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EXECUTIVE SUMMARY 

Floods are among the most damaging natural disasters in Australia. In order to 

limit the personal and economic damage caused by floods, land and 

emergency managers need to rely on flood forecasting systems. These systems 

consist of a hydrologic model and a hydraulic model. The hydrologic model 

calculates the amount of water that enters the river network, while the hydraulic 

model computes how that water moves throughout the river and floodplain. The 

accuracy and reliability of flood forecasting systems has significantly improved in 

the last decades. However, errors and/or uncertainties in model structures and 

parameters, input data, and/or meteorological forcings often hamper the 

accuracy of predictions. This document confirms that remote sensing data can 

be used to improve the accuracy of hydrologic and hydraulic models and thus 

ultimately improve the flood forecast accuracy.  

More specifically, remotely sensed soil moisture data are used to improve the 

hydrologic forecast skill of ungauged sub-catchment streamflow locations 

through multi-objective calibration. A pragmatic approach to select the optimal 

hydrologic model, optimized rainfall product, and remotely sensed soil product 

is outlined. Routines to assimilate and smooth streamflow and remotely sensed 

soil moisture observations over the length of a unit hydrograph are provided for 

improving forecast capability. Further, remotely sensed inundation extent and 

water level are used to improve the accuracy of the hydraulic model. This 

spatially distributed information is essential for understanding the floodplain 

inundation dynamics, adequately setting-up the hydraulic model and effectively 

constraining its parameters. The research underpinning these guidelines is 

consistent with the findings of ongoing research efforts worldwide and has 

contributed to the development of knowledge and a pragmatic framework for 

application in the Australian context.  

The methodologies presented in these guidelines for optimal use of remotely 

sensed data to improve the predictive skill of flood forecasting models can be 

applied by operational agencies. Moreover, the techniques for the analysis of 

remotely sensed data support and complement the existing capabilities of 

Geoscience Australia, and the hydrologic model assimilation has been 

implemented by the Australian Bureau of Meteorology.   
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END-USER PROJECT IMPACT STATEMENT 

Norman Mueller, Geoscience Australia, Canberra, ACT 

Digital Earth Australia (DEA) is working with Monash University to implement its 

flood mapping system in the Open Data Cube code. The intention is to use 

Monash’s code to map water from Sentinel-1 SAR data and incorporate the 

water extents into DEA’s Water Observations from Space (WOfS) product. 

Success of this work will allow the WOfS product to continue mapping water 

during cloudy periods, filling a large gap in the supply of water information to 

several agencies in Australia including the Murray Darling Basin Authority and the 

Commonwealth Environmental Water Office. 

 

Karen Hudson, Chris Leahy, Bureau of Meteorology, Melbourne, VIC. 

The Bureau of Meteorology has taken a keen interest in the work of the Monash 

University team regarding the Bushfire Natural Hazards CRC project "Improving 

flood forecast skill using remote sensing data". The project has clearly 

demonstrated the potential for remote sensing data to assist in real-time flood 

forecasting applications, as well as highlighting some of the challenges. Over the 

past few years, the Bureau of Meteorology has made opportunistic use of 

available satellite-derived flood extent data during flood events, for example use 

of MODIS imagery to help communicate flood extent in tweets and to track flood 

progression in remote areas with little ground data. 
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 INTRODUCTION 

Floods have dire socio-economic consequences for Australia and much of the 

world. In just the last decade Australia has been the subject of numerous floods 

which have claimed multiple lives and caused damage in excess of a billion 

dollars. The average annual cost of floods over the last 40 years has been 

estimated to be $377 million dollars. Despite this, in March of 2018, the Insurance 

council of Australia declared 823,560 Queensland homes to be unprepared for 

flooding. 

Water and emergency agencies use flood forecasting systems to limit the socio-

economic exposure to floods. Current flood forecasting systems in Australia make 

use of state-of-the-art technology. However, the scientific landscape is 

constantly changing and new opportunities to enhance our flood forecasting 

systems into the future need to be explored. 

These guidelines are based on new research that explored novel ways to 

combine remote sensing data and models to improve flood forecasting 

capability and skill. Key areas include: 

 The use of remotely sensed soil moisture observations to constrain and 

update hydrologic model states, 

 Remotely sensed flood extent mapping and its use to constrain hydraulic 

model estimates of flood extent, depth and velocity. 

Hydrologic flood forecasting models compute the transition of rainfall and runoff 

into streamflow throughout a catchment by simulating key processes. The bulk 

processes represented include evaporation and transpiration of water along 

with the portioning of incident rainfall into surface and sub-surface runoff 

components. Catchment scale measurements of water storage above and 

below ground are scarcely available. Remotely sensed soil moisture observations 

provide hydrological models with additional data that can be used to constrain 

and/or update the model. New remotely sensed soil moisture missions provide a 

promising avenue to improve flood forecasting capability. To provide robust 

results, optimal usage of remotely sensed soil moisture in hydrological flood 

forecasting models is necessary. 

Two-dimensional hydraulic models allow the prediction of water depth and 

velocity everywhere in a floodplain. These models account for flow connectivity 

in the floodplain, and between the floodplain and the river network, thus 

allowing an accurate representation of inundation dynamics at the catchment 

scale. Spatially distributed data are required for the adequate evaluation of a 

model’s predictive performances. The increasing availability of remote sesnsing 

observations of inundation extent and water level provide a synoptic view of the 

flooding dynamics, thus opening opportunities for model verification at a large 

number of locations in the catchment.  

This document provides guidelines for the use of remote sensing data to set-up 

and constrain hydrologic and hydraulic models for riverine flood forecasts in 

unregulated catchments. These guidelines were generated from an analysis of 

three case studies; the Clarence (NSW), the Condamine-Balonne (QLD), and the 

Fitzroy (WA) catchment. Nevertheless, the methodologies and guidelines were 

developed for application to any Australian catchment by incorporating the 

heterogeneity of Australian catchments and datasets available at the 

continental scale.  
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More specifically, Section 2 provides recommendations for the collection of the 

remote sensing datasets, Section 3 explains the features of the hydrologic and 

hydraulic models, and Section 4 lists guidelines for the use of remote sensing data 

to improve flood forecasting skill. The main sources of uncertainties when using 

remote sensing constrained hydrologic-hydraulic models for flood forecasts and 

the limitations for the application of the proposed guidelines are discussed in 

Section 5. Finally, Section 6 lists the recommended datasets and approaches for 

the case studies analysed within the research project. The guidelines presented 

by this document outline the pragmatic autcomes of an extensive research 

activity; the theoretical details and the full demonstration of the methodologies 

have been presented in the publications listed in Section 7. 
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 DATA COLLECTION 

The following sections detail the datasets required for the set-up, forcing, and 

evaluation of the hydrologic and hydraulic models. Recommendations are 

made based on the availability and quality of data. 

2.1. HYDROLOGIC MODEL 

This section details the datasets required for the implementation, forcing, and 

evaluation of a typical hydrologic model. For the purposes of flood forecasting 

within this document a lumped conceptual rainfall-runoff hydrologic model is 

used. The sub-sections below list recommendations for selection of the datasets 

and provide relevant examples. Table 1 provides a list of datasets that (i) meet 

the minimum requirements and (ii) are freely available under creative commons 

attribution 4.0 license (CC by 4.0).  

2.1.1. Implementation data 

The data sets used throughout this project are outlined in table 1 and described 

in the following sections. 

 Catchment boundaries 

The Australian Geofabric data set details the spatial relationships between 

important hydrological features such as rivers, water bodies, aquifers, and 

monitoring points and can be used to delineate catchment boundaries. 

 Fraction of vegetation cover 

The monthly fraction of vegetation cover aids in the calculation of water 

available for evapotranspiration processes. Consequently, the fraction of 

vegetation plays a role in determining the precipitation available to both 

infiltrate into the soil layers and runoff to form streamflow. As the fraction of 

vegetation generally does not change significantly within a month, the monthly 

data set made available through MODIS is adequate. 

2.1.2. Forcing data 

The successful implementation of any hydrologic model hinges upon the quality 

of forcing data used. The hydrologic model captures the key processes rainfall 

undergoes to become streamflow. Rainfall and potential evapotranspiration 

(PET) form the key data sets that are required and used to represent the 

evapotranspiration process, the partitioning of incident rainfall into surface and 

sub-surface flows, and sub-sequent river flows.  

 Rainfall 

The three main sources of rainfall measurements come from: in-situ gauges, 

ground based weather radars, and satellite-based weather sensors. A robust 

calibration of rainfall-runoff models to historical data provides an essential 

foundation for a flood forecasting model. The calibration of rainfall runoff models 

has typically been conducted using measurements from in-situ gauges. The 

required rain gauge density depends on catchment size and consequently the 
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spatial distribution of rainfall across the catchment. When available, the use of 

radar-based measurements to calibrate the rainfall-runoff model can be 

considered a suitable substitute for catchments with poor in-situ gauge density. 

Regardless of the source of measurement, rainfall observations are prone to 

errors which can manifest for a number of different reasons. Using the Australian 

Water Availability Project (AWAP) Australian Bureau of Meteorology (BoM) 

gridded rainfall data as a benchmark, Robertson et al. (2015)1 developed a 

quality control strategy to detect and remove in-situ rainfall observations which 

are: 

 Anomalously large, 

 Anomalously small, 

 Not associated with the correct time stamp. 

They demonstrated that pre-processing of in-situ rainfall data with the AWAP BoM 

gridded daily rainfall allows for improved runoff simulation skill in both calibration 

and validation periods. 

In-situ rainfall data is commonly used for flood forecasting purposes throughout 

this project and recommended for future operational flood forecasting. The 

AWAP BoM gridded daily rainfall product is recommended for use in quality 

control purposes. 

 Potential Evapotranspiration 

In conjunction with the fraction of vegetation cover, PET rates are necessary to 

determine the partitioning of rainfall into various runoff processes. Since PET 

predominantly influences seasonal water availability, a resolution finer than one 

month is unlikely to provide significant improvements to flood forecasting 

capability. Consequently, the AWAP PET data set is deemed to be more than 

adequate for flod forecasting purposes.  

2.1.3. Evaluation data 

Evaluation of the hydrologic model is typically conducted by calibrating the 

model to streamflow time series data. An independent data set of 

meteorological forcings and observed streamflow is then used to validate the 

calibration of the model. Research conducted as part of this project explored 

methods to improve the model calibration process using remotely sensed soil 

moisture data.  

 Streamflow 

To forecast future flood events, which have similar characteristics to historic flood 

events, continuous rainfall runoff models are typically calibrated to historic 

streamflow records. Historic streamflow records typically estimate streamflow 

quantities based on rating curves, which translate a given water depth to a flow 

volume. Consequently, it is essential that the rating curve is up to date, and given 

practical limitations, provides a reasonable estimate of flood volume. Discharge 

and water level time series data are obtained from the BoM. 

                                                 

1 Robertson, D. E., Bennett, J. C., & Wang, Q. J. (2015.). A strategy for quality controlling hourly 

rainfall observations and its impact on hourly streamflow simulations. 
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 Soil moisture 

Soil moisture data have been used throughout this project to improve rainfall-

runoff models thereof by: 

 Forming an additional data-set to be used in calibration, 

 Improving the understanding of incident rainfall, and 

 Updating model states.  

Soil moisture observations which are made in a way that they are representative 

of catchment soil moisture states can provide detailed information regarding 

antecedent soil moisture conditions and consequently are extremely beneficial. 

In-situ soil moisture observations exhibit good temporal resolution at a variety of 

depths within the soil layer. However, in-situ soil moisture observations commonly 

do not exist or represent the catchment average which is required. Alternatively, 

remotely sensed soil moisture observations can represent the catchment 

average soil moisture, albeit for a near-surface soil layer for a snapshot in time 

every few days. Furthermore, remotely sensed soil moisture observations are 

available for the majority of catchments. In this project the Soil Moisture Ocean 

Salinity (SMOS) remotely sensed soil moisture ascending product obtained from 

Centre Aval de Traitement des Données (CATDS) is used. 

Example of datasets. This project primarily uses SMOS remotely sensed soil 

moisture data. However, depending on the application, location, and time 

period available for calibration this dataset may not be the most useful. The user 

should select a remotely sensed soil moisture product based on reported 

accuracy, application, and period of time for which the data is to be used. Both 

the SMOS and Soil Moisture Active Passive (SMAP) satellites are currently 

observing soil moisture remotely. 

TABLE 1: RECOMMENDED DATASETS FOR THE IMPLEMENTATION AND EVALUATION OF THE 

HYDROLOGIC MODEL 

 Data type Freely available datasets 

throughout Australia 

Features 

Implementation data Australian Hydrologic 

Geofabric 

http://www.bom.gov.au/wa

ter/geofabric/index.shtml 

Spatial relationships 

between important 

hydrological features such 

as rivers, water bodies, 

aquifers, and monitoring 

points 

Fractional cover of 

vegetation 

http://www.auscover.org.au

/datasets/fractional-cover-

modis/ 

500 m resolution, 1-month 

composite. 

Forcing data Rainfall http://www.bom.gov.au/cli

mate/data/ 

In-situ gauged rainfall 

observations at hourly 

intervals. 

Rainfall http://www.bom.gov.au/cli

mate/austmaps/metadata-

daily-rainfall.shtml 

Gridded daily rainfall data. 

PET http://www.csiro.au/awap/ Gridded monthly PET data. 

Evaluation data Streamflow http://www.bom.gov.au/wa

terdata/ 

In-situ gauged water levels 

converted to streamflow at 

hourly intervals. 

Remotely sensed soil 

moisture 

https://www.catds.fr/ Ascending pass level 3 

SMOS soil moisture data.  

http://www.bom.gov.au/water/geofabric/index.shtml
http://www.bom.gov.au/water/geofabric/index.shtml
http://www.auscover.org.au/datasets/fractional-cover-modis/
http://www.auscover.org.au/datasets/fractional-cover-modis/
http://www.auscover.org.au/datasets/fractional-cover-modis/
http://www.bom.gov.au/climate/data/
http://www.bom.gov.au/climate/data/
http://www.bom.gov.au/climate/austmaps/metadata-daily-rainfall.shtml
http://www.bom.gov.au/climate/austmaps/metadata-daily-rainfall.shtml
http://www.bom.gov.au/climate/austmaps/metadata-daily-rainfall.shtml
http://www.csiro.au/awap/
http://www.bom.gov.au/waterdata/
http://www.bom.gov.au/waterdata/
https://www.catds.fr/
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2.2. HYDRAULIC MODEL 

This section details the datasets required for the implementation, forcing 

(boundary conditions), and evaluation of the hydraulic model. The paragraphs 

below list the recommendations for selection of the datasets and provide 

relevant examples. Table 2 provides a list of datasets that (i) meet the minimum 

requirements and (ii) are freely available under creative commons attribution 4.0 

license (CC by 4.0) at the continental scale.  

2.2.1. Implementation data 

Hydraulic model implementation requires a representation of the morphology of 

the floodplain and of the river, and information on land cover. These datasets 

required for model implementation allow the analysis of different flood events 

and scenarios. The updating of these datasets is required only if the catchment 

undergoes relevant morphological and land cover changes. A change is 

defined relevant if the currently used morphological and/or land cover data are 

no longer reliable representations of the catchment conditions. 

 Digital Elevation Model 

A Digital Elevation Model (DEM) is a raster in which each cell value represents its 

elevation. A DEM is hence a representation of the catchment morphology 

including valley slope and flow connectivity in the floodplain and between the 

floodplain and the river network. An accurate DEM is essential for the adequate 

modelling of inundation dynamics. The accuracy of a DEM is determined 

primarily by the resolution of the measurements (that is the distance between 

sampling points), the processing of the original dataset to remove bias and 

artefacts (e.g. vegetation canopies), and the complexity of the observed area. 

Albeit, in broad terms, the higher the resolution, the higher the accuracy. 

Selection of an adequate DEM resolution for the implementation of a hydraulic 

model must account for the following factors:  

 Computational time. The finer the DEM resolution, the higher the number 

of cells used for the representation of the catchment area, the larger the 

computational time and the larger the memory usage. Consequently, it is 

imperative to achieve the optimal trade-off between DEM resolution and 

computational cost. The optimal DEM resolution is the pixel size that 

maintains enough morphological detail for the purpose of the modelling 

exercise while allowing its practical feasibility. 

 Catchment morphology. The pixel size must allow the representation of 

the main catchment morphological features. In large, lowland, nearly flat 

catchments, floodplain features can be adequately represented by a 

pixel size up to 100 m; conversely, steep areas with a complex morphology 

require a finer resolution, with an upper boundary of 30 m. 

 Purpose of the modelling study. Models used for flood forecast and land 

management planning generally require finer resolution than models 

used for scenario analysis under climate change conditions. A fine 

resolution terrain dataset may provide spurious results when the forcing 

data are affected by high uncertainty. 

 Data used for model evaluation. The pixel size of the terrain data should 

be commensurate with the resolution of the observations used for model 

evaluation. Accurate evaluation of model predictions of floodplain 
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inundation extent can be difficult when only coarser observations are 

available (section 2.2.3). 

Example of datasets. DEMs at the continental to global scale are derived from 

satellite measurements and have 101-102 m (order of magnitude difference) 

resolution. Notable examples are the Shuttle Radar Topography Mission (SRTM, 

NASA), the ASTER-DEM (ASTER GDEM, Ministry of Economy, Trade, and Industry of 

Japan in partnership with NASA), and the TanDEM-X DEM (German Aerospace 

Centre). The SRTM data where acquired in 2001 with a 3 arc-sec (~ 90 m) 

resolution. The post-processing of the SRTM-DEM led to terrain datasets widely 

used in hydraulic modelling such as the DEM-H (the Australian SRTM 

Hydrologically Enforced Digital Elevation Model 2), and the Merit Hydro3. Airborne 

LiDAR data can have 10-1 -100 meter resolution, but their spatial coverage is 

limited. The reader is invited to verify the availability of LiDAR data for their area 

of interest using the webservice maintained by Geoscience Australia at 

https://elevation.fsdf.org.au/. A comparison between DEM-H, TanDEM-X DEM, 

LiDAR data, and field measurements and their potential impacts on flood 

modelling in the Condamine-Balonne catchment (QLD) showed that riparian 

vegetation can cause large errors in both the DEM-H and TanDEM-X datasets4  . 

 River bathymetry 

Accurate modelling of river flow dynamics is essential to simulate floodplain 

inundation. Bathymetric data are thus critical to the application of hydraulic 

models. The implementation of hydraulic models for the prediction of floodplain 

inundation requires at least the following information: 

 river network connectivity to adequately simulate the flow paths; 

 river flow capacity to correctly estimate the start of floodplain inundation; 

 river width to incorporate the impacts of geometrical complexity on flood 

wave routing. 

Remote sensing data generally allow the detection of flow paths and of river 

width. The estimation of river flow capacity relies on information of river depth 

and shape.  These latter quantities cannot be systematically retrieved from a 

remote location and require field data. Clearly, it is impractical to measure river 

bathymetry along the total river length, especially in large basins and when 

considering that river geometry can change over time.  

 

 

 

                                                 
2 Gallant, J., Wilson, N., Dowling, T., Read, A., Inskeep, C. 2011. SRTM-derived 1 Second Digital 

Elevation Models Version 1.0. Record 1. Geoscience Australia, Canberra. 

http://pid.geoscience.gov.au/dataset/ga/72759 

3 Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., & Pavelsky, T. M. (2019). MERIT Hydro: 

A High-Resolution Global Hydrography Map Based on Latest Topography Dataset. Water 

Resources Research, 55(6), 5053-5073.  10.1029/2019wr024873 

4 Wang, A., Grimaldi, S., Shaadman, S., Li, Y., Pauwels, V., Walker, J.P., 2018. Evaluation of TanDEM-

X and DEM-H digital elevation models over the Condamine-Balonne catchment (Australia). In, 

Hydrology and Water Resources Symposium (HWRS 2018): Water and Communities (pp. 989-1003). 

Melbourne: Engineers Australia. 

https://elevation.fsdf.org.au/
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The following guidelines were formulated to allow a cost-effective assessment of 

river bathymetry for the implementation of hydraulic flood forecasting models: 

 A rectangular, width-varying shape with uniform longitudinal slope has 

been identified as the most effective simplified geometrical model. River 

width can be derived from remote sensing information. 

 Where river width cannot be systematically retrieved from remote sensing-

data (e.g. less than 30 m wide rivers covered by trees), a parabolic cross 

section shape can be used. 

 For both the rectangular and the parabolic geometries, depth values can 

be assessed using a combination of continental/global studies and limited 

field data (at least three measurements). The limited field data can rely 

on gauging stations or targeted, cost-effective field collections. Figure 1 

provides a graphical summary and the references to the 

continental/global studies required for the implementation of the 

proposed methodology5. In rivers a few hundred meters wide, the RiBEST 

method can be applied. This method requires a DEM as input and it is 

based on the analysis of the geometry of the floodplain for cross sections 

perpendicular to the main river stem. A sensible change of the floodplain 

slope allows the identification of the river banks and the estimation of the 

maximum river depth6, 7. 

Where field data are available, the rapid yet accurate interpolation of field 

samplings can be achieved using a two stage process. First, use of conformal 

mapping allows the development of a coordinate system fitted to the river 

geometry; second, use of a radial interpolation over this coordinate system yields 

to the three-dimensional representation of river bathymetry8. 

 Land Cover information 

Different land cover types (e.g. grassland, bushes, and forests) have a different 

impact on surface flow dynamics. In hydraulic modelling, this effect is mimicked 

by the roughness parameter according to look up tables9,10. Land cover 

information at the catchment scale is routinely derived from optical remote 

sensing data. The following recommendations are provided: 

 Resolution: the pixel size should be smaller than or equal to the pixel size 

of the DEM. 

                                                 

5 Grimaldi, S., Li, Y., Walker, J.P., Pauwels, V.R.N., 2018. Effective Representation of River Geometry 

in Hydraulic Flood Forecast Models. Water Resources Research. 54, 1031-1057 

6 Domeneghetti, A. (2016). On the use of SRTM and altimetry data for flood modeling in data-sparse 

regions. Water Resources Research, 52(4), 2901-2918.  10.1002/2015WR017967 

7 Molari, G., Grimaldi, S., Paron, P., Walker, J., Pauwels, V., Domeneghetti, A., 2020/1. RiBEST – a 

tool for river bathymetry and hydraulic parameters estimation. In preparation 

8 Hilton, J.E., Grimaldi, S., Cohen, R.C.Z., Garg, N., Li, Y., Marvanek, S., Pauwels, V.R.N., Walker, J.P., 

2019. River reconstruction using a conformal mapping method. Environmental Modelling & 

Software. 119, 197-213 

9 Chow, V. (1959). Open-channel Hydraulics. New York (USA): Mc Graw-Hill. 

10  Sadeh, Y.; Cohen, H.; Maman, S.; Blumberg, D.G. Evaluation of Manning’s n Roughness 

Coefficient in Arid Environments by Using SAR Backscatter. Remote Sens. 2018, 10, 150 
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 Time: the land cover dataset should reflect the characteristics of the 

catchment for the selected modelling period. 

 Land use information from local land management agencies might be 

useful to complement RS-derived land cover data (e.g. crops subject to 

flooded irrigation). 

 
 

 

Catchment 

area, A 

The catchment area can be retrieved from near global datasets 

(e.g. HydroSHEDS11) or computed using the Australian GEOFABRIC 

(Australian Bureau of Meteorology). 

   

Discharge 

at bank full, 

Q  

Empirical formulation: Q=αAβ; α and β are provided by studies at 

the near global scale12, and at the continental scale13. 

    

Depth, d; 

width, w, 

 

Depth: empirical formulations  Remote sensing-derived 

width  

d=γQδ; γ and δ are provided by 

studies at the near global 

scale14,15, and at the continental 

scale16,17. 

 

 

River width was derived 

from remote sensing 

data at the near global 

scale18, and at the 

continental scale19. 

FIGURE 1: SCHEMATIC FOR THE ASSESSMENT OF RIVER BATHYMETRY (THE ARROWS INDICATE THE 

CONSEQUENTIAL STEPS)5. 

 

                                                 

11 Lehner, B., Verdin, K., & Jarvis, A. (2008). New Global Hydrography Derived From Spaceborne 

Elevation Data. Eos, Transactions American Geophysical Union, 89(10), 93-94.  

10.1029/2008EO100001 

12 Andreadis, K. M., Schumann, G. J. P., & Pavelsky, T. (2013). A simple global river bankfull width 

and depth database. Water Resources Research, 49(10), 7164-7168.  10.1002/wrcr.20440 

13 Gordon, N. G. (1996). The Hydraulic Geometry of the Acheron River, Victoria, Australia. 

14 Moody, J. A., & Troutman, B. M. (2002). Characterization of the spatial variability of channel 

morphology. Earth Surface Processes and Landforms, 27(12), 1251-1266.  10.1002/esp.403 

15 Andreadis, K. M., Schumann, G. J. P., & Pavelsky, T. (2013). A simple global river bankfull width 

and depth database. Water Resources Research, 49(10), 7164-7168.  10.1002/wrcr.20440 

16 Stewardson, M. (2005). Hydraulic geometry of stream reaches. Journal of Hydrology, 306(1), 97-

111.  http://dx.doi.org/10.1016/j.jhydrol.2004.09.004 

17 De Rose, R. C., Stewardson, M. J., & Harman, C. (2008). Downstream hydraulic geometry of 

rivers in Victoria, Australia. Geomorphology, 99(1), 302-316.  

http://dx.doi.org/10.1016/j.geomorph.2007.11.008 

18 Yamazaki, D., O'Loughlin, F., Trigg, M. A., Miller, Z. F., Pavelsky, T. M., & Bates, P. D. (2014). 

Development of the Global Width Database for Large Rivers. Water Resources Research, 50(4), 

3467-3480.  10.1002/2013WR014664 

19 Hou, J., van Dijk, A. I. J. M., Renzullo, L. J., Vertessy, R. A., & Mueller, N. (2019). 

Hydromorphological attributes for all Australian river reaches derived from Landsat dynamic 

inundation remote sensing. Earth Syst. Sci. Data, 11(3), 1003-1015.  10.5194/essd-11-1003-2019 
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2.2.2. Boundary conditions 

Boundary conditions are required for modelling specific flood events. First, 

boundary conditions define how much water is entering the catchment; this 

information can be provided by discharge gauge stations, rain observations, or 

by the hydrologic model. This type of boundary conditions is often reffered to as 

input conditions. Second, boundary conditions define the flow routing at the 

edges of the computational domain (i.e. at the edges of the DEM). If the river 

mouth is included in the modelled area, the downstream boundary condition is 

given by measured or predicted (e.g. tidal model) water level time series. If the 

river mouth is not modelled, the slope of the downstream valley has to be 

assessed using the DEM to enable the application of normal flow boundary 

conditions. The following points provide recommendations for the selection of 

the datasets used to prepare the boundary conditions: 

 The accuracy of these datsets, with specific regard to the input 

conditions, is crucial for the accuracy of the model (section “Uncertainties 

and limitations”), hence, extreme care must be taken to handle 

inaccuracies and gaps in the measurements. 

 The temporal resolution of the dataset must allow for the representation 

of the relevant features of the time series: rising limb, flood peak, 

decreasing limb, tidal range. This resolution does not impact the model 

computational time; hence, the finest reliable resolution can be used. 

2.2.3. Evaluation data 

Evaluation of floodplain inundation prediction dynamics requires the 

quantitative comparison between model results and observations.  Such a 

quantitative comparison allows the verification of the model implementation 

and/or to calibrate model parameters. Gauged data and high-water marks 

have been traditionally used for this purpose; crowd sourced data could also be 

used in densely populated areas. RS observations have gained extensive interest 

as they allow a synoptic view of large areas and the monitoring of remote 

locations. This section provides guidelines for the selection of the RS observations. 

A) Remote sensimg sensor and remote sensing-derived observations. 

 Optical and Synthetic Aperture Radar (SAR) instruments enable the 

mapping of inundation extents. These instruments can provide high to low 

resolution data. Remote sensing data spatial resolution is the size of the 

smallest object that can be resolved on the ground; the image pixel size 

quantifies the spatial coverage of a pixel in the real world. For instance, 

Sentinel-1 SAR data have ~20 m resolution and ~10 m pixel spacing. A 

sensors’ resolution can be fine (~100 m), medium (~101 m), or low (~102 m). 

 Passive microwave and radar altimeter instruments provide useful 

information only for large catchments (>103 m resolution and river width 

larger than 102 m), consequently, use of data from optical and SAR 

instruments is recommended for the purpose of constraining the hydraulic 

model in Australian catchments20. 

                                                 

20 Grimaldi, S., Li, Y., Pauwels, V.R.N., Walker, J.P., 2016. Remote Sensing-Derived Water Extent and 

Level to Constrain Hydraulic Flood Forecasting Models: Opportunities and Challenges. Surveys in 

Geophysics. 37, 977-1034 
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 Optical instruments allow flood monitoring only during day time, in cloud 

free conditions, and in areas without thick tree canopies; conversely, SAR 

instruments are not affected by these limitations. SAR sensors are then to 

be considered as the primary source of information. Optical sensors can 

provide relevant complementary information, nevertheless the user must 

be aware of potential omission errors (clouds, cloud shadows, vegetation 

canopies). Consequently, the user is advised to use optical data only to 

detect omission errors in the model results. 

 SAR and optical sensors are used to derive floodplain inundation extent; 

this remote sensing-derived inundation extent can then be overlaid onto 

a DEM to extract the planar position and elevation of the points at edge 

between the flooded and the dry area (wet/dry boundary points). 

B) Resolution. 

 High resolution sensors (or sensor mode) have a lower acquisition 

frequency and target smaller areas than medium to low resolution sensors. 

Consequently, the use of medium resolution RS data allows to rely on a 

larger number of observations acquired over larger areas.  

 Remote sensing-derived observations are compared with model results. 

The resolution of the hydraulic model is defined by the resolution of the 

terrain implementation data: fine resolution observation data are not 

strictly required to evaluate medium resolution results. 

 Medium to coarse resolution observations can be used to monitor 

floodplain inundation dynamics in large, lowland floodplains; high 

resolution observations are strictly required in urban areas. 

C) Acquisition time.  

 Images acquired during the rising limb and close to the flood peak are 

expected to allow detecting sensible variations of inundation extent and 

level. The use of these observations is recommended for the evaluation of 

floodplain inundation models20, 21, 22.  

 Use of images acquired during the late stages of valley filling events 

require some further consideration. Variations of flood extent can be very 

difficult to detect when a valley is full, meaning that acquisitions at 

different times can provide similar information. In these scenarios, use of 

remote sensing-derived water level could allow the detection of the 

temporal dynamics of the flood event. Nevertheless, adequate estimates 

of remote sensing derived water level require high resolution and high 

accuracy DEMs. 

 The measured or predicted flood hydrograph at the upstream location of 

the catchment can be used to assess the timing of the rising limb and 

flood peak and hence identify the optimal acquisition window.  

D) Spatial coverage. 

 The larger the footprint of the observed area, the higher the information 

content (at a lower spatial resolution, as explained in point B).  

                                                 

21 Pauwels, V., Walker, J., Grimaldi, S., Wright, A., Li, Y., 2020. Improving flood forecast using 

remote sensing data - annual report 2019-2020. Melbourne, in: Bushfire and Natural Hazards CRC. 

22 Dasgupta, A., 2020. Optimizing Flood Extent Assimilation for Improved Flood Inundation Forecasts. 

In. Mumbai: IITB Monash Research Academy. 
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 Use of images acquired over the upstream area of the catchment is 

recommended to improve the inundation modelling accuracy in the 

downstream areas of the catchment. 

 Acquisitions targeting areas where a small variation of discharge/water 

level leads to a large variation of flood extent (thereafter referred to as 

critical areas) are preferred. Examples include: areas protected by levee 

systems, gorges, and large floodplains. 

 Analyses of databases of historical observations of surface water such as 

Water Observations from Space23 can support the identification of these 

critical areas. 

 Analysis of the hydraulic behaviour of the catchment and of the model 

response to different parameter or input time series is an effective 

methodology to identify critical areas and morphological singularities. 

More specifically, it is recommended to complete a sensitivity analysis of 

the impact of different parameters and input time series on the prediction 

of flood extent and levels. The areas with morphological singularities can 

then be identified as the areas where small variations of the parameters’ 

values or small discrepancies in the input datasets result in large variations 

of flood extents and levels. Targeted observations of such areas enable to 

effectively evaluate a model’s performance. For instance, small variation 

of parameter values can lead to large variations in the prediction of flood 

extents in areas with levee systems24.  Moreover, small discrepancies in the 

input flood hydrographs can result in sensibly different predictions of flood 

extents in presence of gorges and natural restrictions25. 

Examples of datasets. A notable example of remote sensing -derived inundation 

layers retrieved from optical data at the continental scale is Water Observations 

from Space; an example of a global dataset is provided at https://global-

surface-water.appspot.com/ 26. A number of algorithms have been proposed for 

the retrieval of flood extents from remote sensing data27. This BNHCRC project 

has focussed on the mapping of floods in areas with emerging vegetation using 

one SAR acquisition and commonly available datasets28, that is, a common 

scenario in Australian applications. The proposed algorithm will be available via 

GitHub: https://github.com/GeoscienceAustralia/dea-sar-flood-veg (under 

development).  

                                                 

23 Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R., Sixsmith, J., . . . Ip, A. (2016). Water 

observations from space: Mapping surface water from 25 years of Landsat imagery across 

Australia. Remote Sensing of Environment, 174, 341-352. http://dx.doi.org/10.1016/j.rse.2015.11.003 

24 Pauwels, V., Walker, J., Grimaldi, S., Wright, A., Li, Y., 2019. Improving flood forecast using 

remote sensing data - annual report 2018-2019. Melbourne, in: Bushfire and Natural Hazards CRC 

25 Grimaldi, S., Schumann, G.J.-P., Shokri, A., Walker, J.P., Pauwels, V.R.N., 2019b. Challenges, 

Opportunities, and Pitfalls for Global Coupled Hydrologic-Hydraulic Modeling of Floods. Water 

Resources Research. 55, 5277-5300 

26 Pekel, J.-F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global 

surface water and its long-term changes. Nature, 540(7633), 418-422.  Doi: 10.1038/nature20584 

27 Dasgupta, A., Grimaldi, S., Ramsankaran, R.A.A.J., Pauwels, V.R.N., Walker, J.P., 2018. Towards 

operational SAR-based flood mapping using neuro-fuzzy texture-based approaches. Remote 

Sensing of Environment. 215, 313-329 

28 Grimaldi, S., Xu, J., Li, Y., Pauwels, V.R.N., Walker, J.P., 2020. Flood mapping under vegetation 

using single SAR acquisitions. Remote Sensing of Environment. 237, 111582 

https://github.com/GeoscienceAustralia/dea-sar-flood-veg
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TABLE 2: RECOMMENDED DATASETS FOR THE IMPLEMENTATION AND EVALUATION OF THE 

HYDRAULIC MODEL. 

 Data type Freely available datasets at the 

continental scale; reference(s) 

Features 

IM
P
LE

M
E
N

TA
TI

O
N

zr
il
la

n
d

it
 

Digital 

elevation 

model 

1 second SRTM Derived Hydrological Digital 

Elevation Model (DEM-H)1; Geoscience 

Australia 

https://elevation.fsdf.org.au/; 

http://www.ga.gov.au/scientific-

topics/national-location-

information/digital-elevation-data  

Pixel size: 1arc-sec (~ 30m). 

The DEM-H captures flow 

paths based on SRTM 

elevations and mapped 

stream lines (ANUDEM 

software).  

River width Temporal and spatial river width dynamics, 

flow regime, and river gradient for 1.4 

million Australian river reaches11, Australian 

National University. 

http://wald.anu.edu.au/data_services/dat

a/hydromorphological-attributes-for-all-

australian-river-reaches/  

This dataset was 

developed based on 

surface water recurrence 

information from WOfS 

and GIS-based 

hydrological features from 

the Australian Geofabric.  

Land cover  National Dynamic Land Cover Dataset of 

Australia; Geoscience Australia. 

http://www.ga.gov.au/scientific-

topics/earth-obs/accessing-satellite-

imagery/landcover 

Pixel size: 250 m. 

 

F
O

R
C

IN
G

 

Discharge 

and water 

level time 

series 

Gauged data: Water data online, 

Australian Bureau of Meteorology. 

http://www.bom.gov.au/waterdata/  

 

Modelled data: hydrological model. 

In-situ gauged water 

levels converted to 

streamflow at hourly 

intervals. 

E
V

A
LU

A
TI

O
N

 

Flood extent OPTICAL DATA: 

Water Observations from Space (WOfS), 

Geoscience Australia. 

WOfS displays the detected surface water 

from the Australia-wide Landsat satellite 

imagery archive since 1987 to present. 

https://www.ga.gov.au/scientific-

topics/community-safety/flood/wofs 

https://maps.dea.ga.gov.au/  

Pixel size: 25 m. 

Acquisition frequency: 8 

to 16 days. 

 SAR DATA:   

https://github.com/GeoscienceAustralia/d

ea-sar-flood-veg  (under development) 

 

Wet/dry 

boundary 

points 

There are no readily available datasets. 

The retrieval of the remote sensing-derived 

wet/dry boundary points in the Clarence 

catchment has been shown by published 

studies29 , 30 

Recommended when 

high resolution and 

accuracy DEMs are 

available. 

                                                 

29 Pauwels, V., Walker, J., Grimaldi, S., Wright, A., Li, Y., 2020. Improving flood forecast using 

remote sensing data - annual report 2019-2020. Melbourne, in: Bushfire and Natural Hazards CRC. 

30 Mason, D.C., Schumann, G.J.P., Neal, J.C., Garcia-Pintado, J., Bates, P.D., 2012. Automatic near 

real-time selection of flood water levels from high resolution Synthetic Aperture Radar images for 

assimilation into hydraulic models: A case study. Remote Sensing of Environment. 124, 705-716 

https://elevation.fsdf.org.au/
http://www.ga.gov.au/scientific-topics/national-location-information/digital-elevation-data
http://www.ga.gov.au/scientific-topics/national-location-information/digital-elevation-data
http://www.ga.gov.au/scientific-topics/national-location-information/digital-elevation-data
http://wald.anu.edu.au/data_services/data/hydromorphological-attributes-for-all-australian-river-reaches/
http://wald.anu.edu.au/data_services/data/hydromorphological-attributes-for-all-australian-river-reaches/
http://wald.anu.edu.au/data_services/data/hydromorphological-attributes-for-all-australian-river-reaches/
http://www.ga.gov.au/scientific-topics/earth-obs/accessing-satellite-imagery/landcover
http://www.ga.gov.au/scientific-topics/earth-obs/accessing-satellite-imagery/landcover
http://www.ga.gov.au/scientific-topics/earth-obs/accessing-satellite-imagery/landcover
http://www.bom.gov.au/waterdata/
https://www.ga.gov.au/scientific-topics/community-safety/flood/wofs
https://www.ga.gov.au/scientific-topics/community-safety/flood/wofs
https://maps.dea.ga.gov.au/
https://github.com/GeoscienceAustralia/dea-sar-flood-veg
https://github.com/GeoscienceAustralia/dea-sar-flood-veg
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 NUMERICAL MODEL SELECTION 

Both the hydrologic and hydraulic models need to be carefully and correctly 

setup for the value of remote sensing data to be realised. The following sections 

outline possible steps to choose and setup hydrologic and hydraulic models. 

3.1.  HYDROLOGIC MODEL 

3.1.1. Model structure, purpose and limitations 

With a myriad of rainfall-runoff models available it is prudent to select a model 

that meets key requirements. To support the selection of a rainfall-runoff model 

which has the capability to take advantage of remotely sensed soil moisture for 

flood forecasting purposes the following recommendations are made: 

 Use of a continuous model which simulates lumped catchment processes 

such as soil moisture dynamics, surface and sub-surface storage and 

flows, and interactions between PET and the associated water storages. 

It is this distinction between continuous rainfall-runoff models and event-

based rainfall runoff models that makes continuous rainfall-runoff models 

well suited to take advantage of the information that remotely sensed soil 

moisture observations provide.  

 The model should have proven ability to simulate streamflow amongst 

Australian catchments. 

 The model can be used in real time to produce ensemble forecasts. 

 The spatial representation of rainfall should be covered within a sub-

catchment or grid. 
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The dominant processes need to be well represented31. A suitable model that fits 

these recommendations and has been implemented in forming these 

recomendations is the GRKAL variant of GR4J depicted in figure 2. GRKAL is a 

conceptual rainfall-runoff model that is designed to capture the essential surface 

layer soil moisture dynamics necessary to incorporate remotely sensed soil 

moisture observations.  

 

More complex physically based models may simulate rainfall-runoff dynamics 

with greater precision and generate more detailed output. However, as the 

model representation becomes finer and more distributed a larger number of 

parameters need to be calibrated. The computational time becomes 

cumbersome as well. Further, it is not realistic to expect historic streamflow 

records to always exhibit similar characteristics such as the timing, duration and 

peak flow to those which will be observed in future flood events. It is for this reason 

that conceptual or physically based rainfall runoff models are preferred to those 

models which provide little explanation or reasoning for the occurrence of 

events.  

  

                                                 
31  Francois, C., Quesney, A., & Ottlé, C. (2003). Sequential Assimilation of ERS-1 SAR Data into a 

Coupled Land Surface–Hydrological Model Using an Extended Kalman Filter. J. 
Hydrometeorol., 4(2), 473–487. https://doi.org/10.1175/1525-
7541(2003)4<473:SAOESD>2.0.CO;2 

 

Figure 2: a representation of how GRKAL treats key rainfall runoff processes. Adapted from (Francois 

et al., 2003). 
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3.1.2. Model outputs 

The key output from rainfall-runoff models is the streamflow at any given time 

step. This streamflow volume can be converted to a depth in a forecasting 

situation using a rating curve or used to force a hydraulic model. Depending on 

the model, surface layer and root zone soil moisture profiles can also be 

extracted.  

3.2. HYDRAULIC MODEL 

3.2.1. Model structure, purpose, and limitations 

With the large number of hydraulic models available32, it is important to select a 

model that allows the accurate prediction of floodplain inundation dynamics 

and facilitates the comparison between modelled and observed inundation 

extents and level. For this purpose, the following recommendations are made: 

 Use of a 2-dimensional (2-D) model is essential to adequately predict 

flow connectivity in the floodplain and between floodplain areas and 

the river network; 

 The numerical code must adequately solve the shallow water equations 

and hence enforce the conservation of mass and momentum. 

 Simplified formulations of the conservation of momentum, such as the 

diffusive and the inertial formulation, are adequate for the modelling of 

floodplain inundation (where the vertical gradient of flow velocity is 

negligible) and allow a reduced computational time compared to the 

numerical codes solving the full shallow water equations.  

 Raster-based models have a higher practicality as DEMs can be used to 

implement the model without further post-processing and the output 

data have the same structure as the remote sensing observations. 

The above points allow the selection of a model that can be used for the 

prediction of floodplain inundation dynamics. Nevertheless, it is imperative to 

state that such (relatively simple) models cannot be used for the investigation of: 

 tsunamis; 

 dam-breaks; 

 solid transport, erosion, deposition, fluvial geomorphology, landscape 

evolution; 

 bridge, levees, river banks scour; 

 interaction with the groundwater table; 

 manholes, sewage and aqueduct systems; or 

 flow in buildings. 

All the phenomena listed above require more complex (and time consuming) 

numerical models which are capable of solving the Navier-Stoke equations. One 

notable example of a numerical model formulated for the modelling of tsunamis 

                                                 
32 Néelz, S., & Pender, G. (2013). Benchmarking the latest generation of 2D hydraulic 

modelling packages. Environment Agency, Horison House, Deanery Road, Bristol, BS1 

9AH 
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and dam-breaks is ANUGA (https://anuga.anu.edu.au/).  One notable example 

of a numerical model formulated for the modelling of fluvial geomorphology is 

Caesar Lisflood, (https://sourceforge.net/projects/caesar-lisflood/). 

The model used in formulating these guidelines is based on LISFLOOD-FP33 and 

uses the finite difference method to solve the inertial approximation of the 

shallow water equations. This model has proved to be accurate against 

analytical solutions and hydrodynamic models, while also being more 

computationally efficient than diffusive models. Nevertheless, the methodologies 

presented in these guidelines for the comparison between modelled and 

remote-sensing derived inundation extent and level can be applied when using 

any other 2-dimensional hydraulic model. 

3.2.2. Model outputs 

At any computational time step, 2-D hydraulic models compute water depth 

and discharge for each cell of the computational domain. Water levels are 

computed by adding water depth to the DEM elevation. The average cell flow 

velocity is the ratio between the discharge and the flow area (water depth 

multiplied by the cell size). Selection of the output data should be based on the 

following considerations: 

 Scope of the study; e.g. is the maximum flood extent the only prediction 

of interest? 

 Availability of evaluation data; remote sensing-derived acquisitions 

available at discrete (often larger than daily) time intervals. 

 Features of the flood event; in many catchments, the receding phase is 

extremely slow and it can be studied using a few model predictions per 

day. 

                                                 

33 Bates, P. D., Horritt, M. S., & Fewtrell, T. J. (2010). A simple inertial formulation of the shallow 

water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology, 

387(1–2), 33-45.  http://dx.doi.org/10.1016/j.jhydrol.2010.03.027 

 

https://anuga.anu.edu.au/
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 USE OF REMOTE SENSING DATA TO IMPROVE 

MODEL FORECAST SKILL 

These guidelines assert that remote sensing data can be been used to: 

 Aid in the calibration of rainfall-runoff models for ungauged locations; 

 Provide a pragmatic basis to choose between combinations of 

hydrologic model and remotely sensed soil moisture product; 

 Update intermediate soil moisture states to improve forecast skill; 

 Enhance performance metrics; 

 Verify and optimise the implementation of the hydraulic model; and 

 Calibrate the parameters of the hydraulic model. 

The rest of this section provides the guidelines for the use of remote sensing data 

to improve the forecasting capability of hydrologic and hydraulic models. 

4.1. HYDROLOGIC MODEL 

4.1.1. Performance metrics 

For streamflow simulation there is no widely regarded performance metric which 

consistently outperforms other performance metrics. The commonly applied 

approach in Australia the use an unweighted average of metrics which 

represent low, medium, and high flows and overall bias34 is recommended.  

4.1.2. Multi-objective calibration 

Typically, rainfall runoff models are calibrated using historical streamflow to 

optimize streamflow simulations. Multi-objective calibration methods have been 

used to find a balance between competing objective functions which rank the 

rainfall-runoff models’ ability to simulate streamflow and soil moisture35. By 

definition, multi-objective calibration will not improve the capability of the model 

to simulate streamflow at gauge locations for which calibration occurs. 

In forming these recomendations, a study to discern the capability of using 

remotely sensed soil moisture in multi-objective calibration scenarios to improve 

                                                 

34 Bennett, J. C., Robertson, D. E., Ward, P. G. D., Hapuarachchi, H. A. P., & Wang, Q. J. (2016). 

Calibrating hourly rainfall-runoff models with daily forcings for streamflow forecasting applications 

in meso-scale catchments. Environ. Model. Softw., 76, 20–36. 

https://doi.org/10.1016/j.envsoft.2015.11.006 

35 Li, Y., Grimaldi, S., Pauwels, V. R. N., & Walker, J. P. (2018). Hydrologic model calibration using 

remotely sensed soil moisture and discharge measurements: The impact on predictions at gauged 

and ungauged locations. J. Hydrol., 557, 897–909. https://doi.org/10.1016/j.jhydrol.2018.01.013 
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streamflow simulation skill in ungauged sub-catchments was conducted36. The 

study catchments and locations of internal gauges are shown in figure 3. 

The GRKAL hydrologic model was setup in a semi-distributed fashion to simulate 

streamflow within the Condamine-Balonne and Clarence River catchments. 

Using a multi-objective calibration approach which utilizes remotely sensed soil 

moisture data for all sub-catchments and only streamflow at the downstream 

gauges, consistent improvements in streamflow simulation skill at internal sub-

catchments was demonstrated. This finding indicates that remotely sensed soil 

moisture can be used to improve flood forecasts for ungauged locations 

upstream of a gauge. 

4.1.3. Choosing between models and remotely sensed soil 

moisture data sets 

A common problem hydrologists face is that different models and remotely 

sensed soil moisture data sets may be more useful in one catchment than 

another. Typically, choices between models are based on familiarity, past 

                                                 

36 Li, Y., Grimaldi, S., Pauwels, V. R. N., & Walker, J. P. (2018). Hydrologic model calibration using 

remotely sensed soil moisture and discharge measurements: The impact on predictions at gauged 

and ungauged locations. J. Hydrol., 557, 897–909. https://doi.org/10.1016/j.jhydrol.2018.01.013 

FIGURE 3: STUDY CATCHMENTS AND GAUGE LOCATIONS USED IN THE MULTI-OBJECTIVE 

CALIBRATION OF GRKAL USING REMOTELY SENSED SOIL MOISTURE AND STREAMFLOW. 

ADAPTED FROM (LI ET AL., 2018). 
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performance, and widespread usage. However, with the growing availability of 

soil moisture products it is prudent that hydrologists choose models that can take 

advantage of such observations and tailor the choice of hydrologic model to 

the characteristics of the catchment.  

In forming these guidelines, a pragmatic approach was developed to aid in the 

decision-making process37. This approach built upon previous research to 

estimate rainfall time series and model parameter distributions using model input 

data reduction methods38. This approach evaluates the innovations of the 

Ensemble Kalman Filter (EnKF) using optimized rainfall products, three 

hydrological models, and two remotely sensed soil moisture products.  When 

rainfall, simulated and observed soil moisture products are in agreement, 

innovations of the EnKF should display properties of white noise. As seen in figure 

4 it is completely realistic for soil moisture simulations obtained from a given 

hydrological model and optimized rainfall product, to exhibit greater similarity to 

one remotely sensed soil moisture product than another. 

A different hydrological model may produce soil moisture simulations with 

greater similarity to an alternative remotely sensed soil moisture product. It is 

therefore recommended that hydrologists remain open to assessing different 

models and products for different catchments. As a rule of thumb, rainfall 

uncertainty should be represented with an ensemble, three hydrological models 

should be tested and two remotely sensed soil moisture products should be 

checked.  

                                                 

37 Wright, A.J., Walker, J. P., & Pauwels, V. R. N. (2018). Identification of hydrologic models, optimized 

parameters, and rainfall inputs consistent with in situ streamflow and rainfall and remotely sensed 

soil moisture. J. Hydrometeorol., 19(8). https://doi.org/10.1175/JHM-D-17-0240.1 

38 Wright, Ashley J., Walker, J. P., & Pauwels, V. R. N. (2017). Estimating rainfall time series and model 

parameter distributions using model data reduction and inversion techniques. Water Resour. Res., 

53(8), 6407–6424. https://doi.org/10.1002/2017WR020442 

FIGURE 4: INNOVATIONS FOR A NUMBER OF HYDROLOGIC MODELS, OPTIMIZED RAINFALL, AND 

REMOTELY SENSED SOIL MOISTURE. ADAPTED FROM (WRIGHT ET AL., 2018). 
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4.1.4. Data assimilation – Warwick and Paddys Flat 

As part of a literature review conducted for developing these guidelines39, 

strategies to improve the capability of rainfall-runoff models forecasting 

capability were outlined. The following two strategies have shown considerable 

potential: 

 Addressing the bias between remotely sensed and modelled soil moisture, 

and 

 Developing an assimilation procedure to utilize soil moisture and 

streamflow data together. 

Biases between simulated and remotely sensed soil moisture have consistently 

been observed. Attempts to address this bias have come in the form of bias 

aware filtering processes, matching the cumulative distribution function (CDF) of 

the remotely sensed soil moisture product to the CDF of the simulated soil 

moisture, and incorporating the remotely sensed soil moisture observations into 

the calibration routine. The latter two approaches reduce the information 

content by attributing all bias to either the simulated or remotely sensed soil 

moisture observation. The quality of rainfall data and potential biases within are 

expected to contribute to biases within the modelled soil moisture. To effectively 

consider potential improvements assimilating remotely sensed soil moisture may 

have on flood forecasts, it is imperative that studies are performed with consistent 

and high-quality rainfall products. Data assimilation approaches which consider 

smoothing and filtering variants and independent and joint assimilation of 

remotely sensed soil moisture and streamflow were compared using the 

traditional CDF matching approach and an approach which optimized rainfall 

gauge weights40. The results can be seen in figure 5. 

                                                 

39 Li, Y., Grimaldi, S., Pauwels, V. R. N., & Walker, J. P. (2018). Hydrologic model calibration using 

remotely sensed soil moisture and discharge measurements: The impact on predictions at gauged 

and ungauged locations. J. Hydrol., 557, 897–909. https://doi.org/10.1016/j.jhydrol.2018.01.013 

40 Wright, A., Robertson, D.E., Walker, J., Pauwels, V.R.N., 2020. Insights from a new methodology to 

optimize rain gauge weighting for rainfall-runoff models. In preparation. 

FIGURE 5: COMPARISON OF DATA ASSIMILATION SETUPS FOR A TRADITIONAL APPROACH AND 

OPTIMIZED RAINFALL APPROACH 
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These results demonstrate that improved rainfall products are likely to lead to 

improvements in remotely sensed soil moisture data assimilation and further 

improvements in flood forecasting skill. It should be noted that since different 

catchments commonly have poorer rainfall gauge density, these 

recommendations may not be generic. 

4.2. HYDRAULIC MODEL 

The comparison between model results and remote sensing-derived 

observations requires the use of adequate performance metrics to quantify the 

agreement between modelled and observed flood extents and wet/dry 

boundary points. The computation of these performance metrics then allows the 

evaluation of a model’s performance and consequently supports the verification 

of model implementation, and the calibration of the parameters. 

4.2.1. Performance metrics 

 Flood extent 

Modelled inundation extent at the acquisition time of the remote sensing 

observation are extracted from the model results (section 3.1.2). Areas with 

modelled water depth higher than or equal to 0.01 m are considered as wet, 

with the remainder of the modelled domain considered as dry. Modelled 

inundation depths up to 0.01 m are excluded from the wet area to eliminate 

spurious numerical results. The use of a raster format for model output allows a 

straightforward comparison with remote sensing-derived inundation layers. 

Modelled and observed layers are divided into discrete categories of wet/dry 

cells (see section 5.3 for a discussion on remote sensing uncertainty and the 

deterministic approach) to build a contingency table which reports the number 

of pixels correctly and incorrectly predicted as wet or dry (Table 3). The 

agreement between modelled and observed inundation extent is then 

quantified using binary performance metrics such as the Critical Success Index, 

False Alarm Rate, Hit Rate, and Bias.  However, each binary performance metric 

is affected by limitations such as the sensitivity to the magnitude of the flood, the 

shape of the valley, and the resolution of the model. Consequently, the 

conjunctive use of a number of performance metrics is recommended as a 

viable solution41. Table 3 reports the most commonly used metrics. Furthermore, 

model realizations can be ranked based on the conjunctive use of the metrics. 

More specifically, each one of the N model realizations is given a relative score 

ranging from 1 (highest agreement with the RS observations) to N (lowest 

agreement with the RS observations). The total score of each model realization 

is given by the sum of the relative scores. Hence, the higher the agreement 

between a model realization and the RS-derived flood extent, the lower the total 

score42.  

                                                 

41 Grimaldi, S., Li, Y., Pauwels, V.R.N., Walker, J.P., 2016. Remote Sensing-Derived Water Extent and 

Level to Constrain Hydraulic Flood Forecasting Models: Opportunities and Challenges. Surveys in 

Geophysics. 37, 977-1034 

42 Pauwels, V., Walker, J., Grimaldi, S., Wright, A., Li, Y., 2020. Improving flood forecast using 

remote sensing data - annual report 2019-2020. Melbourne, in: Bushfire and Natural Hazards CRC. 
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TABLE 3: PERFORMANCE METRICS TO QUANTIFY THE AGREEMENT BETWEEN MODELLED AND 

OBSERVED INUNDATION EXTENT AND WET/DRY POINTS. 
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 Observation wet Observation dry 

Model wet A B 

Model dry C D 
 

Critical Success 

Index (CSI) 

𝐴

𝐴 + 𝐵 + 𝐶
 

Optimal value: 1. 

 

Bias 𝐴 + 𝐵

𝐴 + 𝐶
 

Optimal value: 1; bias>1 

overestimation; bias<1 

underestimation. 

Hit Rate 𝐴

𝐴 + 𝐶
 

Optimal value: 1. 

False Alarm 

Rate 

𝐵

𝐵 + 𝐷
 

Optimal value: 0. 
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Point Score 

(WLS) 

𝑊𝐿𝑝𝑜𝑖𝑛𝑡 = 𝑀𝑜𝑑 − 𝑂𝑏𝑠 

or 

𝑊𝐿𝑝𝑜𝑖𝑛𝑡 =
𝑀𝑜𝑑 − 𝑂𝑏𝑠, 𝑚𝑒𝑑𝑖𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 

0.5(𝑂𝑏𝑠, 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 −  𝑂𝑏𝑠, 𝑚𝑖𝑛𝑖𝑚𝑢𝑚)
 

𝑊𝐿𝑆 =
∑ √𝑊𝐿𝑝𝑜𝑖𝑛𝑡𝑖

2𝑛
𝑖=1  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 

𝑀𝑜𝑑 = 𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 

𝑂𝑏𝑠 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 

𝑊𝐿𝑝𝑜𝑖𝑛𝑡 is defined to account for the possibility of 

several observations falling within the same modelled 

cell. 

𝑊𝐿𝑝𝑜𝑖𝑛𝑡 = 0 if the modelled water level is equal to the 

observed value or at the midpoint of the interval of 

the observed values. 

Optimal value: 0. 

 Wet/dry boundary points  

Remote sensing derived wet/dry boundary points have three coordinates: two 

planar coordinates (Easting and Northing) and one elevation coordinate. The 

complete set of coordinates is used when a high resolution and a high accuracy 

DEM is available. When only low to medium resolution and accuracy DEMs are 

available, only the planar coordinates are used. 

A) Modelled and observed water level of the wet/dry boundary points. 

Modelled water levels are extracted from the model results at the position of 

each remote sensing-derived wet/dry boundary point for the acquisition time of 

the remote sensing data. If a water level observation is located in a dry modelled 

cell, the modelled water level is retrieved from the nearest modelled wet cell. 

The agreement between modelled and observed water levels at the wet/dry 

boundary can be quantified using the RMSE, the point score43 (Table 3), and the 

                                                 

43 Savage, J. T. S., Bates, P., Freer, J., Neal, J., & Aronica, G. (2016). When does spatial resolution 

become spurious in probabilistic flood inundation predictions? Hydrological Processes, 30(13), 

2014-2032.  10.1002/hyp.10749 
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Student t-test. Moreover, the scatterplot representing the modelled water level 

(y-axis) and the observed water level (x-axis) allows the identification of 

overestimation and underestimation errors44. 

B) Modelled and observed planar position of the wet/dry boundary points. 

The planar position of the wet/dry boundary points represents the flood edge. 

The analysis of the planar distance and of the temporal discrepancy between 

the modelled and observed flood edge provides relevant information on the 

model’s capability to represent inundation extent and dynamics45. 

4.2.2. Verification of the model implementation 

Inaccurate representation of the river flow capacity and the floodplain 

morphological features unavoidably lead to inaccurate predictions of 

inundation dynamics. Remote sensing-derived observations can be used to 

detect and correct these inaccuracies:  

 Remote sensing -derived water level can be used to identify and correct 

inaccurate representation of river bathymetry46. River geometry and 

roughness can be estimated through calibration, but different parameter 

sets can often map model predictions to the observed data generating 

an equifinality problem. Without an adequate representation of river 

geometry, the calibrated effective values can lead to spurious 

nonphysical effects47.   

 Remote sensing-derived inundation extent allows the detection of new 

flood paths that are not incorporated in the DEM (e.g. the SRTM mission 

was completed in 2001). Moreover, DEMs may not represent the levee 

systems or be affected by the inaccurate representation of catchment 

morphological features such as gorges48. These inaccuracies can be 

detected by the comparison between modelled and observed 

inundation extent and their impact on floodplain inundation dynamics 

can be introduced via inverse modelling in the catchment49. 

                                                 

44 Grimaldi, S., Li, Y., Walker, J.P., Pauwels, V.R.N., 2018. Effective Representation of River 

Geometry in Hydraulic Flood Forecast Models. Water Resources Research. 54, 1031-1057 

45  Pauwels, V., Walker, J., Grimaldi, S., Wright, A., Li, Y., 2020. Improving flood forecast using 

remote sensing data - annual report 2019-2020. Melbourne, In: Bushfire and Natural Hazards CRC 

 

46 Pauwels, V., Walker, J., Li, Y., Grimaldi, S., Wright, A., 2017. Improving flood forecast skill using 

remote sensing data: annual report 2016-17. Melbourne, in: Bushfire and Natural Hazards CRC. 

47 Grimaldi, S., Li, Y., Walker, J.P., Pauwels, V.R.N., 2018. Effective Representation of River Geometry 

in Hydraulic Flood Forecast Models. Water Resources Research. 54, 1031-1057 

48 Pauwels, V., Walker, J., Grimaldi, S., Wright, A., Li, Y., 2020. Improving flood forecast using remote 

sensing data - annual report 2019-2020. Melbourne, in: Bushfire and Natural Hazards CRC. 

49 Grimaldi, S., Schumann, G.J.-P., Shokri, A., Walker, J.P., Pauwels, V.R.N., 2019b. Challenges, 

Opportunities, and Pitfalls for Global Coupled Hydrologic-Hydraulic Modeling of Floods. Water 

Resources Research. 55, 5277-5300 
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4.2.3. Model calibration  

 Calibration of a 2D hydraulic model using spatially distributed data 

The following considerations must be taken into account when calibrating a 2D 

hydraulic model using spatially distributed data:  

 In 2D hydraulic models, roughness coefficients are considered to be the 

most important parameters controlling the flow characteristics and 

hence are used for model calibration. 

 Roughness values have a two-fold function: they represent surface 

resistance to flow but they are also used as effective parameters to 

account for a large number of uncertainties including errors in input and 

implementation data, spatial discretization, and conceptual 

simplifications.  

 Calibrated roughness values must then be physically plausible but their 

fine tuning might be event-dependent rather than strictly correlated to 

the real land cover. 

 It is recommended to calibrate the model using two events of different 

magnitude.  

 2D hydraulic models can theoretically admit as many roughness values 

as the number of cells of the computational domain. The number of 

spatially distributed parameters has to be large enough to allow model 

flexibility while avoiding the overfitting and equifinality problem 

stemming from the use of too many parameters. 

 Model calibration should primarily focus on river roughness (spatially 

distributed values along the river reach). Floodplain roughness can be 

assessed using land cover data. 

 Calibration of a 2D hydraulic model using remote sensing data 

 This section provides guidelines on the use remote sensing-derived spatially 

distributed data for the calibration of a 2D hydraulic model. More specifically, 

this section outlines which remote sensing-derived observation is best fitted for a 

specific purpose and for different catchment morphologies.  

A) Remote sensing-derived flood extent 

 Analysis of model behaviour at the large scale: the comparison between 

modelled and observed flood extent is recommended for any model 

implementation as it allows to gather an overall understanding of model 

performances and it is important to avoid overfitting problems. 

 Analysis of the model behaviour for critical areas (section 2.2.3, point D). 

Here, a model exclusion rule based on a specific performance metric 

can be applied; e.g. the False Alarm binary metric can be used to avoid 

prediction errors in areas protected by a levee system.  

 Analysis relying on observed inundation extents are effective in large, 

low slope floodplains. 

 Observed inundation extents derived from acquisitions during the 

decreasing limb of valley filling flood events have limited information 

content; when using such data, model flexibility must be maintained to 

avoid errors.  
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B) Remote sensing-derived flood extent and planar position of wet/dry 

points. 

 Comparing the modelled and observed planar position of wet/dry 

points allows discriminating between underprediction and 

overprediction of inundation extent and flood wave arrival time50,51. It is 

underlined that high resolution DEMs are NOT required when comparing 

the planar position of wet/dry points.  

 This analysis is effective in large, low slope floodplains with the exclusion 

of valley filling events. 

C) Remote sensing-derived flood extent and water level at the wet/dry 

points 

 A fine resolution and high accuracy DEM is strictly required to effectively 

compare modelled and observed water levels. 

 Water level-based measures have a higher sensitivity to roughness 

parameters than binary performance metrics and can more effectively 

constrain the parameter space. 

 This analysis is particularly useful in V-shaped areas and it can provide 

information for valley filling events. However, the use of water level at the 

wet/dry boundary is likely to return spurious results in nearly flat floodplains. 

D) Key warnings: 

 The capability of remote sensing observations to provide reliable 

information of flooding dynamics is crucial to the success of the 

calibration process. 

 The use of remote sensing-derived flood extent and of the planar position 

of wet/dry boundary points is strongly recommended in low slope areas, 

in areas with levee systems, and in catchments with morphological 

singularities (e.g. gorges).  

 The use of remote sensing-derived water level is recommended in narrow, 

V-Shaped valleys. However, the effective use of remote sensing-derived 

water level is bounded by the availability of high-accuracy and fine-

resolution terrain data (i.e. Lidar data). 

 The main obstacles for the routinely and effective use of remote sensing 

acquisitions to constrain the parameter space of a hydraulic model are 

the discrete acquisition time, the (sometimes) partial spatial coverage, 

and the uncertainty and errors in the inundation extent and wet/dry 

boundary points datasets (section 5.3). 

 Critically combining information from multiple acquisitions can help to 

avoid overfitting and equifinality problems and errors stemming from 

uncertainty and errors in remote sensing acquisitions.  

                                                 

50 Pauwels, V., Walker, J., Grimaldi, S., Wright, A., Li, Y., 2020. Improving flood forecast using remote 

sensing data - annual report 2019-2020. Melbourne, in: Bushfire and Natural Hazards CRC. 

51 Grimaldi, S., Wright A., Walker J., V., P., 2020/21. On the use of remote sensing-derived waterlines 

to calibrate hydraulic flood forecasting models. In preparation. 
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 It is recommended to make use of all the available observations, including 

the coarse-resolution data. Higher weights can be given to fine resolution 

data acquired during the rising limb and over critical areas. 

 The conjunct use of gauged data and remote sensing data support the 

calibration exercise. Nevertheless, it is imperative to remember that 

gauged data informative value can have very limited spatial value52. 

The guidelines listed in this document were derived from the analysis of three 

selected case studies, specifically, the Clarence (NSW), the Condamine-Balonne 

(QLD), and the Fitzroy (WA).  The research was conducted with the overarching 

aim to provide guidelines for application to any Australian catchment. For this 

reason, the case studies were specifically selected to represent different flooding 

dynamics. Moreover, all the analysis and methodologies were developed using 

datasets available at the continental scale. Albeit the conceptual findings hold, 

expert judgement is required when transferring the findings of this research to 

other catchments. Finally, the authors acknowledge that other datasets could 

be used to constrain the models but their analysis was not in scope. 

                                                 
52 Pauwels, V., Walker, J., Li, Y., Grimaldi, S., Wright, A., 2018. Improving flood forecast using remote 

sensing data - annual report 2017-2018. Melbourne, in: Bushfire and Natural Hazards CRC. 
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 UNCERTAINTIES AND LIMITATIONS 

5.1. HYDROLOGIC MODEL 

To evaluate the quality of flow forecasts it is important to determine if changes in 

land-use will significantly alter flow characteristics. This includes large intermittent 

extractions or regulation of water flowing through the catchment. Consequently, 

catchments that are minimally regulated are the focus of this study. The 

guidelines provided in this document can be applied to assist in the merging of 

remote sensing data with hydrologic rainfall-runoff models for the prediction of 

streamflow. 

Topics relevant to flood forecasting, yet outside the scope of this research, were 

not investigated and are outlined as follows: 

- Rainfall forecasting; 

- Post-processing of rainfall forecasts; 

- Impact of land-use changes on flood forecasting; 

- Inclusion of ground or satellite-based rainfall observations; 

- Comparison with event-based rainfall-runoff models. 

Moreover, the following sources of uncertainty must always be considered: 

A) Forcing data uncertainty.  

The prevailing idiom known to all modeller’s garbage in, garbage out 

cannot be avoided. By avoiding adequate quality control of forcing data 

a cascade of errors which nullifies the effectiveness of other modelling 

techniques becomes almost certain. 

B) Model structure uncertainty. 

All models have their limitations and make assumptions. Models which are 

built upon physical concepts still use quasi physical parameters, such as 

roughness, which are conceptually accurate. As such, users should chose 

a model with a structure that is most fit for purpose. Key considerations 

are: 

1. Degree of physical representation for key processes, 

2. Spatial resolution, 

3. Temporal resolution, 

4. Computational requirements. 

C) Model parameter uncertainty. 

Much focus has been paid towards model parameter uncertainty and the 

retrieval of an optimal parameter set. Since acknowledging the concept 

of equifinality, attention has shifted towards methodologies which return 

a parameter distribution that has maximum likelihood of representing the 

governing system given the observations. Such methodologies are 

recommended to incorporate an understanding of model parameter 

uncertainty into hydrological forecasts. 

D) Initial state uncertainty. 

It is common for hydrological systems, as for any system, to consist of 

states, such as groundwater storage, which are used to represent 

intermediate hydrological processes. These states are commonly not able 
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to be measured across a catchment and consequently must be 

estimated upon initiating the model. For models with long hydrological 

records a warmup period which allows the states to reach an equilibrium 

is recommended. Alternatively, when the hydrological record is 

sufficiently short, the application of a warmup period may not be feasible. 

For situations such as this, the value of the initial state can be estimated in 

the calibration process. 

E) Model output uncertainty. 

It is common for hydrological models to provide deterministic outcomes, 

when in fact the uncertainty in the output is the culmination of a variety 

of error sources. In the past, deterministic outputs have been provided as 

a result of large computational requirements for hydrological models 

which impose long processing times. Fortunately, computers now have 

the capacity to run ensembles of hydrological models at the same time. 

Ensembles aim to represent the uncertainty in various processes and are 

becoming an increasingly popular way to represent forecasting 

uncertainty. 

F) Observation data uncertainty. 

Observations are used in to calibrate and update models. The inherent 

uncertainty in these observations contribute towards the total uncertainty 

in the system. Streamflow and remotely sensed soil  moisture observations 

are both used in calibration and updating processes. The key sources of 

uncertainty in streamflow observations that need to be considered are 

the: 

1. The instrumentation used to observe streamflow, 

2. The development of streamflow rating curves, 

3. The changes streamflow rating curves undertake over time. 

Alternatively, the key sources of uncertainty in remotely sensed soil 

moisture observations are the: 

1. Retrieval algorithm, 

2. Quality of validation data set, 

3. Accuracy of the sensor. 

5.2. HYDRAULIC MODEL 

The guidelines provided in this document can be applied to merge remote 

sensing information with a hydraulic model for the prediction of floodplain 

inundation. 

This research did not investigate, as it was not part of the objectives: 

- tsunamis; 

- dam-breaks; 

- solid transport, erosion, deposition, fluvial geomorphology, landscape 

evolution; 

- bridge, levees, river banks scour; 

- interaction with the groundwater table; 

- manholes, sewage and aqueduct systems; 

- flow in buildings; 

- flood monitoring in urban areas. 
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Moreover, the following sources of uncertainty must always be considered: 

A) Remote sensing-derived observations uncertainty.  

The effectiveness of the methodologies explained in these guidelines rely 

on the capability of the RS acquisition to capture the essential features of 

the inundation process. RS-derived observations are inevitably affected 

by uncertainties and errors due to sensor characteristics, atmospheric 

conditions, and land cover. When overlaying a RS-derived flood extent to 

a DEM to retrieve water level at the wet/dry interface, the uncertainty in 

the DEM should also be considered.  The accuracy of the algorithm for 

the retrieval of inundation extent and wet/dry boundary points must also 

be considered. An imperative feature of any protocol for the merging of 

RS data and numerical model is the delivery of results which are 

independent from RS data uncertainty.  

 The use of multiple acquisitions and expert judgement are 

recommended.  

 Probabilistic rather than deterministic analysis allows avoiding 

overfitting and blunders. Practical methodologies developed in the 

literature to account for remote sensing-derived observations 

uncertainty can be used53, 54, 55. 

B) Remote sensing observations discrete temporal coverage. 

Remote sensing acquisitions provide spatially distributed information at a 

snapshot in time. 

C) Implementation data.  

Analysis of the flooding behaviour of the catchment based on a few 

model realizations56 and historical datasets can effectively diagnose 

errors in the terrain data. 

D) Input data. 

Accurate time series of the volume of water entering the catchment are 

crucial to accurate predictions of floodplain inundation (section 5.3). 

                                                 
53 Schumann, G., Pappenberger, F., & Matgen, P. (2008b). Estimating uncertainty associated with 

water stages from a single SAR image. Advances in Water Resources, 31(8), 1038-1047.  

http://dx.doi.org/10.1016/j.advwatres.2008.04.008 

54 Hostache, R., Matgen, P., Schumann, G., Puech, C., Hoffmann, L., & Pfister, L. (2009). Water Level 

Estimation and Reduction of Hydraulic Model Calibration Uncertainties Using Satellite SAR Images 

of Floods. Geoscience and Remote Sensing, IEEE Transactions on, 47(2), 431-441.  

10.1109/TGRS.2008.2008718 

55 Pappenberger, F., Frodsham, K., Beven, K., Romanowicz, R., & Matgen, P. (2007). Fuzzy set 

approach to calibrating distributed flood inundation models using remote sensing observations. 

Hydrol. Earth Syst. Sci., 11(2), 739-752.  10.5194/hess-11-739-2007 

56 Grimaldi, S., Schumann, G.J.-P., Shokri, A., Walker, J.P., Pauwels, V.R.N., 2019. Challenges, 

Opportunities, and Pitfalls for Global Coupled Hydrologic-Hydraulic Modeling of Floods. Water 

Resources Research. 55, 5277-5300 

 

http://dx.doi.org/10.1016/j.advwatres.2008.04.008
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5.3. COUPLING OF THE HYDROLOGIC AND HYDRAULIC 
MODEL 

The following challenges and pitfalls were identified by a study57on the 

implementation of coupled hydrologic-hydraulic models at the large scale:  

 Discrepancies in the simulated and measured flood peak values highly 

affect floodplain inundation. 

 Discharge-driven errors in the prediction of floodplain inundation peaks 

can increase from upstream to downstream. They are accentuated by a 

hydrological regime characterised by long dry spells and high magnitude 

floods and by peculiar morphological features.  

 Discharge-driven errors in the prediction of floodplain inundation can 

accumulate in a continuous hydraulic modelling approach. Conversely, 

discrepancies could be reduced by using an event-based approach for 

the application of the hydraulic model.  

 Based on the points above, it is hypothesized that assimilation of 

inundation extents and water level in both low and high flow periods may 

provide a pragmatic strategy to achieve acceptable skill in continuous 

flood modelling. 

 Targeted acquisition of Lidar/high accuracy DEMs in strategic areas is 

advised. 

                                                 

57 Grimaldi, S., Schumann, G.J.-P., Shokri, A., Walker, J.P., Pauwels, V.R.N., 2019. Challenges, 

Opportunities, and Pitfalls for Global Coupled Hydrologic-Hydraulic Modeling of Floods. Water 

Resources Research. 55, 5277-5300 
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 RESULTS FOR SELECTED CASE STUDIES 

The guidelines listed in this document were generated from the analysis of the 

selected case studies, which are the Clarence (NSW), the Condamine-Balonne 

(QLD), and the Fitzroy (WA) catchment. These case studies were selected to 

represent the heterogeneity of Australian catchments and the analyses relied on 

datasets available at the continental scale.  This section presents the main 

hydrological and morphological characteristics of the selected case studies and 

provides detailed recommendations. The reader is encouraged to compare the 

hydrological and morphological features of their case study with the features 

explained in section 6.1 to infer indications on the appropriate datasets and 

methodologies. Expert judgement is required when transferring the findings of this 

research to other catchments. 

6.1. CASE STUDIES 

Table 4 provides a list of the main morphological and hydrological features of 

the three Australian catchments used as case studies. 

TABLE 4: CASE STUDIES 

 Description CASE STUDY 

Clarence (NSW) Condamine-Balonne 

(QLD) 

 Fitzroy (WA) 

CATCHMENT AREA 22,716 km2 75,370 km2 93,829 km2 

CATCHMENT 

MORPHOLOGY 

Upstream area (up 

to Rogans Bridge): 

U-shaped valley. 

Downstream area: 

large floodplain. 

Large, low slope 

floodplains. 

Upstream area: V-

shaped valley. 

Downstream area: 

large, low slope 

floodplains. 

RIVER NETWORK Unicursal river. Anabranching river 

system. 

Unicursal river. 

FLOODING 

BEHAVIOUR 

Fast moving 

catchment. 

Flood events with 

magnitude larger 

than 5-year ARI 

often last less than 

10 days. This 

catchment is 

subject to valley-

filling events. 

Slow moving 

catchment. Flood 

events can be 

triggered by intense 

precipitation in the 

north-east area 

(Condamine river, 

2011 event) or in the 

north area (Maranoa 

river, 2012 event). 

Slow moving 

catchment. 

Annual rainfall 1111 mm 514 mm  552 mm 

Climate Humid sub-tropical Humid sub-tropical Hot semi-arid 
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6.2. HYDROLOGIC MODEL 

Table 5 presents a summary of the key-findings for the three case studies 

including recommended implementation data and strategy, remote sensing 

data and methodologies used for model verification and calibration.  

TABLE 5: DETAILED GUIDELINES FOR THE THREE CASE STUDIES. 

 Description CASE STUDY 

 

Clarence (NSW) Condamine-Balonne (QLD) 

Im
p

le
m

e
n

ta
ti
o

n
 d

a
ta

 

Delineation Australian Hydrologic 

Geofabric  

Australian Hydrologic Geofabric  

Fractional 

cover of 

vegetation 

MODIS MODIS 

F
o

rc
in

g
 d

a
ta

 

Rainfall Streamflow and soil moisture 

simulation and forecasting skill 

are highly dependent upon 

capturing rainfall variability. 

Some sub-catchments have 

adequate gauge density. 

 

Streamflow and soil moisture 

simulation and forecasting skill 

are highly dependent upon 

capturing rainfall variability. 

Only upstream sub-catchments 

have adequate gauge density. 

 

PET AWAP. There is potential for 

finer temporal resolution to 

aid in the assimilation of 

remotely sensed soil moisture. 

AWAP. There is potential for finer 

temporal resolution to aid in the 

assimilation of remotely sensed 

soil moisture. 

Quality control 

rainfall 

AWAP/BoM AWAP/BoM 

E
v

a
lu

a
ti
o

n
 d

a
ta

 

Remotely 

sensed soil 

moisture 

Remotely sensed soil moisture 

can aid in model selection 

and be used to improve 

forecast skill for internal sub-

catchments. 

SM time series are improved 

through assimilation. The 

impact this has on streamflow 

forecasting highly depends 

on the quality of rainfall 

forcing data. 

Remotely sensed soil moisture 

can aid in model selection and 

be used to improve forecast skill 

for internal sub-catchments. 

SM time series are improved 

through assimilation. The impact 

this has on streamflow 

forecasting highly depends on 

the quality of rainfall forcing 

data. 

 Streamflow Not all flood peaks are 

captured in the rating curve. 

This is likely to impact the 

calibration of the model. 

Not all flood peaks are 

captured in the rating curve. 

This is likely to impact the 

calibration of the model.  
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6.3. HYDRAULIC MODEL 

Table 6 presents a summary of the key-findings for the three case studies 

including recommended implementation data and strategy, remote sensing 

data and methodologies used for model verification and calibration.  

TABLE 6: DETAILED GUIDELINES FOR THE THREE CASE STUDIES. 

 Description CASE STUDY 

 

Clarence (NSW) Condamine-

Balonne (QLD) 

 Fitzroy (WA) 

Im
p

le
m

e
n

ta
ti
o

n
 d

a
ta

 

DEM, 

recommended 

minimum resolution. 

30 m  90 m 

 

90 m 

 

River bathymetry, 

minimum 

representation. 

HIGH FLOW: river 

flow capacity and 

river width. 

LOW FLOW: river 

flow capacity, 

river width, and 

river shape. 

River flow capacity 

and river width. 

The DEM-H is 

recommended as it 

allows an accurate 

representation of 

river network 

connectivity. 

River flow 

capacity and river 

width. 

E
v

a
lu

a
ti
o

n
 d

a
ta

 

Remote sensing 

sensor 

SAR  SAR; 

optical data might 

allow the 

monitoring of the 

downstream area. 

SAR; 

optical data might 

allow the 

monitoring of the 

downstream area. 

 Acquisition time Rising limb to flood 

peak at Grafton 

(important: 2011, 

2013 were valley 

filling events). 

Flood hydrograph 

at Surat, including 

the initial phase of 

the receding limb. 

Flood hydrograph 

at Dimond Gorge, 

including the initial 

phase of the 

receding limb. 

Target area(s) Grafton area 

(levee system). 

Barrackdale Choke; 

St. George. 

Geikie Gorge; 

Fitzroy Crossing. 

U
se

 o
f 

R
S
-d

e
ri
v

e
d

 

o
b

se
rv

a
ti
o

n
s 

Verification of 

model 

implementation 

Elevation of 

wet/dry boundary 

points: diagnosis 

and correction of 

erroneous 

representation of 

river geometry. 

Flood extent: 

detection of 

inaccurate 

modelling of the 

Barrackdale Choke. 

Flood extent: 

detection of 

inaccuracy in the 

terrain dataset 

(Geikie Gorge). 

Model calibration Flood extent and 

planar position of 

the wet/dry 

boundary points. 

Flood extent. Flood extent. 
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