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Using long‐term water balances to parameterize surface
conductances and calculate evaporation at 0.05°
spatial resolution
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[1] Evaporation from the land surface, averaged over successive 8 day intervals and at
0.05° (∼5 km) spatial resolution, was calculated using the Penman‐Monteith (PM) energy
balance equation, gridded meteorology, and a simple biophysical model for surface
conductance. This conductance is a function of evaporation from the soil surface, leaf area
index, absorbed photosynthetically active radiation, atmospheric water vapor pressure
deficit, and maximum stomatal conductance (gsx). The novelty of this paper is the use of a
“Budyko‐curve” hydrometeorological model to estimate mean annual evaporation rates
and hence a unique value of gsx for each grid cell across the Australian continent. First, the
hydrometeorological model was calibrated using long‐term water balances from 285
gauged catchments. Second, gridded meteorological data were used with the calibrated
hydrometeorological model to estimate mean annual average evaporation (E) for each grid
cell. Third, the value of gsx for each cell was adjusted to equate E calculated using the PM
equation with E from the hydrometeorological model. This closes the annual water
balance but allows the PM equation to provide a finer temporal resolution for evaporation
than is possible with an annual water balance model. There was satisfactory agreement
(0.49 < R2 < 0.80) between 8 day average evaporation rates obtained using remotely sensed
leaf area indices, the parameterized PM equation, and observations of actual evaporation at
four Australian eddy covariance flux sites for the period 2000–2008. The evaporation
product can be used for hydrological model calibration to improve runoff prediction studies
in ungauged catchments.
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1. Introduction

[2] A fundamental problem in modeling evaporation (E)
from land surfaces, comparable with uncertainties and errors
in model structure, forcing information, and validation data,
is determining the spatial variation of key model parameters.
Here we address this issue in the context of evaluating the
parameters needed to estimate actual evaporation at 0.05°
spatial resolution and 8 day temporal resolution using the
Penman‐Monteith (PM) energy balance equation [Monteith,
1964]. Successful implementation of this equation requires
knowledge of the available energy, atmospheric humidity
deficit, and the aerodynamic conductance for each pixel, all

of which can be calculated from gridded meteorological
fields, remotely sensed surface albedos, and vegetation
cover types. A more difficult problem is evaluating the
spatial and temporal variation in surface conductance (Gs).
This was done by Cleugh et al. [2007] by assuming that Gs

is a linear function of leaf area index (LAI), obtained
remotely from the Moderate Resolution Imaging Spec-
trometer (MODIS) on the polar‐orbiting Terra satellite
[Myneni et al., 2002]. Spatial and temporal variations in
LAI thus translate directly into variations in Gs. Mu et al.
[2007] improved the model of Cleugh et al. [2007] by
partitioning total E into transpiration from the canopy and
evaporation from the soil. Canopy conductance (Gc) needed
to calculate transpiration was estimated by Mu et al.
[2007] as a constant times LAI, multiplied by two func-
tions to account for the response of stomata to tempera-
ture and humidity deficit of the air. A map of vegetation
type combined with a biome properties lookup table was
used to allocate parameters for these functions. Of necessity,
this approach assumes that the model parameters are unique
for each vegetation type.
[3] In a further development of the PM approach, Leuning

et al. [2008] replaced the earlier empirical models for Gs and
Gc with a biophysical model for canopy conductance that
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accounts for sensitivity of stomatal conductance to sunlight
and to atmospheric humidity deficit. Evaporation from the
soil is estimated using a simple extra term. Leuning et al.
[2008] used data from 15 flux stations distributed globally
to show that the combined PM equation and model for Gc

(denoted the PML model) requires precise knowledge of
only two parameters, gsx, the maximum stomatal conduc-
tance of leaves, and f, the ratio of actual to potential evap-
oration at the soil surface. Other model parameters can be
held constant without significant loss of precision in cal-
culating E. Zhang et al. [2008] used the PML model to
determine 8 day mean evaporation rates (EPML) across the
Murray Darling Basin (MDB, Australia) at 1 km spatial
resolution. To do so, they optimized values of gsx and f for
three rainfall zones in the MDB by minimizing the differ-
ence between mean annual EPML and EWB, evaporation rates
calculated from the annual water balances (precipitation
minus runoff) of 120 gauged catchments (symbols with an
overbar refer to annual means, and those without them refer
to shorter periods). Annual evaporation and runoff calcu-
lated using the PML model had a root‐mean‐square error
(RMSE) of <80 mm/yr in semihumid and humid regions
where significant runoff was observed. However, the model
overestimated evaporation in some semiarid and arid
catchments because there were no water balance constraints
when applying the PML model. These results suggest that it
is necessary to further improve performance of the PML
model by using water balances to constrain acceptable values
of gsx and f and through better knowledge of their spatial
distribution. Obtaining valid, spatially explicit parameter
values remains a challenge.
[4] In this paper the spatial variability in f is accounted for

by calculating it as a variable for each grid cell. To estimate
the spatial distribution of gsx we present a novel approach
that uses a map of mean annual evaporation for Australia
derived from a calibrated water balance model. As a first
step in our analysis, EWB calculated from water balances of
285 gauged, unregulated catchments over the period of
2000–2005 were used to estimate the single parameter in the
rational function of Fu [1981]. This is one of the classic
“Budyko‐curve” models [Budyko, 1958] which relates the
actual evaporation index (E/P) to the aridity index (Ep/P),
where E, Ep, and P are mean annual actual and potential
evaporation and precipitation, respectively. The calibrated
Fu model was next combined with gridded meteorological
data to generate a map of mean annual evaporation (EFu)
at 0.05° (∼5 km) resolution across Australia for the
period 2000–2005. The spatially distributed values of EFu

were then used to estimate gsx for each pixel by ad-
justing gsx to force EFu = EPML for each pixel. Finally,
8 day actual evaporation rates for each grid cell from 2000 to
2008 were estimated using the PML model with the best
estimate of gsx, remotely sensed albedo and land cover data,
8 day average meteorology, and 8 day MODIS updates of
LAI. This approach ensures closure of the annual water
balance for each pixel through matching of EFu and EPML

while allowing a fine temporal resolution using EPML.

2. Theory

2.1. Daily Evaporation and Energy Balance

[5] Leuning et al. [2008] showed that the total flux of
latent heat lE (MJ/m2/d) associated with the sum of tran-

spiration from the plant canopy (lEc, MJ/m2/d) and evap-
oration from the soil (lEs, MJ/m2/d) can be written as

�E ¼ "Ac þ ð�cp=�ÞDaGa

"þ 1þ Ga=Gc
þ f "As

"þ 1
; ð1Þ

The first term on the right uses the PM equation [Monteith,
1964] to express lEc in terms of the net energy absorbed
by the canopy (Ac, MJ/m2/d), the water vapor pressure
deficit of the air at a reference height above the canopy
(Da, kPa), the aerodynamic conductance (Ga, MJ/m2/d),
and the canopy conductance (Gc, m/s). Here l is the
latent heat of evaporation (MJ/kg), " = s/g, in which g is
the psychrometric constant (kPa/°C), and s = de*/dt, the
slope of the curve relating saturation water vapor pressure
to temperature (kPa/°C), r is the density of air (kg/mP3),
and cp is the specific heat of air at constant pressure
(J/kg/°C).
[6] The net energy absorbed by the vegetation canopy

plus soil (A) (MJ/m2/d) is partitioned into Ac = (1 − t)A and
As = tA, respectively, where t = exp(−kALAI), and kA is the
extinction coefficient for net radiation (comprising visible,
near‐infrared, and thermal radiation). The second term of
equation (1) is used to estimate lEs as a (variable) fraction f
of the equilibrium evaporation rate, "As/(1 + ").
[7] Estimating the spatial and temporal variation in lE

using equation (1) requires knowledge of Ac and As. These
were calculated using LAI and surface albedo from MODIS
remote sensing and gridded, daily average fields of solar
radiation. Daytime averages of temperatures, humidities,
and wind speeds were used to calculate Da and Ga. Equation
(1) also requires the space‐time distributions of the soil
evaporation coefficient f and canopy conductance Gc.
[8] The coefficient f varies from f = 1 when the soil

surface is wet to f = 0 when it is dry, but due to a lack of
seasonally varying soil moisture data, f was earlier treated as
a fixed parameter to be estimated using either flux station
data [Leuning et al., 2008] or mean annual water balances of
gauged catchments [Zhang et al., 2008]. Analysis by
Leuning et al. [2008] showed that the PML model is not
sensitive to uncertainties in f when LAI > 2.5 because soil
evaporation is a then a small fraction of the total. This is not
the case for sparse canopies, and it is then unsatisfactory to
assume that f is a constant. In the absence of any observed
space‐time distributions of soil moisture in this study,
variation in f for each grid cell was estimated using

f ¼ min

PN
n¼�N

Pn

PN
n¼�N

Eeq;s;n

; 1

0
BBB@

1
CCCA; ð2Þ

where Pn is precipitation (mm/d) for each 8 day period n
and Eeq,s,n = As,n("/l)/(" + 1) is the average equilibrium
evaporation rate (mm/d) according to the energy available
at the soil surface for that period. We set N = 4, indicating
that Pn and Eeq,s,n were summed over four periods prior
and four periods after the current one. This smoothing
allows for gradual changes in surface soil moisture and
avoids the problem of f switching rapidly from f = 0, if
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there has been no rainfall in a given 8 day period, to f = 1
during periods of rain.
[9] To estimate Gc, Leuning et al. [2008] used the fol-

lowing relatively simple model developed by Saugier and
Katerji [1991], Dolman et al. [1991], and Kelliher et al.
[1995] for Gc as a function of visible radiation and leaf
area index and modified by Isaac et al. [2004] to account for
the influence of atmospheric humidity deficit on Gc:

Gc ¼ gsx
kQ

ln
Qh þ Q50

Qh expð�kQLAIÞ þ Q50

� �
1

1þ Da=D50

� �
: ð3Þ

Here gsx is the maximum stomatal conductance (m/s) of
leaves at the top of the canopy, kQ is the extinction coeffi-
cient for visible radiation, and Qh is the flux density of
visible radiation at the top of the canopy (MJ/m2/d). The
parameters Q50 and D50 are the visible radiation flux
(MJ/m2/d) and the humidity deficit (kPa), respectively, at
which stomatal conductance is half its maximum value.
The PML model for Gc contains five parameters, but
Leuning et al. [2008] showed that the model could be
simplified considerably by using fixed values for four
parameters (kQ = kA = 0.6, Q50 = 30 W/m2, and D50 =
0.7 kPa), with variable gsx to calculate Gc and then lEc

from equation (1). This approach yielded values of lEc

very similar to those obtained when all five parameters
were optimized using data from each of 15 flux station
sites covering a wide range in climate and vegetation types
globally. Calculation of the spatial and temporal variation
of Gc thus requires gsx (currently unknown), incoming
visible radiation and atmospheric humidity deficit obtained
from gridded meteorological data, and LAI from MODIS
remote sensing.
[10] It is worth noting that Gc as defined by equation (3)

can vary on time scales ranging from minutes to years,
through the diurnal to seasonal variations in Qh and Da and
through the weekly to annual variations in LAI. These will
affect E indirectly through changes in Gc, whereas variations
in Ac, As, Da, and Ga will affect E directly at all time scales
(equation (1)). Soil moisture content also affects Gc, but
there is no explicit dependence between the two in
equation (3) because we want to apply this equation using
remotely sensed and gridded meteorological data only.
However, an indirect dependence of Gc on soil moisture
occurs through the landscape‐scale adjustment of Da and
LAI to long‐term soil water availability.

2.2. Long‐Term Evaporation and Water Balance

[11] In pioneering work, Budyko [1958, 1974] noted that
mean annual evaporation from a catchment is determined by
a balance between the energy available for evaporation and
the amount of available water. The Budyko curve expresses
the evaporation index (E/P) as a function of the aridity index
(Ep/P), where Ep is mean annual potential evaporation
(mm/yr). In this paper we use a variant of the Budyko curve
developed by Fu [1981] that is given by

EFu;i

Pi
¼ 1þ Epi

Pi
� 1þ Epi

Pi

� ��� �1=�
; ð4Þ

where EFu,i is the mean annual evaporation for i = 1,…, M
catchments, a is a parameter, and Epi is the mean annual
potential evaporation for catchment i. Epi was calculated by
averaging daily Priestley‐Taylor potential evaporation:

Epi ¼ �PT

X365
1

"Ai

"þ 1
; ð5Þ

where aPT = 1.26 [Priestley and Taylor, 1972]. Daytime‐
averages of " and Ai for a given catchment are used in the
summation. Mean annual evaporation for water bodies was
calculated using Epi.
[12] The general pattern search method in Matlab (http://

www.mathworks.com/access/helpdesk_r13/help/pdf_doc/
gads/gads_tb.pdf) was used to obtain an optimal value for a
by fitting equation (4) to observed Ei, calculated as Ei = Pi −
Qi, the residual between mean annual precipitation (Pi) and
runoff (Qi) for all 285 gauged catchments. The Fu model
with the optimized value of a was then combined with
gridded meteorological data to produce a map of EFu for
each 0.05° grid cell across Australia. The nonlinear least
squares regression in Matlab (http://www.mathworks.com/
access/helpdesk/help/pdf_doc/stats/stats.pdf) was then used
to estimate a unique value of gsx for each grid cell by adjusting
gsx to ensure that EFu = EPML for that cell. The PML model
has the advantage of providing evaporation rates at a fine
temporal resolution, while our optimization scheme ensures
closure of the annual water balance. Another advantage of
the optimization is that, through equation (3), any errors in
the remotely sensed values of LAI will lead to compensating
errors in estimates of gsx.

3. Data

[13] Data used for this study include 8 day MODIS/Terra
LAI, 8 day MODIS/Terra albedo, annual MODIS/Terra land
cover classifications, daily meteorology, a digital elevation
model (DEM), and daily streamflows. Precipitation and
streamflow data for 285 catchments from 2000 to 2005 were
first used to calibrate the Fu model (note that streamflow
data for these catchments were only available until 2005).
Gridded meteorological data were next used to produce a
map of EFu and gsx, which was than combined with time
series of gridded meteorology and remote‐sensing data to
calculate 8 day EPML for each grid cell across Australia from
2000 to 2008.
[14] Remotely sensed LAI data were provided by Paget

and King [2008], who extracted the MOD15A2 (collection
5.0) data products at 1 km resolution across Australia for the
period 2000–2008 from the Land Processes Distributed
Active Archive Centre (LPDAAC) (http://lpdaac.usgs.gov/
dataproducts.asp). Quality assessment flags in the database
were used to delete all poor‐quality LAI data, and these
were replaced by interpolated values obtained from a
piecewise cubic, Hermite interpolating polynomial [Zhang
and Wegehenkel, 2006]. The quality‐controlled LAI data
for each pixel were then smoothed using the Savitzky‐Golay
filtering method that is widely used for filtering MODIS
LAI and other remote sensing data [Jonsson and Eklundh,
2004; Ruffin et al., 2008; Tsai and Philpot, 1998].
[15] The quality of MODIS‐LAI data is best at LAI < 3,

but the precision declines at higher values due to saturation
of the reflectance signal [Yang et al., 2006]. Many studies
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have shown that the quality of MODIS LAI data is rea-
sonably good for most land cover types, but for forests with
high LAI, MODIS LAI is easily overestimated owing to
reflectance saturation [Cohen et al., 2006; Garrigues et al.,
2008; Hill et al., 2006; Yang et al., 2006].
[16] Daily meteorological data (maximum air tempera-

ture, Tmax, minimum air temperature, Tmin, solar radiation,
Rs, vapor pressure, e, and precipitation, P) from 2000 to
2008 at 0.05° (∼5 km) resolution were obtained from the
SILO Data Drill of the Queensland Department of Natural
Resources and Water (http://www.nrw.qld.gov.au/silo/
datadrill/). The SILO data are interpolated from approxi-
mately 4600 point observations across Australia using the
methods of Jeffrey et al. [2001]. A thin plate smoothing
spline was used to interpolate daily climate variables, and
ordinary kriging was used to interpolate daily and month
precipitation. Cross‐validated interpolation statistics for
Tmax, Tmin, e, and P shows the mean absolute values 1.0°C,
1.4°C, 0.15 kPa, and 12.2 mm/month, respectively, indi-
cating reasonably good data quality [Jeffrey et al., 2001].
Eight day composites for Tmax, Tmin, Rs, e, and u were
estimated from the average of the daily data according to
each 8 day MODIS LAI compositing period.
[17] Gridded wind speed (u) data for 2000 to 2006 were

obtained by interpolating measurements from an expanded
anemometer network [McVicar et al., 2008]. Wind speed
data were not available for 2007–2008, so average wind
speed for each pixel from 2000 to 2006 was used instead.
Aerodynamic roughness lengths associated with various
land cover types were used with the u data to calculate
aerodynamic conductance Ga as described by Zhang et al.
[2008]. Land cover classification data (MOD12Q1) for
2001 at 1 km resolution were obtained from the LPDAAC
(http://lpdaac.usgs.gov/) (Figure 2). There are 13 land cover
classes in the MOD12Q1 data set relevant to Australia:
evergreen needleleaf forest, evergreen broadleaf forest,
deciduous needleleaf forest, deciduous broadleaf forest,
mixed forest, closed shrublands, open shrublands, woody
savannas, savannas, grasslands, croplands, urban and built
up, and barren.
[18] Albedo is needed to calculate the energy available for

evaporation. The short‐wave band (300–5000 nm) of the
white‐sky albedo from the 1 km resolution, 8 day MODIS
MCD43B bidirectional reflectance distribution function
product was used to define surface albedo [Dilley et al.,
2000; Schaaf et al., 2002]. As for LAI, the albedo data for
each pixel were quality controlled and then smoothed using
the Savitzky‐Golay filtering method. A DEM at 9 s reso-
lution was provided by the Australian Surveying and Land
Information Group [Hutchinson et al., 2001]. The albedo
and DEM data were used to calculate clear‐sky solar radi-
ation, net radiation, and then available energy for use in
equation (1) (see Zhang et al. [2008, equations (7)–(9)]). All
the DEM and remotely sensed data were resampled (spa-
tially averaged) to the 0.05° grids used for the meteoro-
logical data.
[19] A total of 285 gauged, unregulated catchments

ranging in area from 50 to 2000 km2 (Figure 1) were
selected to calculate mean annual evaporation (E) for each
catchment as the difference between mean annual precipi-
tation and streamflow. The computed values of E were then
used to calibrate the Fu model (equation (4)). Daily
streamflow data from 2000 to 2005 were made available

through the Australian Land and Water Resource Audit
Project (http://www.nlwra.gov.au/) and were quality con-
trolled. Less than 5% of data were missing after quality
control for all the selected catchments, and the missing data
were infilled using streamflow data observed at the nearest
neighbor catchment according to the streamflow relationship
between the two.
[20] Fluxes of water vapor measured at four sites (Figure 1)

were compared to the 8 day variation of EPML in the grid cell
encompassing each flux station. These are the only Australian
flux sites for which there are continuous data available for at
least 1 year. The sites are (1) Tumbarumba (broadleaf ever-
green forest after the International Geosphere‐Biosphere
Programme vegetation classification), (2) Virginia Park (open
woody savanna), (3) Howard Springs (woody savanna), and
(4) Dargo High Plains (grassland). Details of these flux sites
are given in Table 1. Hourly average fluxes were summed over
daylight hours to obtain daily E, and these were further aver-
aged to align with the 8 day MODIS‐compositing periods.

4. Calibration and Cross Validation

[21] The generalized pattern search method was used to
calibrate the single parameter a in the Fu model using
evaporation rates Ei derived from the catchment water
balances.
[22] The objective function for the Fu model is

F ¼ 1� NSE ¼
PM
i¼1

Ei � EFu;i

� �2
PM
i¼1

Ei � E
� �2 ; ð6Þ

where E is the mean annual water balance evaporation
across all i = 1,…,M catchments and EFu,i is calculated from
equation (4). NSE is the Nash‐Sutcliffe efficiency [Nash
and Sutcliffe, 1970], which describes the degree of agree-
ment between modeled and measured values; NSE = 1.0
indicates perfect agreement, and NSE ≤ 0 indicates poor
agreement.
[23] The model was validated using the jackknife cross‐

validation method. Data from one “ungauged” catchment
was left out of the optimization while data from all other
catchments were used for model calibration. All 285
catchments were stepped through in this way, and the per-
formance of the cross‐validated model was tested against
evaporation estimates from the water balance of every
“ungauged” catchment.

5. Results and Discussion

5.1. Comparing Catchment Mean Annual Evaporation
Estimates

[24] In Figure 3 the evaporation index (E/P) is plotted as a
function of the aridity index (Ep/P) for all 285 gauged
catchments. Despite the considerable scatter of data points
around the curve of best fit for the Fu model (Figure 3a),
EFu, calculated using a single, optimized value of a = 3.39
explains 85% of the variance in EWB, with an RMSE of
57.1 mm/yr and an NSE = 0.85 (Figure 3b). A jackknife
cross‐validation analysis yielded values of EFu very similar
to those obtained using the full data set, with the RMSE
increasing from 57.1 to 57.4 mm and no change to the NSE.
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[25] Varying a by ±10% around its optimized value has
only a small influence on the evaporation index (Figure 3a)
but significantly affects the predicted values of EFu.
Increasing a by 10% above its optimal value results in an
RMSE of 70.9 mm/yr and an NSE = 0.76 when compared to
EWB, while a 10% decrease in a causes a further degrada-
tion on EFu, indicated by an RMSE of 107.9 mm/yr and an
NSE = 0.45.
[26] A further analysis was conducted to determine

whether varying the parameter a in equation (4) for different
land cover types would improve predictions of EFu. We first
took EWB for each catchment as the sum of xj EWB, j, where

xj is the fractional cover and EWB, j is the mean annual
evaporation for j = 1,…, N land cover types (here N = 14 for
the 13 vegetation types and 1 water body type, for which
mean annual evaporation was calculated using equation (5)).
A constant value (aj) for each vegetation type was estimated
by optimizing the 13‐parameter Fu model using EWB, j for all
285 gauged catchments. In a finding similar to that of Oudin
et al. [2008], there was only a marginal improvement in
model predictions of EFu using 13 parameters rather than 1.
The RMSE for evaporation runoff was reduced from 57.1 to
55.1 mm/yr with improvements in the NSE of <0.02. As a

Figure 1. Location of catchments used to calibrate and validate the Fu evaporation model, four flux sta-
tion flux sites, and seven soil moisture stations.
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consequence of these findings, the one‐parameter Fu model
was used in all subsequent calculations.

5.2. Continental Long‐Term Water Balance
and gsx Maps

[27] Figure 4a shows mean annual precipitation (P) for
the period 2000 to 2005 at 0.05° resolution across Australia,
while Figures 4b and 4c show EFu and QFu predicted using
the calibrated Fu model. Note that calculating QFu = P‐ EFu

for each 0.05° neglects lateral flow between pixels and
assumes no change in soil water storage over the averaging
period. Mean annual runoff is small for Australia compared
to that from other continents [Peel et al., 2005]; that is, E ≈ P,
and hence the spatial pattern of EFu is similar to that of P
(compare Figures 4a and 4b). Both EFu and P exhibit high
values in the north, east, and southwest of Australia and in
western Tasmania, and both decrease gradually from the east

and north to the center of Australia. Significant quantities of
runoff occur in northern and eastern Australia, Tasmania,
and southwest Australia, while the other regions produce
little or no runoff (Figure 4c).
[28] Figure 5 provides a map of gsx, the maximum sto-

matal conductance parameter in the PML model. There is a
high correlation (R = 0.70 on a cell by cell basis) between
the spatial patterns of gsx and mean annual precipitation,
indicating the strong control of maximum stomatal con-
ductance by precipitation in this water‐limited continent.
High values of gsx occur in regions covered by forests,
closed shrublands, and tropical savannas, while low values
of gsx are mainly located in the regions covered by open
shrublands in central Australia.
[29] Estimates of means and standard deviations of gsx for

each land cover class are presented in Table 2 along with the
number of grid cells allocated to each land cover class.
Values of gsx for most classes fall within the physiologically
reasonable range of 0.003–0.01 m/s reported by Kelliher et
al. [1995]. Note that gsx for irrigated cropland is under-
estimated because the long‐term water balance equation,
(EWB = P − Q), does not consider irrigation inputs for
irrigated cropland. Standard deviations of gsx are similar in
magnitude to the means, but the corresponding standard
errors are very small, given the large number of pixels in
most classes.
[30] These results are encouraging, but it is important to

note that gsx is a parameter of the PML model estimated for
each 0.05° grid cell and hence is unlikely to match stomatal
conductance measurements on actual vegetation. While the
optimized value of gsx is constant for each pixel, canopy
conductances and evaporation rates vary on time scales from
minutes to years in response to variation in absorbed radi-
ation, humidity deficit, temperature, wind speed, and LAI
(equations (1)–(3)). It is acceptable to use successive 8 day
LAI values from MODIS to calculate Gc (equation (3))
because seasonal variation in LAI is gradual for most veg-
etation. Exceptions occur during leaf emergence and leaf fall
for deciduous vegetation and for rapidly growing crops. In
these cases, short‐term variability in LAI can be interpolated
using the 8 day MODIS values.

5.3. Comparing EWB With EPML Calculated Using
Alternative Estimates of gsx
[31] Figure 6 compares evaporation rates (EWB) derived

from the water balances of the 285 gauged catchments with
EPML calculated using three different approaches to esti-
mating gsx and Gx. The first uses the calibrated Fu model to
calculate EFu and then the value of gsx needed to match EFu

and EPML, as discussed above. The second uses fixed,

Figure 2. Land cover distribution across Australia from
Moderate Resolution Imaging Spectrometer land cover clas-
sification product.

Table 1. Details of Flux Sites Used in This Study to Validate 8 Day Variation of Evaporation Estimated From the PM‐Leuning Modela

Site Name
Location (Lat./Lon.)

Elevation (asl) Land Cover Type
Mean Annual
Rainfall (mm)

Mean Annual
Leaf Area
Index Measurement Period Reference

Tumbarumba −35.656° 148.152° 1200 m Evergreen broadleaf
forest

1027 2.6 Feb 2002 to Apr 2005 Leuning et al. [2005]

Virginia Park −19.883° 146.554° 290 m Open woody savanna 524 0.6 Jul 2001 to Feb 2003 Leuning et al. [2005]
Howard Springs −12.495° 131.150° 37 m Woody savanna 1764 1.4 Aug 2001 to Dec 2005 Beringer et al.

[2003, 2007]
Dargo High Plains −37.1333° 147.171° 1518 m Grassland 1126 2.8 Jan 2007 to Dec 2008 ‐

aAbbreviation is as follows: asl, above sea level.
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optimized values of gsx and f for each of several “super-
classes” of vegetation obtained by Leuning et al. [2008]
using measurements of daily latent heat fluxes at 15 sites
across the globe. Value of gsx and f for vegetation classes in
each gauged catchment were assigned according to their
nearest superclass. Third, following Zhang et al. [2008],
the catchments were divided into three rainfall zones
(P1 > 750 mm/yr, 450 ≤ P2 ≤ 750 mm/yr, and P3 <
450 mm/yr) to estimate optimized values of gsx and f in each
zone. Values of gsx and f were then assigned for each
rainfall zone across Australia.
[32] There is good agreement between EWB and EPML

derived using the Fu model to estimate gsx, as indicated by
an RMSE of 58.3 mm/yr and NSE = 0.84 (Figure 6a). The
corresponding comparison between the observed runoff
Qobs and QPML = P − EPML yields RMSE = 58.3 mm/yr and
NSE = 0.70 (Figure 6b). Using vegetation classes to assign
values of gsx and f considerably reduces model performance,
increasing the RMSE to 119.8 mm/yr for evaporation and to
97.7 mm/yr for runoff, after setting QPML = 0 mm/yr for the
30% of catchments where EPML is > EWB (Figure 6c and
6d). Relatively poor results for both EPML and QPML are also
obtained when gsx and f are assigned to one of three rainfall
zones (Figures 6e and 6f). Using a water balance model to
constrain parameters values in the PML energy balance
model clearly yields superior results to those obtained by
assigning values of gsx and f using either the vegetation
superclass or rainfall zone. In both of these schemes there
was no constraint by the water balance on the optimized
parameter values.

5.4. Performance of the 8 Day EPML

[33] The previous results compared mean annual evapo-
ration and runoff. The PML model is not really needed at the
annual time scale, but it is useful for estimating evaporation
rates at much smaller time scales. In this section, we eval-
uate performance of the PML model by comparing 8 day
average EPML with corresponding evaporation fluxes (Emeas)

measured at the four Australian flux station sites where data
were available for more than 1 year (Figure 1). EPML is
calculated using gsx calibrated using the Fu model for the
grid cell containing each flux station. Figure 7 shows that z
reproduces the seasonal variation in Emeas quite well at
Tumbarumba and to a lesser degree at Virginia Park.
Leuning et al. [2008] obtained an RMSE of 0.54 mm/d at
Tumbarumba and an RMSE of 0.57 mm/d at Virginia Park
in scatterplots of EPML versus Emeas when gsx was calibrated
using local flux data. In contrast, using estimates of gsx from
the Fu model gave poorer results at Tumbarumba, indicated
by an RSME of 0.99 mm/d, but with little difference at
Virginia Park (RMSE of 0.56 mm/d, Figure 7). The slope of
the linear regression for the Tumbarumba data was 1.20,
which is significantly greater than unity. This result is likely
due to a mismatch between the spatial and temporal scales
of the flux measurements and the Fu model or because
MODIS LAI is overestimated at this site [Leuning et al.,
2005]. The slope of the linear regression of EPML versus
Emeas for the Virginia Park data is 0.70, but the large scatter
in the data indicates that this is not significantly different
from unity.
[34] Seasonal variation in evaporation at Howard Springs

is also simulated well, with scatterplots of EPML versus Emeas

having an RMSE of 1.13 mm/d and R2 = 0.53 (Figure 7).
The time series shows that the PML model overestimated
E by ∼1 mm/d in the dry seasons of 2001 and 2004, but
there was good agreement between model and measure-
ments for the other three dry seasons. These results are
encouraging because the model is able to account for
variation in E caused by the strong seasonal variation in
climate and the dramatic changes in LAI due to a mixture
of C3 trees and C4 grasses in the wet season and trees only
in the dry season [Grady et al., 2000].
[35] In contrast, EPML is systematically greater than the

eddy flux measurements at Dargo High Plains (Figure 7).
The scatterplot has a slope of 1.58, an RMSE of 1.56 mm/d,
and R2 = 0.65. To investigate the reason of overestimation,
we checked the energy balance closure between Rn − G and

Figure 3. (a) Aridity index (Ep/P) versus evaporation index (E/P) for 285 gauged catchments by
which the optimized value of a, the parameter in the Fu model (equation (4)), is 3.39. (b) Simulated
mean annual evaporation (EFu) from the calibrated Fu model versus estimates from catchment water
balances (EWB = P ‐ Qobs). Each point presents one catchment. RMSE is the root‐mean square error, and
NSE is the Nash‐Sutcliffe efficiency across 285 catchments.
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lE + H at the four sites, where Rn, G, lE, and H are the
measured net radiation, soil heat flux, latent heat flux, and
sensible heat flux, respectively.
[36] Figure 8 shows that the linear regression slopes are

close to unity at Tumbarumba, Virginia Park, and Howard
Springs, but that there is relatively poor energy balance
closure at Dargo High Plains, where the slope of lE + H
versus Rn − G is only 0.80. This result suggests that the
measured latent heat flux is underestimated at that site and
may explain the apparent overestimation of Emeas by EPML

at Dargo High Plains.
[37] The results in Figure 7 are for the pixels in which

each of the flux stations are located, and while these com-
parisons between model and measurements are encouraging,
the question of the representativeness of flux stations often
arises. To analyze the model uncertainty due to pixel

Figure 4. Spatial pattern in mean annual (a) precipitation
(P), (b) evaporation (EFu), and (c) runoff (QFu) across
Australia. EFu and QFu are predicted using the calibrated
Fu model.

Figure 5. Spatial pattern in the maximum stomatal con-
ductance parameter (gsx) across Australia.

Table 2. Statistical Analysis of Maximum Stomatal Conductance
Estimated From the Fu Model for Each Land Cover Type

Land Cover Types gsx (m/s) Mean (SD)

Pixels

Number Percent

Evergreen needleleaf forest 0.0086 (0.0104) 1,563 0.56
Evergreen broadleaf forest 0.0063 (0.0059) 10,477 3.76
Deciduous needleleaf forest 0.0059 (0.0090) 42 0.02
Deciduous broadleaf forest 0.0081 (0.0069) 774 0.28
Mixed forest 0.01 (0.0115) 405 0.15
Closed shrublands 0.0067 (0.0071) 1,359 0.49
Open shrublands 0.0042 (0.0029) 183,476 65.77
Woody savannas 0.0059 (0.0048) 23,932 8.58
Savannas 0.0071 (0.0045) 19,997 7.17
Grasslands 0.0059 (0.0039) 15,181 5.44
Croplands 0.0048 (0.0023) 172,710 6.19
Urban and built up 0.0199 (0.0179) 322 0.12
Barren and unclassified 0.0034 (0.0028) 4,174 1.50

ZHANG ET AL.: ESTIMATION OF SURFACE CONDUCTANCES AND EVAPORATION W05512W05512

8 of 14



selection, the RMSE between flux measurements and EPML

for the eight pixels surrounding a given flux tower are
shown in Figure 9. The average RMSE values are 0.94,
0.53, 1.17, and 1.26 mm/d for Tumbarumba, Virginia Park,
Howard Springs, and Dargo High Plains, respectively. The
standard deviation in RMSE for Dargo High Plains is
0.23 mm/d and is <0.10 mm/d for other three sites, indicating
strong homogeneity in EPML for the pixels surrounding each
flux station.
[38] While four flux stations cannot be representative of

the Australian continent, Virginia Park and Howard Springs
are located in savannas, the second largest land cover
type, occupying 15.7% of Australia. Grasslands (Dargo
High Plains) and evergreen broadleaf forest (Tumbarumba)
account for 5.44% and 3.76%, respectively. However, for a
comprehensive evaluation of the PML model, more vali-
dation needs to be done at other biomes, such as open

shrubs and croplands, which are widely distributed in
Australia.
[39] In Figure 6 we showed that using either vegetation

superclasses or rainfall zones to assign gsx and f to calculate
EPML gave significantly worse results than when gsx was
constrained using the Fu model. Comparison of Figures 7
and 10 shows that similar conclusions apply when rainfall
zones are used to assign gsx and f to estimate 8 day evap-
oration rates. These estimates of EPML are worse than those
obtained using variable f and the Fu model to estimated gsx
at Virginia Park and Howard Springs, but not for Tumbar-
umba and Dargo High Plains. Varying f at Virginia Park and
Howard Springs improves model performance compared to
using a fixed value of f because both these savanna sites
have low LAI compared to Tumbarumba, which is a
broadleaf forest, and Dargo High Plains, which is a grass-
land (Table 1). A sensitivity analysis by Leuning et al.

Figure 6. Simulated mean annual (a) evaporation (EPML) and (b) runoff (QPML = P − EPML) calculated
using the PML model with gsx estimated from the Fu model, (c, d) those obtained using gsx allocated
according to vegetation superclasses, and (e, f) those obtained using the optimized gsx and f para-
meters in three climatic zones, plotted against evaporation estimates from catchment water balances
(EWB = P − Qobs).
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Figure 7. (top) Time series of 8 day averages for Emeas and EPML obtained using the variable f and gsx
estimated with the Fu model and (bottom) scatterplots of EPML versus Emeas at four flux sites, Tumbarumba,
Virginia Park, Howard Springs, and Dargo High Plains.
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[2008] found that the PML model is highly sensitive to
variation in f for LAI < 2.5, when evaporation from moist
soil will account for a large fraction of the total evaporation.
In contrast, the PML model is not sensitive to the variation
in f when LAI > 2.5. Hence, it is essential that f be treated
as a variable rather than as a constant for vegetation with
low LAI.
[40] This paper presents an advance on the work of

Cleugh et al. [2007], who estimated surface conductance
simply as LAI multiplied by a constant while neglecting
evaporation from the soil surface. By allowing the soil
evaporation parameter f to vary within each 8 day period,
this paper is also an improvement on the work of Leuning et
al. [2008], who calibrated the PML model for 15 flux sta-
tions distributed globally while holding f constant for each
site. Zhang et al. [2008] also used water balances of un-
regulated catchments to calibrate gsx and f to estimate
evaporation and runoff using the PML model for the two
broad climate zones across the Murray‐Darling Basin of
Australia. However, their calibration approach did not
constrain the annual evaporation rate to be less than or equal
to annual precipitation, potentially leading to negative
values of runoff. The present study overcomes this problem

Figure 8. Scatterplots of measured daily average lE+H versus daily average available energy A = Rn −G
for each of four selected flux sites. Slopes and R2 values are shown for linear regressions forced through the
origin.

Figure 9. Mean (dots) and standard deviation (error bars)
of the root mean square errors obtained by comparing mea-
sured fluxes to EPML for each of the eight pixels surrounding
a flux tower.
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Figure 10. As for Figure 7, but using optimized values of gsx and f in three climatic regimes.
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by optimizing the value of gsx for each pixel to ensure that
annual evaporation from the Fu water balance model is
equal to that from PML energy balance model.
[41] The results in Figures 6a, 6b, and 7 provide confi-

dence in our use of equation (2) to estimate the spatial and
temporal variation in f and the Fu catchment water balance
model to estimate the spatial distribution of gsx. The cali-
brated PML model provides estimates of evaporation at
weekly to annual time scales for each 0.05° grid cell using
gridded meteorological fields and remotely sensed leaf area
indices, albedos, and land cover classes. Such high temporal
resolution of evaporation is not possible with the Budyko
mean annual water balance approaches.
[42] A further advantage is that estimates of short‐term

EPML can also be used to calibrate catchment‐scale, daily
hydrological models. Using cross validation, Zhang et al.
[2009] showed that a rainfall‐runoff model calibrated using
EPML and daily streamflow data significantly improved
estimates of the daily to monthly runoff from ungauged
catchments compared to using only streamflow data to
calibrate the model.
[43] Having presented a method for estimating the spatial

distribution of a key model parameter for the PML model of
evaporation from landscapes, there remains the challenge of
testing model performance at multiple space and time scales.
This can be achieved by comparison with data from addi-
tional flux stations and using runoff from uncalibrated
catchments.

6. Conclusion

[44] This paper applies the Penman‐Monteith‐Leuning
energy balance model to estimate evaporation from vege-
tation and the soil at 0.05° spatial resolution and at 8 day
time scales. The PML model uses remotely sensed leaf area
indices, land cover type, and gridded meteorological fields
and requires two parameters, f and gsx, to account for soil
evaporation and plant transpiration, respectively. Previously
treated as a constant, f in this paper is now a variable
dependent on precipitation and equilibrium evaporation at
the soil surface. The spatial distribution of gsx was obtained
by optimizing the value of gsx for each grid cell to ensure
that annual water balances calculated using the PML model
equaled those from the Fu hydrometeorological model. The
Fu model was calibrated using long‐term precipitation and
runoff data from 285 unregulated, gauged catchments, and
then the calibrated Fu model was used to estimate the spatial
distribution of mean annual evaporation across Australia.
Satisfactory agreement was obtained between 8 day evap-
oration rates from the PML model and measurements at four
flux stations. There was also excellent agreement between
mean annual evaporation from catchment water balances
and the PML model.
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