

5.5.1 The observation increments

Histograms of the mean monthly difference across the ALADIN domain between

the open-loop forecasts and observations of T2m, RH2m, and w1 are shown in

Figure 5.11 (for the assimilated observations this is the mean observation in-

crement). For consistency, the screen-level increments have been excluded at

locations where AMSR-E data were screened-out5. While the spatial mean ob-

servation increment for the screen-level variables was close to zero (-0.005 K and

-0.3 %), suggesting that there was no significant net model - observation bias,

there were some relatively large increments (giving standard deviations of 0.5

K and 3.6 %), indicating significant monthly biases at some locations. Quali-

tatively, the distributions of the observation increments for T2m and RH2m are

approximately mirror-images, suggesting a consistent signal from w2. Both are

skewed, with T2m (RH2m) having a longer positive (negative) tail, suggesting a

cool-moist model bias.
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Figure 5.11: Histograms of the mean observation minus CTR forecast over
July 2006 for a) T2m(K), b) RH2m(%), and c) w1(m3m−3).

While the long term (monthly) mean observation increments for the screen-

level observations were small, there was a significant diurnal cycle in the in-

crements. The largest increments occurred in the early morning, when the

observations suggested a cool-moist model bias (mean monthly increments at

06:00 UTC: 0.56 K and -3.5 %). As each day proceeded, this cool-moist bias was

initially reduced (mean increments at 12:00 UTC: 0.09K & -1.6 %), and then

reversed in the evening (mean increments at 18:00 UTC: -0.29 K & 0.6 %, and

at 00:00 UTC: -0.33 K & 3.2 %). Time series at individual locations show that

5If all available T2m and RH2m data are used, the results are very similar for the subset
of observations presented here.
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this diurnal cycle occurs throughout the month, rather than being an artefact

of biases occurring at different periods during the month. This diurnal cycle

in the observation increments cannot be easily attributed to errors in w2, and

almost certainly has another cause. In particular, the largest biases occurred

early in the morning, when only RH2m had an intermediate sensitivity to w2

(and T2m has very little sensitivity) in Table 5.4.

Compared to the screen-level observations, the AMSR-E observation incre-

ments in Figure 5.11 were distributed more symmetrically, although the mean

was slightly positive (0.013 m3m−3), indicating a tendency for the model to

be drier than the observations. Additionally, there was limited spread in the

AMSR-E observation increments (giving a standard deviation of 0.028 m3m−3).

Since the rescaling of the AMSR-E data explicitly removed any diurnal cycle

in the model-observation bias, the means of the observations increments were

similar at 00:00 and 12:00 UTC (0.014 and 0.013 m3m−3, respectively).

5.5.2 The analysis increments

Histograms of the total volume of moisture added to w2 over July 2006 from the

assimilation of AMSR-E (AMS), screen-level variables (SLV), and both (CMB)

are shown in Figure 5.12. For all experiments the analysis increments can be

quite large, with the tails of the distribution reaching ± 200 mm month−1 (re-

call as a comparison that the mean monthly surface water budget over the

ALADIN domain was 30 mm). For SLV, the skewed T2m and RH2m observa-

tion increments generated an asymmetrical distribution of analysis increments

with a slightly negative mode, giving a small negative mean reduction in w2

(-5.5 mm month−1), with considerable spread (the standard deviation was 57

mm month−1). The monthly AMS increments were generally smaller than those

for SLV , although the strong positive skew generated a net addition of mois-

ture (the mean was 24 mm month−1, and the standard deviation was 49 mm

month−1). While the mode of the AMS increments is centred on zero, the

positive tail reaches approximately 200 mm month−1, double the negative tail

(∼-100 mm month−1).

The maps of the net monthly w2 analysis increment for the AMS and SLV

experiments in Figure 5.13 show little spatial agreement between the increments

generated by assimilating each data set. While they both removed moisture

across most of arid Spain and north Africa, there is little agreement over central
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Figure 5.12: Histograms of the w2 analysis increments accumulated over July
2006 (mm) from the a) AMS, b) SLV, and c) CMB assimilation experiments.

and east Europe, where SLV tended to decrease w2 and AMS increased it.

It is interesting to note that the regions of strongest moisture reduction by

SLV correspond to locations where the AMSR-E data was screened out due

to mountainous terrain and/or dense vegetation. Additionally, AMS generated

large positive increments along the northern edge of the Alps, which may reflect

errors in the model and/or the observations, since both have known problems in

regions of steep terrain (Rüdiger et al., 2009). The lack of association between

the net monthly SLV and AMS analysis increments has also been confirmed by

a scatterplot (not shown), for which the correlation coefficient between the net

SLV and AMS increments was just 0.1. Additionally, at individual grid cells

the temporal correlation between the increments applied by SLV and AMS was

also consistently very low (<0.25 across the model domain).

The disparity between the analysis increments generated by the AMS and

SLV experiments could have several causes. It may indicate a conflict between

the assimilated data sets; the treatment of the biases in each is certainly in-

consistent. The AMSR-E data have been strongly bias-corrected to remove all

systematic differences to the model, including any diurnal or seasonal cycles

in the model-observation bias, based on the assumption that the model is bias-

free (as is common practise in the off-line land surface assimilation community).

Even though the AMSR-E data were heavily adjusted towards the model cli-

matology, there is still a small positive bias in the AMSR-E data, which could

indicate a failure of the CDF-matching algorithm used to rescale the observa-

tions. In contrast the screen-level observations have not been bias corrected

at all (and currently they are not bias corrected in Météo-France’s operational
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Figure 5.13: Maps of the w2 analysis increments (mm) accumulated over July
2006 from the a) AMS, b) SLV, and c) CMB assimilation experiments.

land surface scheme). As discussed in Section 5.5.1, there is a strong diurnal

cycle in the bias, as well as large biases at some locations, although the monthly

averaged model-observation bias for the screen-level variables is close to zero.

Alternatively, the disparity between the SLV and AMS experiments may also

be caused by systematic errors in the model forecasts of the observed variables,

particularly since several studies over heavily instrumented sites have pointed

towards this result (Douville et al., 2000; Hess, 2001; Drusch and Viterbo, 2007).

Even though the net monthly analysis increments generated by the AMS and

SLV assimilation experiments are of the same order of magnitude, the analysis

increments for the CMB experiment are very similar to those from SLV. The

inclusion of the positively skewed AMSR-E data in CMB slightly reduced the
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Figure 5.14: Maps of the w2 analysis increments (mm) accumulated over July
2006 for each of the four daily assimilation cycles for the SLV assimilation. Each
plot is labelled with the time of the analysis, and the colour scale is the same
as used in Figure 5.13.

symmetry of the SLV distribution, by both decreasing the frequency of the

negative mode and increasing the occurrence of positive increments. Compared

to SLV, this resulted in a slight increase in the monthly mean increment to -1.1

mm month−1, as well as a larger spread in the increments (standard deviation:

59 mm month−1). However, the difference between the SLV and CMB analysis

increments was slight enough that it is difficult to distinguished between the

maps of each in Figure 5.13.
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The diurnal cycle in the screen-level increments

The diurnal cycle in the observation increments for the screen-level variables

resulted in a diurnal cycle in the analysis increments from the SLV (and CMB)

experiments. This is demonstrated by the maps of the net SLV analysis incre-

ments for each of the four daily assimilation cycles (at 00:00, 06:00, 12:00, and

18:00 UTC) in Figure 5.14. There was a strong tendency for SLV to remove

moisture in the morning, initially in the east of the domain at 00:00 UTC, and

then in the west at 06:00 UTC, giving net negative monthly increments of -22

mm and -1.2 mm at 00:00 UTC and 06:00 UTC, respectively. Then as each day

progressed, SLV added moisture back into w2, giving net positive increments

of 17 mm and 5 mm at 12:00 UTC and 18:00 UTC, balancing out the earlier

reduction of w2. Additionally, the regions where the strongest early morning

moisture reductions occurred correspond to regions of strong wetting 6 hours

later. For example, in north Poland moisture was removed at 00:00 UTC, and

then added back in at 06:00 UTC, with the same pattern occurring six hours

later in north France.

5.5.3 Impact on subsequent observation increments

To examine how assimilating each data set impacts the subsequent forecasts

of all observed variables, the observation increments for each experiment have

been compared. Time series of the mean diurnal cycle and the daily mean of the

observation increments are plotted separately in Figures 5.15 and 5.16. Support-

ing the earlier assertion that the diurnal cycle in the screen-level observation

increments was not related to w2, the SLV assimilation did not significantly

affect this diurnal cycle, and it is difficult to distinguish between the mean di-

urnal cycle of the observation increments from the SLV and CTR experiments

in Figure 5.15. At many individual locations the SLV assimilation reduced the

screen-level biases during one phase of the diurnal cycle, while enhancing the

biases during the opposite phase. At the daily time scale, the SLV assimilation

did generate reductions in the screen-level biases, as seen in Figure 5.16. For

the first two thirds of the month the observations were warmer and drier than

the model and SLV removed moisture from w2, while at the end of the month

the screen-level biases were reversed and SLV added moisture to the surface.

During both periods SLV generated a clear reduction in the daily mean biases

in Figure 5.16, by up to 0.1 K and 1.0%, which is approximately half of the
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132 5. Assimilation Experiments with ISBA

mean daily CTR bias for both variables.

In contrast to the screen-level variables, the w1 observation increments were

consistently positive (both spatially and temporally), and AMS had a strong

tendency to add moisture to w2. The AMS assimilation reduced the daily mean

w1 observation increments by close to 0.005 m3m−3 on most days (which is

again about half of the mean daily bias for CTR). However, there were two

periods of mean negative daily observation increments, and AMS was slow to

respond to these, resulting in larger negative observation increments than for

the CTR simulation.
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Figure 5.15: Diurnal cycle in the mean monthly observation minus model
forecast over July 2006 for a) T2m (K), b) RH2m (%), and c) w1 (m3m−3 ),
for the CTR (black, solid), SLV (black, dashed), AMS (grey, solid), and CMB
(grey, dashed) experiments. The horizontal axes are in hours.

The cool-moist screen-level model bias for the first two thirds of the month

was reduced by SLV and increased by AMS, while the warm-dry bias at the

end of the month was reduced by both AMS and SLV. Even though the net

monthly w2 analysis increments for AMS were generally smaller than those

from SLV, the AMS assimilation had a greater impact on the forecasts of the

screen-level variables than SLV, due to the more consistent direction of the

AMS increments. For the mean daily time series, AMS moistened and cooled

the screen-level forecasts, by a maximum of approximately 0.2 K and 1.5%

(double the impact of SLV). For the diurnal cycle in Figure 5.15, the addition

of moisture by AMS decreased the warm-dry model biases at the end of the

day, while increasing the cool-moist biases at the start of the day. Likewise,

the w1 observation increments were consistently reduced by AMS, while SLV
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Figure 5.16: Mean daily observation minus model forecast for each day in
July 2006, for a) T2m (K), b) RH2m (%), and c) w1 (m3m−3 ), for the CTR
(black, solid), SLV (black, dashed), AMS (grey, solid), and CMB (grey, dashed)
experiments.

had minimal impact, slightly increasing (decreasing) the biases at the start

(end) of the month. For the combined assimilation of AMSR-E and screen-level

observations it was again difficult to distinguish the CMB and SLV results in

the plot of the diurnal observation increments in Figure 5.15, while the daily

mean observation increments in Figure 5.16 are drawn slightly towards the AMS

results.

Table 5.5 shows the monthly RMSD between the observations and the model

background for each experiment (for the assimilated observations this is the

standard deviation of the observation increments). The rather small RMSD for

the screen-level observations is partly due to the use of the ALADIN screen-

level analysis (rather than the direct use of observations) in these assimilation

experiments, since in regions with sparse observations the analysis will strongly

resemble the model. For example, about half of the screen-level observations

ingested by the screen-level analysis were over France, where the RMSD of the

CTR observation increments is 1.62 K and 10.3%, which is somewhat higher

than the values in Table 5.5. As an aside, the root mean squares of the observa-

tion increments in Table 5.5 are consistent with the observation errors used in
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Table 5.5: RMSD between the observations and model forecasts over July 2006
for each assimilation experiment. For the screen-level variables the RMSD of
the daily averaged forecasts and observations is shown in brackets.

Time T2m (K) RH2m (%) w1 (m3m−3)
CTR 1.26 (0.8) 9.41 (6.0) 0.0749
SLV 1.21 (0.7) 9.05 (5.5) 0.0748
AMS 1.25 (0.8) 9.60 (6.2) 0.0732
CMB 1.21 (0.7) 9.05 (5.5) 0.0743

the assimilation, lending support to the selected observation errors: if the obser-

vation increments are partitioned equally between the model and observations

(i.e. the background and observation errors are assumed to be independent and

have equal mean squares), the error standard deviation for each would be 0.9 K

for T2m, 7% for RH2m (slightly lower than the RH2m observation error used),

and 0.05 m3m−3 for w1.

The SLV assimilation only slightly reduced the T2m and RH2m RMSD, by

about 5% of the original CTR RMSD. This relatively small impact is thought to

be a consequence of the diurnal cycle in the observation increments, since this

was the greatest contributor to the screen-level RMSD, and it was not amended

by the assimilation. Taking the RMSD of the daily average of the forecast and

observed screen-level observations (shown in brackets in Table 5.5) slightly in-

creases the relative impact of the assimilation, giving an improvement of close

to 8% of CTR. The SLV assimilation had little impact on the w1 RMSD. In

contrast the AMS assimilation slightly reduced the w1 RMSD, while also very

slightly reducing the T2m RMSD and increasing the RH2m RMSD. The disparity

between the T2m and RH2m results for AMS is likely due to the sensitivity of hu-

midity to w2 in the early morning (recall that AMS increased the early morning

cool-moist model bias). The CMB assimilation retained the small reductions in

the screen-level RMSD generated by SLV, while also slightly reducing the w1

RMSD.

Despite the modest improvements in the RMSD obtained here, these results

are believed to reflect a true reduction in the observation increments, since the

statistics were based on a very large sample size (for the screen-level obser-

vations, approximately 250,000 observations were used). If this result can be

substantiated once the diurnal cycle in the screen-level observations has been

addressed (and ideally using a longer experiment period), this implies that as-
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similating remotely sensed soil moisture together with screen-level observations

has the potential to help improve the realism of the NWP land surface without

degrading the low-level atmospheric forecasts.

Updating the soil temperature

In the current ALADIN surface OI scheme the surface temperature and moisture

states are both updated from the screen-level observations. Since the deep-layer

soil temperature (T2) is sensitive to the screen-level observations (specifically

T2m) at night (Mahfouf et al., 2009), the persistence of the diurnal biases in

these experiments could be explained by the exclusion of T2 from the update

vector. To rule out this possibility, the SLV experiment has been repeated

with T2 included in the update vector (with T2 error standard deviations of

1K for Q and 2 K for the initial P). While the inclusion of T2 improved the

overall observation increment statistics for the screen-level observations, it did

not amend the diurnal biases. In fact it further enhanced the warm dry morning

departures (to 0.61 K and -3.9% at 06:00 UTC, and 0.15 K and -2.0% at 12:00

UTC), while decreasing the cool moist departures later in the day (-0.22 K and

0.002% at 18:00 UTC, and -0.24 K and 2.9% at 00:00 UTC).

5.5.4 The relative information content

Table 5.6 compares the relative information content of the screen-level observa-

tions and AMSR-E data, calculated as described in Section 5.2.4. To isolate the

impact on w2 (rather than w1), the relative information content was calculated

from an additional experiment in which only w2 was analysed (otherwise identi-

cal to CMB). Recall from Section 5.4 that excluding w1 from the update vector

slightly reduces the impact of the EKF assimilation of w1 data, by removing the

long-term evolution of error covariance between w1 and w2. The experiments

with w1 excluded have then underestimated the impact of the AMSR-E data.

However, it should still provide a reasonable approximation of the sensitivity of

the CMB assimilation to each observation type.

The relative information content in Table 5.6 shows that most of the infor-

mation assimilated by the CMB experiment was derived from the screen-level

observations during periods of active evapotranspiration. In total, 96% of the

daily information content was derived from T2m and RH2m data during the day

(12:00 and 18:00 UTC) together with RH2m in the early morning (6:00 UTC).
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136 5. Assimilation Experiments with ISBA

Just 2% of the information was derived from the AMSR-E data, explaining

the strong similarities between the SLV and CMB assimilation results above.

These statistics are aggregated over all available observations, yet the spatial

and temporal coverage of the AMSR-E data was less than that of the screen-

level observations. On average, the number of AMSR-E observations per day

was 24% of coverage of the screen-level observations (assuming that the grided

observations are independent data; in reality the number of individual data was

much less than this for all observation types). If the information content of each

observed variable is normalised by the data coverage, the information content

per observation from the AMSR-E data was still an order of magnitude less than

that from the screen-level observations. This result differs from Balsamo et al.

(2007), who found that the information content of a single C-band brightness

temperature observation was greater than that of the screen-level observations,

when assimilated into the ISBA model coupled to the Canadian GEM system.

This difference is likely due to the very low AMSR-E observation error of 3 K

used in that study, which is equivalent to a volumetric soil moisture error of

approximately 0.01 m3m−3 over bare soil (e.g., Jackson and Schmugge, 1991),

while the remaining error statistics were similar to those used here.

It was noted in Section 5.2.3 that the misspecification of the soil parameters

in ISBA suppresses the variability of w2, so that the mean background model

error of 20 mm for w2 corresponds to a volumetric error of only 0.01 m3m−3,

which is five-times less than the assumed observation error. To test whether

the low information content of the w1 data is related to the large ratio of the

observed and modeled errors, an additional experiment has been conducted

in which the observation error standard deviation for AMSR-E was artificially

reduced to 0.02 m3m−3 (close to the model w1 error). In this experiment the

analysed w2 was still dominated by the signal from the screen-level variables,

and the information content of the AMSR-E data was increased to 11%. The

low information content of the w1 observations is then principally related to the

relative sensitivity of each observed variable to w2, rather than the particular

error covariance matrices that have been used here.

5.5.5 Comparison to SIM water balance

Here, the results of the AMS, SLV, and CMB experiments are compared to the

surface water budget simulated by SAFRAN-ISBA-MODCOU (SIM; Habets et

136



5.5 Comparison of the assimilation of AMSR-E near-surface soil
moisture and screen-level observations 137

Table 5.6: The relative information content as a fraction of the daily total (for
experiment CMB with w2 updated only), averaged over July 2006 separately
for each of the four daily assimilation cycles.

Analysis time T2m RH2m w1

00:00 0.01 0.10 -
06:00 0.25 0.10 0.01
12:00 0.27 0.24 -
18:00 0.01 0.00 0.01

al., 2008), which is a 3-layer version of ISBA forced with high-quality observa-

tions (Quintana-Segúı et al., 2008) over France. The surface water budget (the

change in soil moisture over the month), provides an integration of the surface-

moisture inputs (precipitation), outputs (evapotranspiration and runoff), and

soil moisture increments where an assimilation is performed. Due to the use

of high quality forcing data, the surface water budget from SIM is expected

to reflect the true surface water budget more accurately than that generated

by forcing ISBA with ALADIN forecasts (Mahfouf et al., 2009). Additionally,

assimilating observations into the latter should ideally correct for errors in the

ALADIN forecasts, bringing the surface water budget closer to that generated

by SIM. Consequently, Mahfouf et al. (2009) compared the surface water budget

over July 2006 from SIM to that from an open-loop ISBA simulation (identical

to the CTR simulation), and that from the assimilation of screen-level observa-

tions. They concluded that the SEKF assimilation of screen-level observations

had some skill in replenishing the surface water storage in regions where the

ALADIN forecast precipitation was biased low, however in other regions the

assimilation further enhanced the soil moisture deficits in the open-loop. Here

the surface water budgets generated by the EKF assimilation of AMSR-E w1,

the screen-level observations, and both, are compared to that from SIM to de-

termine whether assimilating the AMSR-E data can improve upon the results

of Mahfouf et al. (2009).

Figure 5.17 shows maps and histograms of the surface water budget for July

2006 from SIM, CTR, and each of the main assimilation experiments (SLV,

AMS, and CMB). As noted by Mahfouf et al. (2009), the open-loop CTR had

a tendency toward excessive drying and insufficient wetting compared to SIM,

which was associated with a low bias in the ALADIN precipitation forecasts over

137



138 5. Assimilation Experiments with ISBA

Table 5.7: First, second, and third quartile of the change in total soil moisture
storage (mm) from 1 to 31 July 2006, for each experiment.

Q1 Q2 Q3

SIM -25 -10 0.2
CTR -41 -27 -11
SLV -55 -28 -10
AMS -30 -6 19
CMB -48 -23 -5

this period. In particular, the maps in Figure 5.17 show that CTR simulated

excessive drying (in spatial extent and magnitude) along the English Channel

coast and in central France (Massif Central), with a region of insufficient moist-

ening in between. Additionally, CTR did not moisten the regions along the

Atlantic Coast and south of the Alps as indicated by SIM. The exceptions to

this tendency for excessive drying were the mountainous regions along the Ital-

ian, Swiss and Spanish borders, where CTR substantially increased the surface

water storage (by between 50 and 200 mm). The histograms in Figure 5.17

also reflect the tendency for excessive drying in the open-loop, and the CTR

distribution is to the left of the SIM distribution, resulting in more negative

quartile statistics (-41, -27, and -11 mm, for the first, second, and third quar-

tiles) than for the SIM experiment (-25, -10, and 0.2 mm, respectively) in Table

5.7. The addition of moisture along the mountainous borders also produced a

long positive tail that is not present in the SIM distribution.

Consistent with the results for the SEKF assimilation of screen-level vari-

ables reported by Mahfouf et al. (2009), the SLV assimilation correctly reduced

the region of drying along the English Channel and the south Atlantic Coast in

Figure 5.17, while also further enhancing and expanding the excessive drying in

central France. As a result, the most obvious difference between the SLV and

CTR histograms in Figure 5.17 is the introduction of a long negative tail for

SLV, while the same overly negative mode is retained. Consequently, in Table

5.7 the first quartile is much more negative for SLV (-55 mm), while the median

and third quartile are not greatly changed from the open-loop (-28 and -10 mm,

respectively).

In contrast to SLV, assimilating the AMSR-E data added moisture across

most of France. This reduced the regions of excessive drying in CTR (particu-
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Figure 5.17: Maps (left) and histograms (right) of the change in total soil
moisture storage (mm) from 1 to 31 July 2006, from a) SIM, b) CTR, c) AMS,
d) SLV, and e) CMB.
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larly in the north), and corrected the excessive drying in central France. As a

result, AMS shifted the surface water budget distribution to the right (towards

SIM), so that the first quartile and median for AMS are reasonably close to the

SIM values in Table 5.7 (-30 mm and -6 mm, respectively). However, in many

regions AMS has added too much moisture, resulting in an excessive positive

tail, with the third quartile (19 mm) much larger than that for SIM.

Consistent with the earlier results, the CMB surface water budget is very

similar to that from SLV. However, the inclusion of the AMS data increased

the positive tail of the distribution, and compared to SLV, the CMB maps in

Figure 5.17 show a slight reduction in the regions of excessive moisture loss,

particularly in the northeast. This has brought the quartile statistics slightly

closer to SIM (giving -48, -23, and -5 mm, respectively).

In summary, none of the assimilation experiments have generated a surface

water budget with a clearly superior fit to the SIM water budget. The addition

of moisture across the domain by AMS correctly compensated for the low-

biased ALADIN precipitation in many regions, resulting in the best match to

the surface water budget statistics for SIM. However, AMS also added too much

moisture in some regions, and it added moisture in regions where SIM did not

indicate that it was required. As a result, maps of the surface water budget for

SIM and AMS do not show any qualitative similarity, and it is not clear from

this comparison that the AMS assimilation has responded to the same errors

that are indicated by the difference between the CTR and SIM simulations.

That is, given the failure of AMS to distinguish between those regions where

SIM was wetter than CTR and those where it was not, it is quite possible that

AMS generated a better fit to SIM by chance, rather that a true ability to

correct for errors in the surface moisture.

Finally, compared to CTR the assimilation experiments (in particular AMS)

have added a lot of fine scale variability into the surface water budget. Given

that the AMSR-E data (nominally at 25 km) has a much coarser resolution

than ISBA (approx. 9 km), assimilating the AMSR-E data was not expected to

provide useful information at the resolution of ISBA. The surface water budgets

from Figure 5.17 have then also been compared after aggregating them up to

various resolutions of up to 50 km, however this did not change the comparative

performance of the three assimilation experiments.
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5.6 Chapter summary

The continental scale assimilation of remotely sensed near-surface soil moisture

into the ISBA model has been presented for the first time. The assimilation was

performed with an EKF, which was based on the SEKF developed by Mahfouf

et al. (2009) to assimilate screen-level observations into ISBA. Extending the

SEKF into a full EKF enhanced the impact of the assimilated near-surface

soil moisture data on the model root-zone soil moisture, due to the evolution

of the long-term error covariance between the model near-surface and root-

zone soil moisture errors by the EKF. However, at the broad temporal and

spatial scales examined here, the difference between the results of the EKF and

SEKF assimilation of near-surface soil moisture was relatively minor. In fact the

method used to rescale the AMSR-E data (to reduce the systematic difference

between the observed and modeled soil moisture prior to the assimilation) had

a much more profound impact on the root-zone soil moisture analyses than

the choice of using the SEKF or the EKF. Despite these results, the EKF

will be used in the assimilation experiments throughout the remainder of this

thesis, since it has the potential to provide a more realistic specification of the

background model errors, while incurring no additional computational cost.

Examining the soil moisture Jacobians for the ISBA model revealed that its

two-layer force restore physics are not well suited to assimilating near-surface

soil moisture. The near-surface soil moisture (w1) in ISBA has little influence on

the root-zone soil moisture (w2), and so to constrain w2 using w1 observations

the sensitivity of the model w1 forecasts to the initial w2 must be utilised (in the

same way that assimilating screen-level observations relies on model forecasts

of the observation equivalent). Further to this, w1 and w2 are only weakly

coupled in ISBA, and the strongest influence of w2 on w1 is an indirect link, via

transpiration. Consequently, w1 observations provide a much weaker constraint

of the model w2, than the screen-level variables do.

A series of experiments has been conducted to compare the assimilation of

AMSR-E derived near-surface soil moisture to the assimilation of screen-level

observations. While the experiments were for too short a period for robust

validation (due to the limited availability of forcing fields), the focus was on

contrasting the impact of assimilating each data type. When the AMSR-E w1

and screen-level observations were assimilated separately, there was no clear

consistency between the resultant root-zone soil moisture, indicating that for
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these experiments the screen-level observations could not have been substituted

with AMSR-E data to achieve similar corrections to the low-level atmospheric

forecasts. However, when both data types were assimilated together, the EKF

was able to slightly improve the fit between the model and both observation

types, although the improvements were extremely modest, being just 1% of the

CTR RMSD for w1, and close to 5% of the CTR RMSD for both screen-level

variables.

This work also revealed a number of problems with the use of screen-level ob-

servations for analysing the root-zone soil moisture in ISBA. Most notably, the

screen-level observation increments were dominated by a diurnal cycle, which

was not related to the model soil moisture. The resulting diurnal cycle in the

analysis increments demonstrates how assimilating screen-level observations can

lead to unrealistic soil moisture updates, reinforcing the need to assimilate alter-

native data sets. Consequently, in the next chapter the AMSR-E near-surface

soil moisture will be assimilated into the Australian NWP land surface model

(MOSES) over the Australian continent for a one year period, and the resulting

root-zone soil moisture estimates will be validated against in situ observations.

Since MOSES is a multi-layer model with explicit parameterisation of infiltra-

tion through each soil layer, it is expected to provide a more direct relationship

between the near-surface and deeper soil moisture than exists in ISBA.
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Chapter 6

Assimilation Experiments with

MOSES

6.1 Overview of chapter

In this Chapter remotely sensed near-surface soil moisture observations are as-

similated into an off-line version of the land surface model from the Australian

BoM’s NWP model (MOSES1), to test whether this can improve the modeled

root-zone soil moisture. As with the ISBA assimilation experiments in Chapter

5, the EKF described in Section 3.2 is used. This is the first study to assim-

ilate near-surface soil moisture observations into MOSES, and so the physical

mechanisms by which MOSES relates the near-surface and root-zone soil mois-

ture, and the strength with which the EKF can constrain the soil moisture

throughout the soil profile from near-surface observations, are first examined.

Experiments assimilating the near-surface soil moisture data are then pre-

sented, using soil moisture observations retrieved from C-band descending AMSR-

E overpass brightness temperatures using the VUA-NASA retrieval algorithm,

following the findings of Chapter 4. The AMSR-E data are assimilated over the

Australian domain for a one year period from 1 April 2008, and the results of

the assimilation are examined in terms of both the net impact on the model

soil moisture and evapotranspiration forecasts, and the impact on the model

skill in forecasting soil moisture. The latter is assessed at the Murrumbidgee

Monitoring Network sites by comparison to in situ soil moisture observations,

and then across Australia by examining whether the assimilation has corrected

1As discussed in Section 3.4.2, the off-line version of MOSES is called JULES, however it
will be referred to as MOSES throughout this chapter for simplicity.
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for errors in the precipitation forecasts used to force MOSES.

6.2 Data and methods

This section reviews the different data sets used in this chapter, including the

data used in the assimilation, to evaluate the results of the assimilation, and

to categorise the results into dominant climatic zones. Following this, the EKF

assimilation strategy is outlined.

6.2.1 AMSR-E data

In response to the findings of Chapter 4, near-surface soil moisture observations

derived from C-band descending AMSR-E brightness temperatures with the

VUA-NASA retrieval algorithm have been used in the assimilation experiments

in this chapter. This is the same data set that was assimilated into ISBA in

Chapter 5, and AMSR-E data has been processed in this chapter using the same

methods that were applied for ISBA (see Section 5.2.1 for details). In summary,

the AMSR-E near-surface soil moisture observations have been screened to re-

move contamination from RFI based on the index of Li et al. (2004), and to

remove contamination from dense vegetation based on a mean monthly opti-

cal depth threshold of 0.8. Following this screening, the level one AMSR-E

swath-data have been directly mapped onto the 0.375◦ ACCESS model grid us-

ing a nearest neighbour approach. Also, a final quality control has been applied

immediately prior to the assimilation, by excluding all data for which the obser-

vation increment is more than twice the standard deviation of the observation

increments over the experiment.

A map of the temporal coverage of the assimilated AMSR-E observations is

shown in Figure 6.1. As noted in Chapter 4, RFI, dense vegetation, and frozen

soil conditions are rare in Australia, giving an unusually high coverage of usable

passive microwave observations. Consequently, just 2% of the model grid cells

in Figure 6.1 have no data. On average the AMSR-E descending overpass soil

moisture data were available for 58% of days in the experimental period, with

the coverage ranging from close to 65% in the north (10◦S) to 85% over Tasmania

(41◦S). The coverage is reduced to less than 50% (and as low as 10%) over a

small vegetated region in southeast Australia, which is roughly collocated with

the Australian Alpine mountain ranges. The coverage is also low (down to 10%)
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in a large area of central arid Australia, which is associated with convergence

problems in the VUA-NASA retrieval algorithm in dry environments (Crow et

al., 2009).

Figure 6.1: Coverage (% of days) of the AMSR-E descending overpass soil
moisture observations over Australia from April 2008 - March 2009.

The near-surface soil layer in MOSES is 10 cm thick, much thicker than the

(approximate) 1 cm layer to which C-band microwave observations are sensi-

tive. In Chapter 4 it was demonstrated that temporally filtering the AMSR-E

soil moisture data can reduce the systematic differences between soil moisture

estimates from AMSR-E and from modeled or observed soil moisture that re-

lates to a thicker surface layer. Consequently, the AMSR-E soil moisture time

series for each model grid cell has been filtered using the exponential moving

average filter described in Section 4.3.4 before being assimilated into MOSES.

Finally, the (filtered) AMSR-E soil moisture observations have been rescaled

to better match the soil moisture climatology from MOSES, using the same

CDF-matching method that was applied in Chapter 5 for ISBA. The results of

this bias correction are presented in Section 6.5.1.

6.2.2 The Murrumbidgee Monitoring Network

In Chapter 4, near-surface soil moisture from AMSR-E was evaluated by com-

parison to in situ soil moisture observations from the Murrumbidgee Monitoring

Network. The Murrumbidgee observations have also been used in this chapter
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to assess the impact of assimilating the AMSR-E data on the MOSES fore-

cast near-surface and root-zone soil moisture. Following the recommendations

from Section 4.3.1, the root-zone soil moisture forecasts from MOSES have been

evaluated by aggregating the in situ observations to a root-zone soil moisture

estimate, rather than using observations from the individual soil layers. For

the Australian vegetation classes, the root-zone in MOSES is approximately 1

m thick (see Section 3.4.2). Consequently, the MOSES root-zone soil moisture

(SRZ) has been calculated by aggregating the moisture content of the three up-

permost soil layers (which cover depths of 0.00 - 0.10, 0.10 - 0.35, and 0.35 -

1.0 m, respectively). Similarly, the observed root-zone soil moisture values have

been calculated from the in situ observations at three depths (covering 0.00 -

0.30, 0.30 -0.60, and 0.60 - 0.90 m).

The Murrumbidgee Monitoring Network was introduced in Section 4.2.2:

in particular the monitoring stations are located in Figure 4.1 and described

in Tables 4.1 and 4.2. For the experiments conducted in this chapter, in situ

observations were available for only seven MOSES grid cells. In the Kyeamba

region the available data were spread across two MOSES grid cells, with five

stations (K1, K2, K3, K5, & K7) in the grid cell centred at (147.5,-35.375),

refered to as Kyeamba A (KA), and three stations (K8, K11, & K14) in the

grid cell centred at (146.75,-36.125), referred to as Kyeamba B (KB). Addition-

ally, there were ten stations (Y3-Y13) with available data in the grid cell over

Yanco (M8), and another four stations each in separate grid cells at Cooma

Airfield (M1), West Wyalong (M4), Balranald (M5), and Griffith (M7). How-

ever, reliable time series of root-zone soil moisture were not available at M1 and

M5, due to poor coverage of the nonsurface observations (in both cases more

than half of the data were missing at some depths). However, the near-surface

observations were available at these sites, and have been used. Additionally,

while in situ observations were available from M6, they are unrealistic and so

have not been used (see Section 4.3.5; the nonsurface observations at M6 had

similar unrealistic features).

6.2.3 Precipitation data

Daily precipitation observations from the BoM’s rain gauge analysis have been

used to determine whether the EKF can correct the MOSES soil moisture in

response to errors in the ACCESS model precipitation forecasts that have been
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used to force MOSES. The observed precipitation data set used in this Chapter

(for 2008-2009) is different from that used in Chapter 4 (for 2003-2008), follow-

ing an update to the method used to generate spatial climate data sets at the

BoM. The updated data sets use the same input rain gauge data as was used

by the previous precipitation analyses, however the analysis technique has been

refined, giving a substantial accuracy improvement (Jones et al., 2009). The

estimated mean absolute error of the updated precipitation analysis is 0.9 mm

day−1 (Jones et al., 2009). The precipitation analyses are generated daily on an

0.05◦ grid from approximately 5760 rain gauge observations Jones et al. (2007).

These analyses have been aggregated to the 0.375◦ MOSES grid for comparison

to the model.

6.2.4 Köppen -Geiger climate classification

The Australian continent covers a diverse range of climate regimes and the EKF

has been examined separately for each of these regimes, to prevent the charac-

teristics of the arid zone (which covers approximately 70% of the continent) from

dominating the results. Note that this was not necessary for ISBA in Chapter 5,

since the climate across the European domain is more uniform. The Australian

climate has been classified according to the Köppen-Geiger classification, as

derived by Peel et al. (2007). The map of the Köppen-Geiger classifications in

Figure 6.2 shows that Australia can be divided into three main climate regimes:

• Tropical in the north (exclusively Aw; see Figure 6.2 for an explanation

of the Köppen-Geiger codes)

• Arid in the centre and west (including Bwh, Bwk, Bsh, and Bsk)

• Temperate along the east coast (Cfa, and Cfb) and westward facing coasts

in the south (Csa and Csb).

The results of the EKF are presented below separately for each of the above

classifications, with the temperate zone separated into oceanic (Cfa and Cfb)

and Mediterranean (Csa and Csb) zones, since these are geographically distinct.

6.2.5 The assimilation experiments

The AMSR-E data have been assimilated into MOSES using the EKF described

in Section 3.2, and also used in Chapter 5. The soil moisture variable in MOSES
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Tropical Temperate−Mediterranean
Blue Aw - Tropical savannah Light green Csa - Warm Mediterranean

Dark green Csb - Temperate Mediterranean

Arid Temperate−Oceanic
Yellow Bwh - Warm desert Gray Cfa - Warm oceanic
Orange Bwk - Cool desert Black Cfb - Temperate oceanic
Pink Bsh - Warm semiarid
Red Bsk - Cool semiarid

Figure 6.2: Köppen-Geiger climate zones over Australia (from Peel et al.,
2007).

upon which the physics operate is the fraction of saturation, S (e.g, see equation

3.12). Consequently the EKF has been performed in S space, and for clarity

S has been reported here as a percentage, while the volumetric soil moisture,

θu, has been exclusively reported as m3m−3. As discussed in Section 3.4.2,

S includes four soil moisture layers, and for the vegetation types in Australia

the upper three layers approximate the root zone soil moisture. The fourth

layer is a slowly varying moisture storage, representing inter-annual variability.

Since the fourth layer will be very weakly coupled to the near-surface soil layer,

it has been excluded from the state update vector. Additionally, in Section

6.3.4 it will be demonstrated that S3 can also be excluded without significantly

affecting the soil moisture analyses, hence only S1 and S2 have been updated by

the EKF. The (exponentially filtered) AMSR-E observations were assumed to

be observation-equivalent to the (10 cm deep) near-surface soil moisture layer in
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MOSES. Additionally, a 6 hour assimilation cycle has been used for consistency

with the eventual assimilation of screen-level observations, and the AMSR-E

data (observed at roughly 12:00 UTC) have been assimilated at the end of the

assimilation window (at 15:00 UTC).

The error covariance matrices required by the assimilation have been speci-

fied using a similar approach as in Chapter 5 for ISBA. Spatially uniform values

have been used for all specified errors, and the off-diagonal background and

model error covariances were assumed to be zero. The AMSR-E observation

error and the initial background model errors were based on the evaluation of

AMSR-E and MOSES soil moisture in Chapter 4. The additive model forecast

error was based on the approximate NWP surface water budget error of 10 mm

day−1 quoted by Douville et al. (2000) (as was done for ISBA). Full details of

the error selection, and an evaluation of the resulting error covariance matrices

at the Murrumbidgee Monitoring Network sites, will be presented in Section

6.3.3.

6.3 Implementing the EKF in MOSES

Before the assimilation results are presented in Sections 6.4 and 6.5, the prelim-

inary testing and refining of the assimilation strategy is presented here. This

includes testing the accuracy of the model Jacobians used to estimate the lin-

earised forecast model, and examining the manner in which the near-surface

soil moisture is related to the underlying soil moisture profile in MOSES. Based

on these results, the state update vector for the EKF is refined to include only

S1 and S2, and the impact of this is tested. Finally, the model and observation

error covariances used in the assimilation are presented, and checked against in

situ soil moisture observations.

6.3.1 MOSES model Jacobians

The magnitude of the perturbations used to estimate the model Jacobians for

the EKF has been chosen by testing the similarity of the model Jacobians es-

timated with positive and negative perturbations for a range of perturbation

sizes. Figure 6.3 shows a scatterplot comparing the difference between the two

estimates of M11, for a range of perturbation sizes. As the magnitude of the

perturbation decreased, the two estimates converged until the perturbation was
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Figure 6.3: Dependence of estimated M11 (y axis: %/%) on the perturba-
tion used in the finite difference equation (x axis: fraction of soil moisture at
saturation). The upper plot shows the mean of the Jacobians estimated with
positive and negative perturbations, and the lower plot shows the absolute dif-
ference between the two estimates. All points plotted are the mean across the
Australian domain, for the six hour forecast beginning from 09:00 UTC on 7
April 2008.

below 0.1%, beyond which the two estimates diverged. This divergence was

due to the signal being dominated by numerical and dynamical noise for overly

small perturbations (even though linear tangent theory would suggest that in-

finitesimal perturbations are best (Balsamo et al., 2004)). Similar findings were

obtained for the other elements of M, and so a perturbation of 0.1% has been

used to estimate the Jacobians for the EKF.

Scatterplots of the Jacobian terms estimated with positive and negative per-

turbations of 0.1% are shown in Figure 6.4. All points are aligned along the

one-to-one line, consistent with M being well approximated by M within the

range of the applied perturbation. Only the diagonal terms of the Jacobian

matrix are included in Figure 6.4 for brevity, however the off-diagonal terms es-

timated from the positive and negative perturbations also agreed strongly. For

example Table 6.1 shows excellent agreement between the statistics describing

the Jacobians estimated with the positive and negative perturbations, for both

the diagonal and off-diagonal terms. In most cases the statistics for each esti-

mate were the same (to two decimal places), even for the extreme values, which

can represent instances of strong nonlinearity.

150



6.3 Implementing the EKF in MOSES 151

Figure 6.4: Scatterplots of the diagonal Jacobian terms (%/%), for the 6 hour
forecast from 09:00 UTC on 6 April 2008, estimated using a perturbation of
+0.1% (x-axis) and -0.1% (y-axis) of the soil moisture at saturation.
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Table 6.1: Comparison of the statistics for the MOSES Jacobian terms (%/%),
for the 6 hour forecast from 09:00 UTC on 6 April 2008, estimated using a
perturbation of +0.1% (+ve) and -0.1% (-ve) of the soil moisture at saturation.

mean stdev min max
∂S1

∂S1
+ve 0.92 0.077 0.16 1.0

−ve 0.92 0.076 0.16 1.0
∂S2

∂S1
+ve 0.0072 0.028 -0.019 0.27

−ve 0.0071 0.027 -0.018 0.27
∂S3

∂S1
+ve -0.00004 0.0017 -0.0040 0.053

−ve -0.00005 0.0016 -0.0040 0.053
∂S4

∂S1
+ve -0.00008 0.00028 -0.0010 0.0020

−ve -0.00007 0.00027 -0.0010 0.0010
∂S1

∂S2
+ve 0.022 0.071 -0.034 0.49

−ve 0.022 0.070 -0.034 0.49
∂S2

∂S2
+ve 0.97 0.052 0.43 1.0

−ve 0.97 0.051 0.43 1.0
∂S3

∂S2
+ve 0.0042 0.0098 -0.0010 0.14

−ve 0.0041 0.0097 -0.0010 0.14
∂S4

∂S2
+ve 0.00004 0.00028 -0.0010 0.0060

−ve 0.00004 0.00029 -0.0010 0.0050
∂S1

∂S3
+ve -0.0028 0.011 -0.039 0.14

−ve -0.0029 0.010 -0.039 0.14
∂S2

∂S3
+ve 0.0090 0.016 -0.0010 0.20

−ve 0.0090 0.016 0 0.20
∂S3

∂S3
+ve 0.99 0.013 0.72 1.00

−ve 0.99 0.013 0.73 1.00
∂S4

∂S3
+ve 0.00069 0.0023 -0.0010 0.055

−ve 0.00069 0.0022 -0.0010 0.054
∂S1

∂S4
+ve -0.0012 0.0038 -0.014 0.0019

−ve -0.0013 0.0036 -0.014 0.0019
∂S2

∂S4
+ve 0.00036 0.00065 -0.0010 0.0050

−ve 0.00037 0.00065 -0.0010 0.0050
∂S3

∂S4
+ve 0.0014 0.0026 0.0 0.029

−ve 0.0014 0.0026 0.0 0.029
∂S4

∂S4
+ve 1.00 0.0022 0.95 1.0

−ve 1.00 0.0023 0.95 1.0
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6.3.2 The model Jacobians

The soil moisture dynamics in the MOSES model are very different to those

from the two-layer force-restore ISBA model (see Section 5.3.2). MOSES has

finer vertical resolution, and the soil moisture in each layer directly influences

the moisture in adjacent layers through diffusive flow (equation 3.11). Figure 6.5

shows maps of the first row (∂S1/∂S) of the MOSES model Jacobian for a typical

winter period, in this case for the 6 hour forecast beginning at 09:00 UTC on 1

August 2008 (note that this is equivalent to the linearised observation operator

for the assimilation of descending overpass AMSR-E S1 observations on that

day). These maps show that the 6 hour forecasts of near-surface moisture had

very little sensitivity to the moisture in the third and fourth layers, and ∂S3/∂S1

and ∂S4/∂S1 were close to zero almost everywhere. Additionally, across most of

Australia an anomaly in S1 largely persisted over the 6 hours, giving ∂S1/∂S1

close to one and ∂S2/∂S1 close to zero (less than 0.01 %/% ). It is only along the

∂S1/∂S1 ∂S1/∂S2

∂S1/∂S3 ∂S1/∂S4

Figure 6.5: Maps of the linearised observation operator (%/%) for the 6 hour
assimilation cycle from 09:00 UTC on 1 August 2008.
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southwest and east coasts that the perturbations applied to S1 influenced the

other layers: in these regions ∂S1/∂S1 was reduced to as low as 0.5 %/%, and

∂S2/∂S1 was increased to as high as 0.4 %/% (although it was more typically

less than 0.2 %/%).

Figure 6.6 shows maps of the soil moisture in MOSES at 09:00 UTC on

1 August 2008. Comparison to Figure 6.5 highlights that those regions men-

tioned above as having lower ∂S1/∂S1 (less persistence) and higher ∂S1/∂S2

(more rapid flow of soil moisture information) correspond to wetter soils. This

relationship is caused by the dependency of hydraulic conductivity on soil mois-

ture in equation 3.13. This relationship is also demonstrated by the scatterplot

comparing the model Jacobians to S1 for the KA model grid cell in Figure 6.7.

When S1 was below about 40% of saturation at KA, ∂S1/∂S2 was close to zero,

while for S1 above 40% ∂S1/∂S2 increased rapidly (with inverse behaviour from

∂S1/∂S1). Spatially, the relationship between soil moisture and the Jacobians in

S1 S2

S3 S4

Figure 6.6: Maps of the MOSES soil moisture (as a fraction of the soil moisture
at saturation) in each layer at 09:00 UTC on 1 August 2008.
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Table 6.2: MOSES model Jacobian terms in units of %/%, spatially averaged
across Australia, for the 6 hour forecast from 09:00 UTC on 1 August 2008.
Values below 1× 10−5 are reported as 0.0.

M9→15UTC =


0.96 2.5× 10−2 9.4× 10−4 3.5× 10−5

8.1× 10−3 0.98 8.1× 10−3 3.9× 10−5

1.7× 10−4 4.1× 10−3 0.99 1.2× 10−3

0.0 1.3× 10−5 7.0× 10−4 1.0



Table 6.3: MOSES model Jacobian terms in units of mm mm−1, spatially
averaged across Australia, for the 6 hour forecast from 09:00 UTC on 1 August
2008. Values below 1× 10−5 are reported as 0.0.

M9→15UTC =


0.96 1.1× 10−2 1.4× 10−4 0.0

2.0× 10−2 0.98 3.1× 10−3 0.0
1.2× 10−3 1.1× 10−2 0.99 3.9× 10−4

1.3× 10−5 1.1× 10−4 2.2× 10−3 1.0


Figure 6.5 is similar, in that ∂S1/∂S2 was close to zero across most of Australia,

and increased sharply in wetter areas.

For brevity only the first row of the MOSES soil moisture Jacobians is plot-

ted in Figure 6.5. However the nonsurface soil moisture layers showed similar

behaviour. Table 6.2 lists the spatial average of the model Jacobians for each

soil layer in MOSES. In each case, the applied perturbation mostly persisted

in the layer to which it was applied (giving spatial mean ∂Si/∂Si typically be-

tween 0.95 and 1.0 %/%), with a small flow of moisture into adjacent layers

(∂Si/∂Si±1 typically O(10−2) to O(10−3 %/%), and much smaller responses in

the remote layers ( 10−4 %/%, or smaller). As an aside, Table 6.3 shows the

same model Jacobians converted to units of mm mm−1 for consistency with

Darcy’s diffusive flow equation (equation 3.12). This table highlights that the

soil moisture in each model layer has a similar impact on the moisture in the

layers above and below (since Si similarly influences the flow out of (Wi) and

into (Wi−1) the ith layer).

Since Darcian flow does not explicitly depend on surface forcing, the MOSES

soil moisture Jacobians do not show a diurnal cycle as occurred for ISBA. How-

ever, the dependency on the soil moisture state itself leads to a seasonal cycle

in the model Jacobians. As discussed above, Figures 6.5 and 6.6 provide a typ-
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Figure 6.7: Scatterplot of the ∂S1/∂S1 (red, %/%) and ∂S1/∂S2 (blue, %/%)
verse S1 (%) at Kyeamba A, for the twelve month period from April 2008.

ical example of winter conditions, during which the temperate southeast and

southwest experience their wet season. Conversely, Figures 6.8 and 6.9 show

the corresponding soil moisture and model Jacobians for summer conditions,

during which the tropical north experiences its wet season. As in the winter

example, the regions of increased soil moisture correspond to increased ∂S1/∂S2

and decreased ∂S1/∂S1, while S1 has little sensitivity to S3 and S4.

In summary, there is limited vertical exchange of soil moisture information

through the MOSES soil moisture profile. This limited exchange is expected in

arid and semiarid conditions (which occur across most of Australia) due to the

dependence of hydraulic conductivity on soil moisture. However, it is possible

that it is being exaggerated by the MOSES model, due to the model having

insufficient vertical soil moisture flow. As a consequence, the soil moisture

in each layer of MOSES will only have a significant influence on the 6 hour

forecasts of soil moisture in other layers in humid conditions, specifically during

the winter in the temperate south and during the wet season in the tropical north

of Australia. Even at these times this influence is restricted to the adjacent soil

layers.
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∂S1/∂S1 ∂S1/∂S2

∂S1/∂S3 ∂S1/∂S4

Figure 6.8: Maps of the linearised observation operator (%/%) for the 6 hour
assimilation cycle from 09:00 UTC on 1 February 2009.
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S1 S2

S3 S4

Figure 6.9: Maps of the MOSES soil moisture (as a fraction of the soil moisture
at saturation) in each layer at 09:00 UTC on 1 February 2009.
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6.3.3 Model and observation error covariances

In this section the EKF error covariance matrix selection is outlined, and then

evaluated against in situ soil moisture observations at the Murrumbidgee Mon-

itoring Network sites. For the near-surface soil moisture, the initial observation

and background model error variances were based on the comparison to the in

situ observations in Chapter 4. Both error variances were set to (10%)2, equiv-

alent to a root mean square error of 0.04 m3m−3 assuming the mean volumetric

soil moisture at saturation in MOSES (0.44 m3m−3). This is slightly larger than

the mean RMSD of 0.03 m3m−3 for AMSR-E and ACCESS near-surface soil

moisture in Table 4.10 of Chapter 4. The background model error variances for

the nonsurface soil moisture layers were set to the same value.

As in Chapter 5, the model error matrix (Q) was selected so that the total

error applied to the soil moisture profile was close to the NWP surface water

budget error of 10 mm day−1 quoted by Douville et al. (2000). Additionally,

the standard deviation of the error in the near-surface layer was assumed to

be double that of the underlying layers to account for its greater sensitivity to

forcing errors. For S1, a model error variance of (0.4/d1 %)2 has been used,

while for the underlying layers a variance of (0.2/di %)i has been used, where di

is the depth of the ith model soil layer. These values are equivalent to adding

an error of (2 mm)2 every 6 hours to S1, and (1 mm)2 every 6 hours to the

deeper layers. While the error covariance matrices are tested in this section

using a state update vector that includes the three upper-most soil moisture

layers, the AMSR-E assimilation experiments presented below include only S1

and S2 in the state update vector (see Section 6.3.4). With S = (S1, S2)
T the

above-defined values of Q result in a total error of 12 mm being added to the

soil profile each day, slightly larger than the target value of 10 mm day−1.

The error covariances used for the EKF are summarised in Table 6.4. The

realism of the applied model error covariances has been tested by comparing

the EKF background model error covariance matrices against model errors es-

timated from the Murrumbidgee Monitoring Network observations. For this

comparison the AMSR-E soil moisture was assimilated for one year, using the

EKF to update S = (S1, S2, S3)
T . From this experiment, the “EKF” background

error covariances were estimated as the mean of the Pb used in each analysis.

The“observed” background error covariances were estimated as the mean square

difference between the model background state and the normalised in situ ob-
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Table 6.4: The (spatially uniform) observation, model, and initial background
error variances used in the assimilation of AMSR-E near-surface soil moisture,
in units of (% of saturation)−2. All diagonal error covariances were assumed to
be zero.

Observation Errors (R)
S1 102

Forecast Model Errors (Q)
S1 4.02

S2 0.82

S3 * 0.32

Initial Background Errors (P)
S1 102

S2 102

S3 102

* For Sections 6.3.3 and 6.3.4 only.

servations at the time of each analysis (based on the assumption that the in

situ observations represent the truth). For both estimates, the first week of the

assimilation was excluded from the mean, to reduce the impact of errors in the

initial x and P. Before being compared to the model background soil moisture,

the in situ observations were interpolated onto the model soil moisture layers,

and then normalised to the model climatology based on the mean and variance

(as in equation 4.1). Recall from Section 4.3.1 that the in situ observations are

not expected to reflect the area-average soil moisture dynamics for individual

sub-surface soil layers well (hence they have been aggregated to a single root-

zone observation elsewhere in this chapter). Consequently the results of this

comparison have considerable uncertainty.

Tables 6.5 and 6.6 compare the observed and EKF estimates of the diagonal

elements of P (i.e., the variance of the background errors in each soil moisture

layer) and R, respectively. The results suggest that for the surface layer the

error variances in P and R are both approximately correct, while for the non-

surface layers the EKF model error variance in P has been overestimated. The

observed model error variance decreased with the depth of the soil layer, from

a mean of (0.04 m3m−3 )2 in layer one to a mean of (0.01 m3m−3 )2 in layers

two and three. The errors were very small in the nonsurface layers due to the

limited variability of the MOSES soil moisture in those layers (recall that the

in situ data were normalised to match this variance). While the EKF error
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variances also decreased with depth, the rate of decrease was not as rapid as for

the observed errors. Additionally, the observed errors showed more variation

across the Murrumbidgee sites than the EKF errors, which could be due to the

(overly simplistic) use of spatially uniform model errors in the EKF.

Table 6.7 compares the observed and EKF estimates of the off-diagonal el-

ements of P, presented as the correlation between the errors for each pair of

model layers (i.e., the error covariances between each pair of model layers, nor-

malised by the error standard deviation for each layer). There was considerable

spread between the observed vertical error correlations at the different sites, in-

cluding some negative values (which are possibly incorrect). Despite this large

spread, the mean vertical error correlation across the Murrumbidgee sites was

consistently close to 0.4, for each combination of soil layers. In contrast, the ver-

tical error correlations from the EKF P were several orders of magnitude smaller

(since Q was assumed diagonal and the model Jacobians described above will

not generate significant vertical error correlations).

In summary, comparing the observed and EKF error covariance terms es-

Table 6.5: Summary of the root mean square of the background soil moisture
errors (m3m−3) across the Murrumbidgee Monitoring Network sites from April
2008 to March 2009. The errors are estimated from the in situ soil moisture ob-
servations (observed), and from the EKF background error covariance matrices
(EKF), and are reported relative to the MOSES soil moisture climatology.

Observed EKF
min max mean min max mean

S1 0.035 0.055 0.045 0.035 0.047 0.043
S2 0.010 0.018 0.013 0.017 0.032 0.027
S3 0.006 0.025 0.012 0.016 0.027 0.023

Table 6.6: Summary of the root mean square of the AMSR-E observation
errors (m3m−3) across the Murrumbidgee Monitoring Network sites from April
2008 to March 2009. The errors are estimated from the in situ soil moisture ob-
servations (observed), and from the EKF observations error covariance matrices
(EKF), and are reported relative to the MOSES soil moisture climatology.

Observed EKF
min max mean min max mean

S1 0.027 0.062 0.043 0.042 0.046 0.045
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Table 6.7: Summary of the correlation between the background model soil
moisture errors in layers 1, 2, and 3 across the Murrumbidgee Monitoring Net-
work sites from April 2008 to March 2009. The correlations are estimated from
the in situ soil moisture observations (observed) and the EKF background error
covariance matrices (EKF).

Observed EKF
min max mean min max mean

r1,2 0.037 0.74 0.37 0.0023 0.013 0.005
r1,3 0.030 0.63 0.39 0.0005 0.005 0.001
r2,3 -0.23 0.74 0.41 0.0065 0.0095 0.008

timated above suggests that the EKF has overestimated the diagonal model

background errors in the nonsurface layers, and underestimated the off-diagonal

error covariance terms. Within the assimilation these misrepresented errors will

to some extent compensate for each other, since the former will lead to an over-

estimate of the corrections to the deeper layers, while the latter will lead to an

underestimate of the corrections.

If the above result regarding the off-diagonal errors is correct, it implies

that the model forecast does in fact introduce vertical model error correlations,

and Q should then include nonzero off-diagonal elements. However, due to the

considerable uncertainty associated with using in situ data to estimate the soil

moisture for individual model layers, as well as the limited spatial coverage

of the in situ data, the off-diagonal elements of Q have been kept at zero.

This conservative choice was made since it was considered more detrimental

to overestimate the vertical model error correlations (thus overestimating the

corrections to the deeper soil layers), than to underestimate them.

6.3.4 The state update vector

The capacity of the EKF to update the nonsurface soil moisture layers from

near-surface soil moisture observations depends on the vertical exchange of soil

moisture information in the model, since this will determine the observation

operator and the evolution of off-diagonal terms in the background error matrix.

The above analysis of the MOSES model Jacobians suggests that the EKF is

unlikely to make significant updates to S3 from the S1 observations, and that it

will only make significant updates to S2 under humid conditions. Consequently,
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the computational cost of the analysis could be reduced by excluding S3 from

the state update vector, thus reducing the number of perturbed simulations

required to calculate the model Jacobians for H and M.

To confirm that the EKF does not generate significant updates to S3 a three

month test was undertaken comparing the assimilation of AMSR-E observations

with S3 included and excluded from the state update vector (starting on 1 April

2008 and using the error covariances from Table 6.4). For these experiments the

analysis increments added to each layer decreased rapidly with depth from the

surface. For the experiment with S3 updated, the mean net monthly increment

to S1 (1.1× 10−1 m3m−3 month−1) was an order of magnitude greater than the

mean increment to S2 (1.4×10−2 m3m−3 month−1), which was another order of

magnitude greater than the mean increment to S3 (2.9×10−3 m3m−3month−1).

Comparing the resulting soil moisture analysis to the experiment in which S3

was excluded from the state update vector shows including S3 had only a small

impact on the model state. After three months of assimilation, the difference

between the soil moisture from the two assimilation experiments was less than

10−3 m3m−3 in all soil layers. Conditions in east Australia were reasonably

wet (SRZ > 0.5) during the three months of this experiment, yet the difference

between the two experiments was not significantly greater in these wetter regions

(recall that the exchange of moisture information between the different model

layers increases with soil wetness). Finally, the results from Section 6.3.3 suggest

that the limited analysis updates added to S3 were not due to the choice of

model error covariances used here (within the constraint of zero off-diagonal

Q). Section 6.3.3 suggested that the nonsurface model error variances used by

the EKF were too high, which if anything would cause the EKF to overestimate

the updates to the nonsurface soil layers.

Since it was shown above that the impact on the analyses of including S3

in the update vector is small, the cost of the analyses has been reduced by

including only S1 and S2 for the remainder of this chapter. The impact of the

assimilation on S3 will then be limited to the infiltration of updates from above.

6.4 Testing the EKF: synthetic experiments

In response to the limited coupling between the near-surface and underlying

soil moisture in MOSES, the effectiveness with which the EKF can correct the

soil moisture throughout the model profile from near-surface observations is ex-
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amined in this section through a series of synthetic experiments. The model

simulations used in these synthetic experiments are listed in Table 6.8. The

first was an open-loop simulation (OPN ACCESS), run for twelve months from

1 April 2008. OPN ACCESS was assumed to represent the true model state,

and the synthetic observations were generated by taking the S1 at 15:00 UTC

each day from this simulation. The initial conditions on 1 April 2008 were then

perturbed to unrealistic values, and the synthetic observations were assimilated,

to test whether the EKF could retrieve the true (OPN ACCESS) soil moisture

profile. Two perturbed assimilation experiments were conducted; in the first

(EKF 25) the initial S was set to 25% of saturation in all layers, while in the

second (EKF 75) the initial S was set to 75% of saturation. The same error

covariance matrices from Table 6.4 were used in these experiments, with the

initial P doubled to account for the much greater error in the initial conditions.

For each assimilation experiment, the rate at which the EKF converged toward

OPN ACCESS was benchmarked against the corresponding open-loop simula-

tion, initialised with the same perturbed soil moisture (OPN 25 and OPN 75,

respectively).

Note that these synthetic experiments have been designed to examine only

whether the vertical coupling in MOSES is sufficient for the EKF to correct the

soil profile based on near-surface soil moisture observations. Consequently, no

error terms have been added to the synthetic truth, model, or forcing, and so the

results provide an upper-limit for how effectively the assimilation can constrain

the model soil moisture profile from near-surface observations. In reality, the

ability of the EKF to correct the model soil moisture is greatly reduced by

inaccuracies in the observations and the forward model.

Table 6.8: Initial conditions and assimilated observations for the synthetic
assimilation experiments.

Experiment Assimilated observations (y) Initial x
OPN ACCESS None From ACCESS
EKF 25 S1 from OPN ACCESS 25%
OPN 25 None 25%
EKF 75 S1 from OPN ACCESS 75%
OPN 75 None 75%
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6.4.1 Time series examples

Since the model Jacobians, and hence the EKF, are dependent on the local

soil moisture conditions the results of the synthetic experiments are examined

below at four locations, selected to sample each of the main Australian climate

regimes identified in Section 6.2.4.

An arid location

Figure 6.10 shows the soil moisture time series from each of the perturbed EKF

and open-loop experiments at an arid location in central Australia. At this

location, the OPN ACCESS soil moisture in all model layers remained close

to its lower limit throughout the year (recall from Section 3.4.2 that in layers

two to four the model soil moisture is bounded below at 10% of the wilting

point). Superimposed on this, S1 shows a series of precipitation induced spikes,

after which the soil moisture rapidly dried back to its lower limit. The larger

precipitation events also generated a small response in S2, which then gradually

dried to its lower bound, while S3 and S4 show no variability (at the plotted

scale).

Both of the perturbed initial conditions were wetter than the initial condi-

tions in OPN ACCESS, and in both S1 dried rapidly towards OPN ACCESS.

In both cases S1 was within 1% of OPN ACCESS within 10 days, after which

the S1 time series were indistinguishable from the synthetic truth until precip-

itation occured and the S1 time series briefly diverged. The deeper soil layers

dried more gradually, so that even after a year S3 and S4 did not converge to

OPN ACCESS. With the exception of brief periods following precipitation, the

S1 from the reference and perturbed open-loop experiments were very similar.

Since the S1 from the perturbed experiments had no signal of the wetter soils

in the underlying layers, the assimilation had little impact, and the EKF 25

and EKF 75 time series were similar to the corresponding perturbed open-loop

experiments. Figure 6.11 shows the analysis increments at the same location,

demonstrating that increments were added to the model only during the first

few days of the experiment (reducing the difference to the OPN ACCESS er-

rors more rapidly than for the open-loop simulations), and immediately after

precipitation events.
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166 6. Assimilation Experiments with MOSES

Figure 6.10: Soil moisture time series from the synthetic experiments at
(137.375,-26.0) in arid (Bwh) central Australia, in units of % of saturation
(left axis) and mm of soil moisture (right axis). The panels shows each soil
layer (from top to bottom), from the EKF analyses with incorrect initialisation
(solid, coloured), open-loop with incorrect initialisation (dashed, coloured), and
the assumed truth from the reference open-loop (solid, black). Red (blue) lines
indicate soil moisture initialised at 25% (75%) on 1 April 2008.
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Figure 6.11: Time series of the soil moisture analysis increments (% of satu-
ration) from the synthetic experiments at (137.375,-26.0), in arid (Bwh) central
Australia, for layers one (upper) and two (lower). Red (blue) lines indicate soil
moisture initialised at 25% (75%) on 1 April 2008.

A tropical location

Figures 6.12 and 6.13 show time series plots of the soil moisture and soil moisture

increments for the synthetic experiments at a tropical location in the Northern

Territory. During the dry season (May - October) the climate was similar to the

arid example discussed above, and the soil moisture time series in Figure 6.12

show a similar decoupling between S1 and the underlying soil moisture, leading

to the same lack of impact of the assimilation as occured at the arid location. At

the onset of the wet season in November, the soil moisture throughout the root-

zone (and also in S4) increased rapidly to about 60% of saturation, regardless of

the preexisting soil moisture states. The small increments added to S1 during

the wet season in Figure 6.13 show that in between precipitation events there

was some divergence between S1 from the perturbed assimilation experiments

and the assimilated OPN ACCESS values, however this divergence was small

(less than 0.5% for both experiments), and the assimilation had little impact

on the model soil moisture during the wet season.
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Figure 6.12: Soil moisture time series from the synthetic experiments at
(133.25, -13.625) in tropical (Aw) Northern Territory, in units of % of satu-
ration (left axis) and mm of soil moisture (right axis). The panels shows each
soil layer (from top to bottom), from the EKF analyses with incorrect initialisa-
tion (solid, coloured), open-loop with incorrect initialisation (dashed, coloured),
and the assumed truth from the reference open-loop (solid, black). Red (blue)
lines indicate soil moisture initialised at 25% (75%) on 1 April 2008.
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Figure 6.13: Time series of the soil moisture analysis increments (% of sat-
uration) from the synthetic experiments at (133.25, -13.625) in tropical (Aw)
Northern Territory, for layers one (upper) and two (lower). Red (blue) lines
indicate soil moisture initialised at 25% (75%) on 1 April 2008.

Temperate locations

Figures 6.14 and 6.15 show time series plots from the synthetic experiments for

a temperate-oceanic location in central Tasmania, while Figures 6.16 and 6.17

shows the equivalent plots for a temperate-Mediterranean location in south

West Australia. At both locations S1 was much higher than in the previous

two examples, and it had a smooth seasonal cycle with maxima in winter,

overlaid with a series of precipitation induced spikes. S2 and S3 show a filtered

response to the variability in S1, while S4 gradually increased throughout the

year. The initial soil moisture in OPN ACCESS was between 40 - 50% at

both locations, so that the perturbed experiments were initialised to either side

of OPN ACCESS. The wetter conditions caused the open-loop S1 to converge

more slowly towards OPN ACCESS than in the previous examples, while the

underlying layers converged more rapidly.

The assimilation of S1 was more effective at the temperate locations than in

the previous examples. Each analysis update corrected S1 towards the observed

S1, however the differences in the underlying soil layers caused the subsequent

forecasts to drift away from OPN ACCESS in between the observations. As a

result, it took EKF 75 just 9 days to correct S1 to within 5% of OPN ACCESS

in Figure 6.14, although it took 190 days for the error to be reduced to less

than 1%, and during this time both S1 and S2 were being regularly corrected.
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Figure 6.14: Soil moisture time series from the synthetic experiments at
(147.125, -41.75), in temperate-oceanic (Cfb) Tasmania, in units of % of satura-
tion (left axis) and mm of soil moisture (right axis). The panels shows each soil
layer (from top to bottom), from the EKF analyses with incorrect initialisation
(solid, coloured), open-loop with incorrect initialisation (dashed, coloured), and
the assumed truth from the reference open-loop (solid, black). Red (blue) lines
indicate soil moisture initialised at 25% (75%) on 1 April 2008.

Compared to the previous examples, a larger net volume of water was added to

the surface, due to the persistence of the observation increments (and the larger

analysis increments added to S2). Combined with the enhanced rate of drainage

in wetter conditions, this resulted in the assimilation having a significant impact

on S2 and S3, and even on the S4.
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Figure 6.15: Time series of the soil moisture analysis increments (% of satura-
tion) from the synthetic experiments at (147.125, -41.75), in temperate-oceanic
(Cfb) Tasmania, for layers one (upper) and two (lower). Red (blue) lines indi-
cate soil moisture initialised at 25% (75%) on 1 April 2008.
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Figure 6.16: Soil moisture time series from the synthetic experiments at
(116.75, -34.25) in temperate-Mediterranean (Cfb) south West Australia, in
units of % of saturation (left axis) and mm of soil moisture (right axis). The
panels shows each soil layer (from top to bottom), from the EKF analyses with
incorrect initialisation (solid, coloured), open-loop with incorrect initialisation
(dashed, coloured), and the assumed truth from the reference open-loop (solid,
black). Red (blue) lines indicate soil moisture initialised at 25% (75%) on 1
April 2008.
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Figure 6.17: Time series of the soil moisture analysis increments (% of
saturation) from the synthetic experiments at (116.75, -34.25) in temperate-
Mediterranean (Cfb) south West Australia, for layers one (upper) and two
(lower). Red (blue) lines indicate soil moisture initialised at 25% (75%) on
1 April 2008.

6.4.2 Net impact

Figure 6.18 compares the soil moisture from OPN ACCESS to the soil moisture

from the EKF 25 and OPEN 25 simulations after three months of assimilating

S1, demonstrating that the above results can be generalised for each climate

regime (maps for EKF 75 and OPEN 75 indicate similar conclusions). For the

arid and tropical regions (since the three month period considered is in the

dry season), the OPEN 25 S1 was already very close to the assumed truth. In

the temperate zones, the OPN 25 S1 was further away from the assumed truth,

and the assimilation substantially reduced this difference. Additionally, the only

corrections (evident at the plotted scale) to the MOSES root-zone soil moisture

occured in the temperate regions of southeast and southwest Australia, where

the assimilation corrected SRZ towards OPN ACCESS (although the EKF 25

SRZ errors were still between 5 and 10% of saturation).

The statistics in Table 6.9 quantitatively confirms these results. In the arid

and tropical zones, the S1 from all of the experiments were similar, while the

differences between the SRZ from the perturbed experiments and OPN ACCESS

were much greater, and these difference was not substantially reduced by the

assimilation. In contrast, in the temperate zones the differences between the

perturbed open-loops and OPN ACCESS S1 were larger, and assimilating S1
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reduced these differences, while also reducing the differences between the SRZ

forecasts and the OPN ACCESS. Consequently, in temperate zones assimilating

S1 reduced the mean difference between the SRZ from the perturbed simulations

and OPN ACCESS by between 30 - 40 % of the differences for the perturbed

open-loops.

OPN 25 -OPN S1 EKF 25 - OPN S1

OPN 25 -OPN SRZ EKF 25 - OPN SRZ

Figure 6.18: Maps of the soil moisture difference (% of saturation) from
OPN ACCESS for OPN 25 (left) and EKF 25 (right) on 1 July 2008, for S1

(upper) and SRZ (lower).

In summary, the synthetic experiments demonstrated that for the MOSES

model over Australia assimilating S1 observations can only constrain the model

SRZ in temperate conditions. In the tropics, the intense wet season precipita-

tion overrides any memory of the prior soil moisture (or soil moisture updates),

so that the assimilation has little impact. Additionally, in arid conditions the

near-surface soil moisture becomes decoupled from the underlying soil moisture,

preventing the signal from the nonsurface layers from reaching S1, and prevent-

ing any updates to S1 from diffusing through the nonsurface layers. Capehart
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Table 6.9: Mean soil moisture difference from OPN ACCESS on 1 July 2008
(% of saturation) for each synthetic experiment, averaged over each climate
zone.

Arid
OL 25 EKF 25 OL 75 EKF 75

S1 -1.6 -0.16 6.1 0.016
SRZ -10.3 -9.3 13.4 12.3

Tropical
S1 0.3 0.1 0.9 0.01
SRZ -12.3 -9.8 3.8 3.5

Temperate-Oceanic
S1 -4.2 -1.1 10.7 2.1
SRZ -12.7 -9.1 13.9 10.0

Temperate-Mediterranean
S1 -8.7 -1.2 10.1 1.4
SRZ -16.6 -9.7 11.1 6.4

and Carlson (1997) propose that this decoupling occurs due to an enhanced

rate of soil drying close to the surface (due to bare soil evaporation), so that

over time the hydraulic conductivity in the surface layer decreases, until the

near-surface layer is effectively cut-off from the soil below. It has been noted

previously that this decoupling will limit the effectiveness of near-surface soil

moisture assimilation in arid regions (e.g., Li and Islam, 2002). Li and Is-

lam (2002) also note that the decoupling mechanism described above will be

more pronounced where vegetation cover is lower (such as in arid Australia).

However, as noted in Section 6.3.2 it is possible that the decoupling observed

in these experiments is unrealistically severe, due to unrealistic soil physics in

MOSES (specifically insufficient vertical soil moisture exchange). Note that the

soil moisture Jacobians maps in Section 6.3.2, as well as the results of the syn-

thetic experiments (Figure 6.18), indicate that this decoupling is not limited to

extreme arid conditions, since the hydraulic conductivity in MOSES does not

increase significantly until the soil moisture is reasonably wet (above about 40%

in Figure 6.5).

In contrast, for temperate regions neither of the above phenomena occur,

and the assimilation of S1 has a much greater impact on the model root-zone

soil moisture. Since the EKF updates only the top two soil moisture layers

(covering 35 cm), with most of this in the 10 cm surface layer, the impact on
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the root-zone evolves rather slowly, although it is still substantial. For both

of the perturbed initial conditions, assimilating the S1 data for three months

reduced the mean difference from OPN ACCESS by 30-40% of the perturbed

open-loop values in the temperate zones in Table 6.9. While these reductions

are insufficient to overcome grossly incorrect initial values, this is generally not

required for NWP due to the continuous nature of those models.

6.5 Results: Assimilating AMSR-E data

This section presents the results of assimilating the AMSR-E near-surface soil

moisture observations into MOSES. First, the rescaling of the AMSR-E data

to remove the systematic differences between the modeled and assimilated soil

moisture is presented. The results of the assimilation are then examined at the

same four locations presented above for the synthetic experiments. Addition-

ally, the net impact of assimilating the AMSR-E data is tested by examining

the difference between the open-loop and EKF forecasts of soil moisture and

evapotranspiration across Australia. Finally, the impact of the assimilation on

the soil moisture forecast skill is tested against the Murrumbidgee Monitor-

ing Network in situ soil moisture observations, and against a model simulation

forced with high quality observed precipitation.

6.5.1 Rescaling the AMSR-E observations

The AMSR-E data have been rescaled to better match the model climatology

by matching the CDF of the observations to the CDF of the ACCESS S1 fore-

casts. Only one year of soil moisture forecasts were available from ACCESS,

and as was done for the ISBA experiments, ergodic substitution has been used

to increase the sample size for estimating the CDF, following Reichle and Koster

(2004). Specifically, all of the data from the surrounding 1◦ area were used to es-

timate the CDF at each model grid cell. The AMSR-E data were converted from

m3m−3 to % of saturation, based on the soil moisture at saturation in MOSES,

before the CDF-matching operator was applied. The problems encountered

during the AMSR-E / ISBA rescaling, associated with the inconsistent mag-

nitude of the responses to the seasonal cycle and precipitation in the modeled

and observed soil moisture, were not detected for MOSES. Consequently, the

seasonal cycle of the AMSR-E data did not need to be corrected before applying
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the CDF-matching, as was done in Chapter 5.

JULES S1 AMSR-E orig. AMSR-E CDF

Figure 6.19: Near-surface soil moisture (as a fraction of saturation) on 1
August 2008 at 15:00 UTC from MOSES, and AMSR-E, before and after CDF-
matching.

The CDF-matching successfully reduced the magnitude of the bias (RMSD)

between the model and the observations over the one year experiment from

-6% (13%) in the original data to 0.007% (10%) in the CDF-matched data.

Figure 6.19 compares the AMSR-E near-surface soil moisture before and after

the CDF-matching on 1 August 2008. The large scale features of the bias

corrected AMSR-E soil moisture appear similar to those from MOSES, while

some of the smaller scale features from the original AMSR-E data are still

evident.

Figure 6.20 shows time series of the mean difference between the assimilated

AMSR-E data and the open-loop forecasts of S1, averaged over each climate zone

(for an assimilation experiment this would be the mean observation increment).

The arid zone had the smallest biases, consistent with the limited soil moisture

variability, while the tropical zone had the largest biases, which were as high as

10% of saturation. In the tropics the observation increments were persistently

positive in the dry season, and persistently negative in the wet season. The time

series of the mean precipitation for each climate zone from the BoM’s daily rain

gauge analyses and the ACCESS forecasts in Figure 6.21 show that the wet

season precipitation in ACCESS was biased low, suggesting that the negative

observation increments in the tropics during the wet season were incorrect. The

poor performance of the bias removal in tropical conditions is likely associated

with the tropics having two distinct climate modes, since this cannot be accu-

rately described by a single set of statistics within the CDF-matching operator

(more so than for extra-tropical regions with four less contrasted seasons). A

better approach to rescaling the remotely sensed soil moisture in the tropics
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would be to calculate a separate rescaling operator for each of the wet and

dry seasons. However, this was not done in this study, since the data record

available for the rescaling was already very short. Additionally, the limited im-

pact of the S1 assimilation in the tropics in the synthetic experiments above

(and also in the AMSR-E experiments below) indicates that inaccuracies in the

assimilated AMSR-E data in the tropics will be of little consequence.

Figure 6.20: Time series of the assimilated AMSR-E observations minus
the open-loop S1(% of saturation), averaged over the a) arid, b) tropical, c)
temperate-oceanic, and d) temperate-Mediterranean climate zones.

Both of the temperate zones also showed periods of extended bias between

the AMSR-E and MOSES soil moisture in Figure 6.20, although these biases

were less extreme than for the tropics. Again, the soil moisture observation

increments were not supported by the precipitation time series in Figure 6.21.

For both temperate zones, the model precipitation was biased low for the first

half of the year, while the soil moisture observation increments had a slight

tendency to be negative during this period. Additionally, towards the end of

winter a large positive soil moisture observation increment developed, which
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Figure 6.21: Time series of precipitation (mm day−1) from the BoM’s rain
gauge analysis (blue) and ACCESS forecasts (black), averaged over the a)
arid, b) tropical, c) temperate-oceanic, and d) temperate-Mediterranean cli-
mate zones.

was not reflected by the precipitation time series. Examining the soil moisture

at individual locations (not shown) suggests that this was caused by differences

in the timing of the seasonal cycle from AMSR-E and MOSES.

Since the AMSR-E observations have been bias-corrected to the model soil

moisture simulated by forcing the model with the (biased) ACCESS precipita-

tion forecasts, the bias-corrected AMSR-E observations were not expected to

reflect the annual precipitation biases. However, it was hoped that the assim-

ilated AMSR-E data would include a signal of any seasonal-scale errors in the

precipitation forcing, and yet there are few similarities between the soil mois-

ture biases in Figure 6.20 and the precipitation biases in Figure 6.21. This

could indicate errors in the assimilated AMSR-E data, due to representativity

errors between the modeled and observed soil moisture (that are not resolved

by statistical rescaling), or due to inaccuracies in the observations, or both.
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Alternatively, the precipitation-induced soil moisture errors may have been ob-

scured by other model errors, such as errors in the radiation forcing or model

evapotranspiration parameterisation.

6.5.2 Time series examples

An arid location

Figure 6.22 shows time series of the soil moisture from the open-loop and the

EKF assimilation of AMSR-E, together with the modeled and observed pre-

cipitation, at the arid location in central Australia that was presented above

for the synthetic experiments. The precipitation time series indicate that the

model forecast precipitation was biased high: while the timing of each event

was generally correct, the magnitude was consistently too large. In general, the

AMSR-E observations had a better correspondence to the observed precipita-

tion magnitude than the model forecast soil moisture.

Consistent with the decoupling that occurred in the synthetic experiments,

the assimilation of AMSR-E very quickly constrained the model S1 to fit the

observations, while having little impact on the underlying soil moisture. The

exception is immediately after precipitation events, when the temporarily wet

soils had much higher hydraulic conductivity. Figure 6.23 shows the correspond-

ing plot of analysis increments from the EKF experiment. In several instances

relatively large increments were added to S2 in response to S1 errors associated

with the precipitation errors. For example S2 was reduced by nearly 10% in

early November, and yet the annual range of S2 in the open-loop was just 12%.

These unrealistically large updates occured because the EKF calculates the up-

date to S2 based on the assumption that the observed error in S1 is caused by

incorrect S2, rather than erroneous forcing (although this is moderated by the

S1 error covariance in P).
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Figure 6.22: Time series of the modeled and observed daily precipitation and
soil moisture at (137.375,-26.0) in arid (Bwh) central Australia. The upper
panel shows the observed (blue) and modeled (red) precipitation (mm day−1).
The next four panels show the soil moisture in each layer (from top to bottom),
from the EKF (red), the open-loop (black), and AMSR-E (blue), in units of %
of saturation (left axis) and mm of soil moisture (right axis).
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Figure 6.23: Time series of the soil moisture analysis increments (% of satu-
ration) in layers one (upper) and two (lower) at (137.375,-26.0) in arid (Bwh)
central Australia.

A tropical location

Figures 6.24 and 6.25 show time series of the soil moisture and analysis incre-

ments, respectively, at the tropical location in the Northern Territory. As with

the arid example above, the timing of the model precipitation was reasonably

accurate, while the magnitude was not. In this case the precipitation observa-

tions suggest that the forecast precipitation was initially too high at the onset

of the wet season, and then too low in the middle of the wet season (around

January). The AMSR-E observations accurately detected the lower precipita-

tion at the onset of the wet season, as well as the large event at the end of the

wet season that was underestimated by the model. However, the AMSR-E ob-

servations were consistently lower than the model for the remainder of the wet

season, in contradiction with the precipitation observations. This inconsistency

is likely associated with the poor performance of the AMSR-E bias-correction

in the tropical regions mentioned in Section 6.5.1. Additionally, despite the lack

of precipitation during the dry season, the AMSR-E S1 time series had some

noise in April and May 2008.

Again the results of assimilating the AMSR-E data were consistent with

the findings from the synthetic experiments. The assimilation had a significant

impact on the model soil moisture only at the onset of the wet season, when

the EKF drew S1 down and these reductions were transmitted through to the

deeper soil layers. However, as the wet season progressed the impact of these

reductions was lost, since the soil moisture was quickly dominated by precipita-

tion, so that the EKF soil moisture time series converged to the open-loop time
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Figure 6.24: Time series of the modeled and observed daily precipitation and
soil moisture at (133.25, -13.625) in tropical (Aw) Northern Territory. The
upper panel shows the observed (blue) and modeled (red) precipitation (mm
day−1). The next four panels show the soil moisture in each layer (from top to
bottom), from the EKF (red), the open-loop (black), and AMSR-E (blue), in
units of % of saturation (left axis) and mm of soil moisture (right axis).
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Figure 6.25: Time series of the soil moisture analysis increments (% of sat-
uration) in layers one (upper) and two (lower) at (133.25, -13.625) in tropical
(Aw) Northern Territory

series. Note that significant updates were added to the model soil moisture in

Figure 6.25 during this period, however the impact of these updates was quickly

overwhelmed by the subsequent precipitation.

Temperate locations

Figures 6.26 and 6.27 show the soil moisture and analysis increment time series,

respectively, for the cool oceanic location in central Tasmania, while Figures 6.28

and 6.29 show the equivalent plots for the temperate-Mediterranean location in

south West Australia. In Figure 6.26 for the Tasmanian location, the AMSR-E

observations are consistent with the observed precipitation in some instances

(e.g., the reduced peak on 1 August 2008), although not in others (e.g., there

is no AMSR-E peak corresponding to the observed rain on 3 February 2009).

There were several extended periods during which the AMSR-E time series

diverged from the open-loop (e.g., January 2008), and there were also some

anomalously low AMSR-E observations which were likely incorrect (e.g., 11

March 2009). As with the synthetic experiments, assimilating S1 had a much

greater net impact on the model soil moisture at the temperate locations than

at the arid or tropical locations, and in Figure 6.26 the assimilation effectively

drew the model S1 and S2 down, resulting in slight reductions in S3 and S4.
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Figure 6.26: Time series of the modeled and observed daily precipitation and
soil moisture at (147.125, -41.75), in temperate-oceanic (Cfb) Tasmania. The
upper panel shows the observed (blue) and modeled (red) precipitation (mm
day−1). The next four panels show the soil moisture in each layer (from top to
bottom), from the EKF (red), the open-loop (black), and AMSR-E (blue), in
units of % of saturation (left axis) and mm of soil moisture (right axis).
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Figure 6.27: Time series of the soil moisture analysis increments (% of satu-
ration) in layers one (upper) and two (lower) at (147.125, -41.75) in temperate-
oceanic (Cfb) Tasmania.

In contrast to the above examples, the AMSR-E observations for the West

Australian location in Figure 6.28 appear to be unrealistic, with little corre-

spondence to the observed precipitation. In particular the AMSR-E time series

was rather smooth, and did not reflect the precipitation events indicated by

both the modeled and observed precipitation time series. The AMSR-E time

series also had a different seasonal cycle to the model, with the winter maxima

occuring several months later than in the model. The EKF drew the model soil

moisture down, generating slight reductions in the soil moisture in layer three

and a very small impact in layer four (which had limited annual variability).
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Figure 6.28: Time series of the modeled and observed daily precipitation
and soil moisture at (116.75, -34.25) in temperate-Mediterranean (Cfb) south
West Australia. The upper panel shows the observed (blue) and modeled (red)
precipitation (mm day−1). The next four panels show the soil moisture in each
layer (from top to bottom), from the EKF (red), the open-loop (black), and
AMSR-E (blue), in units of % of saturation (left axis) and mm of soil moisture
(right axis).
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Figure 6.29: Time series of the soil moisture analysis increments (% of satu-
ration) in layers one (upper) and two (lower) at (116.75, -34.25) in temperate-
Mediterranean (Cfb) south West Australia.

In summary, the above examples extend the findings from the synthetic ex-

periments. The assimilation cannot constrain the root-zone soil moisture in

dry conditions (due to the decoupling of the vertical soil moisture profile), or

during the wet season in the tropics (due to the lack of soil moisture memory

associated with the intense precipitation). However, in temperate conditions

there were periods of persistent divergence between the modeled and observed

S1, resulting in substantial corrections to the root-zone soil moisture (due both

to updates to S2, and infiltration of updates to S1). From the synthetic experi-

ments, this divergence between the observed and modeled S1 could be a signal

of incorrect soil moisture in the nonsurface layers. However, it could also in-

dicate systematic differences between the modeled and observed soil moisture:

recall from Chapter 4 that the AMSR-E observations often diverged from the

in situ observations for extended time periods (for example due to the shallower

layer observed by AMSR-E drying more rapidly).

While the EKF assimilation of S1 cannot always correct for errors in the

underlying soil moisture, it will be more effective at correcting errors in the

forecast precipitation, which enter the model soil moisture through S1. Qual-

itatively, comparison between the AMSR-E and precipitation observations in

Figures 6.22-6.28 suggest that in many instances AMSR-E accurately detected

errors in the ACCESS precipitation forecasts. Additionally, the EKF effectively

adjusted S1 in response to the detected precipitation errors. However, there

were several instances when unrealistically large updates were applied to S2 in

response to the precipitation signal from AMSR-E, since the EKF updates were

derived from the assumption that errors in S1 were due to errors in S2. While
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this is made obvious in arid conditions by the suppressed soil moisture dynam-

ics, it also occurred at the temperate sites (for example on 2 February in Figure

6.26 and 6.27). This issue could be possibly be addressed by parameterising

the S1 model error (in Q) so that it is enhanced during precipitation events,

since this would better account for the greater uncertainty in the model back-

ground S1 after precipitation (leading to increased S1 updates, and decreased

S2 updates). Note that this occurrence provides an additional argument for

excluding S3 from the state update vector; if the S1 observation increments are

not consistently representative of the errors in S2, then they certainly won’t be

representative of errors in the seasonal-scale S3 (risking that incorrect updates

will be made to S3 ).

6.5.3 Net impact

Figure 6.30: Time series of the mean near-surface soil moisture (% of satura-
tion) from the EKF (blue) and the open-loop (red), averaged over the a) arid, b)
tropical, c) temperate-oceanic, and d) temperate-Mediterranean climate zones.
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Figure 6.31: Time series of the mean root-zone soil moisture (% of saturation)
from the EKF (blue) and the open-loop (red), averaged over the a) arid, b)
tropical, c) temperate-oceanic, and d) temperate-Mediterranean climate zones.
Note the different vertical axis for the tropical zone.

This section examines the net impact of the EKF assimilation of AMSR-E

S1 on the near-surface soil moisture, root-zone soil moisture, and evapotran-

spiration forecasts. The assimilation added a reasonable volume of moisture to

the model surface, and the mean absolute daily increments were 0.45 mm day−1

for the arid zone, 0.72 mm day−1 for the tropical zone, and 0.48 and 0.50 mm

day−1, respectively, in the temperate-Mediterranean and oceanic zones. This

is approximately half the mean daily precipitation in the arid zone (0.98 mm

day−1), and one quarter of the mean daily precipitation in the other climate

zones (3.6, 1.6, and 2.1 mm day−1, respectively).

For both the open-loop and EKF simulations, the mean S1, SRZ , and daily

evapotranspiration forecasts for each climate zone are listed in Table 6.10, to-

gether with the mean absolute differences between the two simulations. Figure

6.30 shows the time series of the mean S1 forecasts for each climate zone. For S1
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Figure 6.32: Time series of the mean daily evapotranspiration (mm day−1)
from the EKF (blue) and the open-loop (red) experiments, averaged over the a)
arid, b) tropical, c) temperate-oceanic, and d) temperate-Mediterranean climate
zones. Note the different vertical axis for the tropical time series.

there were extended periods during which the EKF differed from the open-loop

by up to 5 mm, compared to mean S1 values of the order of 10 mm in Table

6.10. The greatest S1 divergence occurred during the dry season in the tropics

and during October in the temperate-Mediterranean zone, corresponding to the

greatest observation increments in Figure 6.20.

Figure 6.31 shows the equivalent time series for SRZ . In general the diver-

gence between the SRZ time series lagged behind periods of sustained divergence

in S1, due to the S1 (and S2) updates gradually dispersing through the soil root-

zone. The greatest differences for SRZ were close to 10 mm (compared to mean

values of 150 mm in Table 6.10), and occured during the wet season in the arid

zone (which showed a small response to wet season precipitation), at the onset

of the wet season in the tropics (before the differences were eliminated later in

the wet season), and in November and January in the temperate-Mediterranean
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and oceanic zones, respectively.

The equivalent time series of the mean daily evapotranspiration forecasts

from the open-loop and EKF experiments are plotted in Figure 6.32. In each

of the climate zones, the impact of the assimilation on the evapotranspiration

was modest but significant, and the greatest differences between the open-loop

and the EKF were close to 1 mm day−1 (compared to mean values of 1-4 mm

day−1 in each zone). For each climate zone, the mean absolute difference in

the evapotranspiration forecasts from the open-loop and the EKF over the year

was approximately 10-20% of the open-loop values. In general, the divergence

between the evapotranspiration time series (Figure 6.32) was more strongly

correlated to the divergence between the S1 time series (Figure 6.30) than the

SRZ time series (Figure 6.31). This suggests that the impact of the assimilation

on the flux forecasts might not be primarily via transpiration.

In summary, while the EKF assimilation of AMSR-E near-surface soil mois-

ture observations did not have a dramatic impact on the model soil moisture

forecasts, the impact of the assimilation on the model was still substantial. In

particular, the absolute impact on the mean daily evapotranspiration fluxes was

around 10% of the open-loop forecasts. There were also several prolonged pe-

riods during which the assimilation had a much greater impact on the forecast

evapotranspiration (for example in November 2008 in Figure 6.32), which would

be expected to have a significant impact on screen-level forecasts from a coupled

model.

6.5.4 Evaluation against in situ data

In this section the soil moisture forecasts generated by assimilating the AMSR-

E observations are evaluated against the Murrumbidgee Monitoring Network

in situ data, to determine whether the assimilation can improve the realism of

the near-surface and root-zone soil moisture at these sites. Figures 6.33 to 6.39

compare time series of the near-surface and root-zone soil moisture from the

open-loop and EKF (background 6 hour forecasts) to the in situ data at each of

the Murrumbidgee sites. The observed precipitation and AMSR-E data show

similar behaviour to the examples in Section 6.5.2. Again the precipitation time

series show that ACCESS accurately forecast the occurrence of precipitation,

although not necessarily its magnitude. Additionally, the AMSR-E data of-

ten detected these model precipitation errors: for example, at M7 assimilating
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Table 6.10: Mean near-surface soil moisture (mm), root-zone soil moisture
(mm), and daily evapotranspiration (mm day−1), averaged over April 2008 to
March 2009 for each climate zone, from the open-loop and the EKF.

OPN EKF Mean absolute
difference

Arid
S1 6.3 6.3 1.5
SRZ 152.0 150.0 4.3
ET 1.03 0.99 0.21

Tropical
S1 11.6 12.7 2.3
SRZ 181.8 182.9 7.3
ET 2.93 3.05 0.35

Temperate-Mediterranean
S1 14.2 14.7 2.3
SRZ 189.5 189.3 7.7
ET 1.49 1.55 0.24

Temperate-oceanic
S1 19.8 19.9 1.9
SRZ 231.9 230.4 7.5
ET 2.03 1.99 0.21

the AMSR-E data corrected both the over-forecast precipitation in November

2008 and the under-forecast precipitation event in February 2009. At each of

the plotted Murrumbidgee locations, the EKF effectively drew S1 towards the

AMSR-E data, so that it is difficult to distinguish between the EKF and AMSR-

E time series in Figures 6.33 to 6.39. At each site, assimilating the AMSR-E

data also generated reasonable divergence between the EKF and open-loop SRZ

time series, including at the three western-most sites (M5, M7, and M8), which

are classified as arid (likely because the soil moisture at these sites was no

drier during these experiments than at the easterly sites, which are classified as

temperate-oceanic).

Tables 6.11 and 6.12 compare the statistics of fit to the Murrumbidgee ob-

servations for the near-surface and root-zone soil moisture from the open-loop

and the EKF, as well as for the AMSR-E data. In Chapter 4, the near-surface

soil moisture from AMSR-E and MOSES had similarly good agreement to the

in situ observations, and this result was repeated here. The AMSR-E rabs (ranm)

ranged between 0.59 and 0.85 (0.52 and 0.75) with a mean of 0.75 (0.64), while
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for the open-loop rabs (ranm) ranged between 0.64 and 0.86 (0.50 and 0.77), with

a mean of 0.74 (0.59). In general assimilating the AMSR-E data improved the

fit between the MOSES forecasts and the in situ near-surface soil moisture ob-

servations, and in Table 6.11 the EKF had better statistics than the open-loop

at five out of the seven sites, with rabs (ranm) ranging between 0.65 and 0.86

(0.59 and 0.80) with a mean of 0.78 (0.71). In particular, the EKF had a better

fit to the in situ data than either of the open-loop or the AMSR-E data at all

of the Murrumbidgee sites for which multiple monitoring stations were used to

estimate the in situ time series (M8, KA, and KB), and hence the in situ time

series are more certain. Additionally, the two sites for which assimilating the

AMSR-E data did not improve the model S1 had some of the lowest correlations

with the in situ data for both AMSR-E and MOSES. This hints that the poor

statistics for the assimilation at these sites may have been due to problems with

the in situ data. However, it is also possible that the lack of improvement was

due to systematic errors in the model that could not be corrected by the as-

similation (although this does not explain the low correlations for the AMSR-E

observations at these sites).

For the root-zone soil moisture, reliable in situ observations were available

at only five sites, since the observations at M1 and M5 had limited temporal

coverage (see Figures 6.33 and 6.35). These are the same five sites for which

the assimilation improved the model S1 statistics in Table 6.11, and consistent

with the S1 results, the EKF SRZ had a better fit to the in situ data than the

open-loop at each of these sites in Table 6.12. The rabs (ranm) increased from a

range of 0.34 to 0.87 (0.61 to 0.78), with a mean of 0.60 (0.67) for the open-loop,

to a range of 0.37 to 0.92 (0.63 to 0.79), with a mean of 0.71 (0.72) for the EKF.

In summary, comparison to in situ soil moisture observations from the Mur-

rumbidgee Monitoring Network showed that assimilating the AMSR-E near-

surface soil moisture in general improved the MOSES soil moisture forecasts

at those locations. The statistics of fit between the modeled and in situ soil

moisture for the near-surface soil moisture were improved by the assimilation at

most (five out of seven) sites, while the statistics for the root-zone soil moisture

were improved at all locations (five) for which data were available. Additionally,

the improvements in the correlations were substantial, and for the root-zone soil

moisture the mean rabs (ranm) were increased from 0.63 (0.68) for the open-loop

to 0.71 (0.72) for the EKF.
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Figure 6.33: Time series of modeled and observed precipitation and soil mois-
ture at M1. The upper panel shows precipitation from observations (blue) and
ACCESS forecasts (red). The middle and lower panels shows S1 and SRZ ,
respectively, from the EKF (blue), open-loop (red), and in situ observations
(black), in units of % of saturation (left axis) and mm of soil moisture (right
axis). The blue diamonds indicate the assimilated AMSR-E S1.
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Figure 6.34: Time series of modeled and observed precipitation and soil mois-
ture at M4. The upper panel shows precipitation from observations (blue) and
ACCESS forecasts (red). The middle and lower panels shows S1 and SRZ ,
respectively, from the EKF (blue), open-loop (red), and in situ observations
(black), in units of % of saturation (left axis) and mm of soil moisture (right
axis). The blue diamonds indicate the assimilated AMSR-E S1.
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Figure 6.35: Time series of modeled and observed precipitation and soil mois-
ture at M5. The upper panel shows precipitation from observations (blue) and
ACCESS forecasts (red). The middle and lower panels shows S1 and SRZ ,
respectively, from the EKF (blue), open-loop (red), and in situ observations
(black), in units of % of saturation (left axis) and mm of soil moisture (right
axis). The blue diamonds indicate the assimilated AMSR-E S1.
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Figure 6.36: Time series of modeled and observed precipitation and soil mois-
ture at M7. The upper panel shows precipitation from observations (blue) and
ACCESS forecasts (red). The middle and lower panels shows S1 and SRZ ,
respectively, from the EKF (blue), open-loop (red), and in situ observations
(black), in units of % of saturation (left axis) and mm of soil moisture (right
axis). The blue diamonds indicate the assimilated AMSR-E S1.
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Figure 6.37: Time series of modeled and observed precipitation and soil mois-
ture at M8. The upper panel shows precipitation from observations (blue) and
ACCESS forecasts (red). The middle and lower panels shows S1 and SRZ ,
respectively, from the EKF (blue), open-loop (red), and in situ observations
(black), in units of % of saturation (left axis) and mm of soil moisture (right
axis). The blue diamonds indicate the assimilated AMSR-E S1.
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Figure 6.38: Time series of modeled and observed precipitation and soil mois-
ture at KA. The upper panel shows precipitation from observations (blue) and
ACCESS forecasts (red). The middle and lower panels shows S1 and SRZ ,
respectively, from the EKF (blue), open-loop (red), and in situ observations
(black), in units of % of saturation (left axis) and mm of soil moisture (right
axis). The blue diamonds indicate the assimilated AMSR-E S1.
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Figure 6.39: Time series of modeled and observed precipitation and soil mois-
ture at KB. The upper panel shows precipitation from observations (blue) and
ACCESS forecasts (red). The middle and lower panels shows S1 and SRZ ,
respectively, from the EKF (blue), open-loop (red), and in situ observations
(black), in units of % of saturation (left axis) and mm of soil moisture (right
axis). The blue diamonds indicate the assimilated AMSR-E S1.
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Table 6.11: Statistics of fit between the near-surface soil moisture in situ
observations from the Murrumbidgee Monitoring Network, and the assimilated
AMSR-E data, the open-loop, and the EKF. The RMSD is calculated from
model data normalised to match the mean and variance on the in situ data.
For each statistic the best result is indicated in bold, and all correlations are
significant at 1%.

AMSR-E OPN EKF
rabs ranm RMSD rabs ranm RMSD rabs ranm RMSD

(m3m−3) (m3m−3) (m3m−3)
M1 0.59 0.53 0.021 0.68 0.50 0.018 0.65 0.60 0.019
M4 0.71 0.73 0.032 0.64 0.71 0.036 0.72 0.76 0.032
M5 0.60 0.52 0.025 0.69 0.62 0.022 0.65 0.59 0.024
M7 0.83 0.70 0.014 0.72 0.64 0.018 0.83 0.74 0.014
M8 0.85 0.71 0.030 0.78 0.56 0.037 0.85 0.72 0.030
KA 0.82 0.52 0.041 0.83 0.76 0.040 0.88 0.75 0.033
KB 0.82 0.75 0.045 0.86 0.77 0.039 0.86 0.80 0.039

Table 6.12: Statistics of fit between the root-zone soil moisture in situ obser-
vations from the Murrumbidgee Monitoring Network, and the open-loop and
EKF. The RMSD is calculated from model data normalised to match the mean
and variance on the in situ data. For each statistic the best result is indicated
in bold, and all correlations are significant at 1%.

OPN EKF
rabs ranm RMSD rabs ranm RMSD

(m3m−3) (m3m−3)
M4 0.36 0.69 0.024 0.37 0.71 0.024
M7 0.36 0.61 0.015 0.60 0.75 0.012
M8 0.70 0.78 0.013 0.73 0.79 0.012
KA 0.87 0.64 0.021 0.91 0.63 0.018
KB 0.84 0.64 0.023 0.92 0.70 0.016
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6.5.5 Comparison to observed precipitation

It is extremely difficult to evaluate soil moisture forecasts at the continental

scale. While the above comparison to in situ soil moisture observations is en-

couraging, it does not guarantee that the assimilation had a similarly positive

impact at other sites. Since the atmospheric forcing is a major cause of error

in NWP land surface states, the results of the assimilation could be assessed

by comparison to soil moisture forecasts generated by forcing the land surface

model with observations. Australia is not well covered by in situ observations,

and the only atmospheric forcing variable for which high quality observations

are available is precipitation. However, precipitation is thought to be the largest

single source of soil moisture errors in NWP models. For example, van den Hurk

et al. (2008) found that about half of the soil moisture increments added to the

ECMWF model by the assimilation of screen-level observations at 36 locations

throughout Europe were attributable to precipitation biases in the model. Con-

sequently, replacing the NWP forecast precipitation used to force MOSES with

observed precipitation is expected to significantly improve the accuracy of the

model soil moisture, potentially providing a useful benchmark for testing the

impact of assimilating the AMSR-E observations.

Consequently, the accuracy with which assimilating the AMSR-E data has

corrected for errors in the precipitation forcing from the ACCESS model has

been tested by comparing the assimilation results to a simulation of the MOSES

model in which the precipitation forcing was adjusted to better match the BoM’s

rain gauge analyses (see Section 6.2.3). The BoM precipitation analysis is per-

formed daily, whereas MOSES has been forced with hourly precipitation fore-

casts from ACCESS. Consequently, these hourly forecasts were multiplied by

the ratio of the observed to forecast daily precipitation each day, to produce the

“observed” precipitation forcing. This approach is consistent with the earlier

finding that ACCESS can forecast the occurrence of precipitation reasonably

well, although not necessarily the magnitude of each event. However, the long

term mean of the observed forcing (1.28 mm day−1, compared to 1.09 mm day−1

in the original forecasts) was slightly lower than the mean of the BoM’s rain

gauge analyses (1.33 mm day−1), since the method used to adjust the precip-

itation forcing cannot account for observed precipitation events that were not

originally forecast by ACCESS.

MOSES has been forced with the observed precipitation forcing, with all
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Table 6.13: Statistics of fit between the MOSES PRECIP root-zone soil mois-
ture, and each of the open-loop and EKF simulations.

Open-loop EKF
rabs ranm RMSD rabs ranm RMSD

(mm) (mm)
M4 0.80 0.77 9.6 0.86 0.76 13.4
M7 0.80 0.80 11.0 0.92 0.82 6.1
M8 0.90 0.80 6.3 0.94 0.84 4.4
KA 0.95 0.76 13.3 0.95 0.70 21.3
KB 0.90 0.76 10.7 0.93 0.74 8.6

other forcing, initial conditions, and model settings identical to the open-loop;

this simulation is referred to as the MOSES PRECIP simulation. Ideally, as-

similating the AMSR-E observations should correct the MOSES soil moisture

for errors in the ACCESS precipitation, drawing the EKF soil moisture towards

the MOSES PRECIP values. To test this approach, the results are first con-

sidered at the Murrumbidgee Monitoring Network sites, where comparison to

the in situ observations indicated that the assimilation improved the model soil

moisture (see Section 6.5.4). Table 6.13 shows the statistics of fit between the

root-zone soil moisture from MOSES PRECIP, and each of the open-loop and

EKF experiments, at the same locations that were compared to the in situ data

in Table 6.12. The comparison to MOSES PRECIP was inconclusive at these

locations: at three out of five sites the EKF had a better fit to MOSES PRECIP

than the open-loop. The average ranm and RMSD across the five sites was de-

creased by the assimilation, while the mean rabs was increased. This lack of

consistency between the results obtained by assessing the EKF SRZ against the

in situ observations and the MOSES PRECIP simulations could be due to errors

(including representativity errors) in the in situ observations. Alternatively, it

could also be due to the EKF (and the in situ data) reflecting soil moisture

errors that were not caused by precipitation.

Consistent with the results at the Murrumbidgee sites, assimilating the

AMSR-E observations did not in general bring the MOSES forecast soil mois-

ture closer to the MOSES PRECIP simulations across Australia. Figure 6.40

shows the time series of the root-zone soil moisture averaged over each climate

zone from the open-loop, the EKF, and MOSES PRECIP: with a few excep-

tions (such as at the onset of the wet season in the tropics), assimilating the
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Figure 6.40: Time series of the root-zone soil moisture (mm) averaged over
the a) arid, b) tropical, c) temperate-oceanic, and d) temperate-Mediterranean
climate zones, from the EKF (blue), open-loop (red), and MOSES PRECIP
(black) simulations.

AMSR-E data did not reduce the SRZ bias relative to MOSES PRECIP. This

result is not surprising, given that the difference between the AMSR-E and

open-loop soil moisture in Figure 6.20 does not reflect the seasonal-scale errors

in the forecast precipitation in Figure 6.21. Additionally, the statistics of fit

to the MOSES PRECIP root-zone soil moisture were slightly degraded by the

assimilation. Averaged across Australia the absolute (anomaly) correlation was

improved by the assimilation at 42% (41%) of the grid cells, while the mean

correlation across the domain was reduced from 0.78 (0.64) for the open-loop

to 0.76 (0.63) for the EKF. Additionally, the assimilation reduced the RMSD

at 38% of the grid cells, with the mean RMSD increasing from 14.7 mm for

the open-loop to 16.3 mm for the EKF. The tendency for the statistics of fit

to be degraded by the assimilation was consistent across the model domain,

and in nearly all instances the individual statistics for each climate zone were
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degraded by the assimilation (not shown). Given the inconclusive results at

the Murrumbidgee sites in Table 6.13, it is unclear whether these findings are

due to the assimilation having not improved the model soil moisture, or due to

short-comings of the strategy of assessing the EKF against MOSES PRECIP

(most notably, that the assimilation may be responding to soil moisture errors

not associated with precipitation).

6.6 Chapter summary

In this chapter remotely sensed near-surface soil moisture observations have

been assimilated into the Australian BoM’s MOSES model. Near-surface soil

moisture observations from AMSR-E have been assimilated over a one year time

period to determine whether the AMSR-E data can improve the realism of the

modeled near-surface and root-zone soil moisture. The same EKF assimilation

strategy that was used to assimilate near-surface soil moisture and screen-level

observations into Météo-France’s ISBA model in Chapter 5 has been used.

Examining the model Jacobians for MOSES highlights that it has very dif-

ferent soil moisture physics to ISBA, leading to differences in the way in which

the EKF updates the root-zone soil moisture from the near-surface observa-

tions. In MOSES the vertical flow of moisture through the soil is controlled

by explicitly parameterised Darcian flow, giving a more direct relationship be-

tween the near-surface and root-zone soil moisture than in ISBA. However, for

these experiments this relationship was very weak, due in part to the prevalence

of dry surface conditions across most of Australia. Consequently, assimilating

the near-surface soil moisture observations made significant updates only to the

near-surface soil moisture layer (and also to the second layer in more humid

conditions). Any impact on the deeper soil layers was limited to changes that

diffuse through the soil profile from the near-surface layers.

A series of synthetic experiments showed that the EKF assimilation of near-

surface soil moisture (S1 ) observations could reduce the errors throughout the

model soil moisture profile in temperate regions only, since in arid and trop-

ical regions S1 is only very weakly coupled to the underlying soil moisture.

For these experiments, the mean error in the root-zone soil moisture across

Australia’s temperate zones were reduced by 30-40% of their initial value, af-

ter three months of assimilating synthetic S1 data. However, for NWP the soil

moisture errors are more likely to be associated with incorrect atmospheric forc-
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ing, rather than gross errors in the initial conditions. By making corrections to

the near-surface layers, the EKF should be sufficient to correct the soil moisture

profile for forcing errors detected by the observations, in particular for errors

entering the soil profile through S1, such as precipitation.

Even though the AMSR-E assimilation qualitatively appears to have cor-

rected some of the errors in the NWP forecast precipitation used in these ex-

periments, this could not be confirmed quantitatively. This could be due to

the AMSR-E observations having not accurately detected soil moisture errors

associated with incorrect precipitation, or it could be due to short-comings in

the evaluation strategies that were applied. Supporting the latter possibility

assimilating the AMSR-E observations did improve the fit between the model

root-zone soil moisture and the in situ observations at the five Murrumbidgee

Monitoring Network sites for which the in situ observations were available (while

the assessment based on the precipitation observations was inconclusive at these

sites). Additionally, the improvements against the in situ observations were sub-

stantial, with the mean absolute (anomaly) correlation to the in situ data being

increased from 0.60 (0.67) for the open-loop to 0.71 (0.72) for the EKF.

Looking forward, these results suggest that for the MOSES model the as-

similation of near-surface soil moisture could compliment the assimilation of

screen-level observations very well. Assimilating remotely sensed near-surface

soil moisture data has the potential to improve the model soil moisture forecasts,

while the screen-level observations could more tightly constrain the nonsurface

soil moisture layers according the errors in the flux forecasts.
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Chapter 7

Conclusions and Future Work

This thesis has demonstrated the potential for NWP models to benefit from the

assimilation of remotely sensed near-surface soil moisture data. While the ulti-

mate aim of assimilating the soil moisture observations is to improve low-level

atmospheric forecasts, the focus here is on the intermediate step of improv-

ing the model root-zone soil moisture. It was first established that realistic

near-surface soil moisture observations can be retrieved over Australia from ex-

isting remote sensing satellites, specifically from the C-band passive microwave

AMSR-E instrument. Following this, near-surface soil moisture observations

from AMSR-E were assimilated into the NWP land surface models used at the

Australian Bureau of Meteorology (BoM) and Météo-France. The AMSR-E soil

moisture observations were assimilated into the BoM’s land surface model over

Australia for a one year period. At those locations where in situ soil moisture

observations were available, the assimilation improved the fit between the in

situ and modeled soil moisture, in both the near-surface and root-zone soil lay-

ers. This demonstrates that assimilating near-surface soil moisture observations

has the potential to improve modeled root-zone soil moisture. Additionally,

since the use of screen-level observations is known to improve low-level atmo-

spheric forecasts, the assimilation of AMSR-E soil moisture was compared to

the assimilation of screen-level observations, using Météo-France’s land surface

model. Over the one month experimental period, assimilating each data type

separately generated contrasting root-zone soil moisture increments, while as-

similating them together very slightly improved the model fit to both data sets.

This supports the notion that assimilating the near-surface soil moisture and

screen-level observations together can benefit NWP by improving the realism of

the model soil moisture, while maintaining the low-level atmospheric forecasts
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skill.

7.1 Chapter conclusions

The research for this thesis consisted of three separate investigations, reported

in Chapters 4 to 6. The main findings, as well as the limitations and implications

arising from the work in each of these chapters, are reviewed below.

7.1.1 Remotely sensed soil moisture over Australia

In Chapter 4 the available remotely sensed near-surface soil moisture data sets

over Australia were assessed, to select the most suitable product for assimilation

into land surface models, and to better characterise its accuracy.

Selecting a remotely sensed near-surface soil moisture data set

At the time of this study, the only instrument providing remotely sensed soil

moisture observations with sufficient coverage for use in Australian NWP was

the passive microwave AMSR-E. Soil moisture data sets obtained from AMSR-

E brightness temperatures using the four most prominent retrieval algorithms

(from JAXA (Koike et al., 2004), NASA (Njoku et al., 2003), USDA (Jackson,

1993), and VUA-NASA (Owe et al., 2001)) were compared, to select the most

accurate. Due to widespread RFI in the C-band AMSR-E brightness tempera-

tures (particularly over north America and east Asia), the NASA, USDA, and

JAXA algorithms are applied to X-band brightness temperatures only, while the

VUA-NASA algorithm is separately applied to C- and X-band brightness tem-

peratures. Since RFI is rare in Australia, both the C- and X-band VUA-NASA

products were used here.

The five remotely sensed near-surface soil moisture data sets identified above

were compared to in situ soil moisture observations from 12 locations from the

Murrumbidgee (ten sites) and Goulburn (two sites) Monitoring Networks, over

2006. Based on this comparison, the VUA-NASA soil moisture was identified

as the most realistic remotely sensed soil moisture data set. For both the C-

and X-band wavelengths, the VUA-NASA soil moisture product consistently

had strong temporal correlations to the in situ soil moisture, although results

from the Goulburn sites were not as good as those from the Murrumbidgee sites.

Consequently the VUA-NASA soil moisture retrieval algorithm is recommended
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over the other algorithms considered here, and the VUA-NASA soil moisture

data set was used in the assimilation experiments in Chapters 5 and 6.

Assessing the VUA-NASA near-surface soil moisture data

The VUA-NASA soil moisture observations were examined in more detail, prin-

cipally by comparison to six years of in situ soil moisture observations from the

Murrumbidgee Monitoring Network, to better characterise its accuracy and to

establish the best use of the data. The longer wavelength C-band brightness

temperatures were expected to yield more accurate soil moisture observations

than the X-band brightness temperatures, due to increased transparency of

vegetation and deeper penetration of the soil at longer wavelengths. However,

neither waveband generated soil moisture with a consistently better fit to the in

situ observations. Since they are theoretically favoured, the C-band observations

have been used in this thesis, and are recommended where RFI is not problem-

atic. The good performance of the VUA-NASA X-band soil moisture data set

indicates that the poor performance of the other retrieval algorithms was not

due to the use of X-band brightness temperatures. Likewise, the (nighttime)

descending AMSR-E overpass was expected to produce better soil moisture es-

timates than the (daytime) ascending overpass, due to the greater homogeneity

of the soil conditions at night. Again, neither yielded a superior fit to the in

situ soil moisture observations, and the theoretically favoured descending over-

pass AMSR-E soil moisture observations are recommended in preference to the

ascending overpass. However, if more frequent data are prefered (such as in

Chapter 5) these results suggest the ascending overpass AMSR-E soil moisture

could also be used with confidence.

Over the six year period the VUA-NASA AMSR-E soil moisture detected the

temporal variability of the Murrumbidgee in situ soil moisture observations very

well. For the C-band descending AMSR-E overpass, the absolute (anomaly)

correlation between the remotely sensed and in situ observations ranged from

0.56 to 0.82 (0.31 to 0.65) across the Murrumbidgee sites, while the normalised

RMSD was consistently less than the standard deviation of the in situ time

series. Additionally, maps of the VUA-NASA soil moisture anomalies over

Australia showed a good correspondence to precipitation at the daily time scale,

while maps of monthly mean soil moisture showed the expected correspondence

to observed precipitation and vegetation growth.
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Limitations of using in situ soil moisture data

The above evaluation of remotely sensed soil moisture was largely based on

in situ soil moisture observations, and is limited by the shortcomings of those

data. Most notably, in situ observations are available at only a few locations,

and results from these locations can not necessarily be extrapolated to other

sites (as was highlighted by the differing results from the Murrumbidgee and

Goulburn Monitoring Networks over 2006). Additionally, there are systematic

differences between the soil moisture quantities observed by in situ and remote

sensors, due to differences in the horizontal and vertical scales observed by

each. Horizontally, remote sensors observe an area-average soil moisture (45-

75 km2 for C-band AMSRE), while in situ sensors observe at a single point,

and are sensitive to small scale variability in the land surface characteristics

that is averaged out at the scale of a remotely sensed pixel. To quantify the

impact of this small scale heterogeneity on soil moisture, the in situ soil moisture

timeseries from five soil moisture sensors within a single AMSR-E pixel were

compared. The absolute (anomaly) correlation between the near-surface soil

moisture observations from the five stations ranged from 0.71 to 0.97 (0.69 to

0.92). These statistics are similar to the best results obtained for AMSR-E, and

it is possible that the above comparison of the different AMSR-E wavelengths

and overpasses did not yield the expected differences in skill due to the limited

accuracy with which the in situ observations represent the area-average soil

moisture observed by AMSR-E.

Given the above shortcomings of in situ soil moisture observations, there is a

clear need for more robust methods to assess large scale (modeled and remotely

sensed) soil moisture. One promising option is to use related variables that are

observed at the continental scale, such as precipitation. However it is not clear

how meaningful quantitative results can be generated from such a comparison.

While the AMSR-E soil moisture data were qualitatively compared to maps of

precipitation and vegetation in this study, the strongest conclusion that could

be drawn from this was that the remotely sensed soil moisture have no obvious

errors. A more likely approach to achieving an objective and quantitative vali-

dation would be to demonstrate that assimilating remotely sensed soil moisture

data into a models can improve forecasts of soil moisture-dependent variables,

such as river discharge.
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7.1.2 Assimilation experiments with ISBA

Chapter 5 presented the assimilation of the AMSR-E near-surface soil moisture

observations into Météo-France’s ISBA land surface model over the European

domain. This was then compared to the assimilation of screen-level temperature

and relative humidity, which are currently used to initialise the soil moisture in

Météo-France’s NWP suite (and most other NWP models). A series of experi-

ments was conducted to determine whether near-surface soil moisture observa-

tions might be used either in place of, or as a complement to, the screen-level

observations.

The land surface assimilation scheme

The assimilation experiments used an off-line EKF-based land surface analysis

scheme. To allow the flexibility to assimilate both remotely sensed land surface

observations and screen-level variables, the EKF used a short-range forecast of

the land surface model as the observation operator. Additionally, the EKF is

made affordable within operational NWP by using an off-line version of the land

surface model, forced with short-range forecasts from the atmospheric model.

This off-line assimilation is intended to be semicoupled to the NWP model, in

that the land surface state in the NWP model is updated with each land sur-

face analysis, before the forcing for the subsequent off-line assimilation cycle is

generated. However, in this thesis the land surface assimilation was completely

decoupled form the atmospheric model, and the forcing was generated once at

the beginning of each experiment. Finally, to allow the off-line assimilation

of screen-level observations, the atmospheric forcing is applied higher than is

standard for a land surface model, at the height of the first atmospheric model

layer.

The EKF land surface analysis scheme was based on a simplified EKF used

previously to assimilate screen-level observations into ISBA (Balsamo et al.,

2007; Mahfouf et al., 2009). The simplified EKF differs from the EKF in that the

background error covariances are not evolved through each model forecast cycle,

and instead the same background error covariance matrix is used at the start

of each assimilation cycle. The full EKF was used here since it was hoped that

the long term evolution of covariance between the near-surface and underlying

soil moisture errors would enhance the analysis updates to the nonsurface soil

moisture layers. The EKF is also better suited to the irregular availability of
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remotely sensed observations, since the simplified EKF relies on the assumption

that the reduction in the model errors generated by each analysis is exactly

balanced by the increase in the errors during the subsequent forecast cycle.

Comparison of the EKF and simplified EKF assimilation of AMSR-E soil

moisture into ISBA revealed that while the Kalman gains for each differed,

this had little impact on the resulting root-zone soil moisture analyses (at the

broad spatial and temporal scales that were considered). This is principally a

consequence of the use of a 1-D assimilation, since with no horizontal aspect to

the assimilation the temporal evolution of P can only affect the vertical profile of

the analysis increments generated from a given observation increment. Despite

this result, the EKF was used throughout this thesis since it incurs no additional

computational cost (once a small approximation is introduced to the estimation

of the linear tangent model), while allowing the possibility of specifying P more

realistically through the use of the forecast model (and potentially through the

parameterisation of Q).

Assimilating near-surface soil moisture into ISBA

This is the first study to assimilate near-surface soil moisture into ISBA at

large spatial scales, and the results revealed that ISBA is not well suited to

near-surface soil moisture assimilation. ISBA is a two layer force-restore model,

with soil moisture defined by a near-surface soil moisture (spanning the depth

of bare soil evaporation) and a root-zone soil moisture (spanning the depth of

evapotranspiration). In ISBA the near-surface soil moisture does not influence

forecasts of other variables, and consequently the root-zone soil moisture can

only be constrained from near-surface observations by inverting the influence

of the root-zone soil moisture on near-surface soil moisture forecasts. How-

ever, the strongest influence of the root-zone soil moisture on the near-surface

soil moisture is via an indirect link through the impact of transpiration on the

surface temperature. This is most likely caused by the use of a single surface

temperature for both soil and vegetation, rather than a true physical relation-

ship. A major motivation for assimilating near-surface soil moisture was the

expectation that it would provide a more direct observation of the profile soil

moisture, and yet the above described mechanism is no more direct than the

influence of the root-zone soil moisture on the screen-level observations (which

is also driven by evapotranspiration). This spurious link between near-surface

and root-zone soil moisture could be avoided by assimilating the near-surface
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soil moisture only during the night time, when the root-zone soil moisture in-

fluences the near-surface soil moisture via the model restore term (representing

capillary and gravitational drainage).

The above findings are specific to the two layer force-restore physics in ISBA.

As demonstrated with the Australian MOSES model in Chapter 6, multi-layer

models with explicit diffusive flow between soil layers are better suited to near-

surface soil moisture assimilation. Consequently, it is recommended that the

near-surface soil moisture assimilation be ported into the new diffusive multi-

layer version of ISBA (Boone et al., 2000) once this model has been coupled to

ALADIN.

The systematic differences between modeled and observed soil moisture (see

Reichle et al., 2004b), present a major obstacle to assimilating observed soil

moisture into land surface models. The most common strategy used to address

these differences is to normalise the observations to match the model soil mois-

ture climatology prior to assimilating the data. In this thesis the normalisation

was achieved using the CDF-matching strategy of Reichle and Koster (2004).

However, for AMSR-E and ISBA the CDF-matching was hampered by the lim-

ited data record available to sample the model soil moisture climatology (one

year), as well as the substantial seasonal cycle in the bias between the modeled

and observed soil moisture (since statistical rescaling techniques assume the bi-

ases are stationary). Consequently a conservative approach was adopted here,

by assuming that the model seasonal cycle was correct, and then adjusting the

observations to match this seasonal cycle before applying the CDF-matching.

To highlight the importance of applying an appropriate bias correction strategy,

the AMSR-E observations were also assimilated without the seasonal bias cor-

rection (but with CDF-matching). The impact of excluding the seasonal bias

correction on the soil analyses was profound, and much greater than the selec-

tion of the error covariance evolution approach (i.e., the use of the simplified or

full EKF).

Assimilating screen-level observations into ISBA

In addition to the above short-comings of assimilating near-surface soil mois-

ture into ISBA, significant problems were also encountered when assimilating

the screen-level observations. Most notably, there was a persistent diurnal cy-

cle in the model-observation bias for the screen-level variables, which cannot be

easily attributed to model soil moisture errors. Consequently, the root-zone soil
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moisture increments generated by the screen-level assimilation had a substan-

tial diurnal cycle, and yet the assimilation did not amend the diurnal cycle in

the forecast screen-level biases (supporting the assertion that the diurnal cycle

was not caused by the model soil moisture). This demonstrates how assimilat-

ing screen-level observations can adjust the land surface states to compensate

for errors unrelated to the surface, which is one of the main motivations for

exploring the of use of near-surface soil moisture observations.

Extending the assimilation window to 24 hours (as was done by Balsamo

et al. (2007)) may allow the EKF to better synthesise these diurnal biases.

Alternatively, the screen-level observations could be bias corrected to match the

model climatology, as is typically done for soil moisture observations. However,

it is not clear how such a scheme could be implemented in an operational NWP

land-surface analysis, and nor is it clear that this would be advantageous to

NWP. While allowing the assimilation to correct the root-zone soil moisture for

systematic errors in the screen-level forecasts clearly violates the assumptions

of the EKF, from a purely pragmatic perspective it ensures better low-level

forecasts (although in this example, the assimilation generated only very modest

improvements). It is not yet clear how screen-level observation-model biases

should be handled within NWP, although ultimately the best option would be

to identify the cause of the bias, and address any associated model problems.

The assimilation of remotely sensed land-surface observations, such as near-

surface soil moisture, will likely assist in the identification of such errors.

Assimilating near-surface soil moisture and screen-level observations

When the AMSR-E near-surface soil moisture and screen-level observations were

assimilated separately, there was no clear consistency between the resulting soil

moisture analyses increments generated by each. Consequently, in these ex-

periments the screen-level observations could not have been substituted with

the AMSR-E near-surface soil moisture to achieve the same corrections to the

boundary layer forecasts. If this is extrapolated to regions with scarce screen-

level observations it implies that remotely sensed soil moisture may not be

immediately useful for Météo-France’s NWP model. The lack of consistency

could have been caused by systematic errors in the model forecasts of the ob-

served variables (as in other studies (Douville et al., 2000; Hess, 2001; Drusch

and Viterbo, 2007)), or by errors in the observations (since both data sets have

considerable uncertainties). Validating the assimilation results against indepen-
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dent data (specifically from flux towers and in situ soil moisture sensors) would

help to resolve this issue, although such a validation would require a longer

experimental period than was possible for this study (and would likely benefit

from coupling the off-line land data assimilation to the NWP model).

When the near-surface soil moisture and screen-level observations were as-

similated together, the sensitivity of the near-surface soil moisture forecasts to

the model root-zone soil moisture was much less than the sensitivity of the

screen-level observations. Consequently, the AMSR-E observations contributed

only a small fraction (2%) of the information content gained from the assimila-

tion, and the root-zone soil moisture analyses retained a strong similarity to the

analyses generated by assimilating the screen-level observations alone. However,

introducing the AMSR-E observations still had a significant impact on the soil

moisture analyses, since the AMSR-E observation increments were more con-

sistent over time (in contrast to the screen-level observations increments, which

were dominated by the diurnal cycle).

Despite the conflicting information from the two observation data sets, when

the AMSR-E and screen-level observations were assimilated together, the EKF

was able to slightly improve the fit between the model forecasts and both ob-

served data sets. However, these improvements were extremely modest, and

the RMSD between the ISBA forecasts and the assimilated observations was

reduced by less than 5% of the open loop values, for all assimilated variables. If

this result can be substantiated with larger improvements once the diurnal cycle

in the screen-level observation increments has been addressed, and by coupling

the land data assimilation system to the NWP model, this would confirm that

assimilating remotely sensed soil moisture together with screen-level observa-

tions has the potential to improve the realism of the NWP land surface without

degrading the low-level atmospheric forecasts.

7.1.3 Assimilation experiments with MOSES

In Chapter 6 the root-zone soil moisture in the Australian BoM’s NWP land

surface model (MOSES) was analysed by assimilating the AMSR-E near-surface

soil moisture observations, for a one year period from April 2008. The results

were then compared to in situ soil moisture observations from the Murrumbidgee

Soil Moisture Monitoring Network, and to observed precipitation across Aus-

tralia, to determine whether the assimilation improved the model soil moisture.
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Assimilating near-surface soil moisture into MOSES

The soil moisture physics in MOSES are very different to those in ISBA. MOSES

describes soil moisture in four layers (three of which are in the root-zone), with

Darcian flow between layers. This gives a more direct relationship between

the soil moisture in the near-surface and underlying soil layers than occurs in

ISBA. However, vertical soil moisture information is exchanged between layers

very slowly in MOSES, particularly for arid conditions, since hydraulic conduc-

tivity is low in dry soils. Consequently, across most of Australia MOSES does

not evolve significant vertical correlations between the background soil moisture

errors in each model layer (i.e., off-diagonal terms in P), and the observation

operator does not translate the near-surface observations into updates of soil

moisture in the underlying layers either. Consequently, the EKF in general up-

dated only the near-surface soil moisture layer from the AMSR-E observations,

and the impact of the assimilation on the underlying soil moisture was limited

to changes that diffused down from the near-surface updates. The exception

is in humid conditions, specifically during winter in the temperate south and

during the wet season in tropical north Australia, when the coupling between

the soil moisture in the first and second layers of MOSES is stronger, resulting

in the EKF updates to the second soil layer also.

Assimilating synthetic observations

Given the limited vertical extent of the analysis updates from the near-surface

soil moisture assimilation, synthetic experiments were used to explore how effec-

tively the soil moisture profile in MOSES can be constrained from near-surface

soil moisture observations. These experiments revealed that assimilating near-

surface soil moisture observations is ineffective in arid conditions and in the

tropical wet season. In arid conditions the near-surface soil moisture becomes

decoupled from the underlying soil moisture profile, so that the soil moisture in

the nonsurface layers cannot be corrected from near-surface observations (both

because corrections to the surface layer do not infiltrate into the underlying

layers, and because the surface layer does not contain a signal of the underlying

model errors). However, the errors in the model soil moisture are likely very

low in arid conditions, and this result may be of little consequence. At the

opposite extreme, during the tropical wet season soil moisture is controlled by

intense precipitation, and has no memory of the previous soil moisture states,
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or soil moisture updates. Consequently, assimilating near-surface soil moisture

observations only affected the model soil moisture briefly at the onset of the

wet season. The ineffectiveness of the assimilation in arid and tropical regions

will occur regardless of the assimilation strategy used, since in both instances it

arises from the near-surface soil moisture being decoupled from the (historical

or forecast) root-zone soil moisture.

In the temperature regions of Australia, assimilating the (synthetic) near-

surface soil moisture observations was more effective. At these locations the

EKF updated the model soil moisture to reduce the errors arising from the in-

correct initial conditions prescribed in the synthetic experiments. For example,

after three months of assimilating the synthetic near-surface soil moisture obser-

vations, the EKF reduced the error in the root-zone soil moisture by 30-40% of

the error in the openloop simulations initialised with the same incorrect values.

Assimilating AMSR-E observations

The AMSR-E observations were bias corrected prior to assimilation into MOSES

using the same CDF-matching strategy that was used for ISBA. The problems

encountered with ISBA, associated with the nonstationary model-observation

bias, did not generally occur for MOSES. The exception was the tropics, where

soil moisture experiences two very distinct climate regimes, associated with the

dry and wet seasons, and a single CDF-matching operator was unable to correct

the biases in both seasons. If a sufficient observation record were available, a

better approach would be to calculate separate CDF-matching operators for the

dry and wet seasons. Note that correcting the seasonal cycle before applying

the CDF-matching operator (as was done for ISBA) would not be effective in

this instance, since the (precipitation-driven) variance also differs between the

dry and wet seasons.

While the impact of assimilating the AMSR-E observations was modest, due

to the limited vertical extent of the model updates, the impact was still signifi-

cant. For example, the assimilation resulted in a mean absolute difference in the

daily evapotranspiration forecasts of 10% of the openloop values. Additionally,

at the Murrumbidgee Monitoring Network sites, the assimilation improved the

fit between the MOSES forecasts and in situ observations of near-surface soil

moisture at five of the seven sites with in situ data. Overall, the mean absolute

(anomaly) correlation across the Murrumbidgee sites was increased from 0.74

(0.59) for the open-loop, to 0.78 (0.71) for the EKF. Of greater importance, the
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assimilation also improved the root-zone soil moisture forecasts relative to the

in situ data at all five sites for which in situ observations were available, increas-

ing the mean absolute (anomaly) correlation from 0.60 (0.67) for the openloop,

to 0.71 (0.72) for the EKF.

Errors in precipitation forecasts are a major source of error in NWP mod-

eled soil moisture. While the EKF assimilation of near-surface soil moisture

into MOSES cannot always correct for errors in the underlying soil moisture,

it should be more effective at correcting errors in the forecast precipitation,

which enter the model soil moisture through the near-surface layer. Examining

individual time series highlights clear instances when assimilating the AMSR-E

observations corrected the model for errors in the precipitation forcing (gener-

ated by the ACCESS NWP model). However, a quantitative relationship could

not be found between the precipitation forcing errors and the analysis updates,

including between the soil moisture analyses and model simulations generated

by forcing the model with observed (rather than ACCESS) precipitation. This

could be due to the precipitation errors being obscured by other errors in the

model soil moisture, or it could also be due to errors in the assimilated AMSR-E

observations, including the applied rescaling strategy. The fact that the assim-

ilation improved the model soil moisture at the Murrumbidgee sites supports

the former explanation.

Looking forward, these results indicate that the assimilation of near-surface

soil moisture could benefit the ACCESS/MOSES models. The assimilation

improved the model soil moisture forecasts at those sites where in situ data

were available, by responding to errors in the near-surface layers, which are

most sensitive to errors in the atmospheric forcing. This would compliment

the assimilation of screen-level observations quite well, since the latter could

more tightly constrain the deeper soil moisture layers to reduce errors in the

transpiration forecasts. The assimilation strategy used here was specifically

designed to allow the assimilation of both near-surface soil moisture and screen-

level observations. To introduce the assimilation of screen-level observation into

ACCESS/MOSES, the height at which the atmospheric forcing is applied to

MOSES should be raised to the height of the first atmospheric layer in ACCESS

(20 m). Additionally, the accuracy with which the off-line MOSES can estimate

the screen-level forecasts from the coupled model would need to be confirmed.
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7.2 Main conclusions and future directions

Potential of assimilating near-surface soil moisture and screen-level

observations

Taken together, the results summarised above strongly suggest that near-surface

soil moisture assimilation could benefit NWP. It has been demonstrated that

near-surface soil moisture can be accurately sensed from current microwave

sensors, and that assimilating these observations into the Australian NWP land

surface model can improve the model root-zone soil moisture relative to the

available in situ soil moisture observations. Additionally, while assimilating

near-surface soil moisture and screen-level observations separately into Météo-

France’s NWP land surface model generated quite different root-zone soil mois-

ture increments, assimilating the two data types together improved the model

fit to both observation types. These results suggest that forecasts of both the

low-level atmosphere and soil moisture could be slightly improved by assimi-

lating screen-level observations together with remotely sensed near-surface soil

moisture.

The next stage of this research is to couple the off-line land data assimilation

system to the atmospheric model, so that each surface analysis is fed-back

to the NWP model to generate the forcing for the next off-line assimilation

cycle. This will likely enhance the impact of the assimilation, by introducing

feedback between the land surface and the atmosphere. It will also allow further

assessment of the impact of the soil moisture analyses, including the interaction

between the different observation types, by allowing evaluation of the impact

on forecasts of soil moisture-dependent variables.

Recently launched soil moisture remote sensors

Remotely sensed soil moisture from the AMSR-E instrument was used in this

thesis, since until recently AMSR-E was the only instrument observing soil

moisture with sufficient coverage for NWP. However, the ASCAT and SMOS

satellites have since been launched, and both are recommended as potential

alternatives to using AMSR-E data. SMOS was purpose designed for sensing soil

moisture, and is expected to provide more accurate observations than AMSR-E.

Additionally, the deeper (5 cm) surface soil layer observed by the L-band SMOS

sensor is more strongly coupled to the root-zone soil moisture than the very
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thin layer observed by AMSR-E. While ASCAT observes at the same C-band

microwave frequencies as AMSR-E, and offers similar accuracy (Albergel et al.,

2009), it has the advantage of being operationally supported. Consequently,

ASCAT soil moisture observations can be obtained in near-real time, and are

supported by sophisticated data quality flags and error estimates that are not

currently available for AMSR-E.

Dependency on the model and model design

The MOSES and ISBA models treat the vertical resolution and flow of soil

moisture quite differently, and the contrasting results obtained from assimilat-

ing near-surface soil moisture into each model highlights that the effectiveness

(and likely accuracy) with which root-zone soil moisture can be constrained

from near-surface soil moisture observations is model-dependent. For Météo-

France’s two-layer force-restore ISBA model, the near-surface soil moisture layer

is so thin (about 1 cm) that updates to this layer have little impact on the sub-

sequent model forecasts. Consequently, the assimilation must rely on deriving

updates to the root-zone soil moisture from the near-surface observations. Since

the root-zone soil moisture updates are applied to the entire soil column, assim-

ilating the AMSR-E observations into ISBA added a reasonably large volume

of moisture to the surface (1.8 mm day−1 on average). In contrast, the BoM’s

MOSES model describes soil moisture in four layers, with Darcian moisture flow

between them. Since the coupling between the different soil moisture layers is

quite weak, assimilating the near-surface soil moisture observations into MOSES

only generated significant updates close to the surface (in the uppermost 35 cm,

with most of this occuring in the uppermost 10 cm of the surface). In contrast

to ISBA, the near-surface soil moisture layer in MOSES is sufficiently thick

(10 cm) that analysis updates to this layer infiltrate through the soil profile,

with a significant impact on the model root-zone soil moisture. However, this

mechanism results in much smaller volumes of moisture being added and sub-

tracted than for ISBA (0.5 mm day−1 on average, for similarly derived error

covariances).

It is not known which of these models is more realistic (if either), and both

compare well to other estimates of soil moisture (Calvet et al., 1998; Rooney and

Claxton, 2006). In terms of selecting a model that is well suited to near-surface

soil moisture assimilation, while the MOSES assimilation did not constrain

the model root-zone soil moisture as strongly, it was more consistent with the
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information that can be reliably extracted from remotely sensed near-surface

soil moisture observations. The temporal dynamics of near-surface soil moisture

are dominated by short-term (sub-daily) variability associated with atmospheric

forcing, while the root-zone soil moisture evolves much more slowly (at monthly

to seasonal scales). For the ISBA model, there is a dramatic difference in the

time scales of the two model soil moisture layers, and the assimilation must

rely on being able to extract information regarding errors in the slower mode

(the root-zone) from observations that are dominated by the the faster mode

(the near-surface layer). Given the systematic differences between modeled and

observed soil moisture, it may not be possible to detect errors in the slowly

varying mode from observations of the near-surface layer. In contrast, the

inclusion of soil moisture layers with intermediate time scales in MOSES, allows

the model itself to filter updates to the near-surface soil moisture through the

soil profile. This approach is certainly better suited to correcting the NWP land

surface in response to errors that enter the land surface via the near-surface

layer, such as precipitation.

However, one advantage of ISBA is that it defines the near-surface soil mois-

ture over a similar depth than is observed by C-band microwave brightness

temperatures from AMSR-E (and ASCAT). In contrast, the near-surface layer

in MOSES is 10 cm deep, introducing substantial representativity errors be-

tween the assimilated and modeled near-surface soil moisture. In this thesis

these differences were reduced by temporally filtering the AMSR-E data with

an exponential moving average filter. However, the benefit of this filter is not

thought to extend beyond reducing the noisiness of the shallower observations

(and the filter is certainly less accurate than using a sophisticated soil moisture

model, such as ISBA or MOSES, to extrapolate near-surface observations over

a deeper soil layer). The ideal model design (for assimilation purposes) would

include both a near-surface layer of equivalent depth to the observations (for

an accurate observation equivalent), and a second layer with a depth of 10 -

30 cm (for a longer memory). Additionally, once SMOS observations of the ∼5

cm soil layer are available, this will enhance the coupling between the observed

near-surface layer and the underlying soil moisture, and hence the ability to

detect root-zone soil moisture errors from remotely sensed observations.
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Refining the assimilation strategy

The EKF-based land surface assimilation scheme used in this thesis is an effec-

tive and affordable method of analysing the soil moisture in NWP models from

observations of both near-surface soil moisture and screen-level variables, and

it is recommended for use at NWP centres. The EKF offers several advantages

over the current OI and nudging strategies used to assimilate screen-level obser-

vations at most NWP centres, including a more accurate representation of the

relationship between model soil states and screen-level forecasts. However, its

greatest advantage is the flexibility to easily assimilate new observation types,

including near-surface soil moisture, although in the future other observations

should also be investigated, including surface temperature, snow cover, albedo,

and vegetation indices. Additionally, the state update vector in the EKF can

easily be expanded, and in particular soil temperature should be included, since

it is currently updated from screen-level observations, and has been neglected

in this thesis.

While it is a clear improvement over the current techniques used to constrain

soil moisture in NWP models, the EKF assimilation used here is very simplis-

tic, and could likely be improved. Firstly, the spatially uniform and strictly

diagonal error covariance matrices used here are too simplistic, and specifying

more realistic errors would likely improve the resulting soil moisture analyses

(e.g., Wilker et al., 2006). For the MOSES model, comparison of the model

soil moisture in each layer to in situ observations suggested that there are ver-

tical correlations between the model background errors in each soil layer, which

were neglected here. For MOSES (and similarly structured models) the impact

of assimilating the near-surface soil moisture with the EKF could then be en-

hanced by introducing vertical correlations into the additive model error term

(off-diagonal terms in Q), if the correlations could be accurately estimated.

While several recent papers have explored the use of adaptive filtering for

improving the accuracy of model errors (Crow and Reichle, 2008; Reichle et

al., 2008a), these adaptive approaches are based on the assumption that inac-

curacies in the assimilation diagnostics are due to inaccuracies in the specified

error covariance (rather than other causes, such as model-observation biases,

or weak coupling between the observed and analysed variables). This assump-

tion needs to be confirmed before these adaptive approaches can be pursued.

Alternatively, using an EnKF rather than the EKF should improve the back-
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ground error covariances, since this would allow the model errors to be defined

more intuitively through the generation of the ensemble. An EnKF with an

appropriately defined ensemble would likely also generate more substantial ver-

tical model error correlations, since perturbing the model parameters and/or

physics would likely produce vertically correlated errors. Additionally, Reichle

and Koster (2003) showed that the impact of the near-surface soil moisture

observations can be enhanced by specifying horizontal error covariances, which

could be more easily achieved in the EnKF.

Addressing the model-observation systematic differences

The greatest difficulties encountered during this thesis were associated with

the lack of an established truth for large scale soil moisture, and the system-

atic differences between remotely sensed, in situ observed, and modeled soil

moisture. In particular, the soil moisture defined by a model is dependent on

that model’s physics, parameters, and resolution, and regardless of the accuracy

achieved from soil moisture remote sensors, significant representativity errors

(or systematic differences) will remain between model predicted and remotely

sensed soil moisture. These representativity errors are exacerbated in NWP

modeling by the use of globally defined, often inaccurate, model parameters.

Near-surface soil moisture assimilation must then address these systematic dif-

ferences between modeled and observed soil moisture. This was achieved in this

thesis using a statistical bias correction prior to the assimilation, however for

both ISBA and MOSES the bias correction was hampered by the limited data

record available to sample the model soil moisture climatology, as well as the

nonstationary nature of the model-observation biases. It was demonstrated in

Chapter 5 that the assimilation results are very sensitive to the method used

to remove the model-observation bias, and consequently using an inappropriate

method will be detrimental. Obtaining a sufficient data record to accurately

perform the bias correction then presents a major hurdle for the early uptake

of recently launched soil moisture remote sensing missions, such as SMOS. It

is also problematic for NWP modeling (excepting at those centres with reanal-

yses), since NWP model physics are frequently updated, making it difficult to

obtain a long record of soil moisture forecasts. For regions with sufficient atmo-

spheric observations, the model soil moisture data record could be increased by

generating the model climatology using observed forcing; this approach offers

the additional advantage over using archived NWP forecast soil moisture, since
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it matches the soil moisture observations to a more accurate climatology.

Additionally, addressing the issues arising from the systematic difference be-

tween modeled and observed soil moisture will yield more immediate benefits

than refining the data assimilation strategy, certainly until 3-D land surface

assimilation becomes operationally feasible. This includes developing robust

methods to evaluate soil moisture at continental to global scales, and improved

methods to address the model-observation biases in soil moisture. In particu-

lar, the benefit of any refinements to the assimilation strategy cannot be judged

until the impact of the assimilation can be confidently evaluated over large

spatial and temporal domains. Consequently, it is recommended that address-

ing the systematic differences between modeled and observed soil moisture be

given higher priority than introducing the above-mentioned refinements to the

assimilation strategy.
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CNRM, Toulouse, France.

Li, J. and Islam, S. (2002). Estimation of root zone soil moisture and surface

fluxes partitioning using near surface soil moisture measurements, Journal of

Hydrology, 259, 1–14.

Li, L., Njoku, E., Im, E., Chang, P. and Germain, K. (2004). A preliminary

survey of radio-frequency interference over the US in Aqua AMSR-E data,

IEEE Transactions on Geoscience and Remote Sensing, 42, 380–390.

Liu, Y., van Dijk, A., de Jeu, R. and Holmes, T. (2009). An analysis of

spatiotemporal variations of soil and vegetation moisture from a 29–year

satellite–derived data set over mainland Australia, Water Resources Research,

45, W07405.

Mahfouf, J.-F. (1991). Analysis of soil moisture from near-surface parameters:

A feasibility study, Journal of Applied Meteorology, 30, 1534–1547.

Mahfouf, J.-F. (2000). A revised land-surface analysis scheme in the Integrated

Forecast System, ECMWF newsletter 88, Summer-Autumn 2000.

Mahfouf, J.-F. (2010a). Amelioration des statistiques des erreurs d’ebauche

pour l’analyse de l’etat hydrique des sols, Ateliers de Modélisation

de l’Atmosphère 2010, abstract, Toulouse, 26-28 January 2010. At

http://www.cnrm.meteo.fr/ama2010/resumes courts/resume 69.html [last

accessed June 2010].

237



238 References

Mahfouf, J.-F. (2010b). Assimilation of satellite derived soil moisture from

ASCAT in a limited area NWP model, Quarterly Journal of the Royal Mete-

orological Society, 136, 784–798.

Mahfouf, J.-F., Bergaoui, K., Draper, C., Bouyssel, C., Taillefer, F. and Taseva,

L. (2009). A comparison of two off-line soil analysis schemes for assimilation

of screen-level observations, Journal of Geophysical Research, 114, D08105.

Martin, W. and Xue, M. (2006). Sensitivity analysis of convection of the 24

May 2002 IHOP case using very large ensembles, Monthly Weather Review,

134, 192–207.

Masson, V., Champeaux, J.-L., Chauvin, F., Meriguet, C. and Lacaze, R.

(2003). A global database of land surface parameters at 1-km resolution

in meteorological and climate models, Journal of Climate, 16, 1261 – 1282.

McCabe, M., Gao, H. and Wood, E. H. (2005a). Evaluation of AMSR-E-derived

soil moisture retrievals using ground-based and PSR airborne data during

SMEX02, Journal of Hydrometeorology, 6, 864–877.

McCabe, M., Wood, E. and Gao, H. (2005b). Initial soil moisture retrievals from

AMSR-E: Multiscale comparison using in situ data and rainfall patterns over

Iowa, Geophysical Research Letters, 32, L06403.

McVicar, T. and Van Niel, T. (2005). Deriving moisture avail-

ability from time series remote sensing for drought assessment, Re-

port to the Reference Group of the Australian Water Availabil-

ity Project, 29 pp., CSIRO Land and Water, Canberra, Aus-

tralia. At http://www.clw.csiro.au/publications/consultancy/2005/deriving

moisture availability AWAP.pdf [last accessed December 2010].

Merlin, O., Walker, J., Panciera, R., Young, R., Kalma, J. and Kim, E. (2007).

Soil moisture measurement in heterogeneous terrain, MODSIM 2007 Inter-

national Congress on Modelling and Simulation. Modelling and Simulation

Society of Australia and New Zealand, pp. 2604–2610.
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Appendix A

Related assimilation methods

The EKF used in this thesis (described in Section 3.2) is closely related to a

number of existing land surface analysis techniques, and the relationship to each

is briefly reviewed in this Appendix. In summary, the EKF is derived from a

variational method, initially suggested by Mahfouf (1991) for the assimilation of

screen-level observations. Hess (2001) then simplified this method by linearising

the forecast model over the assimilation window, enabling the calculation of a

direct solution to the minimisation of the cost function (rather than the iter-

ative approach taken by Mahfouf (1991)). With this linearisation the method

resembles an EKF, and it is referred to as both a “simplified 2-D Var” (Bal-

samo et al., 2004) and a “simplified EKF” (Mahfouf et al., 2009). The similarity

between the simplified variational approach and the EKF that is used here is

discussed below. Additionally, the EKF as it is applied here, is also compared

to the EKF assimilation of soil moisture in which the forward model is not

used in the observation operator, since the latter is more commonly used for

soil moisture assimilation (e.g., Walker and Houser, 2001; Reichle et al., 2002b;

Muñoz Sabater et al., 2007)

A.1 Comparison to simplified 2-D Var

To examine the relationship between the simplified 2-D Var of Balsamo et al.

(2004) and the EKF implemented here, consider the example of the ISBA model

from Chapter 5, in which a two-layer soil moisture state is updated from obser-

vations of the upper-most layer. For the simplified 2-D Var of Balsamo et al.

(2004) the model update is made at the beginning of an assimilation window,

at ti, based on the observations during the assimilation window, in this case
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at the end of the assimilation window at time ti + 6.1 As outlined by Mahfouf

(2010b) the simplified 2-D Var update is written:

∆x(ti) = xa(ti)− xb(ti)

= P0Hi
T (HiP0Hi

T + Ri)
−1
(
yo(ti + 6)−Hi[x

b(ti)]
)

(A.1)

where P0 indicates a static P matrix, describing the model errors at the begin-

ning of each assimilation window. The observation operator in equation 3.6 can

be written as Hi = ĤMti→ti+6, where Ĥ =
(

1 0
)

. For a 6 hour assimilation

cycle, Mti→ti+6 is Mi. Substituting Hi = ĤMi into equation A.1 gives:

∆x(ti) = P0(ĤMi)
T [(ĤMi)P0(ĤMi)

T + R]−1

×(yo(ti + 6)− ĤMi[x
b(ti)]) (A.2)

Applying the forecast model to equation A.2 carries the update forward to the

end of the assimilation window:

∆x(ti + 6) ≈ Mi∆x(ti)

= (MiP0M
T
i )ĤT [Ĥ(MiP0M

T
i )ĤT + R]−1

×(yo(ti + 6)− Ĥ[xb(ti + 6)]) (A.3)

The use of the forecast model in the observation operator can be interpreted

as evolving P0 to the time of the observations, as is done by equation 3.4 for

an EKF, giving the similarity between the simplified 2-D Var and the EKF.

Hence, while Balsamo et al. (2004) refers to this method as a simplified 2-D

Var, where “simplified” refers to the use of a linearisation of the forecast model

by finite-differencing, in place of a model adjoint, Mahfouf et al. (2009) refers to

it as a simplified EKF, where “simplified” refers to the use of static P0 at each

update time. In this thesis, the full EKF is applied, and equations 3.4 and 3.5

are used in place of P0 in the above, and so the EKF terminology is adopted

here.

1Note that if observations were prior to the end of the assimilation window, the two
techniques would differ, since a variational smoother ingests all of the observations in one
analysis, while a Kalman filter assimilates them sequentially.

248



A.2 Comparison to standard EKF for assimilating near-surface soil
moisture data 249

A.2 Comparison to standard EKF for assimi-

lating near-surface soil moisture data

For the assimilation of soil moisture observations, equation A.3 raises another

approach to implementing an EKF, which is to make the model update at the

time of the observations and use Ĥ =
(

1 0
)

as the observation operator.

This is a much more common method for the EKF assimilation of soil moisture

(e.g., Walker and Houser, 2001; Reichle et al., 2002b; Muñoz Sabater et al.,

2007) than that used here, and it has the advantage of avoiding the additional

integrations required to linearise the observation operator. However it relies on

the observations being included in the state update vector, and the screen-level

variables cannot be sensibly included in the update vector of the off-line land

surface models used in these experiments since they are not prognostic (and are

diagnosed by interpolating between the surface humidity and temperature, and

the forcing fields for the first atmospheric model layer). Hence, this approach

cannot assimilate screen-level observations into the off-line land surface models,

and so has not been used here. However, for the assimilation of soil moisture

data, examining the analysis equations indicates that these two approaches are

very similar. To demonstrate this, consider the update equation at time ti + 6

for the assimilation with an observation operator of Ĥ =
(

1 0
)

:

∆x(ti + 6) = Pf (ti + 6)ĤT [ĤPf (ti + 6)ĤT + R]−1

×(yo(ti + 6)− Ĥ[xb(ti + 6)]) (A.4)

For the EKF used here, the analysis update can be obtained by substituting

Pf (ti) from equation 3.4 in place of P0 in equation A.3. This gives the EKF

analysis update at time ti carried forward 6 hours to ti + 6:

∆x(ti + 6) ≈ (MiP
f (ti)M

T
i )ĤT [Ĥ(MiP

f (ti)M
T
i )ĤT + R]−1

×(yo(ti + 6)− Ĥ[xb(ti + 6)]) (A.5)

The equations describing the analysis update from the observations at time

ti + 6 are very similar. In equation A.4 the update is made at the time of

the observations, and P is the forecast value at the time of the observations,
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obtained from equation 3.4 (i.e., P = MiP
a(ti)M

T
i + Q(ti)) In contrast, for

equation A.5 the update is made 6 hours before the observations, and P is

the forecast value at time ti (from equation 3.4) carried forward another 6

hours to ti + 6 (i.e., P = Mi(Mi−1P
a(ti−1)M

T
i−1 + Q(ti−1))Mi). However, once

equation A.5 has been carried forward 6 hours, the analysis updates differ only

in the value of P used. The similarity between the two approaches has been

confirmed by comparing the analysis results generated by the two methods for

the experimental set-up used in Chapter 5. The differences are limited to the

magnitude of the analysis increments, with the increments being larger (yet

showing the same spatial pattern) when the model is used as the observation

operator.
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Appendix B

Comparing coupled MOSES and

off-line JULES simulations

JULES was launched in October 2006, with the same programming as was used

in the UM MOSES model at that time, however the Met Office updates the

UM code four times a year, so that the MOSES code in ACCESS now differs

from that in JULES. This Appendix outlines the changes that have been made

to the JULES model for use in this thesis so that it better mimics the coupled

MOSES model. Additionally, it is shown that the off-line JULES model with

these changes represents a reasonably accurate representation of the coupled

MOSES model.

Two significant updates have been made to the MOSES code since the

JULES model was launched (pers. comm. Imtiaz Dharssi):

• In June 2007 (PS15) the soil hydrology was updated so that excess soil

moisture generated from a frozen or saturated soil layer flows into the

next soil layer down, rather than being lost as runoff. This change had

the greatest impact under snow, and after short periods of intense rain.

• In April 2008 (PS18) several changes were made to MOSES. A long-

standing error in the calculation of soil hydraulic properties was fixed,

and several other changes, including the introduction of soil temperature

nudging and assimilation of SYNOP data, were introduced. These changes

were a response to the poor performance of the UM over the European

summer of 2006, and they had a positive impact on the atmospheric fore-

cast skill, including a significant reduction of errors in the screen level

temperature and humidity forecasts (Dharssi et al., 2009).

251



252 B. Comparing coupled MOSES and off-line JULES simulations

To take advantage of the improved model skill from the PS18 update, the

experiments conducted in this thesis have been restricted to the period after

April 2008, and the JULES code has been amended to include the PS15 and

PS18 updates. Two additional model changes were also made in response to

model short-comings accounted in this research:

• A bug in the calculation of bare soil evaporation was amended, to decrease

the occurrence of strong nonlinearities in the model. In the operational

MOSES model, bare soil evaporation occurs only when the nonsurface

soil layers are above the wilting point. This has been amended so that

bare soil evaporation depends only on the layer one soil moisture, and can

continue when the nonsurface layers are below the wilting point. This

change will be introduced to the operational MOSES code in the near

future (pers. comm. Imtiaz Dharssi).

• A lower bound of 10% of the wilting point has been placed on the layer

one soil moisture, to prevent model instability when the layer one soil

moisture is very dry. In the ACCESS suite the same bound is applied by

the soil moisture analysis scheme (pers. comm. Jin Lee).

To check that the off-line MOSES model environment described above pro-

vides a reasonable representation of the MOSES model within ACCESS, the

forecast soil moisture and temperature from each model have been compared

over one diurnal cycle, from 7 UTC on 1 November 2008. There will be differ-

ences between the surface state forecast by the off-line and coupled version of

MOSES, due to:

• differences between the atmospheric forcing applied to each due to the use

of hourly fields from the atmospheric model (rather than generating an

atmospheric forecast for every model time-step)

• differences between the model code, both due to issues associated with

decoupling MOSES from the atmospheric model, or due to unaccounted

for changes to MOSES after JULES was launched

• rounding off errors in writing out fields from the coupled model and read-

ing them into off-line land surface model

The difference between the soil moisture forecast by the off-line and coupled

MOSES models decreases rapidly with depth and only the surface layer is dis-

cussed here (the differences decrease by an order or magnitude for each of the
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Figure B.1: Difference between the layer one soil moisture (as a fraction
of saturation) from the off-line and coupled MOSES models (off-line minus
coupled), for the 24-hour forecast to 07:00 UTC on 2 November, 2008.

under-lying soil layers). Figure B.1 shows the difference in the layer one soil

moisture between the 24-hour forecasts (to 07:00 UTC on 2 November 2008)

from the off-line and coupled MOSES forecasts. The difference in layer one

ranges from -1.8% to 2.9% of the soil moisture at saturation, with a mean of

-0.17 %. Less than 4% of grids have an absolute difference greater than 1% of

the soil moisture at saturation (equivalent to about 0.005 m3m−3). Figure B.2

show the large-scale and convective precipitation over the same time period.

Comparison to Figure B.1 highlights that the greatest differences between the

off-line and coupled soil moisture forecasts occur in precipitating regions, par-

ticularly with convective precipitation. These differences are due to the use of

hourly mean precipitation in the off-line system, since infiltration of moisture

into the soil is sensitive to the timing of the precipitation (although the separa-

tion of precipitation into large-scale and convective fractions has reduced this

difference).

The soil temperature forecasts from the off-line and coupled models show

greater differences than the soil moisture forecasts, and the difference in soil
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254 B. Comparing coupled MOSES and off-line JULES simulations

CONVECTIVE

LARGE-SCALE

Figure B.2: ACCESS forecast convective (upper) and large-scale (lower) rain-
fall (mm/day) for the 24-hours to 07:00 UTC on 2 November, 2008.
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Figure B.3: Difference between the layer one soil temperature from the off-line
and coupled MOSES models (off-line minus coupled), for the 24-hour forecast
to 07:00 UTC on 2 November, 2008.

temperature ranges from -3.9 K to 1.0 K, with a mean of -0.8 K. As with the

moisture, the temperature differences decrease with depth, with the mean re-

ducing to -0.1 in the second layer (and less than 0.001 K in the third and fourth

layers). Figure B.3 shows the difference in the layer one soil temperature differ-

ences in the 24-hour forecasts: there is a consistent tendency across Australia

for the off-line forecast to be cooler than the coupled forecasts, usually by less

than 1 K. Time series plots (not shown) indicate that these differences evolve

gradually throughout the forecast, particularly during periods of heating. The

reduction with depth suggests that the differences are driven by the forcing

(although the width of the soil layers get deeper with distance from the sur-

face, so that energy changes are dispersed across a greater volume), and the

discrepancies may be due to use of hourly radiation means in the forcing data.

While this discrepancy would need to be further investigated before the off-line

land surface analysis is coupled to the ACCESS model, the off-line system is

considered to be close enough to the coupled simulation for use in the (fully

decoupled) experiments conducted here.
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Appendix C

Statistics of fit between in situ

data for non-surface layers at

Kyeamba

Table C.1: RMSD, correlation, and anomaly correlation between layer 2 soil
moisture from the individual monitoring stations in the Kyeamba-A pixel, for
April ’08 to April ’09. For each statistic the minimum and maximum off-
diagonal values are in bold.

RMSD
K1 K2 K3 K5 K7

K1 0.000 - - - -
K2 0.034 0.000 - - -
K3 0.034 0.036 0.000 - -
K5 0.039 0.029 0.022 0.000 -
K7 0.032 0.025 0.030 0.022 0.000

rabs

K1 K2 K3 K5 K7
K1 1.00 - - - -
K2 0.84 1.00 - - -
K3 0.84 0.98 1.00 - -
K5 0.85 0.97 0.98 1.00 -
K7 0.89 0.93 0.93 0.95 1.00

ranm

K1 K2 K3 K5 K7
K1 1.00 - - - -
K2 0.78 1.00 - - -
K3 0.85 0.79 1.00 - -
K5 0.85 0.69 0.89 1.00 -
K7 0.55 0.45 0.67 0.68 1.00
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C. Statistics of fit between in situ data for non-surface layers at

Kyeamba

Table C.2: RMSD, correlation, and anomaly correlation between layer 3 soil
moisture from the individual monitoring stations in the Kyeamba-A pixel, for
April ’08 to April ’09. For each statistic the minimum and maximum off-
diagonal values are in bold.

RMSD
K1 K2 K3 K5 K7

K1 0.000 - - - -
K2 0.015 0.000 - - -
K3 0.094 0.089 0.000 - -
K5 0.115 0.111 0.025 0.000 -
K7 0.209 0.207 0.120 0.100 0.000

rabs

K1 K2 K3 K5 K7
K1 1.00 - - - -
K2 0.90 1.00 - - -
K3 0.80 0.97 1.00 - -
K5 0.86 0.98 0.97 1.00 -
K7 0.73 0.88 0.90 0.92 1.00

ranm

K1 K2 K3 K5 K7
K1 1.00 - - - -
K2 0.89 1.00 - - -
K3 0.63 0.82 1.00 - -
K5 0.87 0.83 0.60 1.00 -
K7 -0.41 -0.35 -0.10 -0.36 1.00

Table C.3: RMSD, correlation, and anomaly correlation between layer 4 soil
moisture from the individual monitoring stations in the Kyeamba-A pixel, for
April ’08 to April ’09. For each statistic the minimum and maximum off-
diagonal values are in bold.

RMSD
K1 K2 K3 K5 K7

K1 0.000 - - - -
K2 0.020 0.000 - - -
K3 0.075 0.062 0.000 - -
K5 0.119 0.108 0.050 0.000 -
K7 0.201 0.193 0.136 0.087 0.000

rabs

K1 K2 K3 K5 K7
K1 1.00 - - - -
K2 0.88 1.00 - - -
K3 0.85 0.99 1.00 - -
K5 0.87 0.99 0.98 1.00 -
K7 0.88 0.91 0.90 0.89 1.00

ranm

K1 K2 K3 K5 K7
K1 1.00 - - - -
K2 -0.11 1.00 - - -
K3 -0.15 0.91 1.00 - -
K5 -0.14 0.97 0.89 1.00 -
K7 0.88 -0.39 -0.35 -0.39 1.00

258



259

Table C.4: RMSD, correlation, and anomaly correlation between the root-
zone soil moisture from the individual monitoring stations in the Kyeamba-A
pixel, for April ’08 to April ’09. For each statistic the minimum and maximum
off-diagonal values are in bold.

RMSD
K1 K2 K3 K5 K7

K1 0.000 - - - -
K2 0.017 0.000 - - -
K3 0.056 0.055 0.000 - -
K5 0.069 0.070 0.017 0.000 -
K7 0.123 0.127 0.077 0.062 0.000

rabs

K1 K2 K3 K5 K7
K1 1.00 - - - -
K2 0.91 1.00 - - -
K3 0.89 0.99 1.00 - -
K5 0.90 0.99 0.99 1.00 -
K7 0.91 0.97 0.98 0.97 1.00

ranm

K1 K2 K3 K5 K7
K1 1.00 - - - -
K2 0.88 1.00 - - -
K3 0.92 0.91 1.00 - -
K5 0.88 0.92 0.93 1.00 -
K7 0.58 0.39 0.57 0.48 1.00
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C. Statistics of fit between in situ data for non-surface layers at

Kyeamba
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Appendix D

Additional time series plots

comparing original AMSR-E

retrieval algorithms to in situ

data.
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D. Additional time series plots comparing original AMSR-E

retrieval algorithms to in situ data.

Figure D.1: Comparison of in-situ (solid lines) and original AMSR-E (red
diamonds) near-surface soil moisture (m3m−3) for each retrieval algorithm, at
Cooma Airfield (M1) over 2006.
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Figure D.2: Comparison of in-situ (solid lines) and original AMSR-E (red
diamonds) near-surface soil moisture (m3m−3) for each retrieval algorithm, at
Canberra Airport (M2) over 2006.
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D. Additional time series plots comparing original AMSR-E

retrieval algorithms to in situ data.

Figure D.3: Comparison of in-situ (solid lines) and original AMSR-E (red
diamonds) near-surface soil moisture (m3m−3) for each retrieval algorithm, at
West Wyalong Airfield (M4) over 2006.
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Figure D.4: Comparison of in-situ (solid lines) and original AMSR-E (red
diamonds) near-surface soil moisture (m3m−3) for each retrieval algorithm, at
Balranald (M5) over 2006.
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D. Additional time series plots comparing original AMSR-E

retrieval algorithms to in situ data.

Figure D.5: Comparison of in-situ (solid lines) and original AMSR-E (red
diamonds) near-surface soil moisture (m3m−3) for each retrieval algorithm, at
Hay (M6) over 2006.
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Figure D.6: Comparison of in-situ (solid lines) and original AMSR-E (red
diamonds) near-surface soil moisture (m3m−3) for each retrieval algorithm, at
Griffith Aerodrome (M7) over 2006.

267



268
D. Additional time series plots comparing original AMSR-E

retrieval algorithms to in situ data.

Figure D.7: Comparison of in-situ (solid lines) and original AMSR-E (red
diamonds) near-surface soil moisture (m3m−3) for each retrieval algorithm, at
Yanco (M8) over 2006.
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Figure D.8: Comparison of in-situ (solid lines) and original AMSR-E (red
diamonds) near-surface soil moisture (m3m−3) for each retrieval algorithm, at
Adelong (M10) over 2006.
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D. Additional time series plots comparing original AMSR-E

retrieval algorithms to in situ data.

Figure D.9: Comparison of in-situ (solid lines) and original AMSR-E (red
diamonds) near-surface soil moisture (m3m−3) for each retrieval algorithm, at
Merriwa (G1) over 2006.
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Appendix E

Additional time series plots

comparing normalised AMSR-E

retrieval algorithms to in situ

data.
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E. Additional time series plots comparing normalised AMSR-E

retrieval algorithms to in situ data.

Figure E.1: Comparison of in-situ (solid lines) and normalised AMSR-E (red
diamonds) near-surface soil moisture (m3m−3) for each retrieval algorithm, at
Cooma Airfield (M1) over 2006.
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Figure E.2: Comparison of in-situ (solid lines) and normalised AMSR-E (red
diamonds) near-surface soil moisture (m3m−3) for each retrieval algorithm, at
Canberra Airport (M2).
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E. Additional time series plots comparing normalised AMSR-E

retrieval algorithms to in situ data.

Figure E.3: Comparison of in-situ (solid lines) and normalised AMSR-E (red
diamonds) near-surface soil moisture (m3m−3) for each retrieval algorithm, at
West Wyalong Airfield (M4) over 2006.
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Figure E.4: Comparison of in-situ (solid lines) and normalised AMSR-E (red
diamonds) near-surface soil moisture (m3m−3) for each retrieval algorithm, at
Balranald (M5) over 2006.
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E. Additional time series plots comparing normalised AMSR-E

retrieval algorithms to in situ data.

Figure E.5: Comparison of in-situ (solid lines) and normalised AMSR-E (red
diamonds) near-surface soil moisture (m3m−3) for each retrieval algorithm, at
Hay (M6) over 2006.
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Figure E.6: Comparison of in-situ (solid lines) and normalised AMSR-E (red
diamonds) near-surface soil moisture (m3m−3) for each retrieval algorithm, at
Griffith Aerodrome (M7) over 2006.
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E. Additional time series plots comparing normalised AMSR-E

retrieval algorithms to in situ data.

Figure E.7: Comparison of in-situ (solid lines) and normalised AMSR-E (red
diamonds) near-surface soil moisture (m3m−3) for each retrieval algorithm, at
Yanco (M8) over 2006.
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Figure E.8: Comparison of in-situ (solid lines) and normalised AMSR-E (red
diamonds) near-surface soil moisture (m3m−3) for each retrieval algorithm, at
Adelong (M10) over 2006.
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E. Additional time series plots comparing normalised AMSR-E

retrieval algorithms to in situ data.

Figure E.9: Comparison of in-situ (solid lines) and normalised AMSR-E (red
diamonds) near-surface soil moisture (m3m−3) for each retrieval algorithm, at
Merriwa (G1) over 2006.

280



Appendix F

Additional time series plots

comparing original VUA-NASA

AMSR-E retrievals to in situ

data.
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F. Additional time series plots comparing original VUA-NASA

AMSR-E retrievals to in situ data.

Figure F.1: Time series of in-situ (black) and original AMSR-E (red) near-
surface soil moisture (m3m−3) from the VUA-NASA retrieval algorithm at
Cooma Airfield (M1), from 2003-2008.
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Figure F.2: Time series of in-situ (black) and original AMSR-E (red) near-
surface soil moisture (m3m−3) from the VUA-NASA retrieval algorithm at Can-
berra Airport (M2), from 2003-2008.
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F. Additional time series plots comparing original VUA-NASA

AMSR-E retrievals to in situ data.

Figure F.3: Time series of in-situ (black) and original AMSR-E (red) near-
surface soil moisture (m3m−3) from the VUA-NASA retrieval algorithm at West
Wyalong Airfield (M4), from 2003-2008.
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Figure F.4: Time series of in-situ (black) and original AMSR-E (red) near-
surface soil moisture (m3m−3) from the VUA-NASA retrieval algorithm at Bal-
ranald (M5), from 2003-2008.
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F. Additional time series plots comparing original VUA-NASA

AMSR-E retrievals to in situ data.

Figure F.5: Time series of in-situ (black) and original AMSR-E (red) near-
surface soil moisture (m3m−3) from the VUA-NASA retrieval algorithm at Hay
(M6), from 2003-2008.
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Figure F.6: Time series of in-situ (black) and original AMSR-E (red) near-
surface soil moisture (m3m−3) from the VUA-NASA retrieval algorithm at Grif-
fith Aerodrome (M7), from 2003-2008.
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F. Additional time series plots comparing original VUA-NASA

AMSR-E retrievals to in situ data.

Figure F.7: Time series of in-situ (black) and original AMSR-E (red) near-
surface soil moisture (m3m−3) from the VUA-NASA retrieval algorithm at
Yanco (M8), from 2003-2008.
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Figure F.8: Time series of in-situ (black) and original AMSR-E (red) near-
surface soil moisture (m3m−3) from the VUA-NASA retrieval algorithm at Ade-
long (M10), from 2003-2008.
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F. Additional time series plots comparing original VUA-NASA

AMSR-E retrievals to in situ data.
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Appendix G

Additional time series plots

comparing normalised

VUA-NASA AMSR-E retrievals

to in situ data.
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G. Additional time series plots comparing normalised VUA-NASA

AMSR-E retrievals to in situ data.

Figure G.1: Time series of in-situ (black) and normalised AMSR-E (red)
near-surface soil moisture (m3m−3) from the VUA-NASA retrieval algorithm
at Cooma Airfield (M1), from 2003-2008.
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Figure G.2: Time series of in-situ (black) and normalised AMSR-E (red)
near-surface soil moisture (m3m−3) from the VUA-NASA retrieval algorithm
at Canberra Airport (M2), from 2003-2008.
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G. Additional time series plots comparing normalised VUA-NASA

AMSR-E retrievals to in situ data.

Figure G.3: Time series of in-situ (black) and normalised AMSR-E (red)
near-surface soil moisture (m3m−3) from the VUA-NASA retrieval algorithm
at West Wyalong Airfield (M4), from 2003-2008.
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Figure G.4: Time series of in-situ (black) and normalised AMSR-E (red)
near-surface soil moisture (m3m−3) from the VUA-NASA retrieval algorithm
at Balranald (M5), from 2003-2008.
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G. Additional time series plots comparing normalised VUA-NASA

AMSR-E retrievals to in situ data.

Figure G.5: Time series of in-situ (black) and normalised AMSR-E (red)
near-surface soil moisture (m3m−3) from the VUA-NASA retrieval algorithm
at Hay (M6), from 2003-2008.
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Figure G.6: Time series of in-situ (black) and normalised AMSR-E (red)
near-surface soil moisture (m3m−3) from the VUA-NASA retrieval algorithm
at Griffith Aerodrome (M7), from 2003-2008.
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G. Additional time series plots comparing normalised VUA-NASA

AMSR-E retrievals to in situ data.

Figure G.7: Time series of in-situ (black) and normalised AMSR-E (red)
near-surface soil moisture (m3m−3) from the VUA-NASA retrieval algorithm
at Yanco (M8), from 2003-2008.
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Figure G.8: Time series of in-situ (black) and normalised AMSR-E (red)
near-surface soil moisture (m3m−3) from the VUA-NASA retrieval algorithm
at Adelong (M10), from 2003-2008.
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