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Executive summary 
The aim of research undertaken in eWater CRC Project D1 (‘Enhanced stream flow 
forecasting’) is to develop and facilitate prediction and forecasting of stream flow through 
improvements in the coupling of observations with hydrologic models. Better forecasting skill 
by catchment models will enable better management decisions by river managers and 
planners. A key element in this project is to improve catchment-scale hydrologic models 
through utilisation of multiple types of high frequency spatial data including: (1) reflective, 
thermal and microwave remote sensing; (2) ground-based radar-rainfall; (3) gauge 
measurements of stream flow; (4) distributed observations of soil moisture; and (5) 0–7 day 
forecasts from Numerical Weather Prediction models. Outputs from this work will deliver into 
two eWater CRC Product Development Programs, being: (1) River OPerationS (RiverOPS); 
and (2) the Water and Constituent Accounting Simulation Tool (WaterCAST). 

There are multiple benefits for developing an improved capability for stream flow forecasting. 
These include improved efficiencies of water use through better anticipation of river inflows 
(particularly associated with flows from unregulated tributaries); a concomitant reduction in 
water losses and shortfalls on irrigation orders; better targeting of environmental flows by 
augmenting releases with natural flow events; basin wide consistency in management 
operations based on a thorough knowledge of variation in inflows and off-takes in time and 
space; an enhanced capability for predicting and monitoring flood events; and a better 
understanding of past catchment water dynamics through reanalysis studies. 

While the benefits of an integrated stream flow forecasting system are great, current 
infrastructure and methodologies are not technologically mature enough to support a fully 
operational system at this time. Furthermore, institutional and technological barriers exist 
which maintain the status quo in river operations. To realise the benefits of improved flow 
forecasting, directed investment into specific research and development is needed to improve 
hydrologic modeling and prediction. The focus of this research and development effort should 
be on: 

1. improved synthesis of precipitation data products from satellite, ground and numerical 
weather models; 

2. development of improved spatially explicit hydrologic models with internal flow routing 
schemes to provide prognostic estimates of flow at catchment exit points; 

3. acquisition and processing of relevant satellite data products in near real-time from 
operational and research satellites across a range of wavelengths; 

4. development of computationally efficient numerical algorithms for minimising 
differences between observed and model ‘target’ variables (including state and flux 
variables and model parameters); 

5. quantitative treatment of errors in the different types of data and the models; and 
6. establishment of implementation pathways for adoption and use of flow forecast 

products by river management agencies and in policy development. 

This document has a dual purpose. First, it examines the current status of data, models and 
model-data assimilation methods from a hydrologic viewpoint. It lays out the various sources 
of observational information, the range and structure of catchment models, the mathematical 
data assimilation techniques currently in use, and the observational and modeling framework 
needed to develop an operational stream flow forecasting system. It also provides background 
for those not familiar with the application of model-data assimilation methods. 

The second purpose of this document is to provide a blueprint for the research direction of 
eWater CRC project D1 ‘Enhanced Stream Flow Forecasting’. This blueprint draws on the 
spectrum of options in the observation, model and assimilation domains. Outputs from this 
research will be adopted in both the RiverOPS and WaterCAST Product Development 
Programs in the eWater CRC and in river management agencies. As such, this document 
provides a way forward for promoting the development and adoption of data assimilation and 
forecasting methods in hydrology. 
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1  Introduction 
Over the last 25 years, the variety and number of observations used to quantify water stores 
and fluxes in landscapes has grown increasingly. The motivation for a more thorough 
measurement of landscape water status ranges from improving prediction of stream flow for 
urban, agricultural and environmental applications, to understanding groundwater recharge 
rates and to improve irrigation efficiencies. In situ sensor technologies, direct measurements, 
new and more sophisticated satellite based sensors and advances in flux observations have 
all provided new insights into the dynamics of the hydrological cycle and the impacts of water 
resources management on water availability at a range of spatial and temporal scales. 

While there are now a large number of hydrological data sets and models available, none of 
these independently provide sufficient information on which to base sound decisions because 
the data are not unified and they contain gaps, models are incomplete, and inconsistencies 
between the data and models abound (Walker et al. 2003; Barrett et al. 2007). The challenge 
for the research community is to develop approaches to synthesize the information contained 
in these different data types and model predictions for the purpose of improved forecasting of 
water stores and flows. Such approaches need to account for data collected at different spatial 
scales and temporal frequencies, their inherent errors and biases. 

The term ‘model-data assimilation’ (DA) refers to a set of mathematical algorithms which 
enable measured observations (and errors) to be incorporated into models of dynamical 
systems for the estimation of current and future model state variables and fluxes taking into 
account the errors in each. A simple example is the use of distributed profile soil moisture 
measurements to constrain a soil water balance model forced by precipitation data (e.g. 
Walker et al. 2002). Ongoing developments in model-data assimilation in the atmospheric, 
oceanographic and geophysical sciences (Daley 1991; Bennett 1992; Berliner 2003) have 
made demonstrable improvements in the forecasting capability of complex models forced with 
satellite and ground based data. These techniques provide researchers with a range of 
mathematical tools capable of: 

1. improved model parameterisation; 
2. analysis of model structure and model sensitivity to perturbations; 
3. diagnosis of system background state and initial conditions; 
4. development of efficient sample designs and observation networks; and 
5. improved forecasts with quantitative measures of forecast uncertainties. 

In the last five years, considerable attention has been directed towards the development of 
model-data assimilation techniques in hydrology (e.g. Walker et al. 2001a, b; Walker and 
Houser 2001; Reichle et al. 2002; MacKay et al. 2003; Heathman et al. 2003; Sun et al 2004; 
Pipunic et al. 2007) with heavy utilisation of remote sensing data (e.g. Crosson et al. 2002; 
Kim and Barros 2002; Ni-Meister et al. 2005, 2006; Dong et al. 2007). Many studies have 
focused on assimilating separate and independent datasets such as microwave data of 
surface soil moisture or in situ soil moisture observations (Ceballos et al. 2005). More recently 
attempts have been made to synthesize information from multiple sources in the one 
assimilation scheme (Rudiger 2007). For example, Aubert et al. (2003) demonstrated 
substantial improvement in modeled stream flow when both in situ soil moisture observations 
and stream flow data were assimilated, compared to using stream flow data alone. Their 
attempts at also assimilating active microwave data from the European Earth Resources 
Satellite – Synthetic Aperture Radar (ERS SAR) were limited by the update frequency of those 
satellite data (1 week). They concluded that considerable advantage for hydrologic forecasting 
could be gained by a more frequent update cycle of 1–3 days. 

Attempts at developing operational land surface model-data assimilation schemes capable of 
forecasting stream flow and other water balance components for the continental United States 
(North American Land Data Assimilation Scheme, NLDAS) have had variable success in 
prediction of runoff and actual evapotranspiration (Burke et al. 2001; Mitchell et al. 2004; 
Lohmann et al. 2004). These studies attempted to diagnose the hydrometeorology of the land 
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surface at the mesoscale (102 –103 km2) resolved to 1/8° (~12.5 km) by coupling remote 
sensing observations of snow cover, land surface temperature, soil moisture storage and 
snowpack, with daily streamflow observations from a range of catchments. 

Results from these studies have identified a range of biases and errors in models and data 
including: 

1. substantial inter-model errors in surface evaporation, runoff, and soil moisture; 
2. poor estimation of model parameters at fine resolution over large regions; 
3. inadequate understanding of the interaction between non-linear models, their 

parameters and calibration; and 
4. errors in forcing data particularly precipitation. 

These errors and biases need to be addressed in the development of operational hydrologic 
forecasting to avoid propagation of these errors and biases into forecasts. Part of the objective 
of Project D1 ‘Enhanced stream flow forecasting’ is to generate methodologies capable of 
providing the best possible forecasts of stream flow through the integration of model prediction 
and observations. By confronting a model with observations, we are also able to improve our 
understanding of the relevant hydrological processes such as runoff generation, surfacewater 
and groundwater interactions, and transport processes, in addition to improving the predictive 
capability of the model. 

The scope of research in the ‘Enhanced Stream Flow Forecasting’ project is the establishment 
of a model-data assimilation framework for water yield forecasts and river operations. This 
project will deliver research via two practical tools for stream flow modeling that will allow river 
operators, planners and managers to work from a common platform (Figure 1.1): 

1. RiverOPS, which is designed for operational forecasting of stream flow and real-time 
decision making; and, 

2. WaterCAST, which is designed for long-term planning including scenario assessment 
to support decisions for water resources management. 

Streamflow
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Updated parameters

Updated states

Predicted states

Predicted states

PARAMETER
estimation

Long-term
planning and
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Hydrological

model

Historical state
observations

Historical met.
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Figure 1.1. Schematic of proposed hydrologic modeling in eWater CRC Project D1 
‘Enhanced Stream Flow Forecasting’ and its interaction with WaterCAST and RiverOPS 
Product Development Programs. 
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In RiverOPS applications, near real time observations of state variables and forcing data, and 
current forecasts from Numerical Weather Prediction (NWP) models are ingested into a 
hydrologic model simulating catchment water balance, hillslope runoff and stream flow to 
generate better estimates of flow for operational decision making through improved model 
state estimation. In WaterCAST applications, archived historical observations will be used in 
the model data assimilation scheme to generate best estimates of model parameters to 
generate improved understanding of stream flow dynamics for long term decision making 
(including scenario assessment) and setting of policies. 

In order that these tools provide a consistent and coordinated approach to water 
management, they must be built within a comprehensive system requiring: (1) high quality 
regular forcing, observational and validation data; (2) a robust and reliable hydrological model; 
and (3) a computationally efficient data assimilation scheme. 

In this document, we survey the available data products, hydrological models and data 
assimilation methods that make up the various components of DA system for forecasting 
stream flow. Our aim here is to assemble a blueprint for research from the current range of 
data and modeling products and DA methods. This report serves two purposes. Firstly, it 
documents the survey of data and methods and our choices made in establishing the blueprint 
which is likely to be of use to others. Secondly, it serves as a starting point for the planning 
and execution of an operational stream flow forecasting system for practical use by river 
management agencies. 

The report is structured as follows: Section 2 examines the type and availability of a range of 
data sources for use in hydrologic forecasting; Section 3 documents a range of suitable 
hydrologic models purposefully focusing on those readily available and accepted within the 
eWater CRC community via the Catchment Modeling Toolkit; Section 4 reports on the different 
types of data assimilation schemes available for hydrologic forecasting; and Section 5 
concludes with the D1 blueprint or research pathway using the Murrumbidgee River 
catchment in southeastern Australia for demonstration. 

How to read this document 
This document contains a considerable amount of technical detail across a wide range of 
topics pertaining to data sets, hydrologic models and data assimilation methods. These details 
may be familiar to some but unknown to others; for example, researchers concerned with 
measurement may be unfamiliar with the range and function of catchment hydrologic models. 
Furthermore, detailed technical considerations are important when choosing the most 
appropriate components of an operational hydrologic forecasting system. However, this 
exhaustive detail can obscure the ‘bigger picture’ when trying to understand the layout of a 
hydrological forecasting scheme. To blend these two conflicting objectives (sufficient technical 
detail versus schematic overview) into a single document we suggest approaching this report 
in one of two ways. First, to develop a high-level overview, the reader should focus on 
sections 2.1, 2.2, 3.1, 3.2, 4.2, 5.2, and 5.3. Second, where greater detail regarding available 
data sources is required the reader is referred to sections 2.3, 2.4, and 2.5. Third, if more 
detail regarding the range hydrologic models is required the reader is referred to section 3.3 
and the references therein. Finally, specifics about model-data assimilation methods are found 
in section 4.3.  
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2  Data 

2.1  Introduction 
Data used in applied physical models can be divided into three categories: 

1. forcing data, which define external variables that influence system state and fluxes and 
include archival and prognostic data; 

2. parameters, which summarise information about system processes that operate outside 
the time or space scale considered by the model; and 

3. observations of model states and fluxes which provide information on the current state 
of the system or can be used for verification and assessment of forecast skill. 

Table 2.1. Summary of data types and data sources applicable to stream flow forecasting. 
The source category ‘other’ refers to archival and static data sets. 
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Precipitation        
Actual evapotranspiration        
Potential evapotranspiration        
Short-wave radiation        
Long-wave radiation        
Surface air temperature        
Dew point temperature        
Surface pressure        
Surface wind speed        
Leaf Area Index *        
Normalised Difference Vegetation Index        
Vegetation type        
Greenness        
Albedo        
Soil properties        
Elevation        
Catchment area        
Catchment shape        
Connectivity of stream network        
Normalised Difference Temperature Index        
Soil moisture        
Groundwater         
Surface temperature        
Surfacewater         
Runoff / discharge        
Snow coverage / Snow Water Equivalent        

* Other metrics of vegetation such as fraction Absorbed (by vegetation) Photosynthetically 
Active Radiation (fAPAR) and percent vegetation cover may be used depending on the model 
formulation, and these like Leaf Area Index, can be derived from remote sensing. 
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In the hydrologic context, examples of forcing data are historical meteorological records and 
output from numerical weather prediction models, an example of a parameter is soil hydraulic 
conductivity which comprises aggregate information about processes governing flow of water 
through the soil matrix, and examples of observations are measurements of surface states 
and fluxes (such as evapotranspiration and soil moisture) using in situ or remote sensing 
approaches. 

For model-data assimilation purposes, information is required on the errors associated with 
each data type. This is because the quality of the analysis is directly dependent on the error 
covariances among data. Another important issue is the presence of bias in observations. 
Bias violates important assumptions in data assimilation theory and distorts the outcome of 
the analysis. Much effort has been expended in removing biases and characterising 
observation error covariances in meteorological and oceanographic data assimilation in order 
to ensure that the best possible results are achieved. Similar efforts are underway in 
hydrological applications of data assimilation (e.g. Reichle and Koster 2005; Ni-Meister et al. 
2005; Foster et al. 2005; Dong et al. 2005) but much further work is required. 

In this section of the report, we examine the range of data sources available for use in DA 
schemes from the viewpoint of the D1 ‘Streamflow Forecasting’ project; a summary of these 
data are presented in Table 2.1. Firstly, an overview of ground based, remote sensing and 
numerical weather prediction products is given, followed by a detailed summary of available 
forcing data, parameters and observations. These observations are currently accessible and 
could be used with little overhead costs in an operational hydrologic data assimilation system. 

2.2  Overview of data sources 
The available data sources for hydrologic model-data assimilation are divided here into three 
categories and a summary is given of each category before being discussed in detail. These 
categories are: (1) ground based data; (2) remote sensing observations; and (3) products from 
numerical weather prediction models. 

2.2.1  Ground based observations 
Meteorological data are the primary source of forcing data in hydrologic models. These data 
are supplied by the observation, communications and data processing system developed, 
maintained and undergoing continual improvement by the Australian Bureau of Meteorology 
(hereafter the ‘Bureau’) as part of a global network coordinated under international data 
exchange programs administered by the World Meteorological Organisation. The observing 
system includes a network of 50 surface-to-upper air (radiosonde) stations, a surface network 
of more than 800 automatic weather stations (AWS) (Figure 2.1) with 550 operated by the 
Bureau and the remainder by other organisations, a volunteer daily 9am precipitation network 
of 6000 contributors, and a range of other specialised networks and facilities such as ground 
based radars and relevant satellite observations. The Bureau’s network of AWS typically 
collects observations of air temperature, dew point, relative humidity, wind speed and 
direction, pressure and precipitation on 1 minute, 10 minute and hourly intervals. The currently 
available meteorological data are presented in Table 2.3, along with a listing of desired NWP 
outputs. Additional details regarding data types, their temporal and spatial resolutions and 
archiving systems are provided by Kuzmin et al. (2007). 

2.2.2  Remote sensing data 
Remote sensing is the measurement or acquisition of information by a recording device not in 
physical contact with a surface and can utilise the gamma ray, reflective, thermal, microwave 
or radio portions of the electromagnetic spectrum. Measurements from satellite, aircraft or 
from ground-based instruments provide information on the reflectance or radiance properties 
of the Earth’s surface at spatial resolutions from metres to kilometres and time-series 
extending back 30 years. Remote sensing imagery is now routinely recorded by sensors on 
board satellites which vary in altitude from ~700 km for polar orbiters to ~36,000 km for 
geostationary satellites. Errors in observations are due to the Earth’s atmosphere, sub-pixel  
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Rain gauge
Automatic weather station

 

Figure 2.1. Meteorological observational network of Australia. 

heterogeneity, sensor drift and calibration problems, and through interactions between these 
errors. Physical models (also called scene-based or direct interpretation models) are used to 
compensate for errors and to transform reflectance and radiances into ‘Level 2’ data (e.g. 
O’Brien et al. 2000). In the hydrologic context, a summary of important satellite derived 
observational data is given in Table 2.2. The considerable potential for satellite observations 
to provide timely and relevant information regarding key components of the water balance of 
the Earth’s surface is evident by the extensive spatial coverage and rapid update frequencies 
now routinely available; as such it is increasingly used by operational users in a variety of 
disciplines (including hydrology) in near real-time systems across the globe. 

Table 2.2. Hydrologic observations available from satellite sensors 
(adapted from Walker et al. 2003). 

Hydrologic quantity Remote-sensing 
technique 

Frequency of 
acquisition Spatial resolution 

Passive microwave 1–3 d 50 km 
Active microwave 3 d, 30 d 3 km, 10 m Surface soil moisture 
Thermal infrared 1 h, 1 d, 15 d 60 m, 1 km, 4 km 

Surface skin temperature Thermal infrared 1 h, 1 d, 15 d 60 m, 1 km, 4 km  
Snow cover Visible / thermal 

infrared 
1 h, 1 d, 15 d 30–60 m, 0.5–1 km, 

4 km  
Passive microwave 1–3 d 50 km Snow water equivalent 
Active microwave 3 d, 30 d 10 m 

Total water storage changes Gravity changes 30 d 1,000 km 
Evapotranspiration  Thermal infrared 

and/or reflective 
1 h, 1 d, 15 d 60 m, 1 km, 4 km 
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2.2.3  Numerical weather prediction (NWP) products 
The Bureau generates a wide range of forecast products that are based on different numerical 
weather prediction models operating at a range of temporal and spatial resolutions, different 
spatial domains, and with varying forecast lead times. These include: (1) the Limited Area 
Prediction System (LAPS) 375 model out to 72 hours with a spatial resolution 0.375° (~37.5 
km) for all of Australia; (2) MesoLAPS 125 model with a spatial resolution 0.125° (~12.5 km) 
for all of Australia; and (3) MesoLAPS 05 model with a spatial resolution 0.05° (~5 km) for 
parts of Australia only. Domains of the MesoLAPS 05 model are shown in Figure 2.2. 

LAPS 05 SEQld

LAPS 05 NSW

LAPS 05 VicTas

LAPS 05 Adelaide
LAPS 05 Perth

         

Figure 2.2. Domains and names for the MesoLAPS 05 systems (Bureau of Meteorology). 

Table 2.3. Numerical Weather Prediction forecasts required for hydrological prediction (from 
Kuzmin et al. 2007). Currently available and ‘desired’ products for improved forecasting are 
shown. 

 Current Desired 

Meteorological fields 

Le
ad

 ti
m

e,
 h

 

S
pa

tia
l 

re
so

lu
tio

n,
 k

m
 

Fo
re

ca
st

in
g 

st
ep

, h
 

D
et

er
m

in
is

tic
 (D

) 
or

 e
ns

em
bl

e 
(E

) 

S
ou

rc
e 

Le
ad

 ti
m

e,
 h

 

S
pa

tia
l 

re
so

lu
tio

n,
 k

m
 

Fo
re

ca
st

in
g 

st
ep

, h
 

D
et

er
m

in
is

tic
 (D

) 
or

 e
ns

em
bl

e 
(E

) 

 72 37.5 1 D LAPS 375Precipitation 
 72 100 12 E LAPS EPS

144 12.5 1 E 

Actual evapotranspiration  72 37.5 1 D LAPS 375 96 12.5 1 E 
Potential evapotranspiration  72 37.5 1 D LAPS 375 96 12.5 1 E 
Surface pressure  72 37.5 1 D LAPS 375 96 12.5 1 E 
Wind speed  72 37.5 1 D LAPS 375 96 12.5 1 E 
Surface air temperature   72 37.5 1 D LAPS 375 96 12.5 1 E 
Dew point temperature  72 37.5 1 D LAPS 375 96 12.5 1 E 
Long-wave downward radiation  72 37.5 1 D LAPS 375 96 12.5 1 E 
Short-wave downward radiation  72 37.5 1 D LAPS 375 96 12.5 1 E 
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Table 2.3 summarises important meteorological fields from numerical weather models that 
have application in hydrological forecasting. The utilisation of these products will enable the 
extension of catchment models into the forecasting domain on 1 to 7 day timescales. Forecast 
lead time out to 3 days at a spatial and temporal resolution of 37.5 km and 1 hour are 
available from the operational forecast model of the Bureau of Meteorology; the Limited Area 
Prediction System (LAPS). Ongoing advances in numerical modelling at higher spatial 
resolution and statistical downscaling techniques will enable ensemble predictions at 12.5 km 
which will greatly improve prediction of stream flow by hydrologic models.  

The remainder of Section 2 provides detailed summaries of the three categories of data 
sources introduced at the start of this section, that are available for hydrologic forecasting 
applications. 

2.3  Detailed summary of available forcing data 

2.3.1  Precipitation 
Precipitation data are a primary driver and significant source of uncertainty in hydrologic 
models (Milly and Dunne 2002) and so improvements in understanding the spatial and 
temporal distribution of precipitation are important for stream flow forecasting. There is 
considerable effort underway (summarised below) to fully exploit existing technology to 
improve the monitoring and forecasting of precipitation which will facilitate improved 
performance by hydrologic models. 

Precipitation data can be obtained from three sources: (1) remote sensing observations; (2) 
surface observations; and (3) NWP products. The first two of these sources provide diagnostic 
information on past to current precipitation while the third provides prognostic information on 
present to future precipitation. An active area of research is the combining of precipitation data 
products (e.g. gauge and radar data) to maximise the benefits of multiple information sources 
and minimise errors (Seed 2004) 

Remote sensing of precipitation 

Remote sensing provides information to augment the existing gauged precipitation network, 
by filling gaps in data between gauge locations. In return, the gauge network provides point 
observations for calibration and validation of remote sensing algorithms (McVicar and Jupp 
1998). There are several remote sensing techniques which have potential to assist in the 
mapping of precipitation patterns (Lakshmi et al. 2001). The most promising are thermal and 
microwave. 

High frequency thermal remote sensing imagery, such as that available from Geostationary 
Meteorology Satellites (GMS), provides information on cloud top temperatures which are 
correlated with the size of precipitation droplets in clouds and, hence, the likelihood of rain. 
For example, Ebert and Le Marshall (1995) used a rule-based algorithm to estimate 
precipitation rates based on infrared data from a Japanese GMS. Cloud top temperatures 
associated with rain-bearing frontal activity are usually warmer and closer to ground 
temperature than the very cold temperatures measured in convective clouds, which makes 
detecting precipitation more difficult. However, this approach is useful for identifying 
precipitation likelihood (Tait et al. 1998). Furthermore, GMS data can be used as a covariate 
in spatial interpolation to distribute rain gauge observations and to discriminate convective 
precipitation events missed by the gauge network. 

There are several integration techniques which may allow precipitation to be better predicted 
by combining thermal GMS data with other data sets. These include: 

1. Use of pattern recognition or visible data to determine cloud type (Ebert 1987); 
2. Relating shortwave infrared (SWIR) based inferences of cloud top droplet size to 

precipitation rate (Rosenfield and Gutman 1994); and 
3. Coupling outputs from Numerical Weather Prediction (NWP) to information about 

current meteorological conditions (Grassotti and Garand 1994). Herman et al. (1997) 
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have developed an operational system using this approach for Africa to provide 10-day 
precipitation estimates for the entire continent. 

Microwave observations provide information on the presence of precipitation-sized water and 
ice particles present in clouds (Petty 1995) which are related to surface precipitation intensity; 
although, there is some uncertainty associated with the interaction between droplet size, 
shape, microwave signal and precipitation intensity. Passive microwave remote sensing of 
rainfall over land has been ongoing since 1987 with the launch of the Special Sensor 
Microwave Imager (SSM/I) on board the U.S. Defence Meteorological Satellite Program 
(DMSP). There are numerous examples of the use of the SSM/I to estimate rainfall (e.g. 
Grody 1991; Spencer et al. 1989). The skill of SSM/I data to estimate instantaneous rainfall 
over land for a 1.25 degree resolution cell is as high as 0.82 (Petty 1995). 

In November 1997, the Tropical Rainfall Mapping Mission (TRMM) was launched, to better 
monitor precipitation events in tropical and subtropical latitudes. The frequent (3 hour) repeat 
cycle provides multi-pass daily coverage of precipitation rate for all of Australia at 0.25° (3B42 
product), and a higher resolution swath product (2B31) of precipitation rate at 5 km resolution 
and 247 km width. A range of blended precipitation products are also available which utilise 
gauge observations and GMS data (see 
http://trmm.gsfc.nasa.gov/publications_dir/regional_asia.html). 

Ground based radar precipitation observation 

Another source of precipitation data is the Bureau ground-based radar network (Figure 2.3). 
The Bureau of Meteorology ‘Rainfields’ server generates quantitative precipitation estimates 
for South-East Australia within 256 km square regions centred on radars at Adelaide, 
Brisbane, Canberra, Melbourne, Sydney and Yarrawonga. The primary product is 10-minute 
rainfall accumulation at 1 km spatial resolution, but hourly and daily accumulation products are 
also available (image products available at http://mirror.bom.gov.au/weather/radar/). These 
data can potentially improve estimation of infiltration excess runoff in models (Giannoni et al. 
2003). However, residual problems exist with accurately interpreting precipitation rate 
(particularly in heavy rain) due to differences in droplet shape, the obscuration of storms by 
near station rainfall or by topographic features, and the dissipation of signal with distance from 
station (Bargo 2002). 

Gauge network of precipitation observations 

Gridded daily rainfall products are available for all Australia at 0.25° (~25 km) resolution based 
on point observations from the surface observation network with an initial pass based on the 
AWS network and a subsequent pass with observer data. It is important to note that these 
products record precipitation data in the 24 hours preceding 9:00 AM local time rather than the 
calendar date (Ebert and Weymouth 1999, Lee 2006; Weymouth and Le Marshall 1999, 
Weymouth and Le Marshall 2001). The Bureau and Queensland Department of Natural 
Resources and Water also provide a gridded daily precipitation product (along with daily 
maximum and minimum air temperature, and daily shortwave incoming radiation) at 0.05° 
(~5 km) from the SILO Web site (http://www.bom.gov.au/silo/) and a lag time of 1 day (Jeffery 
et al. 2001) and also from the Bureau’s ‘Water and the Land’ Web page with the same lag 
time (http://www.bom.gov.au/watl/). 

Numerical weather prediction products 

In addition to ground-based and remotely sensed precipitation observations, NWP system 
products, such as deterministic and probabilistic forecasts of precipitation can be used to force 
hydrologic models. Most deterministic forecasts are obtained from the Limited Area Prediction 
System (LAPS) numerical model and its variations. Currently these forecasts have spatial 
resolution 0.375° (~37.5 km) and lead time up to 72 hours. For the whole continent, 
precipitation forecasts with resolution 0.125° (~12.5 km) are available, but their lead time is 
only 48 hours. Other NWP products are available from the Global AnalysiS and Prediction 
system (GASP), which provides long-range, low resolution forecasts over the entire globe  

http://trmm.gsfc.nasa.gov/publications_dir/regional_asia.html�
http://mirror.bom.gov.au/weather/radar/�
http://www.bom.gov.au/silo/�
http://www.bom.gov.au/watl/�
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Figure 2.3 The distribution of ground based radars operated by the Bureau of Meteorology 
weather radar network. The high resolution Doppler radars yield the best rainfall estimates. 
Radars that are shared with wind finding are less suitable for rainfall estimation. The region 
around each radar is the simulated coverage at 3000 m generated by the program Radio 
Mobile (http://www.cplus.org/rmw/rme.html) from elevation data; it does not take into 
account local obstructions such as buildings and trees. (After Bureau of Meteorology 
2008a,b). 

(spatial resolution 1° and lead time up to 10 days). However, it should be noted that significant 
errors exist in the 24 hour forecast, particularly in the spatial distribution of precipitation, and 
that the skill in precipitation forecasting from 3 to 5 days is low. 

For high resolution short-term forecasts, the Short-Term Ensemble Prediction System (STEPS 
is capable of generating ensemble forecasts of precipitation forward to a limit of 6 hours 
(Bowler et al. 2003) by combining the information that exists in MesoLAPS NWP forecasts 
with current weather radar observations. This model has been developed jointly by the 
Australian Bureau and the UK Met Office to generate forecasts based on radar rainfall 
observations and NWP forecasts from MesoLAPS. STEPS currently generates deterministic 
forecasts for precipitation accumulation over the next 30, 60, and 90 minutes and estimates 
the probability that the precipitation accumulation in the next 60 minutes will exceed 1, 2, 5, 
10, 20, 50 mm. 

2.3.2  Actual evapotranspiration 
Evapotranspiration (ET) is a collective term for the transfer of water vapour from the soil and 
vegetation to the atmosphere and is affected by the surface energy balance, soil moisture 
content and biophysical properties of the surface. Various approaches to estimating ET exist 
and these differ on the spatial scale over which ET is calculated and the primary controlling 
mechanism for vegetation transpiration. Non-linearity in the processes driving ET and 

http://www.cplus.org/rmw/rme.html�
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feedback between the land surface and atmosphere means that it is not straightforward to 
downscale large scale estimates of ET to local scale catchment studies. 

Numerical weather models provide latent heat fluxes and an important development for 
stream flow forecasting is the planned availability via Bureau of hourly ensemble forecasts of 
actual ET at 12.5 km resolution in 2008 (Kuzmin et al. 2007). The ensemble forecasts will 
provide time-relevant forcing data with uncertainties. This type of forecast will become an 
important input to operational stream flow prediction within the RiverOPS system and for water 
demand forecasting by irrigators. However, research effort is required to develop adequate 
downscaling approaches for individual catchments and sub-catchments. 

There is also a range of actual ET remote sensing products being developed by several 
research groups in CSIRO and elsewhere based on a range of different methods. These 
include: (1) resistance energy balance method; (2) crop coefficient method; (3) inversion of the 
surface energy balance; and (4) parameterisation of Penman-Monteith equation. All of these 
methods have been applied using regional (1 km) resolution high frequency satellite remote 
sensing data such as the MODerate resolution Imaging Spectroradiometer (MODIS) and 
Advanced Very High Resolution Radiometer (AVHRR). 

The first method, resistance energy balance, requires that meteorological data are available at 
the time of satellite overpass (e.g. McVicar and Jupp 1999). Evapotranspiration estimates are 
made at the locations of meteorological observing stations and remotely sensed data are used 
to interpolate between stations (McVicar and Jupp 2002). 

The second approach is based on the premise of mapping actual ET as a function of potential 
ET modified by a ‘crop coefficient’. Given that potential ET is readily available from sources 
such as SILO on a daily time-step, this method is straightforward to implement. Recently, Van 
Dijk et al. (2006) have used observations in the SWIR bands from MODIS for estimating 
vegetation moisture content to calibrate the ‘crop coefficient’ based on the relationship 
between absorptance in shortwave infra red wavelengths and canopy moisture content. 

The third method involves inverting a surface energy balance model to solve for latent heat 
fluxes given satellite observations of land surface temperature. Recently, Renzullo et al. 
(2007) coupled a surface-energy balance (SEB) and microwave radiative transfer model to 
retrieve latent heat flux from MODIS thermal data and AMSR-E (Advanced Microwave 
Scanning Radiometer - Earth observing system) microwave observations. The application of 
these methods to multiple sensors with observations throughout the day yields daily actual ET 
estimates. 

The fourth approach involves parameterising the surface conductance term of the Penman-
Monteith equation by establishing relationships with remotely-sensed LAI (Leaf Area Index) at 
flux tower sites (Cleugh et al. 2007). Remotely sensed estimates of LAI are then used to 
spatially infill between flux towers the calibrated Penman-Monteith model given readily 
available meteorological data. 

2.3.3  Short-wave radiation fluxes 
Solar radiation is a major determinant of the surface energy balance and hence 
evapotranspiration. Reflective measurements acquired by GMS (Japanese MTSAT-IR) are 
used by the Bureau to estimate incoming short-wave and net radiation over the Australian 
region on a daily basis. These estimates are within 4.3% of ground based observations under 
clear sky conditions. Under heavy cloud conditions the error between GMS based estimates 
compared to ground based pyranometer measurements is ~15% (Le Marshall 1994); while a 
relatively higher error it should be noted that the amount of incoming shortwave radiation is 
lower during these times. 

In addition to satellite observations, the short-wave downward radiation (SWDR) products 
available from the Bureau are: 

1. deterministic forecasts obtained from the LAPS 375 model at a spatial resolution of 
~37.5 km and a lead time 72 h; 
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2. ensemble forecasts obtained from the GASP EPS model at a spatial resolution of 
~50 km and lead time of 10 days; and 

3. ensemble forecasts obtained from MesoLAPS 05 model in experimental mode at a 
spatial resolution ~5 km and lead time of 36 h (K. Puri, personal communication). 

Hourly ensemble forecasts of SWDR with the same lead time and a spatial resolution of 
12.5 km are expected to be available in 2008 and will be important forcing data for use in 
stream flow forecasting models (Kuzmin et al. 2007). 

2.3.4  Long-wave radiation fluxes 
Multiple empirical functions exist for estimating the downward flux of long-wave radiation 
(LWDR) to an accuracy of ~20% (Garratt 1992) and these are routinely used in surface energy 
balance modeling. Long-wave downward fluxes are influenced by cloud cover, and 
temperature and humidity profiles of the lower atmosphere, and also by CO2 and O3 
concentrations. Prata (1996) compared 5 historical methods with a new method he proposed 
and showed using observational measurements of down welling long-wave radiation that his 
method had the lowest bias on cloud-free days. Upward long-wave fluxes are calculated 
according to grey body emissions using Planck’s function, surface emissivities and estimates 
of surface temperature from either energy balance considerations or satellite surface 
temperatures (Pinker et al. 2003). 

The Bureau numerical weather models also provide hourly forecasts of LWDR obtained from 
the LAPS 375 model to 72 hours lead time and a spatial resolution of 37.5 km. For several 
smaller domains (shown in Figure 2.2), LWDR data can be obtained from the MesoLAPS 
systems at a spatial resolution of 125 km and 5 km. A planned upgrade of the LAPS 
Ensemble Prediction System (LAPS EPS) will produce hourly ensemble forecasts of LWDR 
with the same lead time at a spatial resolution of 12.5 km and is scheduled to be available in 
2008. 

2.3.5  Air temperature 
Near surface air temperatures are routinely measured at 2 m height and are available from a 
subset of the Bureau surface observational network (Figure 2.1) with latency of less than 1 
hour. Daily maximum and minimum air temperatures are spatially interpolated to 0.05° (~ 5 
km) using a partial thin plate spline (Jeffrey et al. 2001) and are available from the SILO Web 
site (http://www.bom.gov.au/silo/). The Bureau has recently developed a similar gridded 
product, additionally providing daily error surfaces (Jones et al. 2006). In addition, surface air 
temperatures are available as a range of NWP products by the Bureau. These include output 
from the LAPS model (including MesoLAPS 125 and MesoLAPS 05; Figure 2.3) and from the 
Global AnalysiS and Prediction system (GASP) with a 10 day lead time and a 1.5° (~150 km) 
spatial resolution. In stream flow forecasting, these prognostic air temperatures are important 
for estimating actual evapotranspiration in catchment hydrologic models. 

2.3.6  Dew point temperature 
Dew point temperature provides a measure of atmospheric moisture content (humidity) in the 
mixed surface layer derived from dry and wet-bulb temperatures with a correction for site 
elevation as part of the Bureau meteorological observation network (Figure 2.1). The Bureau 
NWP system also provides a wide range of dew point data products (Kuzmin et. al. 2007). 
These include: 

1. LAPS 375 deterministic hourly forecasts (3 days, 37.5 km grid over Australia). As 
planned, the spatial resolution of this type of forecast will be increased to 12.5 km. 

2. MesoLAPS 125 hourly forecasts (for several smaller domains shown on Figure 2.3). 
3. MesoLAPS 05 hourly forecasts (for corresponding smaller domains also shown on 

Figure 2.3). 

http://www.bom.gov.au/silo/�
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2.3.7  Wind speed 
Wind speed is an important forcing variable of surface energy balance models determining 
aerodynamic and boundary layer resistances of water vapour and heat. Wind speed and 
direction at 2 m height is routinely observed by the Bureau observation network and is 
available from AWS data feeds. Prognostic wind speed data are available as numerical 
weather model output at a lead time of 72 hours and resolution of 125km. Wind run is also a 
widely recorded variable, with day-time average wind speed being readily calculated from it. 
(McVicar and Jupp 1999; Smith et al. 1991). Two studies conducted at Bureau stations 
recently illustrated that that a long-term decline in wind speed is the primary factor causing 
reduction in pan evaporation rates across Australia (Rayner 2007; Roderick et al. 2007). 
Rayner (2007) conclusively showed that two grid-based proxies of wind speed did not capture 
the observed decrease in wind speed. The two proxies were: (1) NCEP-NCAR reanalysis 
products of wind analyses that have a coarse 2.5° (~250 km) resolution; and (2) a daily wind-
run model forced by pressure gradients at a 0.05° (~5 km) resolution. McVicar et al. (2007) 
have interpolated daily day-time average wind speed surface at a ~1 km resolution from 1975 
onwards; with the wind speed trends captured in these surfaces on a monthly, seasonal, and 
annual basis. Jones et al. (2006) are developing short range meso-scale forecasts modified 
with real-time wind observations to provide hourly and daily estimates of wind-speed at a 
0.04° (~4 km) resolution from late 2004 onwards. 

2.4  Model physical parameters 

2.4.1  Vegetation type 
Data on vegetation and land use are available from the Australian Natural Resources Data 
Library (http://adl.brs.gov.au). The AUSLIG digital vegetation Atlas of Australia provides vector 
coverage of vegetation classes for regional-continental studies at a scale of 1:2.5 million. The 
‘Land Use of Australia’ digital data set (1992–2002) provides rasterised land use information 
based on the Bureau of Statistics Agricultural Census information interpreted using AVHRR 
NDVI imagery. An additional source of land surface information is the Australian woody-
vegetation data set produced by the Australian Greenhouse Office. These data map all 
vegetation across the continent that qualifies as ‘forest’ cover (defined as > 20% tree crown 
cover, > 2m height at maturity, and a minimum mapping area of 0.2 ha) and is derived from 
Landsat imagery on 3–5 year update cycle from 1977 to present. There are also a myriad of 
local catchment and regional studies for particular applications but these suffer from 
inconsistencies between vegetation categories among classification schemes. Many 
classification products are also available for limited areas from high resolution imagery such 
as Landsat (Van Niel and McVicar 2004a,b), ASTER, SPOT or from synthetic aperture radar 
(e.g. JERS, ALOS). 

2.4.2  Normalised Difference Vegetation Index (NDVI) and Leaf 
Area Index (LAI) 

The normalised difference vegetation index (NDVI) is a direct measure of sunlit leaf area of 
the vegetation canopy and typically ranges from 0.05 for bare soil to ~0.8 for dense green 
vegetation. It is a widely used measure of vegetation, specifically the sunlit leaf area. In 
hydrological models, NDVI provides information on canopy cover for the estimation of actual 
evapotranspiration and surface energy budget calculations. It is also widely used to estimate 
leaf area index (LAI), fractional cover, absorbed photosynthetically active radiation, and 
vegetation ‘greenness’ (i.e., the proportion of vegetation that is actively transpiring). Canopy 
LAI is an important term which determines canopy conductance in evapotranspiration models 
and hence the partitioning of sensible and latent heat fluxes at the land surface. 

Leaf area index can be derived from empirical relationships between observed optical 
reflectance data (expressed as a ‘simple ratio’ of NIR/Red reflectances or as NDVI) and 
measured LAI for different crops and pastures or woody vegetation (e.g. McVicar et al. 1996a; 
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McVicar et al. 1996c). It has been shown (Lu et al. 2003) that the simple ratio is linearly 
related to LAI, whereas NDVI is a linear function of fractional vegetation cover (proportion of 
land area covered by green vegetation). Additionally, Donohue et al. (2007a, b) have 
developed a method to consistently derive fraction of photosynthetically active radiation 
(fPAR) that is absorbed by green vegetation from two AVHRR data sources for all Australia 
from July 1981 onward. Alternatively, LAI can be retrieved by applying inverse methods to 
optical radiative transfer models of canopies with specified geometries (Woodcock et al. 1982; 
Woodcock 1986; Jupp et al. 1989) or by employing empirical functions relating LAI to NDVI or 
fractional cover (e.g. Choudhury 1989). Recent advances in estimation of LAI by remote 
sensing include utilisation of blue wavebands to remove residual background (soil) and 
aerosol artefacts (e.g. the Soil Adjusted Vegetation Index, SAVI (Heute 1988)), adjusting for 
sun-target-sensor geometry artefacts via calibration of the bidirectional reflectance distribution 
function and back-correction of canopy reflectances, and improved characterisation of canopy 
physical properties through the optimisation of parameters by integration of models and 
observations. 

2.4.3  Albedo 
Albedo is an important parameter in determining the surface energy balance and hence 
evapotranspiration, but obtaining accurate estimates of albedo is difficult. A number of 
practical solutions have been devised including Saunders (1990) who showed that a 
broadband surface albedo, suitable for use in surface energy balance models, could be 
generated from the reflective channels of the AVHRR sensor. Apart from ad hoc albedo 
products derived from research projects, there are a range of remote sensing derived albedo 
products now available on-line for ingestion into hydrologic models with regular weekly to 
monthly updates. Available products include: 

1. The MODIS Level 3, 8 day Albedo Product (MOD43) which provides data products at 
500 m, 1km, and 5km resolution, available from the NASA Goddard Space Flight 
Center. 

2. Geostationary meteorological satellites (Pinty et al. 2000). 

2.4.4  Soil properties 
Currently, very limited information is available on spatially distributed soil hydraulic properties 
over large regions of Australia. This is despite the fact that the partitioning of rainfall between 
infiltration and runoff is highly dependent on soil hydraulic conductivity which can vary by four 
orders of magnitude between adjacent soil classes (Saxton et al. 1986). The Atlas of 
Australian Soils (1:2.5 million) is the primary source of soils information providing continental 
coverage of soil classes. In addition, a technical report by McKenzie and Hook (1992) enables 
interpretation of these classes into soil physical properties for hydrological applications but, as 
noted by the authors, with critical uncertainties. These interpreted classes were updated for 
the 2000 National Land and Water Resources Audit. 

Existing regional soils information for Australia and local surveys held by state agencies 
(including radiometric aerial surveys) are currently being assembled in the Australian Soil 
Resource Information System which will become an increasingly important source of soil 
properties data for hydrologic modeling in the future (http://www.asris.csiro.au). 

Another potential source of soil hydrologic information can be retrieved from ‘off-line’ inversion 
studies of well instrumented catchments. An example is the study of Jhorar et al. (2002) who 
used observations of actual evapotranspiration from a cotton crop on three soil types to 
constrain Van Genuchten soil hydraulic functions. They retrieved optimal estimates of soil 
hydraulic parameters for each soil type from the model inversion. 

http://www.asris.csiro.au/�
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2.5  Hydrometric observations 

2.5.1  Soil moisture 
Remote sensing of soil moisture 

Advances in remote sensing capability in the next 5 years will see rapid improvement in the 
monitoring of surface and profile soil moisture contents and of surfacewater and flood events. 
Table 2.4 summarises the range of remote sensing techniques available for measuring and 
monitoring soil surface and profile moisture content. The visible and shortwave infrared based 
methods provide information on the presence of surfacewater and on vegetation moisture 
content, yet they are not currently used to force or constrain hydrologic models. 

Microwave based techniques provide the most promising approach to routinely observing 
shallow soil moisture directly, particularly for observations made at frequencies <10 GHz as 
they are relatively unaffected by cloud cover and vegetation, sense a deeper layer of soil, and 
have a stronger physical basis for interpretation. The basis of microwave estimation of soil 
moisture is the relationship between the dielectric constant of the soil (a measure of the soil’s  

Table 2.4. Summary of remote sensing techniques for measurement of surface and profile 
soil moisture content (partially adapted from Walker 1999). The most commonly used remote 
sensing instruments for optical and thermal data are the Multi-Spectral Scanner (MSS), 
Landsat Thematic Mapper (TM), Le Systeme Pour l’Observation de la Terre (SPOT), the 
Advanced Very High Resolution Radiometer (AVHRR), the Moderate Resolution Imaging 
Spectroradiometer (MODIS), and the Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER). Available microwave radiometers include the Scanning 
Microwave Multichannel Radiometer (SMMR), the Tropical Rainfall Measurement Mission 
Microwave Imager (TRMM-TMI), the Advanced Microwave Scanning Radiometer (AMSR), and 
microwave scatterometers on the European Resources Satellite (ERS) or Japanese Earth 
Resources (JERS) satellites. Upcoming missions aimed at direct measurement of surface 
soil moisture using microwave sensors include the European Soil Moisture and Ocean 
Salinity (SMOS) mission and the US Soil Moisture Active-Passive (SMAP) microwave 
mission. 

RS 
techniques 

Property 
observed Advantages Limitations Noise sources Sensors

Visible Soil albedo Simple method, 
extensive coverage 

Many noise 
sources. Needs 
spectral reference 
dataset. 

SZA1, cloud, soil 
colour, vegetation 

AVHRR, 
MODIS, 
MSS, 
TM, 
SPOT 

Shortwave 
infrared 

Surface and 
vegetation 
moisture 

Very sensitive to 
surface moisture 

Vegetation signal 
strong. Needs 
interpretation. 

Cloud, vegetation 
cover 

MODIS, 
ASTER

Thermal 
infrared 

Surface 
temperature 

High resolution, large 
swath, coverage 
frequency, physics 
well understood 

Cloud cover limits 
frequency of 
coverage. Needs 
interpretation. 

Meteorological 
conditions 

TM, 
AVHRR, 
MODIS 

Active 
microwave 

Backscatter 
coefficient, 
dielectric 
properties 

Low atmospheric 
noise, high resolution 

Limited swath 
width, calibration 
of SAR 

Roughness, surface 
slope, vegetation 
cover 

ERS, 
JERS  

Passive 
microwave 

Brightness 
and soil 
temperature, 
dielectric 
properties 

Low atmospheric 
noise, moderate to 
good vegetation 
penetration 

Low resolution, 
radio interference 

Roughness, 
vegetation cover, 
temperature. mobile 
phone, TV and radio 

SMMR, 
TRMM 
AMSR, 
SMOS2, 
SMAP2 

1 SZA: solar and view zenith angle effects encapsulated in the bidirectional reflection distribution function 
which describes variation in reflectance as a function of view and solar angles. 
2 SMOS and SMAP sensors operate at L-Band Frequencies (1.4 GHz), which minimize radio frequency 
interference 
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electrical properties) and soil water content. The absolute value of the dielectric constant 
varies from 4 for pure water to 80 for dry soil and the emission of microwave radiation is 
directly dependent on the dielectric constant. Hence, microwave emissions are a sensitive 
measure of soil moisture content at the source depth of the radiation (10–25% of the 
wavelength, depending on the soil moisture). The future planned mission of the European 
Space Agency called the Soil Moisture Ocean Salinity (SMOS) Mission will carry a purpose 
built radiometer to improve the availability and penetration depth of soil moisture. 

Currently, good coverage of the Australian continent is achieved approximately daily with the 
AMSR-E sensor at a nominal resolution of 25 km. For the 6.9 GHz (4.3 cm) channel, the 
derived soil moisture fields represent approximately the top ~1–2 cm of soil. Figure 2.4 
demonstrates the AMSR-E level 1B product for the Murrumbidgee catchment alongside 
interpolated rain gauge data for the same period. Currently, there are two soil moisture 
products routinely produced from AMSR-E data: one at the National Aeronautical and Space 
Administration (NASA) (following Njoku and Chan 2006), and one at the Free University of 
Amsterdam (Vrije Universiteit Amsterdam – VUA), following the algorithm described by Owe et 
al. (2001). While verifying remotely sensed soil moisture is difficult, comparisons between 
AMSR-E derived soil moisture and estimates from ground-stations are encouraging (McCabe 
2005; De Jeu 2003; Wagner 2007; Draper et al. 2007). 

Rain gauge data

200 km8/9/2005

10/9/2005

11/9/2005

12/9/2005

9/9/2005

00 50 mm 0.5 m3/m3

AMSR-E soil moisture

 

Figure 2.4. A sequence of spatial plots derived from Bureau of Meteorology rain gauge 
analysis and AMSR-E surface soil moisture (Owe et al. 2001) for the region of Australia 
containing the Murrumbidgee River catchment. The box bounds latitudes and longitudes of 
36.6°S, 143.0°E to 35.0°S, 149.6°E. White areas in each plot are missing data values due to 
failure of rainfall or soil moisture analyses to yield meaningful estimates or due to limited 
coverage of the image swath. Failure to acquire soil moisture retrievals from AMSR-E 
observations may be due to presence of surfacewater, active rainfall at time of overpass, or 
exceedence of the threshold for vegetation cover. 
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The Vienna University of Technology (Technische Universität Wien – TUW) produces a ‘global 
surface degree of saturation’ index (SSDS) from European Remote Sensing (ERS) 
scatterometer data at 50 km resolution, using an empirical change detection approach 
(Wagner 1999). The SSDS represents the layer between 0.5 and 2 cm from the surface and 
can be converted to volumetric soil moisture if the wilting point and saturation moisture content 
of the soil are known. The product compares well to other estimates of soil moisture (Bartalis 
2004), however, coverage over Australia has been extremely poor due to loss of data storage 
capacity on ERS. Coverage has recently improved since TUW updates their SSDS product 
from the ASCAT scatterometer launched in October 2006. 

Other approaches to develop soil moisture products from remotely sensed thermal data have 
been explored. Soil moisture has been estimated by combining METEOSTAT geostationary 
imagery and precipitation data, and while this product compares well to other estimates of soil 
moisture (Wagner 2007), it is not available over Australia. Another approach developed by 
McVicar and Jupp (1999, 2002), combined spatially dense thermal remotely sensed data with 
temporally dense surface meteorological observations (maximum and minimum temperature, 
and precipitation) to produce the Normalised Difference Temperature Index (NDTI), a metric of 
moisture availability (McVicar et al. 2007). It is also possible to retrieve information on profile 
soil moisture, at least to the depth of plant roots, by inverting a surface energy balance model 
constrained by observations of land surface temperature. This approach requires knowing the 
vegetation stomatal response to soil moisture availability (Renzullo et al. 2007). In contrast to 
the microwave wavelengths, the thermal signal needs to be corrected for atmospheric effects 
and cannot penetrate cloud. 

Ground based observations of soil moisture 

Spatially distributed real-time observations of profile soil moisture content are an important 
observational constraint and/or source of verification data in a hydrologic forecasting scheme. 
These data coupled with satellite observations of surface soil moisture and real-time rainfall 
observations are critical elements of an improved ability to forecast stream flow. A current 
example of the type of in situ observation network required is the Murrumbidgee catchment 
monitoring network (see www.oznet.unimelb.edu.au). This prototype network has been 
established to specifically illustrate the benefits that continuous in situ soil moisture monitoring 
affords hydrology and coupled land surface – atmosphere climate models. 

In 2001, a network of 18 soil moisture monitoring sites were installed across the 80,000 km2 
Murrumbidgee Catchment, with the aim of evaluating the land surface component of the 
Bureau’s operational weather forecasting model. Since then, the Murrumbidgee Monitoring 
Network has evolved to include 46 sites for continuous measurement of root-zone soil 
moisture, soil temperature and precipitation, with a second instalment of sites in 2003, and a 
significant upgrade in 2006 to include near-surface soil moisture and temperature 
measurements together with telemetry. Data is currently being archived at 
http://www.oznet.unimelb.edu.au. 

The Murrumbidgee Monitoring Network is critical to a range of eWater related research where 
it will underpin development and testing of the RiverOPS and WaterCAST Products. First, it 
will enable proper evaluation of emerging soil moisture remote sensing products from passive 
microwave. These products will be used to enhance RiverOPS partitioning of rainfall into 
runoff, the prediction of irrigation demand, and in Numerical Weather Prediction improvements 
of synoptic forecasts out to 7 days. Second, it will allow evaluation of the RiverOPS product 
within the catchment, and evaluation of the Numerical Weather Prediction land surface model 
component. Third, it will support improved understanding of catchment water balance and run-
off, which are key issues for water resources quantity and quality prediction by WaterCAST. 

2.5.2  Groundwater 
The launch of the NASAs Gravity Recovery And Climate Experiment (GRACE) satellites in 
2002 has provided the potential to infer changes in terrestrial water storage (soil moisture, 
groundwater, snow, ice, lake, river and vegetation) (Rodell and Famiglietti 1999, 2001). The 
Earth’s gravity field varies both in time and space, with most spatial variations resulting from 
variations in the density of rocks from place to place, while the dominant causes of temporal 

http://www.oznet.unimelb.edu.au/�
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variations are changes in mass distribution caused by post-glacial rebound, solid earth tide, 
crustal movements caused by gravity fields of the sun and the moon, and erosion. Besides 
geologic density variations, the Earths density is impacted by changes in terrestrial water 
storage, including soil moisture, groundwater, snow, river, reservoir and vegetation, and 
changes in the Earths atmosphere. It is the time-varying component of the gravity field that 
yields information on terrestrial water storage changes. GRACE provides a sequence of maps 
showing changes in the gravity field over time, which can be inverted to estimate the absolute 
magnitude of changes in water storage on Earth at monthly timescales with a spatial 
resolution in the order of approximately 1000 km, with the potential to constrain hydrologic 
model predictions at sub-basin scale (Ellett et al. 2006). 

2.5.3  Surface temperature 
Land surface temperature provides an important observational constraint in daytime surface 
energy balance (SEB) models and hence on the partitioning of daytime latent and sensible 
heat fluxes, on estimation of daily evapotranspiration of vegetation (Norman et al. 2003; 
Anderson et al. 2003) and hence regional water budgets. This partitioning is directly related to 
soil profile moisture content through the canopy and soil conductance terms of the SEB model 
and so from knowledge of land surface temperature, soil profile moisture content can be 
deduced (Pipunic et al. 2007). Methods which infer soil moisture from thermal data include 
data assimilation, inverting surface energy balance models (Renzullo et al. 2007, McVicar and 
Jupp 2002), calculating day-night surface to air temperature variation (which is related to 
profile total water storage; Bravo et al. 2002), and determining the morning rate of change of 
land surface temperature (which is a function of energy partitioning itself dependent on soil 
moisture availability; Norman et al. 2003). 

A common and widely used algorithm for the estimation of land surface temperature based on 
satellite radiance observations is the ‘split-window’ algorithm (Sobrino et al. 1991; Prata 1996; 
Wan and Dozier 1996) which is based on the brightness temperatures (i.e. the surface 
temperature of an equivalent black body emitting at the surface) in two thermal channels. The 
simplest form of this algorithm is 

 1 1 2( )ST T A T T B= + − +  

where TS is the surface temperature and T1 and T2 are the brightness temperatures of two 
infrared radiometer channels. Conversion of brightness temperature to land surface 
temperature requires consideration of component emissivities of the land surface. The basis 
for this method is the differential absorption by the atmosphere in these adjacent infrared 
wavebands which allows for correction of atmospheric artefacts at view angles up to 42°. The 
coefficient A corrects for water vapour absorption in both channels and coefficient B accounts 
primarily for the near constant surface reflectance in both channels (Sobrino et al. 1991). Most 
algorithms function within an error bound of ±1.6 K at atmospheric water vapour 
concentrations <4 g cm–2 (surface area), but errors increase to ±3 K at higher water contents 
because virtually all algorithms have not been calibrated above 4 g cm-2 (Ouaidrari et al. 
2002).  

Significant errors in land surface temperature can still be introduced through partial cloud 
contamination of pixels, large air to ground temperature differential and differences in ground 
surface emissivity between the two channels. Most methods of ground surface emissivity rely 
on using NDVI to determine fraction vegetation cover and then calculate total emissivity as a 
linear combination of soil and vegetation emissivities (e.g. McVicar and Jupp 2002). 

2.5.4  Snow 
The appropriate sensors for snow monitoring include (1) visible sensors and (2) passive 
microwave sensors. Visible sensors are only able to provide information on presence or 
absence of snow under cloud free sunlit conditions. However, they have moderate to high 
resolution (250 m in the visible) and daily repeat frequency. 
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Passive microwave sensors provide an all weather and regional capability for snow pack 
monitoring using the 19 and 37 GHz channels, and are also able to provide information on the 
snow water equivalent (SWE) at an update rate of one to three days, but they are limited by 
their low spatial resolution of 25 km to 50 km. Suitable sensors include the Advanced Micro-
wave Scanning Radiometer for the Earth observing system (AMSR-E), the Special Sensor 
Microwave Imager (SSM/I), and the historic Scanning Multichannel Microwave Radiometer 
(SMMR). The performance of microwave sensors in estimating SWE is affected by forest 
cover, signal saturation (above SWE of 100 mm), and pixel contamination by liquid water (e.g. 
Robinson et al. 1993; Tait and Armstrong 1996; Foster et al. 2005; Dong et al. 2005). 
Although this limits the use of remotely sensed SWE estimates to inland locations for times of 
moderate snow pack amount, it is these times and locations that the snow pack is typically the 
most dynamic and model estimates on their own are the poorest (e.g. Slater et al. 2001). 

2.5.5  Stream flow observations 
A major source of observational data on aggregate catchment hydrologic status is the 
approximately 5,000 stream-flow stations that are operated and maintained by the State and 
Territory-based water agencies. The water resources assessment undertaken by the National 
Land and Water Resources Audit (NLWRA) and published as Australian Water Resources 
Assessment 2000 (AWRA), used a subset of these networks to define the extent, quantity, 
use and quality of Australia’s water resources. The processed data are available through the 
Web-based Australian Natural Resource Atlas (http://www.anra.gov.au/). A data management 
infrastructure (Water Resources Observation Network) is proposed to link the Atlas with State 
and Territory agencies’ data archives thus enabling the NLWRA data and products to be more 
readily updated in time. The quality of the surfacewater and groundwater data available from 
the AWRA stations varies according to the primary use of each station. While the standards 
adopted by each of the agencies are considered to be good, the suitability of the data for use 
as observations in a forecasting scheme has not yet been assessed. A catalogue of the 
Australian stream gauges is available at the Bureau Web site 
(http://www.bom.gov.au/hydro/wrsc). 

2.6  Verification data sets 
Verification data sets to test model skill at forecasting state variables and fluxes such as 
evapotranspiration, soil moisture, snow depth, surface temperature and stream flow are 
needed. At present few resources are dedicated to establishing the observing systems 
needed for developing verification data sets. In some cases, dedicated observations will be 
needed such as evapotranspiration (and other scalar fluxes) from micrometeorological 
measurements at eddy flux tower sites and profile soil moisture contents. In other cases, ‘jack-
knifing’ methods can be used to diagnose sources of error in forcing, model and initial 
conditions by sequentially withholding individual data points to assess and formulate bias 
correction. These methods can be applied to archived time series of observations such as 
stream flow records, satellite observations of surface temperature, and snow depth records. 

2.7  Section summary 
In this section of the report, we have noted that data can be divided into three categories for 
use in a model-data assimilation scheme: forcing, parameters and observations. Errors and 
biases associated with each of these data types have a strong influence over the analysis 
from a model-data assimilation scheme and so special care is needed to remove bias and 
quantify errors (see Section 2.1). The majority of this section of the report was devoted to a 
comprehensive overview and summary of all the important sources of data currently available 
to underpin a hydrologic forecasting scheme. These data sets include a range of products 
from surface observations, satellite datasets and output products from numerical weather 
prediction. The role of observations in a model-data assimilation scheme is revisited in section 
4 of the report (‘Model-Data Assimilation’). The next section discusses the hydrologic models 
that are suited for use in such a scheme. 

http://www.anra.gov.au/�
http://www.bom.gov.au/hydro/wrsc�
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3  Models 

3.1  Introduction 
The general requirements of applied mathematical models are: (1) they must realistically 
reproduce the dynamics of the system they are simulating; (2) be parsimonious; and (3) 
consider scale effects arising from interactions between model non-linearity and 
heterogeneity. In hydrologic applications, this means that the dynamics of infiltration and 
surface runoff (overland and interflow), base flow, drainage, and evapotranspiration must be 
represented with minimum complexity by the ‘forward model’, M, without degrading predictive 
capability. The forward model consist of differential equations that evolve state variables in 
time utilizing forcing data, model states and initial conditions. More pragmatic considerations 
are that forcing data and parameters must be available at an appropriate scale (in both space 
and time) and extent that covers the application of the model (see the previous Data section). 

A critical additional requirement of data assimilation is another model that explicitly represents 
the relationship between model state variables or parameters and observations. This is 
required to evaluate the distance metric of the cost function that minimizes the deviation 
between model and observations during the assimilation. The constraint imposed on model 
state variables by observations is achieved through the mapping of information between state 
and observation spaces by means of an ‘observation operator’, H. The observation operator 
describes the phenomenological relationship between the model and observations, and its 
role is to generate modeled ‘observations’ for direct comparison against true observations, i.e.: 
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space
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An example in the hydrologic context is a model which relates surface physical properties (e.g. 
land surface temperature or moisture) to satellite radiances. In this case, H could potentially 
include blackbody emission, radiative transfer, solar and orbital geometry, and instrument 
performance models. Moreover, the hydrologic model, M, would need to explicitly contain a 
state variable representing shallow surface soil layer of depth 1 to 5 cm (depending on sensor 
used) with associated soil moisture and temperature state estimates. Thus, the role of H is to 
connect observations with state variables in M and the role of M is to propagate those 
variables forward in time, i.e: 
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A further requirement of models used in DA schemes is the characterisation of model errors. 
The various DA schemes (see Section 4) differ in their treatment of model errors, ranging from 
ignoring it (e.g. statistical correction) to explicit tracking of its spatial and temporal evolution 
(e.g. Kalman filter). Although, characterisation of model errors can be particularly difficult, 
recent developments in DA have attempted to tackle this problem. ‘Ensemble’ methods based 
on Monte Carlo sampling of the variable and parameter errors and multi-model ensembles 
that combine output from multiple models driven with equivalent forcing data are relatively new 
methods used to characterize model errors (e.g. Liang et al 1996, 2001; Turner et al. 2007). 
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A final consideration of models used in DA schemes is whether the model is continuous and 
differentiable. This is because the most appropriate DA method is dependent on the 
availability of the Jacobian of observation and forward models (i.e. ∂M/∂x and ∂H/∂x, where 
x represents relevant model states or parameters). The most computationally efficient 
methods utilise these derivatives to rapidly converge on solutions. For discontinuous models, 
computation is more expensive, and computational overheads can quickly overwhelm 
hardware capability even with relatively small scale applications (e.g. for single catchments). 
This is an important consideration in the operational context for applications at regional to 
continental scales. 

To adapt existing catchment scale rainfall-runoff models to model-data assimilation 
applications capable of exploiting spatial remote sensing and ground based data sets it will be 
necessary to (1) establish appropriate observation models that relate observations to forward 
model state variables; (2) adapt existing forward models where necessary to better utilise new 
types of observations; and, (3) invest in the development of software code of the derivatives of 
model functions (∂M/∂x and ∂H/∂x) in order to maximise computational efficiency of the 
assimilation scheme. 

In this section, we examine six catchment models of which the first four are included in the 
eWater CRC Catchment Modeling Toolkit, E2. These models are: 

1. SACramento Soil Moisture Accounting model (SAC-SMA); 
2. Australian Water Balance Model (AWBM); 
3. Simplified HYDROLOG model (SimHYD); 
4. Soil Moisture Accounting Runoff model (SMAR); 
5. Variable Infiltration Capacity macro-scale hydrologic model (VIC); and 
6. Probability Distributed Model (PDM). 

Potentially any of these models could be utilized in an DA scheme given suitable 
modifications. After presenting an intercomparison of model features we discuss our 
reasoning for choosing the Sacramento model as most suitable for our purposes at the 
present stage. 

3.2  Summary of catchment-scale hydrologic models 
A wide range of hydrological models are available from which to infer stream flow from 
catchments each developed to address specific problems at particular time and space scales 
(Table 3.1). These models can be classified according to whether they provide deterministic or 
stochastic outputs; whether they represent solely the water balance or additional processes 
(e.g. surface energy balance); are fundamentally physically based, conceptual, or statistical; 
and whether they are spatially distributed, semi-distributed or lumped catchment models. 

The models examined here included are a mix of conceptual and deterministic, physically 
based and statistical catchment water balance models. We compared these models for: (1) 
their suitability for application in a spatially distributed manner in order to utilise satellite 
observations; (2) the ease with which state variables of the model can be related to 
observations; (3) the explicit representation of routing used to generate peak stream flow and 
base flow; (4) the information requirements of forcing, parameter and observation data 
sources; and (5) the number of ‘free’ parameters required to be constrained by observations. 
We did not perform a general and exhaustive review of these models and their suitability. 
Rather, we made an assessment based on the authors’ collective experience and judgment of 
their suitability for use in a hydrologic assimilation system given available data sources. We 
also considered the expected requirements in an operational context based on discussions 
with river management agencies. 

Another consideration of the appropriateness of models is their internal routing scheme for 
surface flow. It is possible, for example, that model errors associated with incorrect routing 
could swamp estimates of stream flow even if rainfall distribution in time and space, and runoff 
generation are accurately known. In lumped models, routing is (by definition) not explicitly 
considered and error will emerge as unexplained variation in the unit hydrograph (catchment 
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impulse-response function). An important outcome of the present research is whether routing 
errors in spatially explicit models can be reduced to manageable levels in order that DA 
methods are useful. 

In comparing these catchment models and assessing their suitability for coupling with satellite 
observations , it was necessary to consider whether these models could couple water and 
energy balances. Coupled models can account for such variables as surface brightness 
temperature, temperature of vegetation, and temperature of soil derived from satellite, thereby 
making it easier to relate remotely sensed observations with model predictions. However, the 
greater number of parameters in a coupled water-energy model may lead to an under-
determined problem and, hence, the need for more data. In some cases, simpler models may 
perform better than more complicated models provided that the simpler models can 
adequately capture catchment moisture dynamics and have sufficiently robust relationships 
between model state variables and observations. Simple models usually require less 
parameters to be estimated and often require less observational data to force the model. 
Depending on interactions between errors and biases in both parameters and data, simple 
models may provide better predictive skill compared to complex models but cannot benefit 
from constraints imposed by satellite observations. A benefit of developing a model-data 
assimilation approach is that predictive skill can be quantified with and without these new data 
sets to assess their utility. 

Table 3.1. A summary of the features of six catchment models. 
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Sacramento        11  1, 6, 24      
AWBM        8  24      
SIMHYD        7  24      
SMAR        9  24      
VIC        36  1, 24      
PDM        13  1, 24      

 

In this study, we selected the Sacramento (SAC-SMA) model as our starting point for the 
model-data assimilation scheme. This widely used model is easy to calibrate, it has more 
options for temporal resolution (provided forcing data are available), and includes the relevant 
components of stream flow (direct runoff, interflow and base flow). The advantages of the 
Sacramento model are that it is computationally inexpensive to calibrate, its forcing data 
requirements are less than VIC and Sacramento has been shown to yield good results of 
modelling stream flow in the United States (Koren et al. 2006; Kuzmin et al. 2008). 

In the remainder of this section of the report, we briefly overview each of the 6 catchment 
models from Table 3.1. 

3.3  Overview of catchment models 
This section provides a brief overview of each of the catchment models examined in the 
intercomparison (Table 3.1). More details are available from the references cited for each 
model. 
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3.3.1  Sacramento Soil Moisture Accounting model (SAC-SMA) 
The Sacramento model is a conceptual catchment water balance model developed for the 
U.S. National Weather Service (NWS) that relates runoff to rainfall at daily, 6-hourly or 
1-hourly time steps (Figure 3.1) (Burnash et al. 1973; Armstrong 1978). Currently, the version 
of the Sacramento model available in E2 operates with daily data and a daily time-step. The 
model contains five stores (Figure 3.1); two surface stores with surface evaporation, surface 
runoff and interflow. The three base flow stores are used to represent soil evaporation and two 
stages of base flow. The original version of the Sacramento model has 16 parameters that can 
be estimated from soil moisture observations and soil type data (the parameter ranges are 
given in Table 3.2); however, in most cases 5–7 parameters can be replaced with constants 
without any loss of quality (Kuzmin et al. 2008). The model is available in lumped and 
distributed modes. However, its distributed version is potentially difficult to calibrate and, as a 
result, it does not necessarily provide better forecasts than the lumped version (Reed et al. 
2004). Due to its reliability Sacramento has been widely used operationally by the U.S. 
National Weather Service and in Australia (Boughton 2005). 
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Figure 3.1. National Weather Service Sacramento Soil Moisture Accounting Model  
(SAC-SMA) (http://www.toolkit.net.au/cgi-bin/WebObjects/toolkit). 

In a data assimilation scheme, the Sacramento model can assimilate soil moisture content in 
the upper soil layer (although some modification of the model is needed to relate this to 
microwave observations of surface soil moisture) and stream flow data. It can also assimilate 
actual evapotranspiration and snow observations if these are available or utilise these 
products as forcing if created offline. Another advantage is an efficient automated calibration 
tool developed specifically for it, which can be used for model state and flux estimation 
through both sequential and non-sequential optimisation (Kuzmin et al. 2008). 

http://www.toolkit.net.au/cgi-bin/WebObjects/toolkit�
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Table 3.2. SAC-SMA model parameters and their feasible ranges (adapted from Koren et al. 
2003). 

Parameter Description Units Min Max 
UZTWM The upper layer tension water capacity mm 10 300 
UZFWM The upper layer free water capacity mm 5 150 
UZK Interflow depletion rate from the upper layer free water 

storage 
day-1 0.10 0.75 

ZPERC Ratio of maximum and minimum percolation rates – 5 350 
REXP Shape parameter of the percolation curve – 1 5 
LZTWM The lower layer tension water capacity mm 10 500 
LZFSM The lower layer supplemental free water capacity mm 5 400 
LZFPM The lower layer primary free water capacity mm 10 1000
LZSK Depletion rate of the lower layer supplemental free 

water storage 
day-1 0.01 0.35 

LZPK Depletion rate of the lower layer primary free water 
storage 

day-1 0.001 0.05 

PFREE Percolation fraction that goes directly to the lower layer 
free water storages 

– 0.0 0.8 

 

3.3.2  Australian Water Balance Model (AWBM) 
The Australian Water Balance Model (AWBM) is a catchment water balance model based on 
conceptual relationships that relate runoff to rainfall at an hourly or daily time-step, by 
calculating losses from rainfall for flood hydrograph modelling (Figure 3.2) (Marston et al. 
2002; Boughton 2004). 

?

Baseflow
storage

Surface runoff
routing storage

Surface
storages

Surface runoffRainfall excess

Baseflow

Baseflow
recharge

Total runoff

Routed
surface
runoff

Rainfall

?

Flow

Evapotranspiration

Decision point

 

Figure 3.2. Structure of the AWBM model 
(http://www.toolkit.net.au/cgi-bin/WebObjects/toolkit). 

The model calculates the moisture balance for three separate surface stores to simulate 
partial areas of runoff. At each time step, rainfall is added to each of the three surface 
moisture stores and evapotranspiration is subtracted. When surface stores fill, surface flow 

http://www.toolkit.net.au/cgi-bin/WebObjects/toolkit�
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occurs.  This 8 parameter model is disaggregated into 5 stores comprising 3 surface stores ,a 
base flow store and a surface runoff routing store (parameters are defined in Table 3.3). 
AWBM is provided with a model-specific automatic calibration tool. This model is included in 
the E2 modelling toolkit. 

Advantages of the AWBM are that it requires only three types of input data (precipitation, 
evapotranspiration, and proportional source areas for runoff generation) and it simulates 
surface and baseflow runoff. On the other hand, this model does not incorporate process 
equations for transpiration, direct evaporation from the water surface and water transfers 
among deep stores. 

This model has three potential state/flux variables for assimilation which could improve water 
balance estimation. These are: 

1. the adjustment factor for precipitation; 
2. the adjustment factor for evapotranspiration; and 
3. stream flow at catchment exit point. 

Table 3.3. The AWBM model parameters, their defaults values and limits. 

Parameter Description Units Default Min Max 
A1 Partial area of surface store 1 m2/m2 0.134 0 1 
A2 Partial area of surface store 2 m2/m2 0.433 0 1 
A3 Partial area of surface store 3 m2/m2 0.433 0 1 
C1 Capacity surface store 1 mm 7 0 50 
C2 Capacity surface store 2 mm 70 0 200 
C3 Capacity surface store 3 mm 150 0 500 
BFI Base flow index none 0.35 0 1 
K Base flow recession day-1 0.95 0 1 
KS Surface flow recession day-1 0.35 0 1 

 

3.3.3  The Simplified HYDROLOG model (SimHYD) 
SimHYD is a daily conceptual hydrologic model based on relationships that relate daily stream 
flow to daily rainfall and potential evapotranspiration data (Chiew et al. 2002; Figure 3.3). 

In SimHYD, daily rainfall first fills the interception store, which is fully emptied each day by 
evaporation. Excess rainfall is then subjected to an infiltration function that determines 
infiltration capacity. Excess rainfall that exceeds infiltration capacity becomes infiltration 
excess runoff. The model has 9 parameters to be estimated and contains three stores for 
interception loss, soil moisture and groundwater (Table 3.4). 

Table 3.4. SIMHYD model parameters, their defaults values and limits. 

Description Units Default Min Max 
Baseflow coefficient mm/mm 0.3 0 1 

Impervious threshold none 1 0 5 
Infiltration coefficient day–1 200 0 400 
Infiltration shape none 3 0 10 
Interflow coefficient day–1 0.1 0 1 
Pervious fraction mm/mm 0.9 0 1 
Rainfall interception store capacity mm 1.5 0 5 
Recharge coefficient day–1 0.2 0 1 
Soil moisture store capacity mm 320 1 500 
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This model is more flexible than the AWBM and it better captures the processes of 
evapotranspiration and water transfers between groundwater stores (Boughton 2005). In a 
data assimilation scheme the partitioning of precipitation between evapotranspiration and 
infiltration as well as soil moisture storage are candidate target variables to be constrained by 
observations. 
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Figure 3.3. Structure of the SIMHYD model 
(http://www.toolkit.net.au/cgi-bin/WebObjects/toolkit). 

3.3.4  The Soil Moisture Accounting Runoff model (SMAR) 
The Soil Moisture Accounting Runoff model (SMAR) is simpler than the Sacramento model. It 
is a lumped conceptual hydrologic water balance model which aims to also resolve the soil 
moisture profile at 3 levels (O’Connel et al. 1970; Kachroo 1992). The model provides daily 
estimates of surface runoff, groundwater discharge, evapotranspiration and leakage from the 
soil profile for the catchment as a whole. The surface runoff component comprises overland 
flow, saturation excess runoff and saturated through-flow from perched groundwater. SMAR 
consists of two components in sequence, a water balance component and a routing 
component that simulate the associated lags between rainfall events and flow out of the 
catchment (Figure 3.4). The model has 11 parameters (Fazal et al. 2005), shown in Table 3.5, 
but the E2 modelling toolkit contains a simplified version of the model with 9 parameters 
(Argent et al. 2006). 

Unlike the Sacramento model, the SMAR includes its own routing scheme based on 
approximation of flood waves. In a data assimilation scheme, SMAR could assimilate soil 
moisture content in the upper soil layer, actual evapotranspiration and stream flow at internal 
stream gauges. 

http://www.toolkit.net.au/cgi-bin/WebObjects/toolkit�
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Figure 3.4. Structure of the SMAR rainfall-runoff model (http://www.toolkit.net.au/cgi-
bin/WebObjects/toolkit). Blue stores and arrows depict water flows through catchment. 
Brown stores indicate soil water store which is a function of soil porosity used to model 
deep drainage in the profile. 

Table 3.5. SMAR model parameters. 

Parameter Description Units Min Max 
C Discounting factor of the remaining potential 

evaporation rate 
0–1 0 1 

E Evapotranspiration rate mm/mm 0 1 
H Direct runoff area index m2/m2 0 1 
G Groundwater runoff coefficient mm/mm 0 1 
Kg Number of time step for groundwater routing days 0 20 
N Number of days  days 1 6 
NK Ordinates of gamma-function none 0.01 1.00 
P Rainfall rate mm/day 0 1 
T Potential evapotranspiration factor mm/mm 0 1 
Y Soil infiltration capacity mm 0 5000 
Z Total soil moisture capacity mm 0 5000 
 

http://www.toolkit.net.au/cgi-bin/WebObjects/toolkit�
http://www.toolkit.net.au/cgi-bin/WebObjects/toolkit�
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3.3.5  Variable Infiltration Capacity macro-scale hydrologic model 
(VIC) 

VIC is an energy and water balance model commonly used as a land surface scheme in 
climate models, which simulates several elements of the surface hydrologic cycle: vegetation 
fraction cover, evapotranspiration, runoff, snow water equivalent, soil moisture storage, and 
total storage of water (Figure 3.5). The model can operate using hourly to daily time steps. A 
routing sub-model, which works with daily runoff and base flow fluxes, is available (Liang et al. 
1996; D. Lettenmaier, personal communication). The VIC model has 36 parameters (25 soil 
and climate parameters, 5 location parameters and 6 vegetation parameters). More 
information on model structure and function is available at 
http://www.hydro.washington.edu/Lettenmaier/Models/VIC/References/References.html. 

VIC is not available as part of E2. 
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Figure 3.5. VIC model structure (http://www.hydro.washington.edu/Lettenmaier/Models/VIC/
VIChome.html). Note that this is a spatially distributed model where each grid cell has a 
specified fraction coverage by vegetation with varying canopy characteristics. Transpiration 
from sub-surface layers is lost through the canopy (yellow arrows). 

http://www.hydro.washington.edu/Lettenmaier/Models/VIC/References/References.html�
http://www.hydro.washington.edu/Lettenmaier/Models/VIC/VIChome.html�
http://www.hydro.washington.edu/Lettenmaier/Models/VIC/VIChome.html�
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Table 3.6. VIC model vegetation, climate and soil parameters. Note max/min range is not 
supplied, as this varies depending on location. 

Parameter Description Units 
infilt Variable infiltration curve parameter – 
Ds Fraction of max velocity of base flow at which base flow begins – 
Dsmax Max velocity of base flow mm/d 
Ws Fraction of max soil moisture at which base flow begins – 
C Base flow curve exponent (nominally = 2) – 
expt Parameter describing variation in Ksat with soil moisture – 
Ksat Saturated hydraulic conductivity mm/d 
phi_s Soil moisture diffusion parameter – 
init_moist Initial layer soil moisture content mm 
elev Mean elevation of model grid cell m 
depth Thickness of each soil layer in model  m 
avg_T Value for constant temperature at depth  oC 
dp Soil depth at constant temperature m 
bubble Bubbling pressure of soil cm 
quartz Quartz content of soil – 
bulk_density Soil bulk density of layer kg/m3 
soil_density Soil particle density (nominally 2685 kg/m3) kg/m3 
Wcr_FRACT Fraction of soil moisture at 70% field capacity – 
Wpwp_FRACT Fraction of soil moisture at wilting point – 
Rough Surface roughness: bare soil m 
snow_rough Surface roughness: snow m 
annual_prec Mean annual precipitation mm 
resid_moist Fraction of soil moisture as residual per layer – 
fs_active Switch for frozen soil  – 
July_Tavg Average July soil temperature oC 
vegetat_type Number of vegetation types in model grid cell – 
veg_class Vegetation classification identifier – 
Cv Fraction of model grid cell per vegetation class – 
root_depth Root zone thickness m 
root_fract Fraction of total root biomass in soil layer – 
GLOBAL_LAI Canopy leaf area index  monthly 

 

3.3.6  Probability Distributed Model (PDM) 
The Probability-Distributed Model (PDM) is a conceptual hydrologic model, which transforms 
rainfall and evaporation data to flow at the catchment outlet (Moore 2007). The model 
formulation is based on probability-distributions of soil moisture store and the translation of 
runoff and drainage via routing stores. PDM represents groundwater storage under the 
influence of pumped abstractions, spring flows and underflows (Moore 1985). The PDM 
software supports the following functions: 

1. a toolkit of model functions capable of representing a broad range of catchment runoff 
behaviour using a minimum number of model parameters; 

2. a choice of time-step, from15 minutes through 1 hour to daily; 
3. model calibration by automatic optimisation and by interactive visualization; 
4. error response function plots to investigate parameter interdependence; 
5. calibration across separate storm events, maintaining a daily water balance between 

events; and 
6. forecast updating for real-time applications, using state correction or error prediction 

techniques. 
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The PDM model represents water stores and transfers among surface and groundwater 
storages is shown on Figure 3.6. Parameters are defined in Table 3.7. In a data assimilation 
scheme, it would be possible to optimise the moments of the parameter probability distribution 
functions while minimising differences between modelled water stores and observations; 
although, such an approach has not been attempted to the authors’ knowledge. In practice, 
model states (stores) are adjusted to match total runoff as observed by stream flow. PDM is 
not included in the E2 modelling toolkit. 
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Figure 3.6. The PDM rainfall-runoff model 
(http://www.toolkit.net.au/cgi-bin/WebObjects/toolkit). 

Table 3.7 PDM model parameters (Moore, 2007). Note max/min range is not supplied as this 
varies depending on location. 

Parameter Description Units 
fc Rainfall factor – 
td Time delay hr 
cmin Minimum store capacity mm 
cmax Maximum store capacity mm 
b Exponent controlling variability of store capacity – 
be Exponent of actual evaporation function – 
kg Groundwater recharge time constant – 
bg Exponent of recharge function – 
St Soil tension storage capacity mm 
alpha Groundwater deficit ratio threshold – 
beta Exponent in groundwater demand function – 
qsat Maximum rate of recharge  mm/hr 
k1 Time constants of cascade of first linear reservoir hr 
k2 Time constants of cascade of second linear reservoir hr 
kb Baseflow time constant – 
m Exponent of baseflow non-linear storage – 
qc Constant flow representing returns/abstractions m3/s 

 

http://www.toolkit.net.au/cgi-bin/WebObjects/toolkit�
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3.4  Section summary 
In this section, we have noted that the hydrological models used for stream flow forecasting 
must be capable of simulating the dynamics of infiltration, runoff, flows, and evapotranspiration 
with minimal complexity, using forcing data and parameters acquired at scales appropriate to 
model application. An additional consideration for models used in a DA scheme is the ability to 
formulate an observation operator that can relate the model state variables and observations. 
In a survey of six widely used catchment hydrologic models, the Sacramento model was 
chosen as most suitable for use in a catchment scale stream flow forecasting scheme in this 
work because it is computationally straightforward to calibrate, forcing data are readily 
available, the potential for incorporating satellite observations of surface moisture as 
constraints and its demonstrated ability to model stream flow dynamics. The next section 
discusses the model-data assimilation schemes. 
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4  Model-data assimilation 

4.1  Introduction 
Model-data assimilation describes a set of mathematical algorithms used to optimally combine 
the information contained in models and observations. The underlying principle is to minimise 
the mismatch between model predictions and observations through direct adjustment of model 
states (‘state estimation’) or through adjustment of model parameters (‘parameter estimation’). 
The output from an assimilation scheme is estimates of ‘target variables’ of the model (state 
variables, parameters and/or fluxes) obtained when the mismatch between model and 
observations is minimal. While simple in principle, there are numerous difficulties to overcome. 
However, the outcome of implementing a successful assimilation scheme is a quantifiable 
improvement in predictive capability even in systems dominated by chaotic processes. 

The last decade has seen rapid development of model-data assimilation methods for 
hydrologic, hydrometeorological, remote sensing and terrestrial biogeochemical applications 
(e.g. Walker et al. 2001a, b; Walker and Houser, 2001; Barrett 2002; Walker et al. 2002; 
Walker et al. 2003; Quegan et al. 2003; Barrett et al. 2005; Raupach et al. 2005) based on 
techniques initially developed in the atmospheric, oceanographic and geophysical sciences 
(Giering 2000). In this time, hydrologically relevant remote sensing methods have become 
well-defined, theoretically established, and technologically supported. In the next five years, it 
is expected that widespread application of data assimilation techniques to the forecasting of 
water availability will invoke major changes in water resources management. 

In this section, we provide by way of background, a short primer on DA methods. We then list 
the full range of methods available for potential application to hydrologic problems; readers 
are referred to Walker and Houser (2005) for a more complete introduction to DA in hydrology. 
These methods have been developed as solutions to problems with particular characteristics 
and so no single method will be suitable to solving all problems in the hydrologic domain. The 
primary difference among these approaches lies in the algorithms used to solve the 
assimilation problem which can involve inversions of large matrices or gradient searches in 
high-dimensional spaces. Technical development of algorithms has proceeded in direct 
relation to the size of the assimilation problem. To provide context, modern operational 
meteorological data assimilation schemes may assimilate 107 model states using 105 
observations within a 6 hour forecast period. This application of DA methods is 
computationally demanding requiring significant IT infrastructure and algorithms specifically 
adapted to the application. 

4.2  Background 
The term ‘model-data assimilation’ refers to a suite of mathematical techniques based on 
Bayesian statistical theory that couple observations and physical models with the aim of 
generating improved accuracy in model predictions by estimation of optimal model state 
variables. The mathematical formalism of these techniques provides a framework within which 
different types of data can be brought together within physical models to generate inferences 
of system state. Both the model and data have intrinsic uncorrelated errors. Through the 
application of statistical methods it’s possible to generate model predictions in which we have 
a higher confidence than from either the data on its own or from unconstrained model 
predictions. Modern approaches to data assimilation do not consider a single observation 
type, but rather attempt to ‘blend’ information from a range of sources; so called ‘multiple 
constraints model-data assimilation’. 

In the ‘initial value’ problem, an observation field derived from measurements made in real 
time and the ‘best guess’ of system conditions from a model are combined using data 
assimilation methods to reveal an estimate of the current system state given errors in 
observations and the model (Figure 4.1; this is also termed the ‘analysis’ or forecast 
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initialisation step; Zupanksi and Kalnay (1999)). For hydrological applications, this may refer to 
the background state of moisture in the soil profile, present state of flow in a stream network or 
current rate of evapotranspiration over a region. From the initial condition, forecasts of future 
states may be made utilising output products (and their errors) from numerical weather 
prediction. 
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Figure 4.1. Schematics of sequential data assimilation application. (a) Sequential or direct 
observer assimilation by application of the Kalman filter, 3-D variational or related methods. 
(b) Non-sequential or indirect observer assimilation by 4-D variational, ‘smoother’ or related 
methods. 

As time advances into a new forecast period, the previous model forecast is utilised as the 
best guess for the next assimilation cycle because it represents the best prior information 
available about the current state of the system. Forecast accuracy is largely a function of 
observation coverage (in time and space), model adequacy, whether the model can be 
linearised, knowledge of the characteristics of observation errors, and adherence to 
assumptions of the underpinning statistical theory. However, despite the wide variation among 
different applications, all DA schemes have seven common elements. These are: 

1. a physical model (or models); 
2. a set of initial conditions; 
3. multiple types of forcing data; 
4. a set of parameters; 
5. a set of model states; 
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6. potentially multiple types of observations; 
7. an assessment of observation and model error; and 
8. an optimisation scheme to combine model and observations considering the errors. 

In the hydrologic context, these elements comprise lumped, semi-distributed or fully spatially 
distributed hydrologic models, a network of observations (hydrograph, in situ ground based 
and satellite data) to provide forcing, model parameters, observational data and their errors, 
and a data assimilation scheme capable of minimising deviations between model predictions 
and system observations while considering their relative errors. Additionally, ancillary 
observations of model state variables are needed, such as from intensively studied 
catchments, for verification, to test forecasting skill and to identify where improvements are 
needed. These can be additional observations of stream flow kept in reserve for validation or 
ancillary datasets used for verifying internal state variables (e.g. point soil moisture 
observations). 

As discussed in Section 2 (‘Data’), bias-free observations and their errors are used in the DA 
scheme to constrain model dynamics. The challenge in hydrologic data assimilation is how 
best to utilize available observations that may only be indirectly related to the hydrologic 
variables of interest. For example, satellite radiances are indirectly related to model internal 
variables of evapotranspiration, surface temperature and soil moisture which themselves are 
related through the conservation equations of the forward model, M, to stream flow using the 
observation operator, H (section 3: Models). The range of possible observations to assimilate 
is large and includes networks of soil moisture measurements and of stream hydrographs, 
observations of scalar fluxes from eddy covariance sites, and satellite data products of land 
surface temperature, surface soil moisture, snow cover, vegetation water content, vegetation 
cover and soil physical properties. It is necessary to transform the information contained within 
these observations into constraints on the state variables in the model. The role of the DA 
scheme is to infer hydrologically relevant information from indirect and noisy observations. 
Where it is possible to observe a hydrologic variable (more or less) directly (e.g. 
evapotranspiration at a flux tower site), spatial variation and gaps in data make it difficult to 
accurately interpolate these values. The role of the assimilation scheme is also to propagate 
information from observing sites to locations in space and time where observations are 
missing. 

As noted in section 3, the key link between observations and model variables in a data 
assimilation scheme is achieved through the ‘observation operator’, H, which maps 
observations to model state variables. Various observation operators are shown in Table 4.1. 
For example, (in increasing order of complexity) rating curves are used to transform the direct 
measurement of stream height to volumetric flow, radiative transfer models are used to 
convert the primary satellite observation of radiance to surface temperature or moisture, and 
eddy covariance functions calculate scalar fluxes from observations of concentrations and 
velocity. The success of a model-data assimilation scheme is dependent on accurately linking 
available observations with state variables in the forward model through the observation 
operators. 

In Table 4.1, gauge measurement of precipitation is a direct measure at a point location (albeit 
with adjustment to remove artefacts) and requires spatial interpolation to regions. River or 
stream height gauges require rating curves for conversion to fluxes and provide an integrated 
measure over catchment area. Thermal and microwave radiance measurements from satellite 
require consideration of atmospheric and geometric artefacts. Finally, the conversion of 
microclimate observations at an eddy flux tower, to scalar fluxes take into consideration the 
atmospheric turbulence in the vicinity of the tower. Thus, the observation operator can take on 
various roles from interpolation from model grid to location of measurement through to 
describing the physical relationships between observation and state variable. 
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Table 4.1. Examples of key observational data, observation operators and hydrologic 
variables constrained by the observations. H = observation operators (model) which include 
SI = spatial interpolation; RC = rating curve function; RT = radiative transfer model (thermal 
or microwave); EC = eddy covariance functions. 

Constrained hydrologic variable H Primary observation  

Precipitation (regional) SI⎯⎯→ Precipitation (gauge) 

Stream flow  RC⎯⎯→ River height 

Soil profile moisture and evapotranspiration RT⎯⎯→ Radiance (thermal) 

Surface (<2.5 cm) moisture  RT⎯⎯→ Radiance (microwave) 

Evapotranspiration  EC⎯⎯→ Air temperature 
Vapour pressure 
Wind speed 
Leaf Area Index 
Radiation terms 

 

4.3  Summary of model-data assimilation methods 
Detailed background discussion and derivation of the theory and application of model-data 
assimilation methods can be found in Tarrantola (1987), Bouttier and Courtier (1999), Prinn 
(2000), Giering (2000), Toddling (2000), Holm (2003), and Walker and Houser (2005), so 
these details won’t be repeated here. We commence this discussion from the perspective of a 
discrete formulation of the analysis problem in which values of model ‘target variables’, are 
sought given a model (+ model error) and observations (+ observation error). Target variables 
of the analysis may include model states or initial conditions (e.g. soil moisture, 
evapotranspiration or runoff/discharge), or model parameters (e.g. coefficients partitioning 
rainfall among stores, physical parameters, or time constants). These techniques provide a 
framework within which to test model dynamics and predictions against observations, to 
interchange disparate and scarce data types, to fill gaps in data records, improve constraints 
on model behaviour, infer parameters that are not directly observable and predict the 
dynamics of physical model(s) with associated quantitative error estimates. 

4.3.1  Sequential assimilation 

The sequential assimilation techniques update the model forecast using the difference 
between observation z and the modeled observation, ẑ , as soon as observations become 
available (see Figure 4.1a). This difference is termed the ‘innovation’. If we let the background 
vector be xb, then the optimal least squares estimator of the analysis state, xa, is 

 ( )ˆa b
k k k k= + −x x K z z  (4.1) 

where 

 ( )ˆ b
k kH=z x  (4.2) 

is the observation operator (see section 3 ‘Models’), k refers to the time of update, and K is 
the gain matrix given by 

 ( ) 1T T −
= +K ΣH HΣH R  (4.3) 

where H is the linearised Jacobian of H (called the ‘tangent linear operator’) and Σ is the 
covariance matrix of background errors. 

In a hydrologic context, xb might be a vector of runoff, stream flow, soil moisture, 
evapotranspiration state variables, or parameters of any one of the rainfall-runoff models 
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described in section 3 (‘Models’), z might be observations of stream heights, land surface 
temperature, microwave emissions, or soil moisture measurements, and H a set of functions 
which maps the state vector, xb, to observation space (Table 4.1). Given this we can make the 
following comments. 

1. The analysis, xa (equation 4.1), is derived from the background state plus a term which 
represents differences between the model (H(xb)) and observations (z) weighted by 
the gain matrix (K). 

2. The gain matrix is entirely dependent on the background and observation error 
covariances (Σ and R) and the sensitivity of the model predictions to error in the state 
variables (H). 

3. The analysis covariance is dependent only on the error covariances and sensitivity of 
the model (Σ, R and H) and not on the values of the state variables. 

These comments lead to several important considerations in the application of DA methods. 
Firstly, the analysis is as much dependent on the relative errors in Σ and R as it depends on 
the observations (z). Secondly, the gain matrix represents confidence in the observations 
relative to the model. And thirdly, the uncertainty of the analysis depends only on the 
combined uncertainty of the model and observations. These considerations emphasise the 
importance of understanding and characterising the nature of model and observations errors 
in a DA scheme. 

The commonly used sequential assimilation methods are: 
1. Direct Insertion; 
2. Statistical Correction; 
3. Successive Correction; 
4. Optimal Interpolation/Statistical Interpolation; 
5. Analysis Correction; 
6. Nudging; 
7. 3D Variational; and 
8. Kalman Filter and its variants. 

While approaches like direct insertion, nudging and optimal interpolation are computationally 
efficient and easy to implement, the updates do not account for observation uncertainty or 
utilise system dynamics in estimating model background state uncertainty, and information on 
estimation uncertainty is limited. The Kalman filter, while computationally demanding in its 
pure form, can be adapted for near real-time application in hydrologic forecasting and provides 
information on estimation uncertainty. However, it has only limited capability to deal with 
model errors, and necessary linearisation approximations can lead to unstable solutions. The 
ensemble Kalman filter, while it can be computationally demanding (depending on the size of 
the ensemble) is well suited for near real-time applications to forecasting soil moisture and 
streamflow, is robust, very flexible and easy to use, and is able to accommodate a wide range 
of model error descriptions. 

4.3.2  Non-sequential assimilation 

The non-sequential assimilation techniques differ from sequential methods by considering all 
observations at once rather than at the time the observations become available (see Figure 
4.1b). These methods find the best fit between forecast model state and observations, subject 
to the initial state vector uncertainty Σ and observation uncertainty R, by minimising an 
objective function J. The objective function has the form 

 ( ) ( ) ( ) ( )
1T 1 T 1

0 0 0 0 0
0

1 1 ˆ ˆ
2 2

N
b b b

k k k k kJ
−− −= − − + − −∑x x Σ x x z z R z z , (4.4) 

where the superscript b refers to the initial or ‘background’ estimate of the state vector, the 
subscript k refers to the number of observations within the time step, and N is the number of 
time steps of the analysis. To minimise the objective function over time, an assimilation time 
‘window’ is defined and an ‘adjoint’ model is typically used to yield the derivatives of the 
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objective function with respect to the initial model state vector x0. The adjoint is a 
mathematical operator that allows one to determine the sensitivity of the objective function to 
changes in the solution of the state equations by a single forward and backward pass over the 
assimilation window. While an adjoint is not strictly required (i.e., a number of forward passes 
can be used to numerically approximate the objective function derivatives with respect to each 
state), it makes large problems computationally tractable by limiting the number of iterations 
needed to find a solution. The non-sequential techniques can be considered simply as an 
optimisation or calibration problem, where the state vector – rather than the model parameters 
– at the beginning of each assimilation window is ‘calibrated’ to the observations over that time 
period. The non-sequential techniques can be formulated with: 

1. a strong constraint (variational) where the model is assumed perfect, as in equation 
4.4; and 

2. a weak constraint (dual variational or representer methods) where errors in the model 
formulation are taken into account as process uncertainty. 

In representer methods, model uncertainty is included in the objective function as an 
additional term in equation 4.4 so that 

( ) ( ) ( ) ( )
1 1T T1 1 T 1

0 0 0 0 0
0 0

1 1 1ˆ
2 2 2

N N
b b b

k k k k k k k kJ
− −

− − −= − − + − − +∑ ∑x x Σ x x z z R z z w Q w , (4.5) 

where w is the model error vector and Q is the model error variance-covariance matrix. 

Non-sequential assimilation methods are well suited for smoothing problems,such as 
reanalysis of time series of hydrologic variables, but provide information on estimation 
accuracy only at considerable computational cost. Moreover, adjoints (operators that map 
between observation and forward model spaces) are not available for many existing 
hydrologic models, and the development of robust adjoint models is difficult due to the 
nonlinear nature of hydrologic processes and can require as much investment in generation of 
computer code as the original model itself. A further disadvantage lies in generating the model 
derivatives which can be complicated and costly for large models. Derivative free optimisation 
methods (e.g. Genetic Algorithms, Simulated Annealing, Markov Chain Monte Carlo and 
Stepwise Line Search (SLS) methods) avoid calculating the gradient of the cost function 
allowing xa to be determined for almost any model (but with an associated computational 
overhead). 

4.4  Section summary 
In this section we have described the motivation underlying the application of DA methods to 
hydrologic problems; viz, improving the predictive capability of catchment hydrology models 
through optimising the information contained in both observations and models weighted by the 
relative magnitude of their errors. We then presented a brief overview of DA methods and the 
evolution of these methods for application to large hydrological problems. These methods 
along with data (Section 2) and models (Section 3) form the components of a stream flow 
forecasting system to be outlined in the blueprint for research in ‘Enhanced Streamflow 
Forecasting’ in Section 5. 

Prior to implementation, development work is still required to couple the system components, 
code the data assimilation algorithms, link the real-time data access, implement models and 
develop the forecasting capability and skill to meet user requirements and specifications. 
Research is still required to develop accurate characterisation of errors, minimise bias in data 
sources, improve hydrologic model functions for spatial application, blend different types of 
precipitation observations and assess the utility of various data sources to improve model 
forecast skill. 
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5  Conclusion: a blueprint for stream flow 
forecasting 

5.1  Introduction 
In Section 1 (‘Introduction’), we presented a schematic showing the structure of a stream flow 
forecasting system for water yield and river operations (Figure 1.1). The outcome of research 
undertaken in project D1 ‘Enhanced stream flow forecasting’ of eWater CRC will be the 
generation of two practical tools for stream flow modeling: RiverOPS, a tool for operational 
real-time forecasting of stream flow; and WaterCAST, a tool for long term planning and 
decision support (including scenario assessment) for water resources management. The 
material covered in Sections 2, 3 and 4 of this report have described in detail the components 
needed to develop these tools. The rest of this section is concerned with recasting Figure 1.1 
as a detailed schema for an operational stream flow forecasting system. 

5.2  The focus catchment 
The Murrumbidgee River catchment in NSW has been selected for developing and testing the 
RiverOPS and WaterCAST tools. This catchment (Figure 5.1) is one of eWater CRC’s five 
focus catchments (the others are Brisbane River, Fitzroy River, Goulburn Broken River, and 
Yarra River) and is the largest catchment of the Murray Darling Basin at 73,400 km2. It is 
bounded on the east by the Great Dividing Range, the Lachlan and Murray rivers on the north 
and south, and riverine plains to the west, and has 14 major dams, 8 large weirs, and 10,000 
km of irrigation channels (Figure 5.1). Flows are regulated by dams and weirs as well as the 
Snowy River Hydroelectric Scheme, but a number of tributaries are unregulated. The 
catchment is highly variable in its physical characteristics, land use and hydrology. Land use 
varies from sheep and cattle grazing, conservation reserves and residential areas in the upper 
catchment to irrigated agriculture, horticulture, dry land cropping and grazing, and forestry in 
the mid and lower areas of the catchment. The Murrumbidgee catchment is one of the most  

 

Figure 5.1. Map of the Murrumbidgee River catchment. 
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densely populated regions of rural Australia with over 520,000 people and a growth rate of 
1.5% pa. 

The catchment is also covered by a wide range of data sources including (Figure 5.1): 
1. dedicated ‘Weather Watch’ ground based precipitation radars in Canberra and 

Yarrawonga, and a part-time radar in Wagga Wagga 
2. historical and real-time time-series of stream flow (discharge) observations at multiple 

gauging stations 
3. a network of meteorological stations and stations to record soil profile moisture; and 
4. coverage by spatial data including satellite observations of soil moisture, snow cover, 

actual evapotranspiration and surface temperature, soil and vegetation maps and 
terrain information. 

5.3  The blueprint 
The blueprint of the stream flow forecasting scheme for the Murrumbidgee catchment is 
shown in Figure 5.2. This blueprint assembles into a single schematic diagram: the data, 
model, and DA scheme needed for state and parameter estimation of hydrologic variables. 
Such a scheme could be used by an operational agency to predict flows, and soil moisture 
throughout the catchment on 1–5 day lead times (RiverOPS) or reconfigured to generate time-
series reanalysis of catchment water availability (i.e. inflows to storages) for trend analysis, 
decision making and long term water planning (WaterCAST). All components of the scheme 
are currently in existence and all data sets in Figure 5.2 are accessible in real-time. However, 
the assembly, testing and improvement of such a system is not a trivial task. 

The forward model of this scheme is the Sacramento model used operationally by several 
projects sponsored by the United States National Oceanic and Atmospheric Administration 
(NOAA) (e.g. INFORM; a forecasting system for rivers and dams in northern California; 
Georgakakos et al. 2006) and is included in the E2 catchment modeling toolkit. It has been 
chosen because of its E2 legacy, its existing stream flow forecasting capabilities, and its 
suitability for assimilation of streamflow observations and remotely sensed soil moisture, 
evapotranspiration, surface temperature and snow. This model can be run on hourly, 6-hourly 
or daily time steps to generate estimates of soil moisture content and stream flow. 
Sacramento captures all relevant physical processes that impact on the generation of stream 
flow within a catchment. The vector of background state variables (xb) include surface soil 
moisture in upper soil layers, actual evapotranspiration, surface temperature and stream flow. 
The observation model (or operator, H) converts surface moisture content to brightness 
temperatures in microwave wavebands. The target variables of the analysis (xa) include state 
variables for stream flow forecasting in RiverOPS or the 11 Sacramento model parameters for 
reanalysis studies in WaterCAST. There is an already established efficient procedure for 
obtaining prior parameter estimates based on Koren et al. (2003) and Kuzmin et al. (2008), 
they have developed a fast and efficient calibration procedure (stepwise line search, SLS) for 
this model. To reduce the computational burden associated with spatial parameterising of 
Sacramento, the optimisation of the 11 parameters in Table 3.2 can be replaced with 7 
‘primary’ parameters (percentage of sand, percentage of clay, saturated moisture content, 
field capacity, wilting point, saturated hydraulic conductivity, and specific yield) which will 
increase computational efficiency by up to 50–80% (Kuzmin et al. 2008). The full procedure 
for computation of prior estimates of the Sacramento model parameters using soil properties 
is given in (Koren et al. 2003). 

Observations of model states and fluxes for the assimilation will include satellite observations 
of soil moisture from AMSR-E based on the retrieval scheme of Owe et al. (2001) and De Jeu 
and Owe (2003) and stream flow data from the gauge network. Where the geographic location 
of observations and model states do not coincide, interpolation routines will be used as 
required. Observations of snow extent and soil water equivalent will be trialled in the 
forecasting scheme during ongoing improvements over time. Future developments will include 
the assimilation of land surface temperatures (from MODIS and AVHRR sensors) in a coupled 
surface energy balance – microwave radiative transfer model to better estimate profile surface 
soil moisture. Verification of flows will be achieved against existing hydrograph observations  
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Figure 5.2. Blueprint of a generic streamflow forecasting scheme capable of predicting flow 
on 1–5 day leadtimes for river management purposes (RiverOPS). The analysis provides 
optimal estimates of state variables and parameters based on the minimisation of differ-
ences between observed values and modelled ‘observations’ (called ‘innovations’) for the 
forecasting of stream flow, soil profile moisture content and actual evapotranspiration with a 
lead time of up to 72 hours. Components in parentheses are improvements for later addition. 

and soil moisture observations from the Murrumbidgee catchment Soil Moisture Monitoring 
Network (see section 2.5.1, and they are located on Figure 5.1). 

The assimilation of observations into a hydrologic model will be conducted using three 
proposed methods to compare results and computational efficiency at reaching a solution for 
each of the RiverOPS and WaterCAST applications. These methods are: 

1. the ensemble Kalman Filter; 
2. a 3-D variational method; and, 
3. a brute-force variational approach (viz. Stepwise Line Search method). 
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The 3-D variational method will be applied to a spatially distributred coupled surface energy 
balance/runoff model to examine the utility of satellite observations of surface temperature in 
constraining profile soil moisture and runoff by explicit representation of the land surface 
energy balance. The Stepwise Line Search (SLS) method will be used to generate parameters 
of the Sacramento model by successive minimisation (Press et al. 1986) using the 
simplification of Kuzmin et al. (2008) that can increase computation speed by up to four times. 
The SLS method is straightforward to apply, computationally efficient and will generate 
physically realistic posterior model parameter estimates. It will also assist exploration of the 
influence of a nonlinear and irregular cost function surface on the estimation of model param-
eters. The cost function to be minimised will be designed to emulate the multiple time-scale of 
observations including peak flow, base flow and flow recession periods (Parada et al. 2003). 

5.4  Section summary 
In this section, we outlined a blueprint of a stream flow forecasting scheme being developed 
and tested for the Murrumbidgee Catchment. The blueprint integrates data (Section 2), 
models (Section 3) and DA methods (Section 4) to provide catchment wide forecasts of 
stream flow, profile soil moisture content and actual evapotranspiration. 

Prior to implementation, development work is required to couple the system components, 
code the data assimilation algorithms, establish links to real-time data access, implement 
models and develop the forecasting capability and skill to meet user requirements and 
specifications. Research is still required to develop accurate characterisation of errors, min-
imise bias in data sources, improve hydrologic model functions for spatial application, blend 
different types of precipitation observations and assess the utility of various data sources. 

Once implemented, engineering a basin-wide operational forecasting of stream flow is 
possible by scaling-up the resources used for application in the Murrumbidgee catchment; 
albeit with the efficiency gained through multiple reuse of components. A regional scale 
system would realise multiple benefits afforded by improved skill in forecasting flows in river 
systems, including; improved efficiencies of water use, better anticipation of high flows and 
flooding, a reduction in river system losses or shortfalls in supply; better targeting of 
environmental flows and basin-wide consistency in river management. 
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Glossary 
AC. Analysis Correction (a method of data assimilation). 
ALOS. Advanced Land Observing Satellite. 
AMSR-E. Advanced Microwave Scanning Radiometer (a sensor onboard Aqua satellite, 

launched in May 2002). 
ASCAT. Advanced SCATterometer (a sensor onboard MetOp satellite, launched in October 

2006). 
ASTER. Advanced Spaceborne Thermal Emission and Reflection Radiometer. 
AUSLIG. AUStralian Surveying and Land Information Group (a Federal Government 

Department based in Canberra). 
AVHRR. Advanced Very High Resolution Radiometer (a sensor onboard the NOAA series of 

satellites first launched in 1981). 
AWBM. Australian Water Balance Model. 
AWRA. Australian Water Resources Assessment. 
AWS. Automatic Weather Station. 
BoM. The Australian Government Bureau of Meteorology (http://www.bom.gov.au). 
Bureau. The Australian Government Bureau of Meteorology (http://www.bom.gov.au). 
CABLE. CSIRO Atmosphere Biosphere Land Exchange model. 
CRC. Cooperative Research Centre (an Australian Federal Government programme, 

established to bring together researchers and research users; eWater is one such CRC). 
CSIRO. Commonwealth Scientific and Industrial Research Organisation (Australia). 
CRCCH. CRC for Catchment Hydrology. 
DA. Data Assimilation. 
DI. Direct Insertion (a method of data assimilation). 
Discontinuous model. A models that contains a discontinuity and hence is not differentiable. 
DMSP. Defense Meteorological Satellite Program. 
E2. A modeling shell for semi-distributed catchment software developed by CRCCH. 
EKF. Extended Kalman Filter (a sequential method of data assimilation). 
EMS. ElectroMagnetic Spectrum. 
EnKF. Ensemble Kalman Filter (a sequential method of data assimilation). 
ERIN. Environmental Resources Information Network (Australian Government Departmet of 

Environment and Water Resources). 
ERS. European Remote Sensing scatterometer data (a sensor onboard ERS-2 satellite, 

launched in April 2005). 
EST. (Australian) Eastern Standard Time. 
ET. EvapoTranspiration. 
FU. Functional Units (spatial elements ,usually the result of Boolean-GIS overlay, of E2). 
GASP. Global AnalysiS and Prediction (providing long-range, low resolution forecasts over the 

entire globe). 
GASP EPS. Global AnalysiS and Prediction Ensemble Prediction System (based on 32 

international climate models). 
GDA94. Geocentric Datum of Australia, a coordinate system established in 1994. 
GMS. Generic Geostationary Meteorological Satellites. 
GRACE. Gravity Recovery and Climate Experiment (twin satellites launched separately in 

March 2002). 
GRV. Gaussian Random Variable. 
GUI. Graphical User Interface. 
JERS. Japanese Earth Resources Satellite (a project of the National Space Development 

Agency of Japan). 
LAI. Leaf Area Index. 
LAPS. Limited Area Prediction System (a numerical weather prediction model). 
LAPS 375. LAPS model with spatial resolution 0.375° (~37.5 km). 
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LAPS EPS. LAPS Ensemble Prediction System (perturbs the boundary conditions and some 
of the model physics to produce a 25-member ensemble with a 0.5° resolution out to a 
lead time of 72 hours). 

LP DAAC. Land Processes Distributed Active Archive Centre. 
LWDR. Long-Wave Downward Radiation. 
MesoLAPS. Meso-scale LAPS numerical weather prediction model. 
MesoLAPS 05. LAPS model configuration with spatial resolution 0.05° (~5 km). 
MesoLAPS 125. LAPS model configuration with spatial resolution 0.125° (~12.5 km). 
METEOSTAT. METEOrological SATellite (a European satellite, first launched in 1977; current 

satellite launched 1997). 
MetOp. The satellite carrying ASCAT sensor (launched October 2006). 
MODIS. MODerate resolution Imaging Spectrometer (a sensor onboard the NASA Terra and 

Aqua satellites, launched in December 1999 and May 2002, respectively). 
MSOF. Multi-Scale Objective Function (an optimisation criteria, which reflects different 

frequencies of the stream flow). 
MSS. Multi-Spectral Scanner (a sensor onboard the US Landsat series of satellites, first 

launched in 1972). 
MTSAT-IR. The Japan Meteorological Agency MultI-functional Transport SATellite. 
NASA. National Aeronautic and Space Agency (USA). 
NDVI. Normalised Difference Vegetation Index. 
NDTI. Normalised Difference Temperature Index. 
NIR. Near InfraRed (portion of the electromagnetic spectrum). 
NLDAS. North American Land Data Assimilation Scheme. 
NLWRA. National Land and Water Resources Audit (Australia). 
NOAA. National Oceanic and Atmospheric Administration (USA). 
NPOESS. The National Polar-orbiting Operational Environmental Satellite System (USA). 
NRT. Near Real Time. 
NWP. Numerical Weather Prediction model. 
NWS. National Weather Service (USA). 
OCF. Operational Consensus Forecasts. 
OHD. Office of Hydrologic Development (jointly involves NOAA and NWS). 
OI. Optimal Interpolation (a method of data assimilation). 
PDF. Probability Distribution Function. 
PDM. Probability Distributed Model. 
Profile soil moisture content. Measurements made of soil water distribution over the soil 

profile (i.e. with depth). 
RiverOPS. River OPerationS (one of the eWater CRC Product Development Programs which 

will be used for operational forecasting stream flow and decision making in real-time by 
operational water resources management agencies). 

RMSE. Root Mean Square Error (a commonly used optimisation criteria). 
RS. Remote Sensing. 
Runoff. Runoff is flow across the surface (or just below the surface) that reaches a stream 

line. Runoff is unlikely to be observed directly by remote sensing, but can be ‘observed’ by 
a hydrograph as discharge. Cf. ‘surfacewater’. 

SAC-SMA. SACramento Soil Moisture Accounting model. 
SAR. Synthetic Aperture Radar. 
SAVI. Soil Adjusted Vegetation Index. 
SC. Successive Correction (a method of data assimilation). 
SCE. Shuffled Complex Evolution (a quasi-global method of parameters optimization). 
SI. Statistical Interpolation (a method of data assimilation). 
SEB. Surface Energy Balance. 
SILO. Special Information for Land Owners, http://www.bom.gov.au/silo/ (a rich source of 

historic and real-time meteorological and agricultural data of particular interest to anyone 
involved in the agricultural arena). 

SimHYD. Simplified HYDROLOG model. 
SLS. Stepwise Line Search(a modification of the pattern search (model calibration approach)). 
SMAR. Soil Moisture Accounting and Routing model. 

http://www.bom.gov.au/silo/�
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SMMR. Scanning Multichannel Microwave Radiometer (a sensor onboard Nimbus 7 satellite, 
launched in October 1978; finished 1987). 

SMOS. Soil Moisture Ocean Salinity (an ESA planned mission for 2008 onboard a standard 
‘Proteus’ spacecraft). 

SSM/I. Special Sensor Microwave / Imager (a sensor onboard a Defense Meteorological 
Satellite Program satellite, launched in July 1987). 

SSDS. Surface Degree of Saturation index. 
SSTP. Stochastic Self-Training Procedure (a sequential approach of data assimilation). 
StC. Statistical Correction (a method of data assimilation). 
STEPS. Short-Term Ensemble Prediction System. 
Surfacewater. Surfacewater refers to ponding or slow moving floodwater in flat terrain that 

overlies the soil surface. This water is potentially ‘observable’ by remote sensing. Cf. 
‘runoff’. 

SWE. Snow Water Equivalent. 
SWIR. ShortWave InfraRed (portion of the electromagnetic spectrum). 
SWDR. Short-Wave Downward Radiation reaching the earth’s surface. 
TRMM. Tropical Rainfall Measuring Mission. 
TUW. Technische Universität Wien (Vienna University of Technology). 
TIROS. Television InfraRed Observation Satellite program (the first successful weather 

satellite, launched in April 1960). 
UKF. Unscented Kalman Filter (a sequential method of data assimilation from the EKF class). 
VIC. Variable Infiltration Capacity (a macro-scale hydrologic model). 
VIIRS. Visible/Infrared Imager/Radiometer Suite. 
VUA. Vrije Universiteit Amsterdam (The Free University of Amsterdam ). 
WADA. West Australian Departments of Agriculture. 
WaterCAST. Water and Constituent Accounting Simulation Tool (one of the eWater CRC 

Product Development Programs, designed for long-term planning and decision support for 
water resources management agencies). 
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