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Summary

Remotesensingprovidesa capabilityto makefrequentand spatially distributed measurementsf surfacesoil
moisture, whilst recent advances in affordable Time DorRaftectometryprobesallow continuousmonitoring
of profile soil moisture at specific points. We believe that reliable estimation of the spatial and temporal
variation of profile soil moisture on a routine basis will require a combination of calibratioevahdationof an
unsaturatedsoil moisture model using point measurementsand model updating using remote sensing
observationgo accountfor spatialinhomogeneitiesThis study investigateswhich of two commonly used
assimilationtechniquess most efficient for the retrieval of soil moisture and temperatureprofiles, over what
depth soil moisture observationsare required,and the effect of updateinterval on profile retrieval. These
guestions are addressed through a desktop study using synthetic data.

Introduction

Soil moisturein the root zoneis a key parametein numerousenvironmentaktudies,including meteorology,
hydrology and agriculture. The significance of soil moisture is its role in the partitioning of eatergyground
surfaceinto sensibleand latent (evapotranspirationheatexchangewith the atmosphereand the partitioning of
precipitation into infiltration and runoff [1, 2].

Soil moisture can be estimated from: (i) point measureméntsoil moisturemodelsand (iii) remotesensing
(see Figure 1). Traditional techniques for soil moisture estimation yield data on ®asis{8, 4], which does
not always represent the spatiigtribution [5]. The alternativehasbeento estimatethe spatialdistribution of
soil moisture using @istributedhydrologic model [6, 7]. However,theseestimatesare generallypoor, dueto
the fact that soil moisture exhibits largpatialand temporalvariation[8], asa resultof inhomogeneityin soil
properties, vegetation and precipitation [4]. Remote sensing can be used to collect spatial data over large areas
a routine basis, providing a capability to makefrequentand spatially comprehensiveneasurementsf the near
surfacesoil moisture.However,problemswith this datainclude the currentsatellite repeattime (typically 25
days) and the depth over which swmibistureestimatesarevalid, consistingof the top few centimetresat most
[2, 8, 9]. These upper few centimetres of the soil are the most exposed to the atmosphere, snidrtfeésture
varies rapidly in responseto rainfall and evaporation[10]. Thus to be useful for hydrologic, climatic and
agriculturalstudies,suchobservation®of surfacesoil moisturemust be relatedto the completesoil moisture
profile in the unsaturated zone [11-13].

The problem of relating soil moisture content at the surface to thihe @fofile as a whole hasbeenstudiedfor

the pasttwo decadesFour approachefiavebeenadopted:(i) regression(ii) knowledge-basedjii) inversion,
and (iv) combinationsof remotely senseddata with soil water balancemodels [14]. As remote sensing
observations have a poor resolution in time, it is necessary to apply the water balance approach iohiaiter to
soil moisture estimates during the inter-observation period.
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Figure 1: lllustration of the soil moisture estimation problem.
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Figure 2: lllustration of data assimilation techniques: a) Direct-insertion; b) Kalman-filter.

The water balance approach uses a soil water balance modehsteenadaptedo acceptremotesensingdata
as input to track soil moisture status in time. As surface observatiausl shoisturebecomeavailablethey are
assimilated into the model. A review of approaches used for assimilation of remote sensing observasioits into
moisture models found that the direct-insertion and Kalman-filter techniques have been used most frequently.

The direct-insertionapproachis performedby directly substituting simulated values of soil moisture and
temperaturavith the observedvalues, as they becomeavailable. This is illustrated in Figure 2a, wherethe

model profile (open circles}y replacedby the observationsf the true profile (solid circles)to yield the model

update profile (open symbolgith dot). The governingequationsor flow of moisturethroughunsaturatedoil

are highly non-linear. Therefore the direct-insertion approach is the simpler of the two approaches suggested, as
allows for the non-linear problem to be solved directly. However, the only wahiich this surfaceinformation

is transferred to greater depths is through the physics of the model.

The Kalman-filteris a statisticalapproachthat yields a statistically optimal updateof the soil moistureprofile
basedon the relative magnitudesof the covariancesof both, the model's profile estimateand the surface
observations. The principal advantage of tipproachis that the Kalmanfilter providesa statisticalframework
in which the entire profile may be modified as illustrated in Figure 2b (open symbols with dot}pwatiances
representinghe degreeof belief in the observationgsolid circles) and model predictions(open circles). This
characteristic of Kalman-filtering reflects our intuition that surfaesasurementpgrovide someknowledge albeit
limited, of soil moisturevaluesbelow the depthover which observationsare made. The disadvantageof this
approach is that the governing equations require linearisation.

Model Equations

The most commonly used physically basedmodel for estimating the flow of soil moisture and heat in
unsaturated soil is that of Phillip and de Vries [15Y. assumingisothermalconditionsand that vapourflux is
negligible, thewell known Richardsequationis obtainedin (1). The heatflow equationin (2) is obtainedby
assuming the effects from differential heat of wetting and vapour flux are negligible.
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where is the soil matric suctio) , is the isothermal liquid hydraulic conductivify,is the soil temperature,
T IS a reference soil temperatudds the thermal conductivity is the specific heat capacity of liquidater, g,
is the liquid moisture fluxp is the densityof liquid waterf is the liquid volumetric soil moisture,t is time,
C, is the soil capillary capacityfactor, Cr is the volumetric heatcapacityof the bulk soil medium, and z is
elevation taken as positive upward.

The soil moisture equationin (1) is decoupledfrom soil temperatureby the assumptionof isothermal
conditions. Hence modellingf soil moisturecould be performedwithout the soil temperatureequationin (2).
The necessity for modelling soil temperature is the relationship betwigeowaveremotesensingobservations
and soildielectric constant,and the temperaturalependencef the relationshipbetweensoil dielectric constant
and volumetric soil moisture. The magnitude of tépendencés illustratedin Figure 3 for both dry and wet
soil conditions. As surface soil temperatucas havediurnal variationsin excessof 40°C in somepartsof the
world, it is necessary to have an estimate of the surface soil tempenatrgerto retrieve surfacesoil moisture
from microwaveremotesensingobservationsCurrentgeneratiomrmicrowave remote sensingplatforms do not
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Figure 3: Temperature dependence of dielectric constant: a) low soil moisture; b) high soil moisture.

carry a thermalinfra-red sensoron board,henceit is necessaryo model soil temperaturen addition to soil
moisture.

Synthetic Study

A desktopstudy using synthetic data has beenundertakento illustrate the ability to retrieve soil moisture
profiles using the direct-insertionand Kalman-filter assimilation techniques.Firstly, the soil moisture and
temperature equations were used to generdfeday syntheticdataset of “true” soil moistureandtemperature
profiles using the van Genuchten[16] moisture retentionand hydraulic conductivity relationships.The soil
parameters used by the model are given in Table 1, and initial conditions werens&riorsuction (51.5%v/v)
and 20°C soil temperatureuniform throughoutthe 1 m deepprofile. The time variation of the “true” profiles
were generated by subjecting the model to boundary conditions of 0.5 cm/day evaporation and sodlidnee]
flux of 400 langley/day amplitude at the soil surface. The boundary condition laaghef the soil columnwas
zero soil moisture and heat flux.

To test the direct-insertionand Kalman-filter profile retrieval algorithms, the soil moisture and temperature
equationswere initialised with a poor initial guessof 300 cm matric suction (35.5%uv/v) and 15°C soil

temperature, uniform throughout the profile. Subjecting the soil moiandéemperatureequationsto the same
boundaryconditions usedfor generatingthe “true” soil moisture and temperatureprofiles, the model was

updated once evellyour with soil moistureobservationsover depthsof 0 (surfacenode),1, 4 and 10 cm, and

soil temperaturebservationsat the surfacenodealone. Soil temperaturebservationsvere only for the surface
node, as thermal infra-red sensors can only sense the soil temperature at the soil surface.

The profile soil moistureretrievalresultsfrom updatingonceevery hour aregiven in Figure 4afor the direct-
insertion assimilation technique and Figure 4btfar Kalman-filter assimilationtechnique.In thesefigures, the
“true” profiles (closed symbol) are compared with tb&ievedprofile (opensymbols)aswell asthe openloop
profile (open symbol with a dot-he openloop refersto the situationwhereno observationsare usedandthe
system is simply propagated from the initial conditions subject to the surface flux boundary conditions.

Figure 4a shows that no retrieval is achieved for observatidhe atrfacenode alone using the direct-insertion
assimilationtechnique while full retrievalis achievedafter approximately7 days for an observationdepth of
10 cm. It is also shown that retrieval of soil moistprefiles proceedsnore slowly asthe observationdepthis
reduced.This is a resultof the direct-insertionassimilationtechniquerelying on the physics of the model to
translate surface observations to gredegpthsin the profile. The model translateghesesurfaceobservationgo
greater depths in an attemptaohievehdrostaticequilibrium within the soil profile. No retrievalwas achieved
for the soil temperatureprofile with updatingof the surfacenode once every hour. When using a continuous

Table 1: Soil parameters used in simulations.

Saturated Hydraulic Conductivitlfs 25 cm/day
Porosity @ 54 %v/v
Residual Soil Moistured; 20 %viv
van Genuchten Parametgr 0.008
van Genuchten Parameter 1.8
Proportion of quartz 3 %vlv
Proportion of other minerals 41 %v/v

Proportion of organic matter 2 %vlv
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Figure 4: Comparison of retrievesbil moisture profiles for observationdepthsof 0 (opencircle), 1 (open square),4
(opentriangle) and 10 (open diamond)cmwith the true soil moisture profile (solid circle) and the open loop soil

moisture profile (open circle with dot) for observationseach hour. a) Direct-insertion assimilation technique; and
b) Kalman-filter assimilation technique.

Dirichlet (fixed value) boundarycondition over the observationdepth, profile soil moisture retrieval required
between5 (10 cm observationrdepth)and 8 (surfacenode observation)days, while profile temperatureetrieval
required greater than 20 days. This indicates thatdor shallow observationsthe direct-insertionassimilation
techniquerequiresa Dirichlet boundary condition for some proportion of the time. The direct-insertion
assimilation technique treats observations as being instantaneous, with theasdealded(or subtractedpver
the observation depth being rapidly redistributed throughout the profile. As surface observations are applicable

some finite period of time, applying the surface observations for some pétiote allows for extramassto be
added (or subtracted).

The direct-insertion resuliare comparedwith thosefrom the Kalman-filter assimilationtechniquein Figure 4,
wheresoil moistureprofiles wereretrievedfor all observationdepths(including the surfacenode)after only 12
hours. Theseresultsshow the obvious advantageof using the Kalman-filter assimilationtechniqueover the
direct-insertion assimilatiotechnique.In this instance,an increasedbservationdepthhad only a minor effect

on the rate of profile retrieval, indicating that an increased obsenggiathis unimportantfor the Kalman-filter
assimilation technique.

Whilst updating with surface observations once every hour shows that the Kalman-filter assimilation téshnique
superior to the direct-insertion assimilation technique for profilersoiktureretrieval, an observationfrequency

of onceeveryhour is totally unrealisticfor any practical applicationof profile retrieval from remote sensing
observationsAt best,we may expecta repeatcoverageof onceeveryday. However,a repeatcoverageof once

every 5 days or greater is more probable, at least for the near future. What updating once every Bbawdses

that near surface observations withiagle Time Domain Reflectometry(TDR) probe may be usedto improve
profile soil moisture estimates.

With an update intervadf 5 days, the Kalman-filter yielded poor estimatesof the soil moistureprofile. Rather
than performan updatethat would lie betweenthe model estimateand “true” profiles, the updatedprofile was
equal to the “true” profile at the surface, followed by an oscillation between the two profiles before shodting off
a very large matric suction. In subsequentipdatesherewasonly slight improvementin the retrieved profile.
This instability was not observed for more frequent updating, and is believed to be afrémilinearisationof

an extremely non-linear model and the large difference between the “observations” emudighestimateafter 5
days.

In view of thesestability problems,a more robust applicationof the Kalman filter retrieval algorithm was
sought. Surfaceobservation®f soil moistureareindicative of the soil moistureat depth[11]. Thus, it was
proposed that actual observations would be appliedtbessbservationdepth,and “quasi” observationgo the
remainder of the moisture profile. This is illustrated in Figur&te quasiobservationsould eitherbe: (i) the
observed soil moisture #he observationdepth;or (ii) an extrapolationof the soil moistureobservatiorat the
observation deptby the steadystateassumption[11]. It waschosento apply the steadystateassumptionas
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Figure 5: lllustration of Kalman-filter profile retrieval algorithm using quasi observations.

this has been shown to be a reasonable approximation under low flux conditions dddition, whenthereis
a large matric suction gradientunder exfiltration conditions, this would have the effect of making the quasi
observations slightly closer to reality.

There is much greater uncertainty associated with the quasi observations than for the actual observafmns, even
a layer of soil directly below the observationdepth. With increasingdepth from the lowest observation,the
uncertainty in the quasi observation increases dramatidailyaccountfor this, a quantilejump in the variance

of the quasiobservationwas appliedimmediatelybelow the observationdepth, relativeto the varianceof the

actual observations. An increasing quasi observation variance with depth was then applied (see Figure 5).

Resultsfrom updatingonceevery5 dayswith quasiobservationdor the soil moisture updating are given in
Figure 6a for soil moisture and Figure 6b for soil temperature. These results show that full retrieval cggifofile
moisture is achieved fall observationdepthsafter only 10 days(2 updates)whilst therehasbeensignificant
profile temperature retrieval after only) days. Completesoil temperaturegorofile retrievalwas achievedafter an
additional update at day 15. The necessity for quasi observations withasilreupdatingonceevery5 days
illustrates the difficulties which may be encounteredvhen applying the Kalman filter to highly non-linear
problems. A summary of simulation results is given in Table 2.

Conclusions

This work has shown that the Kalman-filter assimilationtechniqueis by far superiorto the direct-insertion
technique andthat profile retrieval cannotbe realisedfor direct-insertionof the surfacenodesalone. However,
difficulties may be encountered when applying Kadman-filter to highly non-linearproblems.It hasalso been
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Figure 6: a) Comparison of retrieved soil moisture profiles for observation depths of Oc{ope); 1 (open square),4
(opentriangle) and 10 (open diamond)cmwith the true soil moisture profile (solid circle) and the open loop soil
moisture profile (open circle with dot) for observations each 5 days. b) Comparison of retrieved soil tempeséitere
for observationsof the surfacenode with the true soil temperatureprofile (solid circle) and the open loop soil
temperature profile (open circle with dot) for observations each 5 &mtsievedsoil temperatureprofiles correspond
with retrieved soil moisture profiles for observation depths of 0 (open circle), 1 (open square), 4 (open triantle)
(open diamond) cm.



Table 2: Summary of results.

Update Direct-Insertion (days) Kalman-Filter (days)
Interval Moisture® Temperature Moisture Temperature
continuous 5 >20

1 hour 7 - 0.5 2

1 day >20° >20° 3 6

5 days >40° >40° 10 15

1. 10 cm observation depth

2. Dirichlet boundary condition for 1 hour
3. Dirichlet boundary condition for 1 day
4. Quasi observations

shown that observation depth does not have a significant effect onritgerof observationsequiredfor profile
retrieval with the Kalman-filter retrieval algorithm.
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