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Fusing Microwave and Optical Satellite
Observations to Simultaneously Retrieve
Surface Soil Moisture, Vegetation Water

Content, and Surface Soil Roughness
Yohei Sawada, Toshio Koike, Kentaro Aida, Kinya Toride, and Jeffrey P. Walker

Abstract— Uncertainty in surface soil roughness strongly
degrades the performance of surface soil moisture (SSM) and
vegetation water content (VWC) retrieval from passive
microwave observations. This paper proposes an algorithm to
objectively determine the surface soil roughness parameter of
the radiative transfer model by fusing microwave and optical
satellite observations. It is then demonstrated in a semiarid in situ
observation site. The roughness correction of this new algorithm
positively impacted the performance of SSM (root-mean-square
error reduced from 0.088 to 0.070) and VWC retrieval from
the Advanced Microwave Scanning Radiometer 2 and Moderate
Resolution Imaging Spectroradiometer. Since this surface soil
roughness correction may be transferrable to other microwave
satellite retrieval algorithms such as those for the Soil Moisture
and Ocean Salinity and Soil Moisture Active Passive satellites,
this new algorithm can contribute to many microwave earth
surface observation satellite missions.

Index Terms— Microwave radiometry, satellite applications,
soil, vegetation, water resources.

I. INTRODUCTION

PASSIVE microwave satellite observations have greatly
contributed to global surface soil moisture (SSM)
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observations (see [1]–[3]). Global SSM products from
satellite-based microwave observations have widely been used
to quantify drought impacts (see [4]), analyze land–atmosphere
interactions (see [5]), and improve the soil moisture simulation
of a land surface model by data assimilation (see [6], [7]).
In addition, microwave data are useful for monitoring ter-
restrial vegetation dynamics since the microwave vegetation
optical depth (VOD) is highly sensitive to vegetation water
content (VWC) [8]. This sensitivity of a microwave signal
to terrestrial vegetation dynamics has been utilized to ana-
lyze the global carbon cycle [9], monitor the change of the
rainforest (see [10]), and improve the performance of an
ecohydrological model by data assimilation [11], [12].

Despite significant effort to develop the SSM and VWC
retrieval algorithms from passive microwave observations [13],
there is a need for further improvement in the current
algorithms [14]. One of the most critical issues is the uncer-
tainty of surface soil roughness, which greatly affects the
microwave radiative transfer on land (see [15]). Consequently,
the lack of information about surface soil roughness, which
is difficult to directly observe at satellite footprint scales,
degrades the SSM and VWC retrieval accuracy. For example,
Patton and Hornbuckle [16] indicated that the VOD product
from the Soil Moisture and Ocean Salinity (SMOS) mis-
sion might strongly be affected by the change of surface
soil roughness due to land management activities. Moreover,
Njoku and Chan [17] proposed to retrieve a single parameter
from the Advanced Microwave Scanning Radiometer for Earth
Observation System (AMSR-E) brightness temperature obser-
vations to reflect the combined effect of vegetation and surface
soil roughness. However, it is difficult to decompose this
parameter into the separate VWC and surface soil roughness
contributions [17].

Recently, Sawada et al. [18] undertook a field experi-
ment that measured SSM, VWC, leaf area index (LAI),
and microwave brightness temperatures from a ground-based
microwave radiometer, and showed that VWC and surface
soil roughness can independently be retrieved by fusing a
microwave signal and observed LAI. Wang et al. [19] utilized
a similar approach to estimate a soil roughness parameter of
their radiative transfer model (RTM) at global scale by fus-
ing AMSR-E brightness temperature, the SMOS derived soil
moisture product, European Centre for Medium-range Weather
Forecasting soil temperature, and Moderate Resolution
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Imaging Spectroradiometer (MODIS) normalized difference
vegetation index (NDVI). However, Wang et al. [19] used
the estimated SSM to retrieve the surface soil roughness
parameters and did not check if the estimated surface soil
roughness parameter can improve the accuracy of the SSM
and VWC retrieval. No study has evaluated how these surface
soil roughness estimations, from fusing microwave and optical
observations, impact the skill of simultaneously retrieved SSM
and VWC at the satellite footprint scales.

The aim of this paper is, therefore, to propose
a new algorithm to simultaneously retrieve SSM and
VWC by fusing the AMSR2 brightness temperature and
MODIS-derived LAI. Although the original idea has been
proposed in [18], it has not been verified in the real-world
satellite observation. Some modifications for applying it to
satellite data are described and tested in this paper. The
existing concepts used in the Japan Aerospace eXploration
Agency (JAXA) standard algorithm are included for the appli-
cation of satellite observations. This new algorithm addresses
the uncertainty of surface soil roughness by introducing opti-
cally observed LAI into the microwave retrieved parameter,
which reflects the combined effect of vegetation and surface
soil roughness. The performance of the algorithm is evaluated
using in situ soil moisture observation network data and in situ
observed VWC in a semiarid region.

II. DATA

Five satellite and two in situ data sets from January 2013 to
December 2014 were used. The microwave brightness tem-
peratures used in this paper were measured using the AMSR2
sensor onboard the Global Change Observation Mission-
Water satellite (JAXA AMSR2 L3 product). In addition
to the brightness temperatures, AMSR2 SSM products
and a VOD product were used to compare the retrieved
SSM and VOD in this paper with those in the existing
algorithms. The SSM product produced by the JAXA standard
algorithm [20], [21] (JAXA AMSR2 L3 product; https://
gcom-w1.jaxa.jp/auth.html) and the SSM and VOD products
produced by the Land Parameter Retrieval Model (LPRM L3
product; https://earthdata.nasa.gov/) [1] were used. Only data
of descending (nighttime) pass were used because the vertical
temperature gradients are weaker and VOD retrievals can be
stable [22], [23].

In this paper, microwave and optical satellite observa-
tions are fused to reduce the effect of the uncertainty of
surface soil roughness on the microwave radiative transfer.
The optical satellite product used in this paper was the
MODIS MCD15A3 four-daily LAI product [24] which can be
downloaded from https://earthdata.nasa.gov/. All satellite data
were resampled to the JAXA AMSR2 L3 product’s resolution
(0.1° × 0.1°) by the nearest neighbor algorithm. No temporal
interpolation has been implemented.

To evaluate the performance of the algorithm developed
in this paper, the ground-observed soil moisture data set
from a grassland area of the Yanco region, Australia, was
used. This data set forms part of the Murrumbidgee Soil
Moisture Monitoring Network (http://www.oznet.org.au/) [25].
Our target area is a 9 km × 9 km area whose central coordinate

is approximately (34.9S, 146.3E). This area corresponds to
one pixel of the JAXA L3 product. Fig. 1(a) indicates the
distribution of soil moisture ground observation sites within
the satellite data pixel. Stevens Hydra 5-cm long probes were
vertically installed at all sites. These observed soil moistures
represent the soil moisture within a depth of 0–5 cm. However,
there may be some biases in the observation depths since
the measurements are affected by not only soil between the
four probes but also soil surrounding the four probes although
this effect may be minimal. All the data obtained from these
sites were averaged to get the representative in situ observed
SSM at the satellite footprint scale [26]. The values whose
observation time was closest to the time of satellite descending
overpasses were used. The in situ observed SSM ranged from
approximately 0.05 to 0.3 [m3/m3].

In addition to soil moisture, in situ observations of VWC
were undertaken. It should be mentioned that obtaining in situ
VWC in the satellite footprint scale is extremely difficult due
to the spatial heterogeneity of VWC. We have three types of
VWC data, Types I, II, and III. The Type I data include a
field survey undertaken on July 7, 2014 with eight plots taken
around the flux tower [square T1 in Fig. 1(a) and (b)]. The
two plots were taken in close proximity of the flux tower.
The three sets of two plots were taken in an approximate
100-m northward, eastward, and southward to the flux tower.
The Type I data also include a field survey undertaken on
October 23 and 24, 2014 with 12 plots taken across the
satellite pixel [see Fig. 1(b)]. Because these two surveys had
many plots separated from each other, it is assumed that
these Type I in situ observations can represent the satellite
footprint-scale VWC. Moreover, the Type II data consist of
the vegetation samplings of three plots around the tower
and the Type III data consist of the vegetation samplings of
three plots located 2 km from the tower. Field surveys for
Type II and Type III were undertaken on February 28, 2014,
April 2, 2014, May 6, 2014, and August 12, 2014. Because
of the small number of plots and the unsatisfactory spatial
coverage, it is difficult to assume the observations of Type II
and Type III can represent the satellite footprint-scale VWC.
However, the Type II and Type III observations were used
to evaluate the skill of this new algorithm to reproduce the
temporal dynamics of VWC. These intensive observations
include the whole seasonal cycle of vegetation dynamics. The
size of all sampling plots was 50 cm × 50 cm. The VWC
was calculated as the difference between the mass of the wet
and dry biomass. The in situ observed VWC ranged from
approximately 0 [kg/m2] to 1 [kg/m2]. This study area is
dominated by the savanna or grassland ecosystem with some
croplands.

III. METHOD

A. Radiative Transfer Model

The RTM used in this paper has been used in [11], [12],
and [18]. As a surface soil emission model, the advanced
integral equation model incorporating the shadowing effect
developed by Kuria et al. [27] was used. This model can be
applied to a wide range of surface soil roughness conditions
characterized by a root-mean-square (rms) height (σ : cm) and
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Fig. 1. Maps of the observation site. (a) Circles (YB1, YB3, ….) are
the soil moisture observation sites. The square (T1) is the location of the
flux tower. (b) Flags are the VWC observation plots for the survey on
October 23 and 24, 2014. The blue transparent rectangle is JAXA’s
AMSR2 L3 product pixel.

correlation length (l: cm). The explanation of this RTM can be
found in [27] and references therein and the important equa-
tions are briefly described in this paper. Surface reflectivity
can be obtained from

Rp = rp exp[−(2kσ cos θ)2]S(θ, θ)

+ 1

4π cos θ

2π∫
0

π/2∫
0

[h pp(θ, θ j , ϕ j )S(θ, θ j )

+ h pq(θ, θ j , ϕ j )S(θ, θ j )] sin θ j dθ j dϕ j (1)

where Rp is the surface reflectivity, p and q refer to the
polarization state (vertical or horizontal), k is the wavenumber,

θ is the incident angle, h is the single scattering terms, θ j is the
scattering direction, ϕ is the azimuth angle, S is the shadowing
function (see [27]), which is dependent on the surface soil
roughness parameters [27], and r is the Fresnel reflectivity,
which is calculated by

rh =
∣∣∣∣∣
cos θ −

√
εr − sin2 θ

cos θ +
√

εr − sin2 θ

∣∣∣∣∣
2

(2)

rv =
∣∣∣∣∣
εr cos θ −

√
εr − sin2 θ

εr cos θ +
√

εr − sin2 θ

∣∣∣∣∣
2

(3)

where εr is the dielectric constant of the soil–water mix-
ture (includes both real and imaginary parts) given by

εr = [1 + (1 − θs)(ε
A
s − 1) + wβR εA

fw − w]1/A (4)

βR = 1.09 − −0.0011% sand + 0.0018% clay (5)

such that εs is the dry soil dielectric constant, θs is the
saturated soil moisture content, εfw is the dielectric constant
of free water, w is the SSM, A = 0.65, and % sand and
% clay are the percentages of sand and clay contents in the
soil, respectively. The semiempirical equations (4) and (5)
are from [28] and [29], respectively. The parameters of these
equations (e.g., %sand and %clay) are derived from the default
value of the JAXA standard algorithm.

To calculate the total emission from the land surface,
the tau–omega model [30] was used to account for the effect
of vegetation

Tbp = (1 − Rp)Ts exp(−VOD)

+ (1 − ωcp)Tc(1 − exp(−VOD))

+ Rp(1 − ωcp)Tc(1 − exp(−VOD)) exp(−VOD) (6)

where Tbp is the brightness temperature at the radiometer
level, Ts is the physical land surface temperature, Tc is the
canopy temperature, ωcp is the single scattering albedo of
the canopy, and VOD is the vegetation optical depth. The
VOD has been found to be linearly related to VWC (VOD =
b×VWC), which was thoroughly verified, although the linear
relationship assumption should slightly be modified in the
application to a brightness temperature with a higher frequency
(e.g., Ka bands) [8], [31]. Please note that in (6) exp(−VOD)
is the transmissivity of vegetation at the AMSR2 incidence
angle of 55°. The values and uncertainties of important vege-
tation parameters are discussed in the end of Section III-D.

B. Surface Soil Moisture and Vegetation Optical
Depth Retrieval Algorithms

To retrieve SSM and VOD using this RTM, an index of soil
wetness (ISW; see [20], [32]) and a polarization index (PI)
were used

ISW = 2
(
T H

Bg − T H
Bf

)
T H

Bg + T H
Bf

(7)

PI = 2
(
T V

Bf − T H
Bf

)
T V

Bf + T H
Bf

(8)

where T p
Bq is the brightness temperature at the radiome-

ter level, superscript p indicates polarizations [vertical (V )
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Fig. 2. Schematic of the PI- and ISW-based SSM and VOD retrieval
algorithms. See Section III-B for details.

or horizontal (H )], and subscript q indicates frequencies.
(g indicates a higher frequency while f indicates a lower
frequency.) Since the change in emissivity due to a change
in soil moisture strongly depends on the frequency of the
microwave observation, ISW is a useful index to esti-
mate SSM. As soil gets wetter, the brightness temperature
with a lower frequency decreases more considerably than that
with a higher frequency so that ISW increases. In this paper,
36.5 GHz is used as the higher frequency (g) and 6.925 GHz
is used as the lower frequency ( f ). In the case of dry bare
soil, the sensing depths of 6.925- and 36.5-GHz observations
are on the order of 1 and 0.1 cm, respectively, although
there may be some errors in the sensing depth estimation.
Because ISW extracts the large sensitivity of microwave with
the lower frequency to SSM, the soil sensing depth of this
method is assumed to be almost identical to that of 6.925 GHz.
Considering that the difference of the soil sensing depths
between two frequencies is often less than 1 cm, it can rea-
sonably be assumed that the soil wetness between two sensing
depths is homogeneous. However, the ambiguity of the sensing
depth due to the use of dual-frequency brightness temperatures
is a limitation of ISW. The difference of the original footprint
size between different frequencies is a limitation of ISW.
In addition, brightness temperatures in a higher frequency
are affected by cloud water, although evidence for significant
degradation of the retrieval skill due to atmospheric conditions
cannot be found in the literature. Please note that ISW is
also affected by surface soil roughness and VWC. PI has
widely been used to monitor VWC (see [1], [3], [8], [13], [17],
[18], [20], [32]) since the difference between the brightness
temperatures of vertical and horizontal polarizations is reduced
by the extinction process within the vegetation layer. By using
the ISW and PI, the effect of the uncertainties in the surface
and canopy temperatures can be minimized.

These two indices were used to retrieve SSM and VOD;
same as for the JAXA standard algorithm [20]. Fig. 2 shows
an overview of the PI- and ISW-based SSM and VOD retrieval
algorithms. There are two loops (the SSM and VOD loops)
in this algorithm. In the VOD loop, the VOD was gradually
changed from 0 to 2.5 in increments of 0.025, and the RTM
described above was run to obtain the brightness temperatures.
The estimated PIs were then compared with those observed
from the satellite sensor. The optimal VOD that minimizes the

square difference (difference in Fig. 2) between the estimated
and observed PIs was chosen. In the SSM loop, the SSM
was gradually changed from 0.005 to 0.5 in increments
of 0.005 and the RTM was run with the VOD estimated in
the VOD loop. The estimated ISWs were compared with those
observed from the satellite sensor. The SSM that minimized
the square difference (difference in Fig. 2) between the esti-
mated and observed ISWs was then chosen.

To obtain the optimal SSM and VOD, these two loops were
iterated. First, the VOD loop was run to estimate the VOD
that can reproduce the observed PI. Second, the SSM loop was
run with estimated VOD to obtain the SSM that can reproduce
the observed ISW. Then, the VOD loop was run again with
the SSM estimated by the previous SSM loop. This process
was repeated until both SSM and VOD do not change in the
two loops. This retrieval method is similar to the LPRM
method [1] and mostly identical to [18]. In this paper, ISW
was used in the SSM loop while Sawada et al. [18] directly
compared the estimated brightness temperatures with the
observed brightness temperatures. Since our problem to be
solved is relatively simple, it was easy to search the global
minimum. Please note that there are many alternatives to solve
the inversion problem of the RTM such as a lookup table
method (see [20]).

C. Effect of Surface Soil Roughness

Following [18], an idealized experiment was implemented
to quantify the impact of the surface soil roughness bias.
Here, the “true” roughness parameters and the “biased” rough-
ness parameters of the RTM are arbitrarily chosen. How the
retrieval algorithm degrades due to the bias of the roughness
parameters is discussed. First, the VOD value was gradually
changed from 0 to 1 (but with SSM fixed) and the RTM
run using the “reference” (or “true”) surface soil rough-
ness parameters to generate the model-calculated brightness
temperatures. The combination of these VODs and the
model-calculated brightness temperatures was then used as a
surrogate of the truth in the next step. Second, the SSM and
VOD retrieval algorithms described in Section III-B were run
with the “smooth” surface soil roughness parameters (σ =
0.1 [cm], l = 1.5 [cm]), which is arbitrarily determined,
by using the brightness temperatures generated in the first
step. This “smooth” surface soil roughness parameters are
biased compared with the “reference” surface soil roughness
parameters. The retrieved VOD was then compared with the
surrogate of the truth. Fig. 3 provides the schematic of this
idealized experiment.

Red circles in Fig. 4(a) show the result of this idealized
experiment when the “reference” surface soil roughness is
set to the same values as the “smooth” surface soil rough-
ness (σ = 0.1 [cm], l = 1.5 [cm]). In this case, estimated
VOD is completely consistent to a surrogate of the truth. The
estimated SSM is also consistent to the fixed value which
is used to generate the brightness temperatures. Conversely,
triangles in Fig. 4(a) show the selected result of the idealized
experiment if larger σ than the “smooth” surface and fixed
l (=1.5 [cm]) were chosen as a “reference” soil roughness
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Fig. 3. Schematic of the idealized experiment. The box of “Retrieval Algorithm” is identical to what is shown in the entire Fig. 2. See Section III-C for
details.

parameter. In this “rough” surface case (the true surface is
rougher than expected), estimated VOD (and SSM) was not
consistent to a surrogate of the truth [Fig. 4(a)], because there
is a bias of σ in the retrieval algorithm.

Sawada et al. [18] have found that the effect of the bias in
the surface soil roughness on the VOD retrieval can be defined
as a constant value. So if VOD is retrieved with a smoother
surface soil roughness condition than reality in the RTM, VOD
can be formulated as

ξ = VOD + R∗ = b × VWC + R∗ (9)

where ξ is the biased VOD, which can be decomposed into
the unbiased VOD correlated linearly with VWC [33] and
the effect of surface soil roughness (R∗). This paper supports
this result, although in the case that the “reference” surface
soil roughness parameter σ is very large, (9) is violated with
VOD < 0.3 [Fig. 4(a)]. The roughness bias degrades the skill
of SSM retrievals, and the effect of SSM bias on the VOD
retrieval is large in the case of a small VOD. Therefore, (9) is
violated due to the bias of SSM retrieval with the extremely
large roughness bias and small VOD.

In this idealized experiment, R∗ was calculated as the
averaged difference between estimated VOD [vertical axis
in Fig. 4(a)] and the true VOD [horizontal axis in Fig. 4(a)]
in the case that true VOD is larger than 0.3. Please note
that the data with VOD < 0.3 can also be used to calculate
R∗ if the “reference” surface soil roughness is not extremely
large. Fig. 4(b) shows the relationship between the “reference”
surface soil roughness parameter σ and R∗. The relationship
does not strongly depend on the fixed soil moisture value
that was used to generate a surrogate of truth. In this paper,
it was assumed that soil moisture is 0.15 [m3/m3] and that rms
roughness height can be approximated by a linear relationship
with R∗

σreference = 1.1361 × R∗ + 0.1387 (10)

where σreference is the rms height [cm] of the “reference”
(correct) surface soil roughness parameter.

D. Microwave and Optical Fusion Approach

Here, the strategy to get the value of R∗ and correct the
rms height σ of the RTM in the real-world application is

presented. Paloscia and Pampaloni [8] suggested the following
relationship between VWC and LAI:

VWC = exp

(
LAI

y

)
− 1 ≈ LAI

y
(11)

where y is a species-dependent parameter that represents the
ratio between the leaf and stem water contents, which it is
difficult to observe at satellite footprint scales. Linearization
was proposed by Sawada et al. [18]. Substituting (11) into (9)
yields

ξ = b

y
LAI + R∗. (12)

The value of R∗ in (12) can be estimated as the y-intercept
of a linear regression of ξ and LAI.

The procedure of this Microwave and Optical Fusion
Approach (MiOFA) is as follows (see also Fig. 5).

1) The retrieval algorithm described in Section III-B is run
with the “smooth” surface soil roughness (σ = 0.1,
l = 1.5) to get ξ .

2) The linear regression of ξ and LAI observed by an
optical sensor is obtained to get R∗.

3) The value of σ is corrected by using R∗ and (10).
4) The retrieval algorithm is run again using the corrected σ

to get SSM and VOD.

To get VWC, the linear relationship between VOD and VWC
proposed by Jackson and Schmmuge [33] is used. How-
ever, the uncertainty of the “b-parameter” in (9) has to be
considered. Sawada et al. [18] found that this b-parameter
did not strongly depend on the crop type at 6.925 GHz.
However, the value highly depends on the assumption of a
single scattering albedo of the canopy since the equifinality
problem exists in the calibration of these two parameters.
(A result with a large b-parameter and a large albedo is
similar to that with a small b-parameter and a small albedo.)
Sawada et al. [18] calculated the appropriate b-parameter
with many values of single scattering albedo using in situ
observation data. In this paper, the single scattering albedo was
set to 0.06, which is similar to the value used in the JAXA
algorithm [20]. In this case, Sawada et al. [18] suggested
the b-parameter be approximately 0.74 at 6.9 GHz. This
value is reasonable when compared with the synthesis study
of [33]. Thus, a value of b = 0.74 was applied here, but
please note that there is uncertainty of this parameter and the
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Fig. 4. (a) Sample of results from the synthetic experiment with various “reference” surface soil roughness parameters. Soil moisture is set to 0.15 [m3/m3]
when a surrogate of the truth is generated. Red circles are the results in the case that the “reference” surface soil roughness parameters are the same as those
used in the retrieval algorithm. Blue, green, yellow, and purple triangles are the results in the case that the “reference” surface soil roughness parameters
are rougher than those used in the retrieval algorithm. (σ is 0.3, 0.5, 0.7, and 0.9 [cm], respectively.) (b) Relationship between “reference” soil roughness
parameters and magnitude of soil surface roughness contamination to vegetation-oriented signals R∗ [see (9)] in the idealized experiment. Soil moisture is
set to 0.1 (blue dots), 0.15 (green dots), and 0.20 (red dots) [m3/m3] when a surrogate of the truth was generated. Dashed lines show the linear regressions.
See Section III-C for details of the idealized experiment.

subsequent VWC estimations. LPRM VOD-based VWC was
also calculated by using b = 0.74.

It is extremely difficult to objectively determine the value
of the single scattering albedo, which brings the uncertainty to

these retrievals. Although the single scattering albedo spatially
and temporally changes, in this paper, the fixed value is
assumed as in many operational retrieval algorithms [20], [23].
In addition, the dependence of the single scattering albedo
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Fig. 5. Schematic of the MiOFA. See Section III-D for details.

Fig. 6. Relationship between LAI and VOD in a 6.925-GHz microwave
region. Blue and red circles are the result from this study with a “smooth”
surface soil roughness parameter and a corrected surface soil roughness
parameter given by the MiOFA method, respectively. Green circles are the
result from LPRM. The dashed lines show the linear regressions.

to polarizations and frequencies is neglected although the
MiOFA uses the multipolarized and multifrequency brightness
temperatures. Please note that the single scattering albedo
used here should be considered as an “effective albedo” [34]
and that it is not simply correlated with the strength of the

vegetation volume scattering because the multiple scattering
is neglected in the tau–omega model. When the tau–omega
model is applied to the 36.5-GHz brightness temperature, the
relatively small single scattering albedo shown above can be
used despite the strong vegetation volume scattering, because
the effect of a multiscattering term, which is neglected by the
tau–omega framework, needs to be implicitly included.

This proposed MiOFA algorithm also enables VWC to
be estimated from optically observed LAI data, because the
y-parameter of (11) can be obtained from the linear regression
expressed by (12) when assuming that the b-parameter is
fixed (see also Fig. 5). This LAI-based VWC retrieval is also
evaluated in Section IV.

It should be noted that MiOFA has both similarities and dif-
ferences from the JAXA standard algorithms. Both algorithms
used the PI- and ISW-based retrieval strategies. While the
JAXA standard algorithm considers the vegetation fractional
coverage, MiOFA assumes homogeneous vegetation coverage.
While the JAXA standard algorithm assumes globally fixed
surface soil roughness parameters which are manually cali-
brated in a specific site, MiOFA determines them objectively.

IV. RESULTS

Point scale application and evaluation of MiOFA at the
Yanco region (Fig. 1) during 2013–2014 are presented. How
MiOFA works in a real-world application is first presented
using a scatterplot of estimated VOD and MODIS LAI. The
time series of VWC and SSM from MiOFA, JAXA standard
algorithm (hereafter simply called JAXA), LPRM, and the
in situ observations are then presented, and the performance
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of MiOFA to simultaneously retrieve SSM and VWC is
discussed.

Blue circles in Fig. 6 indicate the relationship between
MODIS LAI and VOD (or ξ) retrieved with a “smooth”
surface soil roughness parameter. There is a contradiction
between MODIS LAI and VOD because VOD has a high
value with LAI = 0. This is due to the bias of the roughness
parameter of the RTM as discussed in Section III-C. Green
circles in Fig. 6 show that LPRM VOD and MODIS LAI also
have this contradiction probably due to the assumption of a
smooth surface soil roughness of the RTM [1].

According to the linear regression of the VOD and LAI
(dashed blue line in Fig. 6), it was found that R∗ is 0.473.
From (10), the corrected rms height σ of this site is 0.677 [cm].
By using this rms height, the retrieval algorithm was run again
to get the unbiased VOD displayed as red circles in Fig. 6.
The contradiction between MODIS LAI and VOD no longer
exists. Results of the biased VODs (ξ) (>0.6 in most cases),
the unbiased VOD (>0.2 in most cases), and the corrected rms
height (<0.7 cm) indicate that in this case, the MiOFA works
in the range in which (9) was valid [see Fig. 4(a)].

Fig. 7(a) shows the time series of the estimated and observed
VWCs. The roughness correction by MiOFA has a tremendous
impact on the retrieved VWC. The VWC retrieved from this
study with a “smooth” surface soil roughness parameter and
LPRM have high values (>0.50 [kg/m2]) in the dry season
when LAI is less than 0.3, due to the contradiction in Fig. 6.
Moreover, this high VWC is not consistent with in situ obser-
vations. The roughness correction by the MiOFA significantly
decreases the retrieved VWC by eliminating the roughness
contamination to vegetation-oriented signals. Compared to
in situ observations, MiOFA improved the VWC retrieval
skill. However, the MiOFA may have overestimated VWC.
Possible reasons of this overestimation are the heterogeneity
of VWC in the satellite footprint scale [see whiskers and dif-
ferences between observations of different types in Fig. 7(a)],
the uncertainty of the b-parameter and single scattering albedo
as discussed in Section III-D, and the simplification of the
canopy radiative transfer using the zero-order model. It should
be noted that since the number of in situ VWC observations
is small, no statistical metrics were calculated.

Fig. 7(b) and (c) shows that the roughness correction
by the MiOFA strongly affects the SSM retrieval. Please
note that there are two pathways to change the estimated
SSM by the MiOFA: changing the emissivity of the soil
by increasing the rms height, and changing the emissivity
of the canopy by decreasing the VOD. As a result, when
the rms height is increased by the MiOFA, the range of the
fluctuations of SSM is decreased [compare black triangles
with blue circles in Fig. 7(b) and (c)]. Compared to the
in situ observed SSM, the MiOFA improved the performance
of retrieving SSM in rms error (RMSE) and correlation
coefficient (R) (Table I). However, the MiOFA increased
the bias of SSM by roughness correction (Table I). Before
roughness correction, the algorithm overestimates SSM in
wet periods and underestimates SSM in dry periods. Because
this overestimation and underestimation offset each other,
the bias of the algorithm before roughness correction was

TABLE I

PERFORMANCE OF SSM RETRIEVAL ALGORITHMS USING THE
DESCENDING (NIGHTTIME) 6.925- AND 36.5-GHZ DATAa

relatively small. Therefore, the MiOFA cannot improve the
bias score while decreasing RMSE. The performances indi-
cated in Table I are similar to those shown in the other
validation studies [see 14]. Table I indicates that the new
algorithm of this paper outperformed descending (nighttime)
LPRM and JAXA products in three metrics.

Fig. 8 shows the VWC time series calculated from LAI
using (11), with an estimated y-parameter of 1.16. From
the linear regression of (11), the slope b/y can be obtained.
Because the value of b-parameter (0.74) is given, the value
of y can be obtained. Performance of the LAI-based VWC
retrieval is similar to that of the VOD-based VWC retrieval.
Moreover, the relationship between optically observed vegeta-
tion indices (e.g., LAI and NDVI) and VWC highly depends
on the vegetation type (see [35], [36]), which makes it
difficult to observe VWC using optical sensors. Thus, the fact
that MiOFA can explicitly estimate the parameter of the
LAI–VWC relationship without any in situ training data is
significant.

V. DISCUSSION AND CONCLUSION

The uncertainty of surface soil roughness greatly deteri-
orates the performance of SSM and VWC retrieval from
passive microwave observations. By fusing microwave obser-
vations from AMSR2 and optical vegetation observations from
MODIS, the bias of surface soil roughness can be removed
and the VWC retrieval skill can greatly be improved. The
VWC can quantitatively be estimated by eliminating the con-
tamination of the time-invariant surface soil roughness effects
to VOD. Although the fundamental idea has been proposed
in [18], it relied on the in situ observed brightness temperatures
and LAI. In this paper, it is verified that this approach can also
be applied to satellite data. This is the first satellite SSM and
VWC retrieval algorithms that can objectively determine the
value of the surface soil roughness parameter in the RTM.

Since both VOD and LAI easily saturate in the moderate
and dense vegetation areas, the semiarid region with the
sparse vegetation cover is the most appropriate regions where
the MiOFA is applied. The MiOFA can be applied to the
regions characterized by high cloud coverages. Once the linear
regression between VOD and LAI is obtained, LAI optical
observations are not needed for the retrieval. Therefore, the
linear regression using cloud-free VOD and LAI observations
is first provided and then temporally fine VWC data can
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Fig. 7. (a) Time series of VWC. Black and blue lines are a five-day running mean of VWC from this study with a “smooth” surface soil roughness
parameter and a corrected surface soil roughness parameter by the MiOFA method, respectively. The green line is a five-day running mean of VWC from the
LPRM. Red circles, gray triangles, and purple stars are the in situ observed VWC, calculated as an average of VWC measurements at all observation plots of
Type I, Type II, and Type III field surveys, respectively (see Section II). Whiskers show the maximum and minimum VWCs among the observation plots.
(b) Time series of SSM. Black triangles and blue circles are SSM from this study with a “smooth” surface soil roughness parameter and a corrected surface soil
roughness parameter by the MiOFA method (using 6.925 and 36.5 GHz), respectively. Purple and green circles are SSM from the JAXA standard algorithm
and LPRM (using 6.925 GHz), respectively. Gray lines are SSM from in situ observation sites of the Yanco observation network, and the red line is the mean
of them.

be generated using microwave signals. This strategy can
overcome the limitation of temporally sparse optical LAI
observations due to clouds. For global applications, globally
fixed vegetation parameters (e.g., b-parameter) can be prob-
lematic, although this assumption has widely been used in
the existing global retrieval algorithms. Sawada et al. [18]
obtained the ground truth which supports this assumption to
some extent. Evaluating the global applicability of our new
MiOFA method will be a focus of our future work.

Although some positive impacts of the MiOFA on the SSM
estimation are detected, the improvement of SSM retrieval skill
by roughness correction is not significant. To further improve
the SSM retrieval skill, understanding of the uncertainties of

sensing depths, single scattering albedo, and spatial hetero-
geneity in the large footprint should be improved.

One of the by-products of MiOFA is the surface soil
roughness parameter. Wang et al. [19] has already estimated
their surface soil roughness parameter globally and identified
that their estimated values are correlated with vegetation types
and topography. By analyzing the global distribution of the
surface soil roughness parameter derived here, the under-
standing of the source of surface soil roughness in the pas-
sive microwave radiative transfer can be improved. It should
be noted that the spatial representativeness of surface soil
roughness is uncertain, and it is extremely difficult to obtain
satellite footprint-scale surface roughness in situ observations.
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Fig. 7. (Continued) (c) Scatter plot of SSM retrieval. Black triangles and blue circles are SSM from this study with a “smooth” surface soil roughness
parameter and a corrected surface soil roughness parameter by the MiOFA method (using 6.925 and 36.5 GHz), respectively. Purple and green circles are
SSM from the JAXA standard algorithm and LPRM (using 6.925 GHz), respectively.

In addition, the exact physical relationship between these
parameters and real-world soil roughness is unclear. Therefore,
it is currently impossible to validate the tuned surface soil
roughness parameters by in situ observations.

The other by-product of MiOFA is the y-parameter of
the relationship between LAI and VWC [see (11)]. This
parameter indicates the structure of vegetation and is a proxy
of the ratio of leaf wet biomass to total aboveground wet
biomass. Therefore, by analyzing the global distribution of
the estimated y-parameter and its changes, understanding
of the global ecosystem structure and its changes can be
improved.

Although AMSR2 brightness temperatures were used in this
paper, the theory and strategy described here can be transferred
to other microwave satellite missions such as the SMOS and
Soil Moisture Active Passive missions. Therefore, the findings

of this paper may contribute to the wider community of earth
surface observations using microwave signals.
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respectively (see Section II). Whiskers show the maximum and minimum VWCs among the observation plots.
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