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the estimation of soil moisture (SM) with an average ubRMSD
of not more than 0.04 m3/m3 volumetric accuracy in the top
5 cm for vegetation with a water content of less than 5 kg/m2.
Single-channel algorithm (SCA) and dual-channel algorithm
(DCA) are implemented for the processing of SMAP radiometer
data. The SCA using the vertically polarized brightness tempera-
ture (SCA-V) has been providing satisfactory SM retrievals. How-
ever, the DCA using prelaunch design and algorithm parameters
for vertical and horizontal polarization data has a marginal
performance. In this article, we show that with the updates of the
roughness parameter h and the polarization mixing parameters
Q, a modified DCA (MDCA) can achieve improved accuracy over
DCA; it also allows for the retrieval of vegetation optical depth
(VOD or τ). The retrieval performance of MDCA is assessed
and compared with SCA-V and DCA using four years (April 1,
2015 to March 31, 2019) of in situ data from core validation sites
(CVSs) and sparse networks. The assessment shows that SCA-V
still outperforms all the implemented algorithms.

Index Terms— Dual-channel algorithm (DCA), soil moisture
active passive (SMAP), soil moisture (SM) retrieval, vegetation
optical depth (VOD) retrieval.

I. INTRODUCTION

THE soil moisture active passive (SMAP) mission was
designed to improve scientific understanding of the global

linkages between the land branches of the water, energy, and
carbon cycles. Its science products also have applications
in mitigating hydrometeorological hazards and enhance cli-
mate/weather forecasting. With the goal of obtaining high-
accuracy soil moisture (SM) information, the SMAP mission
was designed to acquire L-band radiometer measurements for
the estimation of SM with an average bias-removed root mean
square error (ubRMSE or error standard deviation) of not more
than 0.04 m3/m3 volumetric accuracy in the top 5 cm for
vegetation with water content of less than 5 kg/m2 [1], [2].

The SMAP mission collects vertically and horizontally
polarized brightness temperature data at the incident angle
of 40◦. The SMAP team implemented several algorithms for
the retrieval of SM [2], primarily a single-channel algorithm
(SCA) that uses one of the observations to retrieve SM and
a dual-channel algorithm (DCA), which uses both polarized
brightness observations to retrieve not only SM but also the
vegetation optical depth (VOD or τ ), a measure of vegetation
water content and aboveground vegetation structure. Although
dual-polarization was expected to provide additional informa-
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tion, the performance of the DCA algorithm has been marginal
with higher SM retrieval errors than the SCA-V algorithm [3].

The baseline SMAP retrieval algorithms use the zero-order
approximation of the radiative transfer equations, known as the
τ -ω emission model [4]. To simulate L-band emission of soil-
vegetation systems, the SMAP data processing system assumes
a prior value of the effective scattering albedo and roughness
parameters based on land cover type and also an estimate of τ
based on the normalized difference vegetation index (NDVI)
climatology [2]. In this article, we will focus on the selection
of the roughness parameters and the albedo, which have been
studied by several authors [5]–[7].

The retrieval of τ is of great value for the SMAP mission
not only because it will reduce the source of errors on the
retrieval of SM (reduces reliance on ancillary data) but it
also has significant importance to the science community
since it will provide valuable information about the integrated
above-ground vegetation moisture state. The estimation of
surface SM and τ at a global scale is the main goal for
the L-band microwave mission of SMOS (SM and Ocean
Salinity) [8]. Recently, Fernandez-Moran et al. [9] presented
an alternative SMOS product that was developed by Institut
National de la Recherche Agronomique (INRA) and Centre
d’Etudes Spatiales de la BIOsphère (CESBIO). SMOS-INRA-
CESBIO (SMOS-IC) product also provides daily SM and τ at
the global scale.

Recent efforts to retrieve SM and τ from SMAP data
have been done [10]. Konings et al. [10] used a multitem-
poral DCA (MT-DCA), which assumes that τ changes more
slowly than SM and presumably stays almost constant between
every two consecutive overpasses. The MT-DCA τ fields
and their seasonal dynamics closely follow those estimated
using the SMOS multiangular measurements [9]. In addition,
the MT-DCA approach allows for the retrieval of a single
temporally constant value of the scattering albedo per pixel.

In this article, we show that with the use of suitable rough-
ness parameters and both polarized brightness temperatures
(H and V polarization), a modified DCA (MDCA) provides
retrieved SM with improvement in accuracy relative to the
current DCA. The retrieval performance of MDCA is assessed
and compared with SCA-V and DCA using four years (April 1,
2015–March 31, 2019) of in situ data from core validation
sites (CVSs) [11] and sparse networks representing different
seasons and land cover types worldwide.

This article is organized as follows. A background overview
of the emission model and algorithms used by SMAP as well
as the updates in polarization mixing is provided in Section II.
The updates to surface roughness and albedo parameters are
described in Section III. The assessment of the retrieval
performance is presented in Section IV. A summary is given
in Section V.

II. SMAP ALGORITHMS

A. Emission Model

The emission model implemented by SMAP for the retrieval
of SM is the well-established τ -ω emission model derived
from the radiative transfer equation [2], [4]. The brightness
temperature equation, which includes emission components

from the soil and the overlying vegetation canopy, is given
by

TBsim
p = Tsepexp(−τp sec θ) + Tc(1 − ωp)

× [1 − exp(−τp sec θ)][1 + rpexp(−τp sec θ)] (1)

where the subscript p refers to polarization (V or H), Ts is the
soil effective temperature, Tc is the vegetation temperature, τp

is the nadir vegetation opacity, ωp is the vegetation effective
scattering albedo, rp is the rough soil reflectivity, ep is the
rough soil emissivity, and θ is the incidence angle.

The surface roughness reflectivity is modeled by

rp(θ) = [
(1 − Q)r∗

p(θ) + Qr∗
q (θ)

]
e(−hcosN (θ)) (2)

where Q (polarization decoupling factor), h, and N are the
roughness parameters, and r∗

p(θ) is the Fresnel reflectivity of
the smooth surface where the indexes p and q(q opposite
to p) account for the polarization V or H. The baseline SMAP
implementation of the retrieval algorithms assumes that in (1)
Ts = Tc at the early morning descending overpass and that
ωp = ω and τp = τ are polarization independent to reduce the
number of algorithm parameters [2].

B. SCA

The SMAP baseline algorithm SCA-V that uses the
V-polarized observed brightness temperature TBobs

V to retrieve
SM minimizes the cost function

F(SM) = [
TBsim

V (SM) − TBobs
V

]2 (3)

where TBsim
V is the simulated V-polarized brightness tempera-

ture from the τ -ω emission model. To simulate the L-band
emission of the soil-vegetation using (1) and (2), several
parameters need to be assumed: a prior value of an estimate
of τ based on the NDVI vegetation water content (VWC)
climatology, the scattering albedo and the roughness parameter
all based on land cover type following the classification
scheme of the International Geosphere-Biosphere Programme
(IGBP). In addition, the clay fraction, needed to determine the
soil dielectric constant, was provided by Harmonized World
Soil Database (HWSD), and the land surface temperature,
needed to determine the soil effective temperature, was pro-
vided by the Global Modeling Assimilation Office (GMAO).
Details on the determination of the soil effective temperature
can be found in [2]. Recently, a methodology to compute
the soil effective temperature was developed in [12], but its
applicability was not studied by the SMAP team at this time.
For the computation of the dielectric constant, we follow the
Mironov model [13], which applies to a wide range of soil
types.

The current SMAP SCA-V assumes N = 2, the polarization
decoupling factor Q = 0 and h fields that are fixed for each
IGBP classification [2]. At L-band and small values of h, h
is related to the root-mean-square of the surface height s as
h = 0.01 s(s in millimeters).
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C. DCA

The DCA simultaneously retrieves the SM and τ by mini-
mizing the cost function

Fτ (SM, τ ) = [
TBsim

V (SM, τ ) − TBobs
V

]2

+ [
TBsim

H (SM, τ ) − TBobs
H

]2 (4)

where TBsim
H is the simulated H-polarized brightness temper-

ature. Since the launch in 2015, the DCA has been outper-
formed by the SCA-V.

To improve the DCA, we concentrate on the selection of the
roughness parameters, which was the focus of several studies
[5], [ 6], and the update of the parameter ω which represents
the effective scattering albedo [14], [15].

The current DCA assumes the same roughness parameters
as in the SCA-V, N = 2, the polarization decoupling factor
Q = 0, and h dependent on IGBP classification [2]. In [5]
and [6], an alternative model for the selection of the roughness
parameter is proposed. Wigneron et al. [5] developed an empir-
ical power function between h and s (the root-mean-square of
the surface height) based on the PORTOS-1993 experimental
data, given by

h =
(

0.9437s

0.8865s + 2.2913

)6

. (5)

Furthermore, Lawrence et al. [6], based on simulated data
from numerical solutions of Maxwell’s equations for elec-
tromagnetics rough surface scattering model, found that the
polarization decoupling factor Q could be related to the h
parameter using the linear equation

Q = 0.1771h. (6)

We will refer to this algorithm as the DCA with Wigneron–
Lawrence roughness implementation. The new parametrization
of the roughness effect has been evaluated by several authors
and is widely used in the literature [7], [15]–[17].

In this article, the Wigneron–Lawrence roughness imple-
mentation with N = 2 is first tested, and its statistical
performance is compared against the baseline SCA-V and the
current DCA. This implementation is not the final MDCA
introduced in Section III. To make a preliminary evaluation of
the impact of using (5) and (6) to retrieve SM, the retrieved SM
is compared with the in situ measurements at 15 SMAP CVS.
For each site, the RMSD, bias, and ubRMSD are computed
and then the total average is computed for comparison.

Table I shows the results over all the CVS. We see that the
use of the Wigneron–Lawrence roughness model, (5) and (6),
outperforms DCA but falls short of meeting the requirement
with an ubRMSD = 0.042 m3/m3 (an improvement of ∼14%
with respect to DCA ubRMSD) and that SCA-V still shows the
best performance over all the statistical parameters. The com-
parison of SM retrievals versus in situ data from the 15 CVS is
shown in Fig. 1. The figure on the left shows the current DCA
performance and the figure on the right shows the results after
the Wigneron–Lawrence roughness implementation. It can be
observed that after using the Wigneron–Lawrence roughness
implementation, the slope of the scattered data is corrected
resulting in a reduction of the bias as seen in Table I.

TABLE I

ALGORITHM ASSESSMENT

Fig. 1. Scatter plots of SM retrieval versus in situ SM data. (Left) Current
SMAP DCA algorithm. (Right) Wigneron–Lawrence implementation.

III. ALGORITHM PARAMETERS UPDATE

A. Roughness Surface Parameter h

The limitation of Wigneron–Lawrence parameterization is
that it requires prior knowledge of s. To overcome this
limitation, we obtain a global map of the roughness parameter
h from SMAP data and NDVI VWC climatology as ancillary.
The algorithm is explained in the following. Using the cost
function

Fh(SM, h�) = [
TBsim

V (SM, h�) − TBobs
V

]2

+ [
TBsim

H (SM, h�) − TBobs
H

]2 (7)

as in (6), we retrieved SM and roughness coefficient h� using
one year of SMAP data (2017) allowing the generation of
a time series of h� for each grid cell (i, j) over the 9-km
Equal-Area Scalable Earth Grid 2.0 (EASE2) grid. We identify
h�(i, j, k) by the time series of h� at the (i, j) grid cell and
time index k and by τ (i, j, k) the associated VOD from
NDVI. Defining τmin(i, j) = min{τ (i, j, k), for all k} and
τmax(i, j) = max{τ (i, j, k), for all k}, we compute the values
of h over the EASE2 grid as h(i, j) = average {h�(i, j, k) :
τ (i, j, k) <= τmin(i, j)+ f ∗(τmax(i, j)−τmin(i, j))} where the
factor f = 0.05 was selected to assure: 1) that the selection of
h� was based on minimum vegetation impact locally and 2) that
the set of h� does not contains only the element corresponding
to τmin. The resulting global map of h which we now use as
input in our modified-dual channel retrieval algorithm is shown
in Fig. 2. It is worth noting that the retrieved global map of
h captures the expected topographical features. For example,
we can see the Andes in South America, the Rocky Mountains
in North America, the Himalayan Mountains in Asia, and some
other minor land features along the Red Sea coast and in the
Sahara desert such as the Tibesti Mountains.
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TABLE II

ALBEDO VALUES

Fig. 2. Global map of the roughness parameter h ancillary file used on the
implementation of the MDCA.

B. Effective Scattering Albedo ω

With the generation of h, the implemented model depends
only on the estimation of the effective scattering albedo
ω which is dependent on the structure and composition
of the vegetation and landscape heterogeneity. There have
been several studies to quantify the correct values but the
results presented in the literature are not consistent [14], [15],
and [18].

The current values of albedo (ω) that SMAP uses are pro-
vided in Table II (SMAP L2 Baseline), and they are assigned
following the IGBP scheme. Based on several independent
sources and the accumulation of evidence, we determined
that the current values of albedo are likely to be low and
they need to be reconsidered. Table II contains the values
of albedo proposed by different independent teams (SMAP
Level 2 (L2), SMAP Level 4 (L4), SMOS-IC [9], [14], and

the multitemporal DCA (MTDCA) [10]). The last column on
the right shows the values adopted by SMAP for the MDCA
implementation based on the data sources in Table II and major
IGBP classes.

IV. RESULTS AND ASSESSMENT

MDCA simultaneously retrieves SM and τ by minimizing
the cost function (4) and using (1), (2), and (6) to simulate
TBsim

H and TBsim
V together with the parameter h from the ancil-

lary data shown in Fig. 2 and the albedo ω listed in the final
column of Table II. Four years (04/01/2015 to 03/31/2019) of
averaged SM global maps are shown in Fig. 3. SM retrieved
using SCA-V, MDCA, and the differences SCA-V(SM) minus
MDCA(SM) are shown from top to bottom, respectively.
There is agreement (small wet bias of MDCA with respect
to SCA-V) in barren areas and open shrublands. Grasslands
show wetter MDCA SM retrievals. SCA-V retrieves higher
values of SM in forested areas, woody savannas, and savannas
(these last two below 50◦ latitude). Woody savannas and
savannas above 50◦ latitude show that SCA-V retrieves lower
values of SM. Four years of averaged τ global maps are
shown in Fig. 4. τ retrieved using SCA-V, MDCA, and
the differences NDVI(τ ) minus MDCA(τ ) are shown from
top to bottom, respectively. Forested areas, woody savannas,
savannas, and croplands predominately have higher values of
NDVI τ except for the east coast of U.S., while barren and
grasslands areas show a good agreement between NDVI τ and
MDCA retrieved τ .

The SMAP project validates the accuracy of SM products
using several sources of information. Among them are CVSs,
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Fig. 3. Global maps of SM temporal mean and differences. (Top) SCA-V.
We covered the period from 01/04/2015 to 31/03/2019. (Center) MDCA.
(Bottom) SCA-V-MDCA differences.

which provide the ground-based data in a timely manner to
the SMAP project [3], [11], and sparse networks such as
the United States Department of Agriculture (USDA) Soil
Climate Analysis Network (SCAN) and the National Oceanic
and Atmospheric Administration (NOAA) Climate Research
Network.

In order to assess the results, four statistical parameters were
compared, the ubRMSD, bias, RMSD, and correlation (R).
The comparison between DCA (from previous v2 enhanced
product release), SCA-V, and MDCA for 15 CVS is presented
in Tables III and IV. The assessment for descending passes
is presented in Table III, while the assessment for ascending
passes is presented in Table IV. The total average for each
statistical parameter is shown in the bottom row where we
can see that MDCA not only outperforms DCA for all the
parameters but also meets the SMAP mission requirements for

Fig. 4. Global maps of temporal τ mean and differences. (Top) NDVI τ .
We covered the period from 01/04/2015 to 31/03/2019. (Center) MDCA τ .
(Bottom) NDVI-MDCA τ differences.

both descending and ascending passes. Indeed, for descend-
ing passes the ubRMSD decreased from 0.049 to 0.040
m3/m3(∼18%), the bias decreased from 0.039 to −0.007
m3/m3, the RMSD decreased from 0.066 to 0.050 m3/m3,
and the correlation increased from 0.728 to 0.772. Compa-
rable behaviors are observed for ascending passes. SCA-V
outperforms the MDCA algorithm in all cases. The combined
scatter plots associated with these results are shown in Fig. 5,
which shows retrieved SM versus in situ SM at CVS. From
left to right, the figure shows the retrieved SM from SCA-V,
DCA, and MDCA. We see that from DCA to MDCA there
is a correction in slope, and therefore, a correction in bias as
can be seen in Tables III and IV. It can also be observed that
MDCA corrects the deviation observed in the SCA-V for high
in situ SM, Fig. 5 (left).
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TABLE III

CVS ASSESSMENT

TABLE IV

CVS ASSESSMENT
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TABLE V

STATISTICAL COMPARISON BETWEEN SCA-V SM AND MDCA SM

TABLE VI

SPARSE NETWORK ASSESSMENT

The results show SCA-V SM and MDCA SM have compa-
rable performance statistics when compared with the 15 CVS.
In order to assess the statistical significance of the differ-
ences, we perform statistical significance tests on the statistics.
We analyze the statistics at a 95% confidence level of the
difference between the time series SCA-V SM and time series
MDCA SM at the 15 CVS. Table V shows from left to right,
the mean difference, the mean difference error, ubRMSD,
ubRMSD error, the correlation, the correlation lower bound
(LB), the correlation upper bound (UB), the t-value, and

the number of samples (N). Table V shows that the mean
difference only exceeds 0.04 m3/m3at Twente, the ubRMSD
stays below the 0.04 m3/m3 at all the CVS and the correlation
is high, greater than 0.85 in all cases. The t-value was also
computed as

t = x̄ − ȳ√
σx
N + σy

N

(8)

where x̄ is the mean of MDCA SM, ȳ is the mean of SCA-V
SM, σx and σy are the respective variances, and N is the
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TABLE VII

MDCA AND NDVI TAU AT NADIR

Fig. 5. Scatter SM retrieval versus CVS in situ SM. (Left) SCA-V. (Center) DCA. (Right) MDCA.

number of samples. Considering that the critical t value for a
two-tailed distribution is ∼1.96, Table V shows that for 9 of
the 15 CVS, the differences are statistically significant (marked
by ∗ in Table V) while for 6 of them the differences are not
statistically significant.

The assessment report over the sparse networks using
48 months of SMAP SM data is presented in Table VI. The
accuracy of three algorithms, MDCA, SCA-V, and DCA (from
previous SMAP product release), is compared. The ubRMSD,

bias, RMSD, and correlation (R) for several land types and for
descending passes (top part of Table VI) and ascending passes
(bottom of Table VI) are presented. We observe that SCA-V
outperforms the two DCAs but we can also see that MDCA
shows improvement with respect to DCA for all the statistical
parameters.

Due to the lack of in situ measurements to be used as
references, the assessment of the accuracy of the retrieved τ
values on a global scale is not simple and thus no quantitative
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assessment of the SMAP MDCA τ is given. The retrieved
values of τ shown in Fig. 4 (top) are lower than those reported
in [9], [10], and [19]. The global median value of the MDCA τ
is 0.26, lower than the 0.33 reported in [10]. The global mean
and standard deviation (std) are 0.36 and 0.33, respectively.
The data were not filtered using the quality flags but all the
data with values higher than τ = 2 were considered anomalous
and discarded. Mean, std, and median for the retrieved τ and
NDVI τ by land cover types are presented in Table VII.

V. CONCLUSION

In this article, we show that by choosing a suitable set
of roughness parameters and adjusted albedo values, and
MDCA allows for an accurate retrieval of SM. We show
that MDCA retrievals of SM not only outperform DCA but
also the retrieved SM meets the SMAP mission require-
ments for ascending and descending passes. We also show
that, even though the retrieved SM using SCA-V performs
slightly better when compared with in situ and sparse network
data, the MDCA is a reliable SM set of data retrieved
simultaneously with τ and the additional information may
be of interest for several research groups [20]–[22]. All
radiometer data products from SMAP can be obtained from
the National Snow and Ice Data Center (NSIDC DAAC,
http://nsidc.org/data/SMAP/).
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